1,258 research outputs found

    Quantitative Models for Centralised Supply Chain Coordination

    Get PDF

    Supply chain finance for ameliorating and deteriorating products: a systematic literature review

    Get PDF
    Ameliorating and deteriorating products, or, more generally, items that change value over time, present a high sensitiveness to the surrounding environment (e.g., temperature, humidity, and light intensity). For this reason, they should be properly stored along the supply chain to guarantee the desired quality to the consumers. Specifically, ameliorating items face an increase in value if there are stored for longer periods, which can lead to higher selling price. At the same time, the costumers’ demand is sensitive to the price (i.e., the higher the selling price the lower the final demand), sensitiveness that is related to the quality of the products (i.e., lower sensitiveness for high-quality products). On the contrary, deteriorating items lose quality and value over time which result in revenue losses due to lost sales or reduced selling price. Since these products need to be properly stored (i.e., usually in temperature- and humidity-controlled warehouses) the holding costs, which comprise also the energy costs, may be particularly relevant impacting on the economic, environmental, and social sustainability of the supply chain. Furthermore, due to the recent economic crisis, companies (especially, small and medium enterprises) face payment difficulties of customers and high volatility of resources prices. This increases the risk of insolvency and on the other hand the financing needs. In this context, supply chain finance emerged as a mean for efficiency by coordinating the financial flow and providing a set of financial schemes aiming at optimizing accounts payable and receivable along the supply chain. The aim of the present study is thus to investigate through a systematic literature review the two main themes presented (i.e., inventory management models for products that change value over time, and financial techniques and strategies to support companies in inventory management) to understand if any financial technique has been studied for supporting the management of this class of products and to verify the existing literature gap

    Leader-follower Game in VMI System with Limited Production Capacity Considering Wholesale and Retail Prices

    Get PDF
    VMI (Vendor Managed Inventory) is a widely used cooperative inventory policy in supply chains in which each enterprise has its autonomy in pricing. This paper discusses a leader-follower Stackelberg game in a VMI supply chain where the manufacturer, as a leader, produces a single product with a limited production capacity and delivers it at a wholesale price to multiple different retailers, as the followers, who then sell the product in dispersed and independent markets at retail prices. An algorithm is then developed to determine the equilibrium of the Stackelberg game. Finally, a numerical study is conducted to understand the influence of the Stackelberg equilibrium and market related parameters on the profits of the manufacturer and its retailers. Through the numerical example, our research demonstrates that: (a) the market related parameters have significant influence on the manufacturer’ and its retailers’ profits; (b) a retailer’s profit may not be necessarily lowered when it is charged with a higher inventory cost by the manufacturer; (c) the equilibrium of the Stackelberg equilibrium benefits the manufacturer.Stackelberg Game;Supply Chain;Vendor Managed Inventory

    An integrated pricing and deteriorating model and a hybrid algorithm for a VMI (vendor-managed-inventory) supply chain

    Get PDF
    This paper studies a vendor-managed-inventory (VMI) supply chain where a manufacturer, as a vendor, procures a type of nondeteriorating raw material to produce a deteriorating product, and distribute it to multiple retailers. The price of the product offered by one retailer is also influenced by the prices offered by other retailers because consumers can choose the product from any of the retailers. This paper is one of the first papers that propose an integrated model to study the influence of pricing and deterioration on the profit of such a VMI system. A hybrid approach combining genetic algorithms and an analytical method is developed for efficiently determining the optimal price of the product of each retailer, the inventory policies of the product and the raw material. Our results of a detailed numerical study show that parameters related to the market and deterioration have significant influences on the profit of the VMI system. However, different from common intuition, we find that an increase in the substitution elasticity of the product among different retailers can bring an increase in the retail prices of the product, while the increase of the market scale can reduce the retail prices. © 2011 IEEE.published_or_final_versio

    Optimizing Vendor-Buyer Inventory Model with Exponential Quality Degradation for Food Product Using Grey Wolf Optimizer

    Get PDF
    Inventory is an essential factor in the supply chain. Inventory problems are increasingly complex for perishable products such as food. This study proposes a Single Vendor-Single Buyer (SVSB) model for food products by considering exponential quality degradation. The objective function of this problem is to maximize the Joint Total Profit (JTP) of the SVSB system. The frequency of ordering raw materials (m), the frequency of delivery of the finished product (n), and the time of the inventory cycle (T) were the three (3) decision variables introduced in the study. This study proposes the Grey Wolf Optimizer (GWO) algorithm as an optimization tool for SVSB problems. A case study was conducted on a food company in Indonesia. Sensitivity analysis on costs, revenue, and JTP was also presented. The results showed that raw materials' quality degradation level affected JTP. The results also suggested that the GWO algorithm performs better than the Genetic Algorithm (GA) to optimize the SVSB inventory model

    One vendor and multiple retailers system in vendor managed inventory problem with stochastic demand

    Get PDF
    In many supply networks, the retailers are reluctant to share information about demand and inventory level to the vendor. This might lead to many difficulties for the vendor in establishing his own order/production plan. Vendor managed inventory (VMI) policy can help to solve that problem. By applying VMI, information sharing is not really a problem for the vendor anymore and this policy have been proven to help reduce total inventory cost as well as improve customer service level in the supply network. In this research, a VMI model for the system with one vendor and multiple retailers will be developed. The main target of the model is to determine the retailer’s lot size, the vendor’s lot size, the retailer cycle time, and the number of replenishments in a vendor cycle so as to minimise the total system cost. For solution purpose, simulation-optimisation technique using genetic algorithm is employed to help find optimal solutions for the decision variables. Numerical experiments are conducted to show the applicability of the proposed model. Sensitivity analysis is also conducted to examine the effects of some input parameters on the optimal solution

    Leader-follower Game in VMI System with Limited Production Capacity Considering Wholesale and Retail Prices

    Get PDF
    VMI (Vendor Managed Inventory) is a widely used cooperative inventory policy in supply chains in which each enterprise has its autonomy in pricing. This paper discusses a leader-follower Stackelberg game in a VMI supply chain where the manufacturer, as a leader, produces a single product with a limited production capacity and delivers it at a wholesale price to multiple different retailers, as the followers, who then sell the product in dispersed and independent markets at retail prices. An algorithm is then developed to determine the equilibrium of the Stackelberg game. Finally, a numerical study is conducted to understand the influence of the Stackelberg equilibrium and market related parameters on the profits of the manufacturer and its retailers. Through the numerical example, our research demonstrates that: (a) the market related parameters have significant influence on the manufacturer’ and its retailers’ profits; (b) a retailer’s profit ma

    A two-storage model for deteriorating items with holding cost under inflation and Genetic Algorithms

    Full text link
    A deterministic inventory model has been developed for deteriorating items and Genetic Algorithms (GA) having a ramp type demands with the effects of inflation with two-storage facilities. The owned warehouse (OW) has a fixed capacity of W units; the rented warehouse (RW) has unlimited capacity. Here, we assumed that the inventory holding cost in RW is higher than those in OW. Shortages in inventory are allowed and partially backlogged and Genetic Algorithms (GA) it is assumed that the inventory deteriorates over time at a variable deterioration rate. The effect of inflation has also been considered for various costs associated with the inventory system and Genetic Algorithms (GA). Numerical example is also used to study the behaviour of the model. Cost minimization technique is used to get the expressions for total cost and other parameters

    Inventory Management and Supply Chain Coordination Mechanisms

    Get PDF
    This dissertation is on inventory management and supply chain coordination mechanisms within an economic order quantity framework. Specifically, this research focuses on modeling optimal order policies and coordination mechanisms for a supply chain involving items which experience probabilistic failure during storage. These items are common types of manufactured items which, nonetheless, require specialized order policy considerations due to their unique characteristics. We first develop the solution for the buyer’s problem through the use of an economic order quantity (EOQ) model incorporating item failure. We then proceed to model the manufacturer’s problem through the use of an economic production quantity (EPQ) model. Finally, we consider mechanisms to promote mutually-beneficial cooperation between the supplier and n buyers in service of coordinating the entire supply chain. While prior research has focused on items which can be repaired or sold at a discount upon failure, such models are inappropriate for systems where repair costs exceed or are equivalent to item costs and imperfect items are unacceptable. Examples of industries featuring these inventory conditions include the medical, defense, and electronics industries where defective items are largely useless. First, our EOQ model considers a buyer-supplier relationship featuring delivery and stocking of items which experience probabilistic failure in storage. Thereafter, our EPQ model considers in-house production of such items. Collectively, our EOQ and EPQ models provide methods for developing optimal order policies necessary to achieve practicable supply chain coordination. In order to validate the necessity of the developed models, we include an empirical analysis of item reliability for some common mechanical components used in the defense industry, thereby identifying items which fail in the manner modeled in this dissertation. Having considered optimal order policies for both buyers and suppliers, we next develop an optimal solution for a coordinated supply chain. The proposed solution allows the manufacturer to coordinate a supply chain consisting of n buyers in order to achieve a common replenishment time. Through this optimization framework, we minimize total system-wide costs and derive the cost savings associated with our coordinated solution. Numerical examples are then used to demonstrate the magnitude of cost savings achievable through our coordination framework. We conclude by proposing several mechanisms for leveraging the resulting cost savings to induce mutually-beneficial cooperation between the supplier and multiple buyers. Given the lack of buyer-supplier cooperation noted in empirical research related to supply chain coordination, our identification of specific mechanisms useful for inducing mutually-beneficial cooperation between buyers and suppliers represents an important practical contribution to the supply chain coordination literature. These models are accompanied by a thorough overview and discussion of economic order quantity theory, optimal order policies, and supply chain coordination mechanisms.Ph.D., Business Administration -- Drexel University, 201

    Application of Optimization in Production, Logistics, Inventory, Supply Chain Management and Block Chain

    Get PDF
    The evolution of industrial development since the 18th century is now experiencing the fourth industrial revolution. The effect of the development has propagated into almost every sector of the industry. From inventory to the circular economy, the effectiveness of technology has been fruitful for industry. The recent trends in research, with new ideas and methodologies, are included in this book. Several new ideas and business strategies are developed in the area of the supply chain management, logistics, optimization, and forecasting for the improvement of the economy of the society and the environment. The proposed technologies and ideas are either novel or help modify several other new ideas. Different real life problems with different dimensions are discussed in the book so that readers may connect with the recent issues in society and industry. The collection of the articles provides a glimpse into the new research trends in technology, business, and the environment
    • …
    corecore