
  

  

Abstract— Current research suggests the emergent need to 

recognize and predict locomotion modes (LMs) and LM 

transitions to allow a natural and smooth response of lower limb 

active assistive devices such as prostheses and orthosis for daily 

life locomotion assistance. This Master dissertation proposes an 

automatic and user-independent recognition and prediction tool 

based on machine learning methods. Further, it seeks to 

determine the gait measures that yielded the best performance 

in recognizing and predicting several human daily performed 

LMs and respective LM transitions. The machine learning 

framework was established using a Gaussian support vector 

machine (SVM) and discriminative features estimated from 

three wearable sensors, namely, inertial, force and laser sensors. 

In addition, a neuro-biomechanical model was used to compute 

joint angles and muscle activations that were fused with the 

sensor-based features. Results showed that combining 

biomechanical features from the Xsens with environment-aware 

features from the laser sensor resulted in the best recognition 

and prediction of LM (MCC=0.99 and MCC=0.95) and LM 

transitions (MCC=0.96 and MCC=0.98). Moreover, the 

predicted LM transitions were determined with high prediction 

time since their detection happened one or more steps before the 

LM transition occurrence. The developed framework has 

potential to improve the assistance delivered by locomotion 

assistive devices to achieve a more natural and smooth motion 

assistance. 

I. INTRODUCTION 

Due to the increasing integration of robotics in the field of 
medicine over the last few years, a larger number of people 
with locomotion disabilities are given a chance to live a life 
with better quality. According to the World Health 
Organisation, every year 15 million people suffer a stroke 
(20000 in Portugal) and 80 people in a million worldwide 
suffer a spinal cord injury (58 per million in Portugal), leaving 
people with motor disabilities [1], [2]. 

Advancements towards the use of assistive devices (e.g., 
active orthosis, exoskeletons and prosthesis) in daily life 

 
 

situations, as well as the ongoing integration of compliant 
robotic devices in neurorehabilitation generates new 
challenges. Firstly, the timely adaptation of these devices to 
diverse locomotion modes (LMs) such as, level-ground 
walking, climbing stairs and ramps. Secondly, to tune the 
assistance to the patient’s locomotion intention by monitoring 
the human-robotic interface through wearable sensors [3], [4].  

To provide efficient and suitable gait assistance and to 
decrease fall risk, LM recognition is essential. LM recognition 
is challenging for gait assistance devices due to the limited 
sensors and the need for a time effective response [5]. 
Commercially available devices such as prosthesis and 
orthosis can switch LMs executing manual commands such as 
button presses, as used in the ReWalkTM system (Argo 
Medical Technologies Ltd. Israel) [6] or specific motions such 
as used in Power KneeTM (Össur, Iceland) [6]. The user’s 
intent motion prediction is fundamental to achieve a natural, 
user-independent and automatic device response during all 
locomotion phases. However, the existing manual solutions 
require the user’s training before using the device and a major 
cognitive effort from the user during locomotion.  

Previous studies have proposed promising methods to 
recognize and predict LMs and LM transitions, through 
artificial intelligence methods, using several wearable sensors. 
One approach proposed by Chen et. al. [7] exploited signals 
from two-foot pressure insoles and three inertial measurement 
units (IMU) as biomechanical features to develop a 
locomotion intent prediction strategy based in a linear 
discriminate classifier (LDA). Six kinds of LMs were 
accurately recognized (99.71% ± 0.05), however no LM 
prediction was addressed [7]. The electromyography signal 
(EMG) is another widely used measure for user’s intent 
recognition during locomotion since it represents muscle 
activations that precede the limb’s motion. Some studies 
addressed the sensor fusion between EMG and mechanical 
signals from the user’s assistive device such as moment, 
velocity, angle, gait phase and ground reaction force to be used 
in machine learning algorithms such as LDA and Support 
Vector Machines (SVMs) [8], [9] These studies report an error 
lower than 2.3% ± 0.7% for detecting 8 different LM 
transition.  

Despite being widely used, wearable sensors such as IMUs 
and EMG present some major drawback such as the presence 
of noise, which introduces drift errors in IMUs ’measures 
[10]–[12]. Moreover, EMG-based approaches present some 
practical limitations, namely the EMG electrode shift due to 
the subject movement or sweat and require an expert and a 
lengthy installation [13], [14]. The EMG signal is extremely 
dependent on the electrode’s position and orientation. Placing 
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electrodes in the wrong locations will reduce signal strength 
and quality. Neuro-biomechanical models (combining 
biomechanics and neurophysiology) have provided accurate 
kinematic, dynamic estimations, and muscular activation 
estimations patterns using wearable sensor information such 
as IMUs and EMGs and resemble a promising method to 
overcome the mentioned issues[15], [16] 

 Research efforts have been made to further improve the 
motion intent recognition and prediction, including 
environment-aware strategies to infer about the interaction 
between the user and the world, inspired by the human ability 
to see the surrounding environment. In [17], an infrared laser 
sensor was placed in the user’s waist in order to acquire terrain 
change information during the subject’s gait. Study [17] 
proposed a fusion between an LM recognition module and a 
terrain reconstruction module, using an LDA classifier. The 
terrain reconstruction module provided an accuracy higher 
than 98% and detections 500 ms in advance. The anticipatory 
nature of environment-aware strategies still needs to be further 
explored to provide robust and time-effective LM transition 
prediction systems for timely controlling assistive devices. 

 This dissertation tackles the mentioned challenges. It 
proposes an automatic and user-independent recognition and 
prediction tool for classifying daily encountered LMs and LM 
transitions using machine learning methods. Furthermore, 
different types of wearable sensors, namely IMU and force 
sensing resistor sensors (biomechanical gait measure), and an 
infrared laser sensor (environment-aware gait measure), were 
explored to find an effective and reliable recognition and 
prediction tool. Additionally, the Xsens biomechanical model 
and an OpenSim modified musculoskeletal model are used to 
generate neuro-biomechanical features such as the lower limbs 
joint angles and muscle activation patterns, respectively. The 
tool aims at an efficient classification of the LMs commonly 
encountered in daily life, with variations in walking speed and 
terrains (i.e., flat, ascending and descending stairs, climbing up 
and down ramp). The tool also approaches transitions from/to 
those terrains using the user’s self-selected lower limb to 
minimize the user’s cognitive effort during locomotion. The 
validation of the proposed tool included 10 able body subjects 
performing different LMs and the LM transitions at different 
terrains, directions, and gait speeds. The obtained results may 

contribute to the optimization of the assistance delivered by 
the lower limb active assistive devices. 

 The proposed work approached two main research 
questions, as follows: (i) what are the best gait measures for 
LMs and LM transition classification? and (ii) Would the 
environment-aware measure help to increase LM and LM 
transition prediction performance? These questions are 
explored in Section III.   

II. METHODS 

The LM and LM transition recognition and prediction tool 
proposed in this dissertation is represented in Fig.1. The 
proposed methodology is divided into five main modules, 
namely the wearable motion LAB (WML), biomechanical 
model, musculoskeletal model, feature computing and the 
machine learning framework. 

A. Wearable Motion LAB 

The WML includes ergonomic, stand-alone, wearable 
sensor systems placed on the subject’s body, namely the 
infrared laser sensor, the inertial sensor system and the force 
sensing resistor (FSR) system. The first sensor refers to the 

 

 
Figure 1. Schematic overview of the LM and LM recognition and prediction framework 

 

 

Figure 2. Wearable Motion LAB sensor placement. (a) Infrared laser 
sensor. (b) Xsens IMU sensor. (c) FSR ground reaction force sensor 



  

infrared laser sensor (TF Mini LiDAR), placed on the user 
waist pointing at the ground with and angle of proximally 45º 
to the user’s abdomen vertical plane (Fig. 1 (a)). This laser 
sensor provides a signal that indicates the distance between the 
subject and the ground or possible obstacles and terrain 
changes. The second system is composed by 7 wireless IMU 
(Xsens Technologies BV, Enschede, Netherlands) placed on 
the outer side of both thighs and shanks, on top of the feet, and 
one IMU was placed on the lower back (Fig. 2(b)). The IMUs 
provide acceleration, angular velocity and magnetic field 
regarding each lower limb segment. The third system consists 
of 4 FSRs (406 FSR, Interlink Electronics), two per foot, one 
placed in the and one in the heel. The FSRs provide an 
electrical signal that is directly related to the pressure applied, 
measuring the ground reaction force (GRF). All systems were 
synchronized by wires and the data was collected at 100 Hz. 

B. Biomechanical Model 

The biomechanical model is accountable for the 3D joint 
angle estimations using IMUs’ measures as input. The Xsens 
well-established motion tracking method, was used to 
guarantee accurate joint angle estimations, as the lower limb 
joint angles represent a significative feature of the human gait, 
and consequently, they are relevant for LM and LMT 
classification [15]. The Xsens biomechanical model is in 
constant communication with the wireless IMUs, by sending 
them the real body segment positions and simultaneously 
receiving new acquisitions to predict the subsequent motions. 

C. Musculoskeletal Model 

The third module of the tool depicted in Fig.1 includes a 
virtual musculoskeletal model able to compute the motion 
forces and muscle activations involved in locomotion from the 
given kinematic data (lower limb spatial displacement) and the 
force of interaction with the external world (from the FSRs). 
Since during locomotion, the subject only contacts the ground, 
the GRF (from the FSRs) is the only considered external force 
applied. 

The virtual model consists of a modified version of the 
gait10dof18musc OpenSim model, which includes the trunk, 
pelvis, and leg segments with 10 degrees of freedom. The 
musculoskeletal system incorporates 18 Hill-type muscles (9 
in each leg), where 5 muscles are monoarticular (Soleus, 
Tibialis Anterior, Gluteus Maximus, Vastus Intermedius, 
Rectus Femoris) and 3 muscles are biarticular 
(Gastrocnemius, Biceps Femoris, Lateral Hamstring, 
Iliopsoas). Literature suggests that the used musculoskeletal 
system underlies the sufficient characteristics to impose a 
natural human gait, capable of tolerating small terrain 
disturbances, being computationally efficient [18].  

The motion forces (e.g., net forces and torques) at each joint 
are computed through inverse dynamics. The algorithm solves 
the dynamic equation of motion presented in (1), where 𝑞, �̇� 
and  �̈� refer to the position, velocity, and acceleration of the 
generalized coordinates; M, C, G are the mass, centrifugal and 
Coriolis, and gravitational forces matrices, respectively; and 𝑇 
is the vector of unknown motion forces. This algorithm derives 
the minimal forces responsible for generating the desired 
motion. 

𝑀(𝑞)�̈� + 𝐶(𝑞, �̇�) + 𝐺(𝑞) = 𝑇 (1) 

With the purpose of computing the muscle activations, a 
static optimization algorithm was applied to compute muscle 
activations by minimizing its sum of squared. 

D. Feature Computing 

The feature computing module converts the input sensor 
and neuro-biomechanical data, to an output feature vector 
containing meaningful information segmented per gait cycle. 
The time window’s size is adaptive according to the gait 
speed. The period of each time-window corresponds to the 
duration of each gait cycle. The gait cycle segmentation was 
determined by automatically detect gait events using an 
algorithm based on the angular velocity of each foot [19].  

The developed framework performs both LM and LM 
transition recognition and prediction. For recognition 
purposes, gait cycles were segmented between consecutive 
heel-strike events while for prediction purposes, gait cycles 
were segmented between consecutive toe-off events. 

For neuro-biomechanical data, several features were 
computed such as the mean, standard deviation, range, 
maximum, minimum and the first and last value. Regarding 
the laser sensor data, some additional features were computed 
with the purpose of taking maximum advantage of the signal 
characteristics, namely, the signal slope, slope module, 
previous slope, and previous slope module. Table I lists the 
computed features per gait measure.  

TABLE I.  FEATURE COMPUTING REPRESENTATION CONSIDERING 

SENSOR AND NEURO-BIOMECHANICAL DATA 

Sensor/Tool Measure Body Zone Features  

IMU 
Angular 

Velocity 

Back, right/left Thigh, 

right/left Shank and 

right left foot 

Mean, Standard 

Deviation, Range 

of Motion, 

Maximum, 

Minimum and the 

First and Last 

Value 

Xsens 

Biomechanical 

Model 

Joint Angles 

Right/Left Hip, 

Right/Left Knee, 

Right/Left Ankle 

Opensim 

Muscluskeletal 

Model 

Muscle 

Activations 

Soleus, Tibialis Ant., 

Gluteus Max., Vastus 

Int., Rectus Fem, 

Gastrocnemius, Biceps 

Fem., Lateral Ham., 

Iliopsoas 

FSRs 

Ground 

Reaction 

Force 

Right/left Heel and Toe 

Laser  

Distance 

between 

subject and 

ground 

Waist 

Mean, Standard 

Deviation, Range 

of Motion, 

Maximum, 

Minimum and the 

First and Last 

Value. 

Slope, Slope 

Module, Previous 

Slope and 

Previous Slope 

Module 

E. Machine Learning Framework 

The machine learning framework aims at recognizing and 
predicting LM and LM transitions to infer about the subject’s 
locomotion intentions in diverse terrain types encountered in 
daily life. This machine learning framework unfolds in four 
sub-sections, namely, Data Pre-processing, Data Labelling, 
Model Building, and Classification Evaluation. 



  

1) Data Pre-processing 

Pre-processing techniques are applied to the unprocessed 
feature vector in order to maximize model performance and 
reduce its training time. The applied pre-processing 
techniques include data normalization and feature selection. 
During data normalization, features are processed using the 
min-max scaling method. This process aims to convert all 
features to a common range such that features with larger 
value range do not reduce the influence of features with 
smaller ranges. The min-max method provides zero-mean and 
unit-variance characteristics to each feature and limits range 
between -1 and 1. 

Additionally, a feature selection method was used to select 
the minimum number of features. For this purpose, the 
mRMR plus forward selection method was used. This method 
selects the most relevant features from those that have 
minimally redundancy, i.e. selects features that are maximally 
dissimilar to each other. This method creates a ranking 
immune to redundancy, in which a feature is kept if it 
increases the tool’s performance, otherwise it is removed 
[20]. 

2) Data Labelling 

 For recognition and prediction purposes, labelling was 
done on features computed considering time-windows 
segmented between heel strike events and toe off events, 
respectively. Moreover, prediction was achieved by 
classifying events one gait cycle before it’s occurrence (i.e., 
on the previous time window as demonstrates by blue time-
zones in Fig. 3). An example of the time displacement of 
recognition (red) and prediction time-windows (blue) used for 
labelling and feature computing, are represented in Fig. 3. 

3) Model Building 

The followed approach assumes that the decision making is 
empowered by four classification models for recognition and 
another four for prediction running simultaneously. Fig. 1 
depicts a simplified scheme of this classification workflow. 
The classification procedure was constructed as a chain 
sequence of classification models as demonstrated in Fig. 4. 

 The workflow starts with the walking direction 
classification using the Direction Classification Model. This 
classification model aims at classifying forward, 
anticlockwise and clockwise directions. The remaining 
classification sequence only proceeds if forward direction is 
detected. The following classification model is the binary 
Steady-State/Transition model and it aims at distinguishing 
LM steady-states (i.e. during a certain LM) from LM 
transition states (during an LM change), regardless of what 
LM or LM transition type it represents. In case this 
classification model detects a steady-state, it proceeds to the 
Steady-State Type model to determine its type. The Steady-
State Type model classifies five LM, namely, level-walking, 
stair ascend/descend, and ramp ascends/descend. On the other 
hand, if the Steady-State Transition detects an LM transition, 
it proceeds to the Transition Type model to determine the 
transition type. The Transition Type model classifies eight 
transitions from level ground to stair/ramp ascend/descend 
and from to stair/ramp ascend/descend to level ground.  To 
note that this chain sequence of classification is used for both 
recognition and prediction purposes. 

 This scheme allows the easy incorporation of additional 
LM and/or LM transition in the classification, adding 
versatility to the proposed framework to act as a benchmark 
tool. Additionally, it seems to be advantageous regarding the 
classification strategy proposed by Young et al. [21] since it 
demands the implementation of fewer models, decreasing the 
computational load and the susceptibility to sequential errors, 
and allows easier integration of further LMs and/or LM 
transition.  

 The SVM classifier with a Gaussian kernel was used for 
all classification models. A hyperparameter optimization was 
performed to tune the kernel box constraint (C) and scale 
parameter (σ). The hyperparameter optimization involved a 
grid search to determine the combination the yielded the 
highest performance. This process was conducted by building 
a model for each combination, performing its evaluation 
iteratively. The values for each hyperparameter varied 
according to a range that goes from from 2−10 to 210. To note 
that all classification models are built considering features 
retrieved from all users which conveys a user-independent 
characteristic. 

4)  Classification Evaluation 

The classification evaluation was conducted using cross-
validation. The evaluation procedure is used for comparing 
models using different input parameters such as varying 
hyperparameters or feature combinations. The evaluation is 
particularly important to infer the classification performance 
of unseen data. Each model’s performance is evaluated using 
repeated 10-fold cross-validation, repeated 10 times. To 
evaluate the classification results, the Matthew’s correlation 

 

Figure 3. Considered time-windows for LM (1, 3 and 5) and LM transition 
(2 and 4) recognition (red) and prediction (blue). Prediction time-
windows are limited by toe-off events (TO) and recognition time windows 
are limited by heel strike events 

 

 

 

Figure 4. Classification chain sequence 



  

coefficient (MCC) was used due to its good representative 
properties of unbalanced classes [22], as for the case of this 
work. The accuracy (ACC) was also computed for comparing 
the results with the literature’s findings [23]. 

F. Experimental Conditions 

The experimental trials were performed with 10 healthy 

subjects (7 males and 3 females with a mean age of 23.9 ± 

1.64 years, mean height of 174.9 ± 7.07 cm and mean weight 

of 69.7 ± 7.14 kg). The participants were asked to ascend and 

descend a ramp and ascend and descend a staircase 5 times 

per each terrain elevation (total of 20 terrain elevations per 

subject). In these trials, subjects started on level-terrain then 

transited to the ramp or staircase, walk the full ramp/staircase 

length and back to level-terrain walking. When in level-

terrain, the users walked 3-4 m. The staircase had 8 steps with 

17 cm of height, 31 cm of depth and 110 cm width. The ramp 

was 10.3 m with a 10 degrees inclination. Fig. 5 depicts the 

terrain’s conditions for level, ramp and stair walking. The 

subjects could freely perform the LM transitions with any 

leading leg to enable transition seamlessly and intuitively 

between LMs. To note that the participants were always 

instrumented with all sensors that constitute the wearable 

motion LAB.  

As ground truth, an assessor marked the LM transition 

instants during the experimental trials using a button 

synchronized with the system. 

III. RESULTS AND DISCUSSION  

In order to tackle these dissertation goals, three studies 
were performed combining a specific group of gait measures, 
namely, (i) biomechanical measures, (ii) neuro-biomechanical 
measures, and (iii) an environment-aware/biomechanical 
based measures. All the mentioned studies approached the LM 
and LM transition recognition and prediction. 

The first study aimed to determine if features computed 
from gait measures (joint angles and angular velocity at 
sagittal plane) of the Xsens system alone provide good 
performance. The results obtained from this study are 
demonstrated in Table II for recognition and prediction. For 
this study, a total of 66 features were computed and 
subsequently pre-processed.  

 

TABLE II.  BIOMECHANICAL BASED FEATURE RECOGNITION AND 

PREDICTION 

 
Classification 

Model 

Hyperpa

rameters 

Nº 

Selected 

features 

MCC ACC 

Recognition 

Steady-

State/Transition 

C = 64 

σ = 4 

34 
0.873± 

0.008 

0.957± 

0.003 

Transition Type 23 
0.922± 

0.041 

0.982± 

0.01 

Steady-State 

Type 
24 

0.989± 

0.004 

0.997± 

0.001 

Prediction 

Steady-

State/Transition 
27 

0.84± 

0.006 

0.948± 

0.002 

Transition Type 22 
0.83± 

0.04 

0.958± 

0.01 

Steady-State 

Type 
23 

0.948± 

0.05 

0.984± 

0.02 
 

From the observation of Table II, it is possible to 
acknowledge that all classification models show high 
recognition and prediction performance (ACC>0.948). 
However, the MCC values for recognition and prediction of 
the steady-state/transition classification model are a little 
bellow when comparing with the remaining (MCC = 0.8729 
and MCC=0.8482 respectively). Furthermore, the recognition 
performance was higher than the prediction performance for 
the considered classification models. These results point out 
that the use of biomechanical features may be insufficient to 
recognize and predict LM transition and are most suited for 
recognition purposes. The findings are similar with those 
reported in the literature, that only used IMU-based features, 
as seen in the work proposed by Jang et. al [5],that reported an 
ACC of 0.98, 0.95 and 0.99 for SA, SD, and LG, respectively. 
Nonetheless, the proposed work addressed prediction 
problematic, in opposition to [5] 

The second study aimed to determine the influence of 
adding neuromuscular features (computed from muscle 
activation patterns of 18 muscles of Opensim model) to the 
biomechanical features used in the first study. The results 
obtained from this study are demonstrated in Table III for 
recognition and prediction This study used a total of 156 
features combining he 66 biomechanical features to the 90 
neuromuscular features. 

TABLE III.  NEIRO-BIOMECHANICAL (NEUROMUSCULAR PLUS 

BIOMECHANICAL) FEATURE RECOGNITION AND PREDICTION 

 
Classification 

Model 

Hyperpa

rameters 

Nº 

Selected 

features 

MCC ACC 

Recognition 

Steady-

State/Transition 

C = 64 

σ = 4 

29 
0.867± 

0.01 

0.955± 

0.005 

Transition Type 21 
0.961± 

0.02 

0.996± 

0.003 

Steady-State 

Type 
22 

0.949± 

0.02 

0.985± 

0.006 

Prediction 

Steady-

State/Transition 
16 

0.847±

0.01 

0.947± 

0.004 

Transition Type 24 
0.871±

0.03 

0.985± 

0.005 

Steady-State 

Type 
24 

0.921±

0.01 

0.975± 

0.004 
 

For this study, it was hypothesized that the muscle 
activation patterns would provide a significant contribution 
for predicting LM transitions since these signals have the 
purpose of controlling muscle activation that generates the 
movement of the subject [24]. The general appreciation of the 
obtained results is that the additional neuromuscular features 
provided a similar performance when compared to the only 

 

Figure 5.  Pictures of the terrain conditions used in the trials (a) 

staircase, (b) slope terrain, (c) level ground terrain  



  

use of biomechanical features (first study). Although the 
prediction performance for the Steady-State/Transition model 
stayed in line with the first study performance, it is noticeable 
that in this second study, 11 fewer features were used. This 
finding indicates that it needed much less information to 
achieve a similar result. Therefore, despite not improving 
performance considerably, neuromuscular features present 
meaningful information regarding the LM and LM transition 
classification.  

The presented results stand in line with the literature. 
Huang et. al.[8] fused biomechanical sensors with EMG 
features features and reported an ACC value of proximally 
0.978 in LM recognition whereas the herein developed tool 
rounded an ACC value of 0.995. Moreover, Huang’s work 
predicted LM transitions with an ACC of 1 for similar 
terrains, which is higher than the 0.947 ACC value obtained. 
However, is important to mention that in Huang’s work the 
transition steps were not performed with the leading leg.  
Furthermore, the work developed by Tkarch et. al. [9] 
reported an higher ACC (0.977) relatively to the proposed 
work (0.947) when using EMG data fused with biomechanical 
data for transition prediction. Nonetheless, both works used 
biomechanical prosthesis signals which are characterized for 
being more “robotic” when comparing to walking patterns of 
different subjects. 

The third study tested the LM and LM transition 
recognition and prediction performance when using 
biomechanical (GRF data, IMU sagittal angular velocity, 
lower limb sagittal joint angles) and environment-aware 
(infrared laser) features. The results obtained from this study 
are presented in Table IV for recognition and prediction. This 
study used a total of 100 features. 

TABLE IV.  ENVIRONMENT-AWARE/BIOMECHANICAL BASED FEATURE 

RECOGNITION AND PREDICTION 

 
Classification 

Model 

Hyperpa

rameters 

Nº 

Selected 

features 

MCC ACC 

Recognition 

Direction 

C = 64 

σ = 4 

33 
0.995± 

0.01 

0.998± 

0.002 

Steady-

State/Transition 
57 

0.887± 

0.02 

0.947± 

0.01 

Transition Type 19 
0.959± 

0.005 

0.990± 

0.004 

Steady-State 

Type 
20 

0.989± 

0.01 

0.983± 

0.002 

Prediction 

Direction 52 
0.997± 

0.02 

0.999± 

0.001 

Steady-

State/Transition 
51 

0.865± 

0.03 

0.945± 

0.004 

Transition Type 36 
0.978± 

0.02 

0.995± 

0.005 

Steady-State 

Type 
37 

0.949± 

0.005 

0.983± 

0.002 
 

Regarding third study, a direction classification model was 
included, and it demonstrated excellent performance both for 
recognition and prediction purposes (ACC=0.998 and 
ACC=0.999, respectively). This finding indicates that the 
information given to the model was adequate to characterize 
forward, anticlockwise, and clockwise direction of a walking 
subject. Novak et. al [25] proposed a turn detection system 
using IMUs and reported results similar to the ones achieved 
in this work for direction prediction (ACC  > 0.97 vs ACC = 
0.95, respectively). 

Furthermore, the combination of GRF and laser-based 
features to the biomechanical features increased the 
performance   for all classification models in recognition and 
prediction. Despite performance improvement using the 
mentioned additional features, the GRF number of features 
selected is very low. In this sense, the added laser data features 
represent higher importance in classification as they were the 
major reason for the classification performance improvement 
regarding recognition and prediction. The highest increase 
was related to the recognition and prediction of the type of 
transition (MCC=0.959 and MCC= 0.978, respectively). 
These results might be related to the abrupt changes in the 
laser signals characteristics when a terrain change occurs. 
Features computed considering these laser characteristics 
may provide meaningful information to classify transition 
types, as observed in a team study [26]. The fusion between 
biomechanical sensors with laser data was already explored in 
literature by Liu et. al.[17],  reported an ACC of 99% in LM 
recognition, equal to the achieved 99% in ACC. Nonetheless,  
LM transitions were not considered in [17], as innovatively 
explored in this work.  

In summary, the Direction classification model presented in 
Environment-Aware/Biomechanical based feature study 
revealed excellent results (ACC=0.998 and ACC=0.999) 
regarding recognition and prediction respectively. Similar 
finding can be found in [25] with a success rate of 0.97 to 0. 
99 in ACC values. The Steady-State/Transition classification 
models revealed the lowest general performance which might 
be related to the characteristic of having to distinguish between 
only two classes (binary classification), and because it was 
trained in an unbalanced way (fewer LM transition features). 
The Transition Type and Steady-State Type Classification 
models have shown good classification performance in a 
general manner.  

IV. CONCLUSION 

This dissertation proposes an automatic and user-
independent machine learning-based tool to recognize and 
predict daily performed LMs and LM transitions. The work 
aimed to determine the combination of gait measures collected 
by wearable sensors that yielded the best classification 
performance. 

The findings showed that the automatic recognition and 
prediction tool demonstrated the highest performance for 
environment-aware/biomechanical based feature combination. 
Moreover, since GRF-based features provided poor 
significance, it is possible to conclude that the best feature 
combination for LM and LM transition classification includes 
biomechanical features from Xsens together with 
environment-aware based features from the laser sensor.  

Furthermore, the environment-aware features demonstrated 
to be relevant to classify LM transitions, namely they 
increased the LM transition prediction performance. 

These findings contribute to identifying the meaningful gait 
measures for building an effective user’s motion intent 
recognition. This will allow a natural and smooth response of 
lower limb active assistive devices according to the user’s 
intentions and needs.  
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