3,845 research outputs found

    Comparative evaluation of approaches in T.4.1-4.3 and working definition of adaptive module

    Get PDF
    The goal of this deliverable is two-fold: (1) to present and compare different approaches towards learning and encoding movements us- ing dynamical systems that have been developed by the AMARSi partners (in the past during the first 6 months of the project), and (2) to analyze their suitability to be used as adaptive modules, i.e. as building blocks for the complete architecture that will be devel- oped in the project. The document presents a total of eight approaches, in two groups: modules for discrete movements (i.e. with a clear goal where the movement stops) and for rhythmic movements (i.e. which exhibit periodicity). The basic formulation of each approach is presented together with some illustrative simulation results. Key character- istics such as the type of dynamical behavior, learning algorithm, generalization properties, stability analysis are then discussed for each approach. We then make a comparative analysis of the different approaches by comparing these characteristics and discussing their suitability for the AMARSi project

    Design of Decision Tree Structure with Improved BPNN Nodes for High-Accuracy Locomotion Mode Recognition Using a Single IMU

    Get PDF
    Smart wearable robotic system, such as exoskeleton assist device and powered lower limb prostheses can rapidly and accurately realize man–machine interaction through locomotion mode recognition system. However, previous locomotion mode recognition studies usually adopted more sensors for higher accuracy and effective intelligent algorithms to recognize multiple locomotion modes simultaneously. To reduce the burden of sensors on users and recognize more locomotion modes, we design a novel decision tree structure (DTS) based on using an improved backpropagation neural network (IBPNN) as judgment nodes named IBPNN-DTS, after analyzing the experimental locomotion mode data using the original values with a 200-ms time window for a single inertial measurement unit to hierarchically identify nine common locomotion modes (level walking at three kinds of speeds, ramp ascent/descent, stair ascent/descent, Sit, and Stand). In addition, we reduce the number of parameters in the IBPNN for structure optimization and adopted the artificial bee colony (ABC) algorithm to perform global search for initial weight and threshold value to eliminate system uncertainty because randomly generated initial values tend to result in a failure to converge or falling into local optima. Experimental results demonstrate that recognition accuracy of the IBPNN-DTS with ABC optimization (ABC-IBPNN-DTS) was up to 96.71% (97.29% for the IBPNN-DTS). Compared to IBPNN-DTS without optimization, the number of parameters in ABC-IBPNN-DTS shrank by 66% with only a 0.58% reduction in accuracy while the classification model kept high robustness

    Flexor Dysfunction Following Unilateral Transient Ischemic Brain Injury Is Associated with Impaired Locomotor Rhythmicity

    Get PDF
    Functional motor deficits in hemiplegia after stroke are predominately associated with flexor muscle impairments in animal models of ischemic brain injury, as well as in clinical findings. Rehabilitative interventions often employ various means of retraining a maladapted central pattern generator for locomotion. Yet, holistic modeling of the central pattern generator, as well as applications of such studies, are currently scarce. Most modeling studies rely on cellular neural models of the intrinsic spinal connectivity governing ipsilateral flexor-extensor, as well as contralateral coupling inherent in the spinal cord. Models that attempt to capture the general behavior of motor neuronal populations, as well as the different modes of driving their oscillatory function in vivo is lacking in contemporary literature. This study aims at generating a holistic model of flexor and extensor function as a whole, and seeks to evaluate the parametric coupling of ipsilateral and contralateral half-center coupling through the means of generating an ordinary differential equation representative of asymmetric central pattern generator models of varying coupling architectures. The results of this study suggest that the mathematical predictions of the locomotor centers which drive the dorsiflexion phase of locomotion are correlated with the denervation-type atrophy response of hemiparetic dorsiflexor muscles, as well as their spatiotemporal activity dysfunction during in vivo locomotion on a novel precise foot placement task. Moreover, the hemiplegic solutions were found to lie in proximity to an alternative task-space solution, by which a hemiplegic strategy could be readapted in order to produce healthy output. The results revealed that there are multiple strategies of retraining hemiplegic solutions of the CPG. This solution may modify the hemiparetic locomotor pattern into a healthy output by manipulating inter-integrator couplings which are not damaged by damage to the descending drives. Ultimately, some modeling experiments will demonstrate that the increased reliance on intrinsic connectivity increases the stability of the output, rendering it resistant to perturbations originating from extrinsic inputs to the pattern generating center

    Neuromechanical and environment aware machine learning tool for human locomotion intent recognition

    Get PDF
    Current research suggests the emergent need to recognize and predict locomotion modes (LMs) and LM transitions to allow a natural and smooth response of lower limb active assistive devices such as prostheses and orthosis for daily life locomotion assistance. This Master dissertation proposes an automatic and user-independent recognition and prediction tool based on machine learning methods. Further, it seeks to determine the gait measures that yielded the best performance in recognizing and predicting several human daily performed LMs and respective LM transitions. The machine learning framework was established using a Gaussian support vector machine (SVM) and discriminative features estimated from three wearable sensors, namely, inertial, force and laser sensors. In addition, a neuro-biomechanical model was used to compute joint angles and muscle activations that were fused with the sensor-based features. Results showed that combining biomechanical features from the Xsens with environment-aware features from the laser sensor resulted in the best recognition and prediction of LM (MCC = 0.99 and MCC = 0.95) and LM transitions (MCC = 0.96 and MCC = 0.98). Moreover, the predicted LM transitions were determined with high prediction time since their detection happened one or more steps before the LM transition occurrence. The developed framework has potential to improve the assistance delivered by locomotion assistive devices to achieve a more natural and smooth motion assistance.This work has been supported in part by the Fundação para a Ciência e Tecnologia (FCT) with the Reference Scholarship under Grant SFRH/BD/108309/2015, and part by the FEDER Funds through the Programa Operacional Regional do Norte and national funds from FCT with the project SmartOs -Controlo Inteligente de um Sistema Ortótico Ativo e Autónomo- under Grant NORTE-01-0145-FEDER-030386, and by the FEDER Funds through the COMPETE 2020—Programa Operacional Competitividade e Internacionalização (POCI)—with the Reference Project under Grant POCI-01-0145-FEDER-006941

    Human Activity Recognition and Control of Wearable Robots

    Get PDF
    abstract: Wearable robotics has gained huge popularity in recent years due to its wide applications in rehabilitation, military, and industrial fields. The weakness of the skeletal muscles in the aging population and neurological injuries such as stroke and spinal cord injuries seriously limit the abilities of these individuals to perform daily activities. Therefore, there is an increasing attention in the development of wearable robots to assist the elderly and patients with disabilities for motion assistance and rehabilitation. In military and industrial sectors, wearable robots can increase the productivity of workers and soldiers. It is important for the wearable robots to maintain smooth interaction with the user while evolving in complex environments with minimum effort from the user. Therefore, the recognition of the user's activities such as walking or jogging in real time becomes essential to provide appropriate assistance based on the activity. This dissertation proposes two real-time human activity recognition algorithms intelligent fuzzy inference (IFI) algorithm and Amplitude omega (AωA \omega) algorithm to identify the human activities, i.e., stationary and locomotion activities. The IFI algorithm uses knee angle and ground contact forces (GCFs) measurements from four inertial measurement units (IMUs) and a pair of smart shoes. Whereas, the AωA \omega algorithm is based on thigh angle measurements from a single IMU. This dissertation also attempts to address the problem of online tuning of virtual impedance for an assistive robot based on real-time gait and activity measurement data to personalize the assistance for different users. An automatic impedance tuning (AIT) approach is presented for a knee assistive device (KAD) in which the IFI algorithm is used for real-time activity measurements. This dissertation also proposes an adaptive oscillator method known as amplitude omega adaptive oscillator (AωAOA\omega AO) method for HeSA (hip exoskeleton for superior augmentation) to provide bilateral hip assistance during human locomotion activities. The AωA \omega algorithm is integrated into the adaptive oscillator method to make the approach robust for different locomotion activities. Experiments are performed on healthy subjects to validate the efficacy of the human activities recognition algorithms and control strategies proposed in this dissertation. Both the activity recognition algorithms exhibited higher classification accuracy with less update time. The results of AIT demonstrated that the KAD assistive torque was smoother and EMG signal of Vastus Medialis is reduced, compared to constant impedance and finite state machine approaches. The AωAOA\omega AO method showed real-time learning of the locomotion activities signals for three healthy subjects while wearing HeSA. To understand the influence of the assistive devices on the inherent dynamic gait stability of the human, stability analysis is performed. For this, the stability metrics derived from dynamical systems theory are used to evaluate unilateral knee assistance applied to the healthy participants.Dissertation/ThesisDoctoral Dissertation Aerospace Engineering 201

    Genetically evolved dynamic control for quadruped walking

    Get PDF
    The aim of this dissertation is to show that dynamic control of quadruped locomotion is achievable through the use of genetically evolved central pattern generators. This strategy is tested both in simulation and on a walking robot. The design of the walker has been chosen to be statically unstable, so that during motion less than three supporting feet may be in contact with the ground. The control strategy adopted is capable of propelling the artificial walker at a forward locomotion speed of ~1.5 Km/h on rugged terrain and provides for stability of motion. The learning of walking, based on simulated genetic evolution, is carried out in simulation to speed up the process and reduce the amount of damage to the hardware of the walking robot. For this reason a general-purpose fast dynamic simulator has been developed, able to efficiently compute the forward dynamics of tree-like robotic mechanisms. An optimization process to select stable walking patterns is implemented through a purposely designed genetic algorithm, which implements stochastic mutation and cross-over operators. The algorithm has been tailored to address the high cost of evaluation of the optimization function, as well as the characteristics of the parameter space chosen to represent controllers. Experiments carried out on different conditions give clear indications on the potential of the approach adopted. A proof of concept is achieved, that stable dynamic walking can be obtained through a search process which identifies attractors in the dynamics of the motor-control system of an artificial walker

    Improving Intelligence of Robotic Lower-Limb Prostheses to Enhance Mobility for Individuals with Limb Loss

    Get PDF
    The field of wearable robotics is an emerging field that seeks to create smarter and intuitive devices that can assist users improve their overall quality of life. Specifically, individuals with lower limb amputation tend to have significantly impaired mobility and asymmetric gait patterns that result in increased energy expenditure than able-bodied individuals over a variety of tasks. Unfortunately, most of the commercial devices are passive and lack the ability to easily adapt to changing environmental contexts. Powered prostheses have shown promise to help restore the necessary power needed to walk in common ambulatory tasks. However, there is a need to infer/detect the user's movement to appropriately provide seamless and natural assistance. To achieve this behavior, a better understanding is required of adding intelligence to powered prostheses. This dissertation focuses on three key research objectives: 1) developing and enhancing offline intent recognition systems for both classification and regression tasks using embedded prosthetic mechanical sensors and machine learning, 2) deploying intelligent controllers in real-time to directly modulate assistive torque in a knee and ankle prosthetic device, and 3) quantifying the biomechanical and clinical effects of a powered prosthesis compared to a passive device. The findings conducted show improvement in developing powered prostheses to better enhance mobility for individuals with transfemoral amputation and show a step forward towards clinical acceptance.Ph.D

    Biomedical Sensing and Imaging

    Get PDF
    This book mainly deals with recent advances in biomedical sensing and imaging. More recently, wearable/smart biosensors and devices, which facilitate diagnostics in a non-clinical setting, have become a hot topic. Combined with machine learning and artificial intelligence, they could revolutionize the biomedical diagnostic field. The aim of this book is to provide a research forum in biomedical sensing and imaging and extend the scientific frontier of this very important and significant biomedical endeavor
    corecore