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ABSTRACT

Wearable robotics has gained huge popularity in recent years due to its wide appli-

cations in rehabilitation, military, and industrial fields. The weakness of the skeletal

muscles in the aging population and neurological injuries such as stroke and spinal

cord injuries seriously limit the abilities of these individuals to perform daily ac-

tivities. Therefore, there is an increasing attention in the development of wearable

robots to assist the elderly and patients with disabilities for motion assistance and

rehabilitation. In military and industrial sectors, wearable robots can increase the

productivity of workers and soldiers. It is important for the wearable robots to main-

tain smooth interaction with the user while evolving in complex environments with

minimum effort from the user. Therefore, the recognition of the user’s activities such

as walking or jogging in real time becomes essential to provide appropriate assistance

based on the activity.

This dissertation proposes two real-time human activity recognition algorithms

intelligent fuzzy inference (IFI) algorithm and Amplitude omega (Aω) algorithm to

identify the human activities, i.e., stationary and locomotion activities. The IFI

algorithm uses knee angle and ground contact forces (GCFs) measurements from

four inertial measurement units (IMUs) and a pair of smart shoes. Whereas, the Aω

algorithm is based on thigh angle measurements from a single IMU.

This dissertation also attempts to address the problem of online tuning of virtual

impedance for an assistive robot based on real-time gait and activity measurement

data to personalize the assistance for different users. An automatic impedance tuning

(AIT) approach is presented for a knee assistive device (KAD) in which the IFI algo-

rithm is used for real-time activity measurements. This dissertation also proposes an

adaptive oscillator method known as amplitude omega adaptive oscillator (AωAO)

method for HeSA (hip exoskeleton for superior augmentation) to provide bilateral hip

i



assistance during human locomotion activities. The Aω algorithm is integrated into

the adaptive oscillator method to make the approach robust for different locomotion

activities. Experiments are performed on healthy subjects to validate the efficacy of

the human activities recognition algorithms and control strategies proposed in this

dissertation. Both the activity recognition algorithms exhibited higher classification

accuracy with less update time. The results of AIT demonstrated that the KAD assis-

tive torque was smoother and EMG signal of Vastus Medialis is reduced, compared to

constant impedance and finite state machine approaches. The AωAO method showed

real-time learning of the locomotion activities signals for three healthy subjects while

wearing HeSA. To understand the influence of the assistive devices on the inherent

dynamic gait stability of the human, stability analysis is performed. For this, the sta-

bility metrics derived from dynamical systems theory are used to evaluate unilateral

knee assistance applied to the healthy participants.
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Chapter 1

INTRODUCTION

In 2050, the population aged 65 and over in United States is projected to be 83.7

million, almost double to its estimated population of 43.1 million in 2012 [1]. The

aging poses several challenges related to nervous system (such as Alzheimers disease,

stroke, and Parkinsons disease) and musculoskeletal system (such as arthritis and

osteoporosis). As a result, a significant number of people have suffered difficulties to

perform daily activities such as walking and climbing stairs. Therefore, the demand

for rehabilitation training increased over the years. The research challenges for the

rehabilitation involve the development of therapeutic methods and assistance modes

that help the patients to improve their daily activity performance and to restore lost

or impaired motion control.

The manual rehabilitation or supervised therapy is expensive, time consuming,

and involves intensive labor of both physical therapists and patients [2]. Also, the

therapists need patients to visit the rehabilitation facility regularly to check on the

recovery progress that may cause inconvenience to patients. The aforementioned

drawbacks motivate researches to develop an alternate solution based on wearable

sensors and assistive devices. The wearable sensors and assistive devices help the

patients to live independently at their homes while being remotely monitored by the

therapists and provide feedback to the patients [3].

The wearable sensors along with assistive device form a personalized system for

the patients which helps them to perform rehabilitation training remotely. The assis-

tive robots need wearable sensors to record the kinematics and kinetics data such as

position, velocity, and torque of the joints. They are equipped by actuations to move
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the users limb, and they are designed to make the compensations of physical capabil-

ities of patients [4]. Assistive robots can provide both the movement controllability

and the measurement reliability, which makes them ideal instruments to help neu-

rologists and therapists address the challenges facing neurorehabilitation [5]. Studies

have shown that therapy should be intense and repetitive to achieve the maximum

benefit [2]. To provide such training, rehabilitation equipment must be activated.

Assistive robots are tireless in contrast to human-being trainers. Besides, because of

their sensors, robots can monitor movement quality as well as progress constantly,

providing highly specific feedback to patients to aid learning. The benefits of robots

for rehabilitation are therefore multifold: they can produce repetitive high-quality

movements, allowing increased intensity of rehabilitation [6]; they can provide a large

variety of exercises for the therapist to choose from; they provide a smooth man-

machine interaction which allows an objective measure of progress, which itself can

allow changes in the interaction by altering control parameters [7].

The other major application of the wearable sensors and assistive robots is in the

area of military [8]. Soldiers required to perform combat missions when they reach

their destination. To assist in such cases, military exoskeletons have been developed

to amplify the capabilities of the soldier and help them to travel long distances with

reduced metabolic costs [9]. The wearable sensors provide kinematics and kinetics

data for the exoskeleton to assist the soldiers [10].

1.1 Wearable Sensors

The advances in microelectronics and sensor technology have enabled the devel-

opment of wearable sensors. A survey reported that the number of wearable sensors

will increase from 22 million in 2013 to 177 million in 2018 [11]. Assisted living ap-

plications leveraging wearable sensors enable a healthier life style and independence
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in the people. The monitoring of daily activities is crucial to assess the quality of

life of various target population. The possibility of life-logging is enabled with the

aid of developing technology and the reduced cost of wearable sensors. People are

logging everything from the number of steps taken in a day to the range of activities

performed.

Wearable sensors have diagnostic, as well as monitoring applications. The cur-

rent capabilities of the wearable sensors include physiological, bio-mechanical sensing,

and motion sensing. Wearable sensors are used to gather physiological and movement

data thus enabling patient’s status monitoring. Sensors are deployed according to the

clinical applications of interest. Wearable sensors for movement data are used in ap-

plications such as monitoring effectiveness of home-based rehabilitation interventions

in stroke survivors or the use of mobility assistive devices in older adults.

The wearable motion sensors such as accelerometers, gyroscopes, and magne-

tometers significantly impact the management of Parkinsons disease and post-stroke

rehabilitation [12, 13, 14, 15]. Cancela, et al. have evaluated the feasibility of wear-

able system to assess the gait in PD patients [16]. The body-fixed accelerometers

are used to enhance the utility of Timed Up and Go (TUG) test when evaluating

PD patients [17]. The TUG test is a popular clinical test of mobility and fall risk.

Uswatte, et al, have shown the data from body-worn accelerometers can provide ob-

jective information about real-world arm activity in stroke survivors [15]. Prajapati et

al. have placed two accelerometers on each leg to monitor walking in stroke survivors

[18]. Results showed that the system could monitor the symmetry and bio-mechanical

characteristics of walking. Huang et al. have developed a micro-sensor based extrem-

ity rehabilitation system to evaluate motor impairment [19]. The system embedded

in fabric of the garments include inertial sensors to capture motion, and enable the

reconstruction of 3-D movement by the stroke patients. Philips Research have devel-
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oped home-based rehabilitation technology known as Stroke Rehabilitation Exerciser

[20]. This device coaches the patients through series of exercises for motor training.

In addition to kinematics, it is important to measure the kinetics. For kinetics,

the force exerted on the ground i.e., ground reaction forces (GRFs) are essential for

inferring the torque generated at each joint. The force plates are used in laboratory

to measure these forces. The force plate have the limitations that they are restricted

to the laboratory environment and entail high equipment costs. As an alternative,

wearable pressure sensing insoles and inertial sensors have been developed. Morris

Bamberg et al. [21] present an insole which incorporates two dual-axis accelerometers,

three gyroscopes, four force sensitive resistors, two polyvinylidene fluoride strips, two

bend sensors, and an electric field sensor for the analysis of Parkinson’s gait. Pressure

sensing shoes and insoles are also presented by Howell et al. [22] and Strohrmann et al.

[23] to study the motion of stroke and Cerebral Palsy patients, respectively. Both Lo

et al. [24] and Neugebauer et al. [25] propose to further simplify kinetic analysis using

micro-inertial sensors for GRF measurement. Although GRF is critically important

for kinetics analysis, it can only be used to infer virtual force generated at each joint

by inverse dynamics, which may not be enough in practice.

In addition to GRF, surface EMG (sEMG) systems can be used to measure muscle

activity for better understanding of muscle characteristics, muscle force estimation,

and movement identification. Previous studies capture myoelectric signals through

high density arrays of surface electrodes as they are less invasive than intramuscular

electrodes and provide high resolution measurements. To estimate muscle forces

using sEMG, musculoskeletal models and learning methods are typically used. For

example, Staudenmann et al. [26] used a high density electrode array and principal

component analysis (PCA) to estimate muscle force. PCA was used transform the

spatial distribution of muscle activations into linearly independent ranked modes,
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split into a sum of higher modes and lower modes, for muscle force estimation. Shao

et al. [27] used a modified Hill-type muscle model [28] for describing lower limb

anatomy. High-pass filtering, full wave rectification, normalisation using peak rectified

EMG measurements, and low-pass filtering are used to process the measurements. A

calibration process which incorporates EMG and kinematics was used to determine

parameters between EMG and muscle activation of the muscle model to achieve RMS

errors between 9.7% and 14.7%. Similarly, Naeem et al. [29] also rectified smooth

EMG measurements, which are combined with a back-propagation neural network.

1.2 Wearable Robots for Assistance

The term wearable robotics came into existence in the 1960s when research efforts

started to focus on developing load augmentation and rehabilitation systems. Essen-

tially, wearable robots help users perform a variety of tasks such as carry heavy loads,

reduce the burden in physically demanding tasks, and apply rehabilitation treatment

to patients. Also, the wearable robots assist the users in performing daily activities

such as walking, ascending/descending stairs, and sit-to-stand transfer.

The wearable robots can be classified in to two major classes: medical and non-

medical robots. The medical robots are used to provide mobility to physically dis-

abled, injured or weak persons who have walking difficulties due to a variety of medical

reasons such as SCI, stroke, and PD. Primarily, these robots are used in controlled

environment such as hospitals and rehabilitation centers. On the other hand, non-

medical robots assist healthy persons like soldiers to perform physically demanding

tasks such as carrying heavy loads and marching on rough terrain. In this section,

review on wearable robots for rehabilitation and military applications are discussed.
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1.2.1 Rehabilitation applications

Rehabilitation is needed for the patients with gait disorders due to medical condi-

tions such as lesions in the central nervous system, cerebrovascular accidents, cerebral

palsy and so on. Over the last decade, several lower-limb rehabilitation robots have

been developed as a possible solution to provide therapy and retrain the patients

to walk again [6]. An exoskeleton named Lokomat developed by Hocoma (Switzer-

land) is a treadmill-based body weight support device which includes audio-visual

biofeedback, using a screen in front of the user; it is powered at the hip and knees

[30]. The MIT-Skywalker robot is used for rehabilitation treatment of patients with

stroke and nerve injury was developed by Massachusetts Institute of technology in

the United States [31]. The robot is composed of a mechanism of sitting weight loss

and a mechanism of foot movement.

The Active Leg Exoskeleton (ALEX) is a powered leg orthosis with linear ac-

tuators at the hip and knee joints, and with a force-field controller developed to

provide assistance to the patient by using the assist-as-needed approach [32]. It has

been tested with two chronic stroke survivors, whose gait patterns were substantially

improved after the training [33].

The gait rehabilitation robot LOPES (LOwer-extremity Powered ExoSkeleton)

can move in parallel with the legs of a person walking on a treadmill, at pelvis height

flexibly connected to the fixed world [34]. The Ekso GT exoskeleton developed by

Ekso Bionics is a wearable exoskeleton suit designed for the assistance and rehabili-

tation of patients with various levels of lower extremity weakness [35]. It is suitable

for a wide range of patients such as paralyzed patients and other patients with lower

level of mobility disorder such as stroke survivors. Clinical studies have verified that

gait training with the Ekso GT exoskeleton supports patients in relearning a correct
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step pattern and allows them to take a greater number of steps at a faster speed,

compared to traditional rehabilitation.

1.2.2 Military applications

Lower extremity exoskeletons developed for human strength augmentation can

enhance human strength and endurance during locomotion, and enable individuals

to perform tasks that they cannot easily perform by themselves. The Berkeley Lower

Extremity Exoskeleton (BLEEX) was developed to help soldiers to carry heavy loads

[36, 37]. It has seven DOFs per leg: three DOFs at the hip joint, one DOF at the knee

joint, and three DOFs at the ankle joint. Among these DOFs, hip flexion/extension,

hip abduction/ adduction, knee flexion/extension, and ankle dorsiflexion/ plantarflex-

ion are actuated by linear hydraulic actuators. The remaining DOFs are passively

actuated by steel springs and elastomers. It has been reported that BLEEX wearers

can walk at an average speed of 1.3 m/s while carrying a 34 kg payload.

Other similar military exoskeletons include Sarcos XOS2 (Raytheon, USA) [38],

HULC (Berkeley Robotics and Human Engineering Laboratory, CA, USA) [39], Exo-

climber (Berkeley Robotics and Human Engineering Laboratory [40], CA, USA and

so on which have been designed to augment capabilities of soldiers in wartime and

in emergency operations. The main challenge in developing load augmentation ex-

oskeletons for soldiers is how to reduce the overall weight yet maintain high levels of

augmentation for long durations so that soldiers will stay fresh for combat. These

devices are likely to be practically useful only if they reduce the metabolic cost sig-

nificantly while augmenting the load carrying capacity of soldiers. However, the high

torque actuators require more power and bigger batteries for the long operational

times; it is clear longer-lasting lightweight batteries are needed to realize solutions

able to contribute in this sector. Preventing misalignment of the human joints during
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actuation over the long wear times is another open research challenge for the future.

1.3 Human Activity Recognition

The major contribution of the wearable sensors is in the field of human activity

recognition (HAR). HAR is important for a wide range of applications including

assisted living, medical, health-care, fitness, and military. The recognition of the

human activities is important for the treatment of patients which provide useful

feedback to the therapists. In military, it is important to identify the locomotion

activities of the soldiers such as level walking, uphill, and running to provide feedback

to the wearable robot that assists the soldiers in real-time.

The recognition of the human activities is achievable with two methods: external

and internal sensing. In external sensing, sensors such as cameras are employed to rec-

ognize activities and gestures from video sequences. The major drawbacks of external

sensing are that they entail high equipment and maintenance cost and users must re-

strict to the laboratory environment. On the other hand, internal sensing allows users

to move outdoors and are of less size, low cost and easily portable. Therefore, wear-

able sensors provide an alternative method to perform human activity classification

considering the aforementioned advantages. Researchers have been developing activ-

ity monitoring algorithms given the emergence of wearable sensors. Typically, these

methods employ a series of steps that includes time window selection, feature extrac-

tion, dimension reduction and applying classification algorithm. A fixed time window

is used to extract the features [41]. Some used sliding window which slides between

the two adjacent windows [42]. Others developed adaptive time window to account

for the periodicity in the activities such as walking and running [43]. The common

features that are used in feature extraction module are time-based, frequency-based

and wavelet-based features. The dimension reduction techniques such as principal
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component analysis (PCA) and linear discriminant analysis (LDA) are used to re-

duce the number of features. A large number of classification algorithms are explored

on the set of features. The algorithms used for gait activity classification include

support vector machines (SVM) [44], hidden Markov models (HMM) [45], Gaussian

mixture models (GMM) [46], neural networks [47] and logistic regression [48].

An adaptive algorithm based on decision trees with four sensors attached to the

body is implemented for recognition of activities such as walking and running [49].

Identification of locomotion modes is achieved with 12 EMG sensors by fusing LDA

with artificial neural network (ANN) [50]. LDA and ANN methods are also used

with time-domain and frequency-domain from nine EMG signals to perform intent

recognition [51]. Also, multiple accelerometers and foot sensors are used to classify

walking, running, stair ascent and stair descent [52, 53]. The multiple sensors on the

body may cause discomfort to the users and restrict them from performing normal

movements. Therefore, there is a need to reduce the number of sensors that are being

used for activity recognition without compromising the accuracy of the recognition.

A phase variable approach based on a single IMU sensor data is used for detecting

locomotion activities such as walking, stair ascent, and stair descent [54]. Others used

single IMU for real-time continuous gait phase and gait speed estimation [55].

1.4 Dissertation Organization

The goals of this dissertation are to develop novel human activity recognition algo-

rithms using wearable sensors that can detect activities, especially periodic activities

in real-time. Then, the next step is to integrate these algorithms in the high-level

control of wearable robots to aid modulating the impedance as well as the parameters

for the adaptive oscillator of the wearable robot based on the activity detection. This

document is organized as follows:
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Chapter 2: Related work. This chapter covers the background research in the

area of human activity recognition and control of wearable robots. The types of

sensors used and algorithms implemented for detecting the activities are discussed.

The integration of wearable sensors to wearable robots and their control strategies

are reviewed.

Chapter 3: Human activity recognition using smart shoes and inertial measure-

ment units. This chapter presents the novel algorithm developed using smart shoes

and four inertial measurements units (IMUs) mounted on bilateral thighs and shanks

to detect six activities standing, sitting, walking, going upstairs, going downstairs,

and jogging. Also, the algorithm developed for compensation of the hysteresis effect

in pressure sensors that are embedded in smart shoes is discussed in detail. The

experimental results to test the efficacy of the algorithms are presented.

Chapter 4: A Two-dimensional feature space based approach for human locomo-

tion recognition. This chapter details the algorithm developed for human locomotion

recognition using a single inertial measurement unit. The method to extract novel

features amplitude A and omega ω are discussed. Also, the method to detect the

transitions among the activities is explained. The experimental results in indoors

and outdoors are presented to verify the robustness of the proposed algorithm.

Chapter 5: Automatic virtual impedance adaptation of a knee exoskeleton for

personalized walking assistance. This chapter presents an approach to address the

problem of online modulation of virtual impedance for a wearable assistive robot

based on real-time gait and activity detection. The integration of activity recognition

algorithm proposed in chapter 3 to the wearable knee exoskeleton is detailed. The

details of the training of the Gaussian mixture model with fuzzy likelihood values of

activities and gait phases is discussed. Finally, the experimental results related to

muscle activity and kinematics are presented.
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Chapter 6: The assessment of the dynamic gait stability of human-lead (lower ex-

tremity assistive device) system using metrics derived from dynamical systems theory.

The objective of this chapter is to understand the walking from dynamical systems

theory and chaotic dynamics perspective. The stability metrics derived from dynam-

ical systems theory are used to evaluate the influence of the assistive device on the

inherent stability of the human The methods to compute stability metrics is detailed.

Additionally, biped simulations results are presented to understand the chaotic be-

havior of walking. The experimental results for eight healthy participants for five

conditions: normal walking, passive, zero impedance, the finite state machine (FSM),

and automatic impedance tuning (AIT) are presented.

Chapter 7: Human locomotion assistance using A − ω features based adaptive

oscillator. This chapter presents an approach to implement a prediction module

based on A-ω features. Also, it presents an adaptive oscillator method known as A−

which provides bilateral hip assistance during locomotion activities such as walking

and running. The details of the low-level classifier, support vector machine (SVM)

and high-level classifier, discrete hidden Markov model (DHMM) are given. Finally,

experimental results are presented with participants wearing HeSA (hip exoskeleton

for superior augmentation).

Chapter 8: Conclusion and Future work.

1.5 Contributions of this Dissertation

• An approach to achieve reliable ground contact force (GCF) measurements from

smart shoes by compensating hysteresis in pressure sensors embedded in smart

shoes.

• An activity recognition algorithm using smart shoes and inertial measurement
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units that achieves significant classification accuracy in subject dependent and

independent tests.

• An activity recognition algorithm using a single inertial measurement that

achieves considerable accuracy with less training of the algorithm.

• An approach to address the problem of online modulation of virtual impedance

for an wearable assistive robot based on activity and gait phase detection.

• An approach to modulate the parameters of the adaptive oscillator for an hip

exoskeleton based on the prediction of transitions between the activities.

• Assessment of the overall stability of the human-LEAD system using metrics

derived from dynamical systems theory. This assessment provide useful insights

to understand the robotic device assistance from stability perspective.
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Chapter 2

RELATED WORK

The wearable robot should possess cognitive skills in its control framework given

it forms closer cooperation with the human user [10, 56]. To be effective in daily life

activities, the controller need to be skilled enough to be able to estimate the intended

movement of the user (e.g., walking, standing, sitting, or climbing stairs) and estimate

the gait phases of the periodic locomotion related tasks. Also, the controller should

account for the minor changes caused by intracycle variability [57]. This chapter

reviews: a) Human activity recognition algorithms using wearable sensors, and b) the

control strategies of the wearable robots that include activity recognition module in

their high level control.

2.1 Human Activity Recognition using Wearable Sensors

Finite state machine (FSM) structure with pre-defined trajectories are generally

employed in lower-limb exoskeletons. Pilots with these exoskeletons give commands

manually by the machine user interface for different tasks such as walking, sitting, or

standing. There are two main issues for this exoskeletons, when and how to provide

assistance. As these exoskeletons receive order from pilots, there is a high possibility

that pilot can give wrong command which may lead to accidents. Ideal exoskeleton

walks as intention of human and becomes a part of human which will let the pilot

sense no existence of exoskeleton. Therefore, there is a need for human intention or

activity recognition which provides safety as well as better experience to the user.

Several studies proposed different approaches for the online recognition of human

activities. Recent reviews [57, 58] presented a detailed overview of the sensory net-
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works constituting a humanrobot interface and of the methods of activity recognition.

The electromyography (EMG) signals from six muscles were used to recognize activ-

ities level walking, ramp ascent, and ramp descent modes [59]. In active prostheses,

the intention recognition based on surface electromyography (sEMG) were the most

common [50, 60]. Sensing based on sEMG was then coupled with the measurements

acquired from mechanical sensors such as angular sensors, inertial measurement units

(IMUs), or load cells, to embed sensory systems devoted to intention recognition in

the prosthetic segments of the mechatronic device itself [61, 62]. Nevertheless, the

robustness of EMG sensing is prone to fade in prolonged use because of skin temper-

ature variations, sweating, and relative movements between the skin and electrodes.

Therefore, alternative approaches have more recently abandoned sEMG electrodes

preferring networks of mechanical sensors to minimize the invasiveness of the inter-

face and increase its dependability [63, 64, 65].

Along with the sensory system, the techniques used for classification plays a

key role in the activity classification. For mechanical sensors measurements, sim-

ple threshold-based finite state machine controllers are used [63, 64]. The success

rate improved when fuzzy-logic-based classifiers [65] or linear discriminant analysis

[66] techniques are applied. Other works have implemented ANN combined with

heuristic methods for identification of locomotion mode and detection of gait cycle.

These works used multiple accelerometer sensors and foot ground contact data from

walking, running, stair ascent and descent [52, 67, 53]. Even though all these works

achieved a recognition accuracy between 90% and 95%, they required a large number

of sensors attached to the human body, which makes the calibration, synchronization

and data collection complicated processes that impact on the computational cost and

complexity of implementation. Fuzzy logic and combination of ANN and EMG sig-

nals, were employed for human intent recognition and prosthesis control achieving
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an accuracy of 95% [68]. Multiple human activities were recognized using EMG and

vision sensors with support vector machines (SVMs). These methods achieved accu-

racies between 77.3% and 99%, however, they need a large number of sensors that

also limits these works to indoor applications [69, 70]. SVM and k-nearest neighbour

algorithms, together with 9 accelerometers distributed from the torso to the ankle,

achieved an accuracy of 97.6% for recognition of activities [70]. The combination

of plantar pressure sensors with multi-class SVMs allowed the recognition of normal

walking, stair ascent and stair descent activities with accuracies between 91.9% and

95.2% [71]. The listed algorithms here achieves significant accuracy with subject

dependent training and exhibits less accuracy with subject independent training.

Therefore, two possible solutions are proposed in this dissertation: 1) Human

activity recognition system with more sensors which can achieve significant accuracy

in both subject dependent and independent tests, and 2) human activity recognition

system with one sensor that can achieve considerable accuracy in subject dependent

tests with less training data.

2.2 Control Strategies for Wearable Robots

Human motion intention estimation requires an understanding of how locomotion

is nominally controlled in humans and how the users state and intent can be sensed.

The terrain features and surface conditions of the environment (i.e. the environmental

state) constrain the type of movements that can be carried out, and if perceived by

the controller can be taken into account. Interaction forces exist between the device,

the user, and the environment, which can also be sensed as an input to the controller.

Several algorithms for the human activity recognition were developed for pow-

ered lower limb exoskeletons [72]. To assist ground-level walking, variable stiffness

actuation is a common adopted strategy for adapting the stiffness of actuated joints
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depending on the walking terrain [73, 74, 75]. A successful approach for the HAR

of patients with no residual neuromuscular peripheral activities (e.g., patients with

spinal cord injury) is represented by brain machine interfaces (BMIs) for triggering

gait initiation and termination and steady walking tasks [76, 77, 78]. Nevertheless,

the BMI complexity limits their application in daily-life ambulation. Therefore, com-

mercial lower limb orthoses for patients with spinal cord injury are often controlled

monitoring mechanical feature of the human-exoskeleton system, such as the tilting

of the trunk [79, 80]. Others proposed approach for the activity recognition with

lower limb active orthoses is presented in a study [81] to identify locomotion-related

activities of daily living in healthy or mildly impaired people with residual movement

capabilities. The algorithm is based on a fuzzy-logic classifier operating on signals

acquired from the on-board mechanical sensors (hip joint potentiometers) and an

IMU (for foot contact detection) integrated in the backpack of a fully portable hip

exoskeleton. The activity classification is performed with an overall accuracy rate of

97.4%. Despite the high accuracy rate, the classifier was tested only for self-selected

cadence and under the zero torque mode of the orthosis. The kinematics alteration

induced by the users walking pace or the robot assistive actions were misregarded in

the current state of the art.

2.2.1 Impedance control strategy

The information from the mechanical sensors can be used with an appropriate set

of classifiers, to detect the desired gait mode (e.g. walking, stair climbing, etc.) or

to separate different phases of the gait cycle. Each of the states in which the gait

cycle is divided, is specified by constraints on knee joint kinematics and is associated

to a set of constant impedance parameters. Once the controller enters a specific

state, the impedance models parameters are modified according to the new states
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set of parameters. In particular, the impedance model is chosen to match human

reference joint torque and position trajectories. The transitions between states are

defined by parametric laws that are heuristically chosen based on a prototypical gait

cycle. The FSM has been implemented by many different groups and with a wide

variety of devices, i.e. Varol et al. applied it to the Vanderbilt leg at RIC [82, 83, 46],

Gorsic et al. apply it to the CYBERLEGs ankle-knee prosthesis [63], Hoover et al.

to the prosthetic knee at Clarkson University [84], Liu et al. to the Kanazawas ankle

prosthesis [85]. At ETH Zurich, Pfeifer et al. implemented for the first time on the

ANGELAA knee exoprosthesis a FSM impedance control for level ground walking

and stair ascent/descent [86]. Here, FSM divides the gait cycles in four states, each

associated to a set of constant knee impedance parameters.

FSM exhibits sharp changes in impedance parameters when gait phases changes.

This may cause discomfort to the user and reduce the assistance efficiency offered

by the wearable robot. Therefore, in this dissertation, an approach is proposed to

smooth the impedance parameters between the gait phases. For this, the activity

recognition and gait phase detection modules are integrated into high level control of

the wearable robot. A Gaussian mixture model (GMM) is employed to map the fuzzy

likelihood of various activities and gait phases to the desired robot virtual impedance.

2.2.2 Adaptive oscillators based control strategy

In phase plane control, the desired system state, called invariant trajectory i.e.

position and velocity, is expressed as a function of gait phase and stride length. For

instance, in the prosthetic ankle developed by Holgate et al. [87], a gyro sensor is

used to measure shank angular velocity and position w.r.t. the ground, and from

it a phase plot is generated. The phase plot represents the direct relation between

the current shank angular position and velocity and the desired gait phase and step

17



length/velocity, also called invariant trajectory. Gregg et al. apply this control to

the Vanderbilt leg at RIC and state that the relation found in the phase plot can be

considered independent of time, gait speed and ideally subject [88]. The advantage

of this control strategy is the possibility of automatic speed or step length adaptation

during the gait cycle. Yifan et al. estimate the phase during walking with a robotic

ankle calculating cross correlation between past measurements and a learned model

of the gait position [89]. The phase oscillator is used to add energy during running

with the Pogo suit [90]. In this, sine of the phase angle is used as a forcing function

which produces a stable limit cycle.

Revzen et al. develop the theoretical frame to estimate the phase of multiple

synchronized oscillators and use it in biological processes including walking. They

define the process as stochastic with an underlying oscillatory behavior. They ac-

complish a good estimation of the phase and reduce the noise from the sensor at

the same time transforming the data using single value decomposition and principal

component analysis to improve the estimate [91, 92]. Seo et al. [93] uses an adap-

tive frequency oscillator to assist the hip during gait. They use a series of adaptive

frequency oscillators to estimate the state of the phase angle and then, use a mul-

tidimensional table to select what kind of torque assistance they provide given the

estimated value. They show that this system can reduce the metabolic cost during

walking, however since it is a learning approach, it means that at the beginning of

the process or after a sudden change, the estimated value of the gait phase and the

real angle are not close to the actual value. This approach needs several sampling

periods to converge to the real value. A. Jan Ijspeert et al. [94, 95, 96] also uses a

phase based oscillator to provide assistance to periodic motions. In their case, they

synchronize adaptive oscillators with the external signal, and then estimate position

and velocity. The estimated states are used to compute control signals that are then

18



used to force the system to follow a behavior [94, 95, 96].

The adaptive oscillator is capable of learning the parameters of the new signal

with it’s complex architecture. However, during the transitions, this architecture

takes some time to learn the parameters of the new signal. This may cause delay in

providing controller input. Therefore, a solution is needed to account for the transition

of the activities and provide controller input as soon as possible. Therefore, in this

dissertation, this problem is addressed by integrating activity recognition module to

the phase based oscillator to assist in various activities such as walking, going upstairs,

or running.
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Chapter 3

HUMAN ACTIVITY RECOGNITION USING SMART SHOES AND INERTIAL

MEASUREMENT UNITS

This chapter presents an intelligent fuzzy inference (IFI) algorithm using iner-

tial measurement units (IMUs) and smart shoes to recognize human activities. IFI

algorithm recognizes the activities based on ground contact forces (GCFs) and the

knee joint angles. The smart shoes are designed to measure GCFs exerted by the

wearer. A total of four IMUs are mounted on bilateral thighs and shanks to provide

acceleration and angular rate data. To calculate knee flexion extension, a calibra-

tion procedure is adopted which eliminates the need for an external camera system.

Then, an extended Kalman filter (EKF) is used to estimate the relative orientations

of thigh and shank segments, from which knee angle is calculated. Random forest

search (RFS) technique is used as a baseline to compare with the performance of the

IFI algorithm.

To evaluate the performance of this algorithm, several outdoor experiments are

conducted on two healthy subjects for six activities including sitting, standing, walk-

ing, going upstairs, going downstairs and jogging. The results show that the algorithm

is capable of classifying six activities with higher precision and less update time com-

pared to the baseline approach for both subject dependent and independent tests.

Also, the algorithm detects transitions between all the activities smoothly such as

sit-to-stand or stand-to-walk with higher precision.

This chapter is organized as follows: section 3.1 discusses about the GCFs mea-

surement using smart shoes, implementation of hysteresis compensator to compen-

sate for the hysteresis effect in pressure sensor readings. Section 3.2 gives information
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about the procedure followed to measure bilateral knee angles using IMUs. Section

3.3 details about the baseline algorithm used to compare the proposed approach. The

proposed approach (IFI algorithm) is discussed in section 3.4. The experiments and

results of the baseline and proposed approach is given in section 3.5.

3.1 Ground Contact Forces Measurement using Smart Shoes

This section reviews the design of smart shoes, a wearable device that measures

GCFs for gait analysis. Smart shoes utilize four coils of silicone tubes adhered directly

underneath the shoe insole at key points of interest. Air pressure sensors connect to

each tube coil to measure pressure changes caused by compression. The static and

dynamic calibration performed on each sensing coil to establish a model of internal

pressure and the GCF. Based on the model, a phase lead filter is designed to account

for the hysteresis effect and visco-elastic properties of the silicone tube in order to

provide accurate GCF measurements. To design this filter, the air bladder is modeled

using a standard linear solid (SLS) model. The prediction error minimization (PEM)

algorithm is then implemented to identify the continuous-time transfer function of

this SLS model, which is then transformed to discrete time domain to implement in

a digital processor. Mechanical characterization and testing on a healthy subject are

performed to validate the model and its capability to compensate for hysteresis in

GCF measurement.

3.1.1 Design of sensing unit in smart shoes

In an effort to obtain accurate results, a new sensing unit is made prior to smart

shoe testing. This sensing unit is constituted by an air bladder made by winding

silicone tubes and an air pressure sensor. When designing the sensing unit, consid-

erations are made according to three questions. First, what sensor apparatus is best
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Heel

Toe

Meta 1

Meta 4

(a) Shoe insole with four air bladders

Space for Battery

Sensor Box

Silicone Tubes

(b) Smart shoes with sensing unit

Figure 3.1: Wireless smart shoes with shoe insole consisting of coiled silicone tubes
at heel, toe, inner and outer metatarsals.

used to measure distributed GCFs. Second, how and of what the apparatus is made.

Third, how the received data are processed and stored.

Taking survey of existing solutions, FSRs are the typical means for GCF measure-

ment. However, FSRs perform poorly due to their nonlinearity, lacking durability and

lacking capability to measure distributed loads common in most any gait. An alter-

native solution utilizing air pressure sensors proposed by Kong et al. offers linearized

readings, increased durability and better measurement of distributed loads [97]. Tube

is coiled and adhered to the underside of a shoe insole under the toes, inner and outer
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two metatarsals, and heel as shown in Figure 3.1(a). The coils function as air bladders

and connect to air pressure sensors. When loaded different, during a step for instance,

the tube coils are compressed, generating pressure which, in turn, is measured by the

air pressure sensors. In this system, GCF is calculated from the pressure in the tube

coils. Certain assumptions are made, including the lack of radial deformation and

dynamic effects within the air bladder. Based on these assumptions, pressure change

is proportional to force applied i.e., F (t) = P (t)
A(t)

.

Silicone tube and unidirectional gauge pressure sensors are used to construct the

previously described apparatus. Silicone tube is selected for use due to its minimal

creep [97] and desirable stiffness, rigidity and toughness. Unidirectional gauge pres-

sure sensors from First Sensors HDI series are used. Pressure sensors with 200 mbar

measurement range connect to tubes coiled under the heels and metatarsals. Toes

sustain less of a load than the heels and metatarsals. Therefore, 100 mbar pressure

sensors are connected to the tubes coiled underneath the toes for higher resolution.

The sensor box provides housing for the four air pressure sensors on each shoe as

shown in Figure 3.1(b). The air pressure sensors connect to a microprocessor which

reads their output voltage through bluetooth and communicates them to a computer.

The computer, then, processes and analyzes the data. The sampling rate of the smart

shoes can go up to 100 Hz with bluetooth module.

3.1.2 Calibration test setup

Testing apparatus and configuration

Calibration testing apparatus is comprised of the sensing unit itself, an Instron 5944

mechanical testing machine and a National Instruments myRIO. As shown in Figure

3.2, the sensing unit lays on an anvil, the Instron machine applies compressive load to
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the tube coils, and the myRIO measures analog output from the air pressure sensors.

In testing, the Instron machine is outfitted with a 1 kN load cell capable of applying

compressive and tensive loads. Test instructions are sent to the Instron machine by

Bluehill 3 software run on a nearby computer. The myRIO receives analog input

from the Instron and air pressure sensors and sends it to another nearby computer

via LabVIEW. To accurately deduce GCFs from pressure readings in practice, the

relationship between pressure readings and load on each sensing node must be estab-

lished and the dynamic characteristics of each sensor type must be determined. To

achieve this, individual calibration tests are performed featuring static and dynamic

loading. Figure 3.3 displays one example of data received during a static calibration

test.

In static testing, the Instron machine applies a compressive load to individual tube

coils, maintains that load for five seconds, then removes load. The test performs this

process for loads from 50N to 800N in 50N intervals. Static tests are conducted for all

8 sensing nodes. Due to dynamic effects, load values obtained during loading do not

represent load values in equilibrium. Therefore, they do not remain constant when

compression is halted. Slower loading allows the system more time to normalize,

keeping it closer to equilibrium. The static calibration procedure is described in

Figure 3.4(a).

In dynamic testing, the Instron machine applies compressive load at various rates.

The system begins unloaded, then Load is applied at a specified rate. When 800N load

is applied, unloading begins. Load is reduced at 50N/s until the system is unloaded

again. This cycle is repeated for loading rates of 50, 100, 200, 400 and 800N/s. The

steps followed for dynamic calibration is shown in Figure 3.4(b).
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Figure 3.2: Setup for static and dynamic calibration tests: Instron 5944 material
testing machine and shoe insole

Discussion on calibration test results

At the first stage of the process, calibrated weights were statically placed over tube

coils in order to obtain the relationship between applied force and the pressure change

i.e., output voltage of the circuit. These methods of loading range of weights and

increment between each reading is chosen in such a way that remains within the

limits of the sensor. Thus, by using test setup, loads are increased from 0 to 800N

with the waveform shown in the Figure 3.3. Most importantly, Figure 3.3 illustrates

the linearly proportional relationship between applied load and recorded pressure in

static load conditions. Minor hysteresis is observed during load changes as apparent
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Figure 3.3: Static test (Loading range:450-600 N): voltage output from Instron and
air pressure sensor

in the bowed lines during bulk loading and unloading in Figure 3.3(b).

For the dynamic test, triangular waveform of loading and unloading is generated

by Instron machine at variable loading rates from 50N/s to 800N/s as shown in the

Figure 3.5(a). Hysteresis is observed during loading and unloading the air pressure

sensors. The sensor follows upper side of the curve during loading and lower side of

the curve during unloading as shown in Figure 3.5(c) and 3.5(d). Hysteresis effect

increases with higher rate of loading. Comparison of hysteresis effect at low and high

speed of loading are shown in Figure 3.5(c) and 3.5(d).

3.1.3 Approach for designing hysteresis compensator

The approach is to design a physical model based hysteresis compensator capable

of improving GCFs measurement and performance of the sensing unit especially dur-

ing dynamic situations characterized by rapid changes in force. This makes sensing
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(a) Steps for static calibration test

(b) Steps for dynamic calibration test

Figure 3.4: Calibration test procedure

suitable for dynamic activities such as walking, jogging and running. The approach

followed to design such a filter is explained in three steps: 1) Develop a dynamic

model for the air bladder system. 2) Determine the continuous time transfer function

of the physical model on the basis of the input and output data measured in time do-

main. 3) Transform the continuous time transfer function into discrete time domain

for implementation in a digital processor.
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Figure 3.5: Dynamic testing for rate of loading (50-800 N/s): voltage output from
Instron and air pressure sensor. (c) low speed (100 N/s) (d) high speed (800 N/s)
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P Patm
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Figure 3.6: a) Silicone tube model b) Standard linear model

Dynamic model for air bladder

In order to accurately capture the dynamic characteristics of the air bladder system, a

standard linear model is employed, which is used for modelling visco-elastic materials

such as silicone tubing [97]. This model consists of one damper and two Hookean

springs, one connected in parallel and another in series. The air bladder and equiva-

lent standard linear model are shown in Figure 3.6. It is assumed that there are no
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inertia and air leakage in the air bladder. Therefore, mass M is taken to be zero. The

force balance equation for air bladder system is:

(P − Patm − f)A− k1(x− x0) +
k2cs(x− x0)

k2 + cs
= 0, (3.1)

Here P and P atm are the absolute and atmospheric pressure, A is the effective

area of the air bladder which is assumed to be constant. x− x0 is the deformation in

the tube. s is the derivative operator as (3.1) is in the Laplace domain. Force applied

on the air bladder is assumed to be uniformly distributed over the area. Therefore,

total force applied F (t) = f(t)A. Gauge pressure PG is the difference between P and

P atm. The governing transfer function between the force applied and gauge pressure

is derived in [97]:

F = PG +
k2cs

k2 + cs

x2
0

nRT
PG ≡

b1 + b2s

a1 + a2s
PG, (3.2)

where

a1 = k2, a2 = c, (3.3)

b1 = k2[1 + k1
x2

0

nRT
], b2 = c[1 + (k1 + k2)

x2
0

nRT
]. (3.4)

Physical properties of the silicone tube are as follows: n = 4.2075×10−9[mol], R =

8.3145[m3pak−1mol−1], T = 300k and x0 is the inside height of the undeformed sil-

icone tube which is 2 mm in our case. Here, PG is available from the air pressure

sensor. However, in order to get load measurement, we need to multiply the pressure

change with the area of cross section, which it is not easy to calculate. Because, it is

difficult to calculate actual effective area of cross section for distributed load. Thus,

it becomes important to identify the relationship between applied force and pressure

change in order to estimate applied force F from the pressure sensor readings. As a
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result, the coefficients a1, a2, b1 and b2 in (3.2) need to be determined to establish

first order transfer function for the dynamic model.

3.1.4 Prediction error minimization (PEM) algorithm

To identify the coefficients of the first order transfer function, a PEM approach

is applied. The main objective of this algorithm is to minimize the weighted norm of

the prediction error which is the difference between measured and predicted output.

This algorithm basically performs two steps to estimate the coefficients: 1) initialize

parameters and 2) update parameters.

Initialization of coefficients for transfer function

To initialize numerator and denominator of the first order transfer function, Sim-

plified Refined Instrumental Variable method for Continuous time systems (SRIVC)

algorithm is employed [98]. SRIVC is one of the successful stochastic identification

method where the noise w(t) is assumed to be discrete-time, white noise process

w(tk) = N(0, σ2) so that no explicit noise modeling is necessary. In this algorithm,

instrument variables which are correlated to system input, not to system noise are

employed.

True system model

The input u(t) and output x(t) sampled data are available in time domain from air

pressure sensors and Instron, respectively. The operator polynomial representation

of the true system for input u(t) and output x(t) is

A(s, θ∗)x(t) = B(s, θ∗)u(t), (3.5)

y(t) = x(t) + w(t). (3.6)
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Figure 3.7: Representation of true and auxiliary model

Where y(t) is the measured output with white noise w(t). The operator polynomial

is in the Laplace domain and true parameter θ∗ can be defined by

A(s, θ∗) = a∗ns
n + .........+ a∗1s+ 1, (3.7)

B(s, θ∗) = b∗ms
m + .........+ b∗1s+ b∗0, (3.8)

θ∗ = [a∗n a∗n−1 ....a∗1 b∗m b∗m−1....b
∗
0]. (3.9)

From (3.2), our system should consist of one zero and pole. Therefore, n=m=1 which

gives

A(s, θ∗) = a∗1s+ 1, (3.10)

B(s, θ∗) = b∗1s+ b∗0, (3.11)

θ∗ = [a∗1 b∗1 b∗0]T . (3.12)

Transfer function T for the true system for the true system representing dynamic

model with input u(t) and output x(t) is

T =
x(t)

u(t)
=
b∗1s+ b∗0
a∗1s+ 1

. (3.13)
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By comparing (3.13) and (3.2)

a∗1 =
a1

a2

, b∗0 =
b2

a2

and b∗1 =
b1

a2

. (3.14)

Let us assume that the value of a2 = 1 which means the value of c becomes equal to

1 from (3.3). Further, this assumption is valid since the coefficients k1, k2 and c are

coupled, the value of c = 1 results in one set of values for k1 and k2. The increment

or decrement in c changes k1 and k2 values accordingly. For our case, c is assumed

to be one. Thus, the problem of estimating three coefficients automatically reduces

to two i.e., to estimate k1 and k2 only. Therefore, coefficients a∗1, b∗0 and b∗1 need to

be estimated in order to identify the continuous-time transfer function for the true

system i.e., the dynamic model of air bladder and the sensor.

Auxilary model

To estimate system parameter vector θ∗ from sampled input and output, SRIVC

method creates an auxiliary model as shown in Figure 3.7. This is an approximation

of the true system which takes the input u(t) and estimates the output x̂(t) with no

noise. The auxiliary model approximating the true system equations (3.10) to (3.12)

is:

y(t) =
D(s, θ)

C(s, θ)
u(t) + e(t), (3.15)

e(t) = y(t)− φT (t)θ, (3.16)

φ(t) = [−dy(t)

dt

du(t)

dt
u(t)]T , (3.17)

θ = [a−1 b−0 b−1 ]T . (3.18)

Here, a−1 , b−0 and b−1 are the estimates for a∗1, b∗0 and b∗1 in (3.14). The single input,

single output (SISO) model in the continuous time domain is algebraically equivalent

to the discrete time SISO model explained in [99]. The equation containing error

32



function e(t) in (3.16) can be written as

e(t) =
1

C(s, θ)
[C(s, θ)y(t)−D(s, θ)u(t)], (3.19)

Z(s) =
1

C(s, θ)
. (3.20)

where Z(s)is given by pre-filter. In SRIVC method, the state variable filter (SVF)

proposed by young (1964) is used as a prefilter. The minimal order SVF has the form

[100]:

Zsvf (s) = (
β

s+ λ
)n, (3.21)

where n is the system order and filter time constant λ is apriori and usually λ=β. Now,

taking Z(s) in (3.20) inside the square bracket (3.19), error function e(t) becomes

e(t) = C(s, θ)yf (t)−D(s, θ)uf (t), (3.22)

yf (t) =
y(t)

C(s, θ)
, uf (t) =

u(t)

C(s, θ)
. (3.23)

The derivative of yf (t)and uf (t) is given by:

y
(i)
f (t) = fi(t) ∗ y(t) i = 0, 1, (3.24)

u
(i)
f (t) = fi(t) ∗ u(t) i = 0, 1. (3.25)

Here y
(i)
f (t), u

(i)
f (t) are the ith derivative of yf (t)and uf (t) respectively. i is 0 and 1 in

our case. * is the convolution operator and filters take the form,

fi(t) = L-1(
si

C(s, θ)
), (3.26)

where L-1is the inverse Laplace transform. Therefore, the auxiliary model at the nth

sampling instant t = tn can be written as

e(tn) = yf (tn)− φTf (tn)θ, (3.27)

φf (tn) = [−dyf (tn)

dtn

duf (tn)

dtn
uf (tn)]T . (3.28)
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To obtain an initial estimate of θ for a data sample of lengthN , the following equations

are used:

VN =
1

N

N∑
i=1

φf (ti)φf
T(ti), (3.29)

θ = V −1
N

1

N

N∑
t=1

φf (ti)y(ti). (3.30)

The prefilter in SRIVC method provides C(s, θ) from the user defined λ. From

equations (3.29) and (3.30), initial value of θ can be estimated.

Updating coefficients of transfer function

Nonlinear least square search method is employed to iteratively adjust the unknowns

in true system (3.6), as well as estimate of the instrument variable at each iteration

of the algorithm, until that converges. Instrument variable at each iteration is given

by

x̂(t) =
D(s, θ)

C(s, θ)
u(t). (3.31)

Here, θ is the estimated vector obtained at the previous iteration. Estimating coeffi-

cients of θ, a−1 , b−1 and b−0 in (3.18) can identify the values k1, k2 and c given in (2).

However, we considered c is always equal to 1.

To update the initialized parameters for the transfer function, a set of non-linear

least squares search methods Gauss Newton[101], Levenberg Marquardt[102, 103] and

trust region reflective Newton [104] from the system identification toolbox MATLAB

R2015b were adopted. Trust region based search methods are chosen in our approach

because they have better convergence properties than regular line search method

[105]. The main objective of these search methods is to reduce the error e(t) given in

(3.16) by minimizing weighted prediction error norm.
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Algorithm summary

a) Input:y1(t) and y2(t)

where y1(t) and y2(t) are the load measurement data available from Instron

and air pressure sensor in time domain sampled at 100 Hz. For our test, data

is collected at 100Hz.

b) Prediction Error Minimization :

1. Define a value for filter time constant λ and maximum tolerance value µ.

2. Apply SRIVC method, to find the initial condition of θ which is the esti-

mate of the continuous system parameter vector θ∗ from sampled input-

output data using (30) and (31).

3. Update the value of θ on the basis of cost function using non-linear least

square search method. The cost function is a positive function of prediction

error e(t) given in (17). for a model with n number of y outputs, the cost

function has the following general form:

C(θ) =
1

N

N∑
t=1

eT(t, θ)We(t, θ), (3.32)

where N is the number of data samples, e(t,θ) is n-by-1 error vector at

a given time t, parameterized by the parameter vector θ and W is the

weighting matrix. It is fixed and does not depend on θ.

4. Repeat step 3 until the maximum relative percentage of the estimated pa-

rameter θ in successive iterations is less than the tolerance value µ defined

in first step.

c) Continuous to discrete time domain transform: continuous time transfer func-

tion obtained from PEM method is discretized using bi-linear transformation
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for the real time implementation.

d) output: f(t), which is the filtered signal of y2(t).

3.1.5 Implementation of phase lead filter

Two types of air pressure sensors with range 100 mbar and 200 mbar are used

in smart shoes. The sensor with 100 mbar range is used for toe sensing point and

other with 200 mbar range for all other sensing points. The dynamic calibration

tests were performed on sensors at left toe, left heel, right toe and right heel. The

load measurement data are available simultaneously from the air pressure sensor and

Instron at the sampling rate of 100 Hz. This collected time sampled data from the air

pressure sensor and Instron are used as input and output in our proposed algorithm

to identify the transfer function.

Trust region reflective Newton (TN) search method showed better performance

compared to Gauss newton (GN) and Levenberg Marquardt (LM) search methods in

terms of fit percentage. For instance, in left toe data simulation, TN method exhibited

90.32 % while LM and GN showed 83.12 % and 78.26 % respectively. Therefore, trust

region reflective newton method search method was employed to identify the transfer

function.

The identified values for k1, k2 and c of (3.4) are displayed in Table 1 along with

their transfer fuction equations for four sensing points separately. There are certain

points that can be inferred from Table 1:

1. If k1= k2 = 0 or nearly equal to zero, this explains that the material exhibit

less or weak visco-elastic effect and no signal processing is required. From Table

1, it is clear that the coefficients k1, k2 and c of any sensing units are not zero

or close to zero. It means that the material exhibits considerable visco-elastic

36



effect. Therefore, it becomes necessary to carry out signal processing on the

raw data.

2. If k1 � 0 , it means the material is stiff and noise will be amplified. From Table

1, it is clear that the value of k1’s are in the range from 1.341 to 2.025. This

implies that material exhibits considerable stiffness and noise gets amplified

over time.

3. If the pole and zero are negative, signal does not show drift. From Table 1

and using equations from (3.2) to (3.4), we can deduce that poles and zeros

are negative. Therefore, it can be inferred that the filtered signal will not show

drift.

4. If the magnitude of the pole is greater than zero i.e., |a1
a2
| > | b1

b2
|, the transfer

function magnifies the high frequency range of the measured signal. The mag-

nitude of the poles are greater than zeros which implies filter designed on the

basis of this transfer function will show magnifying characteristics in the high

frequency range with the phase lead.

The filter exhibits magnifying characteristics in the high frequency range with the

phase lead. The performance of the hysteresis compensator designed for left shoe

sensing unit can be seen in Figure 3.8. Filtered signal shows improved linearity in

measurements with reduced hysteresis compared to raw signal. A variance level of

2.23N in root mean square is observed in the filtered signal which is nearly 0.3 percent

of total load applied i.e., 800N. The root mean square error (RMSE) metrics are used

to compare between the filtered and raw signal.

Root mean square error (RMSE) metrics: a) RMSE between load measurement

from Instron x(t)and raw data measurement u(t) from air pressure sensors. b) RMSE
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Sensing unit k1 k2 c Transfer function

Right toe 1.873 0.119 1 2.269z−2.267
z−0.9988

Right heel 2.045 0.159 1 2.284z−2.281
z−0.9984

Left toe 1.341 0.215 1 2.224z−2.221
z−0.9979

Left heel 2.025 0.316 1 2.355z−2.349
z−0.9968

Table 3.1: The transfer function equation and coefficients of the physical model for
four sensing units

between load measurement data from Instron x(t) and filtered signal r(t) after ap-

plying hysteresis compensator. c) Improvement percentage P% can be defined as

RMSE(u)−RMSE(r)
RMSE(u)

× 100.

where

RMSE(u) =

√∑N
i=1(xi − ui)2

N
, (3.33)

RMSE(r) =

√∑N
i=1(xi − fi)2

N
. (3.34)

where N is the total number of data samples.

Table 3.1.5 displays the calculated metrics for four sensing units individually.

Instron generated triangular waveform of loading range 0 to 800N with loading rates

100, 200, 400, 600 and 800N/s. This table compares filtered and raw data in terms of

RMSE metrics. Improvement percentage (P%) reveals the improvement seen in the

filtered signal after designed filter is applied. It is clear from the range of P% that

filtered signal shows less RMSE value compared to raw signal. These filters provide

better performance at lower rates of loading than at higher speeds. For instance,

considering left toe sensing unit, the P% is 75.36% at 100 N/s and reduces to 68.27%
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Loading

Unloading

Loading

Unloading

Low speed (100 N/s) High speed (800 N/s)

(a) Raw signal at low (100 N/s) and high (800 N/s) speeds.

Loading

Unloading

Loading

Unloading

Low speed (100 N/s) High speed (800 N/s)

(b) Filtered signal at low (100 N/s) and high (800 N/s) speeds.

Figure 3.8: Left toe sensing unit hysteresis compensator performance

at 800 N/s. Even though P% decreased with an increase in loading rates, filter

exhibited sufficient compensation in hysteresis for varying loads as shown in Figure

3.8(b). Filtered signal shows better linearity with less hysteresis at both low and high

speed.

3.1.6 Experimental validation of hysteresis compensator

To evaluate the performance of the proposed phase lead filter on the GCF mea-

surements, Data were collected from various trails of walking and standing activities
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Sensing unit Metrics(N) Rate of loading (N/s)

100.000 200.000 400.000 800.000

Right toe

RMSE(y1)

RMSE(f)

P

137.059 140.291 144.217 144.514

43.992 47.883 54.123 56.205

3.116 2.929 2.670 2.565

Right heel

RMSE(y1)

RMSE(f)

P

103.999 108.437 111.274 113.595

31.421 33.076 35.625 38.2441

3.309 3.278 3.124 2.970

Left toe

RMSE(y1)

RMSE(f)

P

224.283 232.154 238.448 239.654

55.272 64.159 73.185 76.0494

4.058 3.618 3.275 3.135

Left heel

RMSE(y1)

RMSE(f)

P

158.164 196.177 250.127 283.381

37.435 54.354 74.259 88.221

4.225 3.609 3.369 3.212

Table 3.2: Comparison between raw and filtered signal for different rate of loading

performed by a healthy subject. The healthy subject is male, weight 53 kg, and is 5

feet 10 inch tall.

1) For the standing trail, subject initially did toe movement i.e., he stood on tip-

toe. Then, he went back to the normal standing position and remained still for

the whole trail. This activity was performed for a period of 60 seconds. Figure

3.9 shows the raw and filtered GCF estimate from sensing units during standing

trail. Total GCF exerted by the subject is calculated for both raw and filtered

data. Total GCF estimate i.e., sum of the GCF estimate of all the eight sensing

units from raw data is 618N, where from filtered data, it is 535.2N. Therefore,

subject weighting 53kg can normally exert 519.4N on the ground. Thus, the

filtered signal provides more accurate estimate.
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(a) Raw signal from left foot (b) Raw signal from right foot

(c) Filtered signal from left foot (d) Filtered signal from right foot

Figure 3.9: GCFs estimate plot for sensing units embedded in smart shoes for
standing experiment

2) For the walking trail, subject performed continuous walking on treadmill for 2

minutes at a speed of 6 mph. Figures 3.10(a) to 3.10(d) show the performance of

the hysteresis compensator for the walking trail. The raw data collected during

this trail are processed using the designed filter and compared with raw data

for the left shoe and right shoes. The plot is drawn between GCF estimate from

all sensing units and time interval from 20 to 26 seconds. From Figures 3.10(a)

to 3.10(d), it is observed that in each walking step, the subject initially touched

the ground with the heel followed by Meta4, Meta1 and finally toe. It can also
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(a) Raw signal from left foot (b) Raw signal from right foot

(c) Filtered signal from left foot (d) Filtered signal from right foot

Figure 3.10: GCFs estimate plot from all sensing units embedded in smart shoes
for walking experiment performed on treadmill (time range: 20-26sec)

be inferred from Figures 3.10(a) to 3.10(d) that the subject applied more force

on the right side than left, and more specifically, right heel compared to left.

Although, raw and filtered signal show similar GCF pattern during walking,

differences can be observed in terms of the amplitude. For instance, from Figures

3.10(a) to 3.10(d), it can be seen that the filtered signal provides a lower estimate

of heel GCF than the raw data. Now, reliable GCF measurements are achievable

from smart shoes with the help of designed hysteresis compensator, the next

step is to obtain knee angle measurements from IMUs.
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3.2 The Knee Angle Estimation using IMUs

The procedure followed in the estimation of knee angle can be illustrated in two

steps. First, the sensor frames are aligned using functional alignment procedure given

in[106]. In the second step, an extended Kalman filter (EKF) estimates the relative

orientation between IMUs.

The alignment of the sensor frames is done both vertically and horizontally with

respect to joint coordinate system (JCS) given by [106]. For the vertical alignment

with the JCS, the inertial data of the acceleration for still standing is required. In

static conditions, gravity is prominent in acceleration signals. Therefore, the averaged

gravitational vector is calculated for both thigh and shank frames. This is useful to

calculate rotation matrices for z-axis of both the frames. For the horizontal alignment,

the motion AA-rotation defined by Favre et al [106] is followed. The straight leg is

lifted up and down laterally for approximately 30 seconds. This is useful to produce

angular rate vectors in thigh and shank sensor frame. The misalignment angles can be

detected easily by following this procedure. By using misalignment angles, rotation

matrix about xy axis can be calculated which rotates the shank sensor frame around

the already aligned z-axis to align with the thigh frame.

Two similar EKF given in [107] are implemented to estimate roll and pitch ori-

entation of the two adjacent segments. The EKF used here is an eight-row state

(acceleration and angular rate in three axis, roll and pitch) vector:

~x =



~a

~ω

~φ

~θ


For this knee estimation algorithm, only roll and pitch components are taken
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into consideration. Because yaw component of the gyroscope is the main reason for

drifts in the output. The information related to equations of dynamic systems and

observation model is described in detail in [107].

The orientations of the thigh and shank segments are estimated over time by

the EKF. The rotation matrices obtained during the alignment are useful in aligning

thigh and shank sensor frame with JCS.

3.3 The Baseline Algorithm: Random Forest Search

Random forest search (RFS) is used as a baseline algorithm to compare the perfor-

mance of the proposed algorithm. Below are the reasons to choose RFS as a baseline:

• RFS takes less time to build the prediction model compared to other machine

learning techniques such as SVM (Support Vector Machines) and neural net-

works [108].

• RFS gives good performance in terms of test accuracy.

• RFS is a very popular method used in human activity classification [109].

Data is available in discrete time series. It is not possible to identify the ac-

tivity at a sample point as it takes time to complete an activity. Therefore, time

window consisting of a certain number of samples is generally employed. Each seg-

ment gives an instance for human activity recognition. The fixed sliding window is a

most commonly used segmentation approach for activity recognition. This approach

divides the signal into fixed length segments. There are certain methods proposed

to improve the fixed sliding window. One successful approach is overlapping sliding

window approach. The length of the moving step determines the percentage of over-

lapping between adjacent windows. In this chapter, we adopt adaptive time window
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approach as it divides the signal into segments whose moving step depends on period

of the signal.

3.3.1 Autocorrelation based adaptive time window

Certain activities like walking, running, going upstairs and going downstairs are

quasi-periodic. On the other hand, sitting and standing are non-periodic. Pre-

classification is applied to separate periodic from non-periodic activities. The adap-

tive fixed sliding window uses fixed time segments to extract the period from periodic

activities. Sliding step is determined from this period. To make the time window, we

need to extract the period from these activities. At least data of two to three periods

is needed to extract the period i.e., length of the window.

We use the auto-correlation method to extract the period for the time window.

The basic principle of auto-correlation is that normalized auto-correlation function of

a signal has the same period as the original signal[43].

3.3.2 Feature extraction

The classification algorithms cannot directly apply to raw data. Instead, raw

data is first transformed into examples. The data contained in the segmented time

window is considered as an example. In our case, the segmentation is performed by

the adaptive time window. The data samples in this time window are used to calculate

features. A total of 86 features is computed for this algorithm. The features used

in the algorithm including acceleration and angular rate signals are variants of six

basic features: average for each axis (six), standard deviation (six), average absolute

difference (six), average resultant acceleration (two), time between peaks (six), and

binned distribution (sixty). These are the basic time domain features and all are

important for a classification algorithm [41]. Also, we tried to include other time
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domain features such as zero crossing rate and linear correlation coefficient and did

not notice any difference in classification results. The inclusion of frequency domain

features such as spectral centroid and spectral flux showed little improvement of 1 to

2 % in test accuracy but at the cost of computation time. Therefore, we used variants

of six basic features in this RFS algorithm.

3.3.3 Random Forest Search (RFS) algorithm

An RFS is an ensemble learning approach which constructs a number of structured

decision trees at training stage. Each tree gives a classification vote for the classes

and the forest chooses the overall classification having the most votes over all the

trees in the forest. The main principle behind this approach is that the group of trees

(weak learner) can come together to form a Random forest (strong learner).

RFS is proposed in [110] which adds an additional layer of randomness to bag-

ging. Random forest approach is different from standard regression and classification

approaches in the way each tree is constructed using a different bootstrap sample and

each node is split using the best among a subset of predictors randomly chosen at

that node. The algorithm is very user-friendly in the sensing of choosing parameters.

It has only two parameters: number of variables in the random subset at each node,

and the number of trees in the forest.

The algorithm for the classification using RFS for C number of trees is given

below.

1. For c = 1 to C

a) Draw bootstrap sample of size n from the original training data (N)

b) For each of these samples, grow a random tree Tc by recursively repeating

the following steps for each terminal node of the tree, until the minimum
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node size nmin is reached

i. Select m features at random from the all available p features

ii. Pick the best split point among the m

iii. Split the node into two daughter nodes

2. Predict class by aggregating the predictions of C trees (i.e., majority votes for

classification).

Suppose K is a training matrix of size n for a random tree. For the construction

of each tree, m features are chosen out of p features. Random decision trees are

built using this subset of original training data and randomly picked features. During

testing, each vector is passed through all the random decision trees and each tree

makes a decision of the class on the basis of available data and features, Finally, RFS

makes an overall classification result based on the majority of votes.

3.4 Proposed Approach: Intelligent Fuzzy Inference (IFI) Algorithm

The activities to be classified are sitting, standing, going upstairs, going down-

stairs, walking, and jogging. The classification is very difficult because human move-

ments are very complex. It is not easy to identify activities on the basis of only raw

acceleration and angular rate features because they are not intuitive. In this section,

an approach is designed based on the human movements performed by the user dur-

ing these activities. Instead of computing features from the raw data and using those

features to train the system, this algorithm classifies activities on the basis of GCF

and knee flexion-extension angles.

3.4.1 Intelligent Fuzzy Inference (IFI) algorithm

The algorithm implemented can be divided into three important steps:
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Figure 3.11: Intelligent Fuzzy Inference (IFI) algorithm flow diagram

1) Classify stationary activities like sitting and standing from non-stationary ac-

tivities.

2) Classify jogging from other three walking states that includes flat ground wak-

ing, going-upstairs and going-downstairs.

3) A fuzzy Inference system classifies three walking states on the basis of knee

angle during heel strike (HS) or Toe strike(TS).

In details, stationary activities like sitting and standing can be classified from

other activities based on GCF information provided by smart shoes for four sensing

points heel, toe, meta 1 and meta 4. In sitting and standing, no significant changes in

GCF takes place over the period of time. In stationary activities, no heel strike (HS)

or toe strike (TS) takes place. Based on this, stationary activities are classified from

other activities. If the knee angle in the both legs are higher, the activity is sitting

48



otherwise standing. If HS or TS takes place: then the activity can be one of the

four other activities jogging, walking, going-upstairs and going-downstairs. During

jogging, at certain instant of time both feet do not touch the ground. This information

gathered from smart shoes is useful in classifying jogging from other activities. Toe

strike is most generally performed in downstairs activity.

For walking states, knee performs different range of flexion during HS or TS [44].

During upstairs activity, knee on the heel strike performs more knee angle compared

to downstairs or walking activity. This is opposite for the downstairs activity, where

knee not on the toe strike performs more knee angle. Generally, toe strike is observed

in downstairs. For the walking activity, knee on the heel strike performs less angle

and knee not on the heel strike performs medium knee angle. High, medium and low

are relative terms and fuzzy logic is the best approach to define the thresholds for

this angles. Therefore, a fuzzy inference system is designed for the classification of

three walking states. The flow diagram of the IFI algorithm is given in Figure 3.11.

HS and TS detection plays a crucial role in this algorithm. To detect HS and

TS, another fuzzy logic method is implemented to determine when large force is

applied at heel that is proposed in [97]. Hyperbolic tangent function is used as a

membership function to define smooth thresholds. TS and HS detection are used

different scenarios. For instance, people generally have toe strike during downstairs.

3.4.2 Fuzzy inference system

The IFI algorithm classifies sitting, standing and jogging from three walking states

in first two steps. Then, Fuzzy inference system is adopted to classify walking states.

For our classification problem, features extracted from the sensors are the inputs,

with the fuzzy outputs representing each activity type. Two separate FIS systems

are adopted for both left and right HS or TS events. Rule base differs for these FIS
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systems. The rule bases for these FIS are discussed in further sections.

a. Membership function

In contrast to classical set theory, where data points are either 0 or 1, fuzzy logic

allows membership function to range between 0 and 1. Fuzzy set theory allows partial

membership function in multiple set theory. Gaussian membership function is chosen

for knee angle features. Fuzzy membership function chosen by Gaussian distribution

is given in the form:

µA(x) = exp(−1

2
(
x− ci
σi

)2 (3.35)

Walking 
()

Upstairs
(X)

Walking 
()

Walking 
()

Upstairs
()

Upstairs 
()

Figure 3.12: Transition detection example: a) no transition, b) transition.

where σi is the distribution of membership function and it is generally chosen

in such a way that membership functions are overlapped and ci is the centre of

membership function and defined as:

ci =
xmax − xmin

c− 1
i− 1 + xmin (3.36)

where xi is the real number in the interval (xmin,xmax). c is the number of linguistic

variables. For our case, if left HS or TS takes place, two linguistic variables defined for

50



Left FIS Right FIS

Activity L1 R1 L1 R1

Upstairs High Low Low High

Downstairs Low High High Low

Walking Low Medium Medium Low

Table 3.3: Fuzzy rules for left and Right FIS: L1- Average Left knee angle, R1-
Average Right knee angle

left leg knee angle i.e., high and low. For right knee angle, three linguistic variables

are defined low, medium and high. Similarly, if right HS takes place, two linguistic

variables defined for right leg knee angle i.e., high and low. For left knee angle, three

linguistic variables are defined low, medium and high.

b. IF-THEN rules

The fuzzy logic and rules are used to map fuzzified inputs in to outputs. In FIS for

left HS or TS event, three rules are defined. For each rule, two inputs corresponding

to two features are used to map one output. This is same for right HS event.

IF A THEN B, where A and B are antecedent and consequent respectively. For

instance, the rule for upstairs activity in left HS event is defined as: If (Left leg

average knee angle is high) AND (Right leg average knee angle is low) THEN output

is upstairs. In fuzzy logic, min is used for AND operation. The rule base is given in

TABLE 1.

c. Aggregation and Defuzzification

The final step in FIS system is aggregation. It combines two outputs from fuzzy

rules and form a single fuzzy set, which is then used for defuzzification method to
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determine activity class. Here, max method is used for aggregation and centroid

method for defuzzification. Centroid method returns centre of the area under the

curve. In our algorithm results from both FIS are accounted for classifying activity.

d. Transition between the activities

It is important to detect transition between the activities along with the classification.

Sit to stand or stand to sit can be easily determined on the basis of change in knee

joint angle for both legs.

On the other hand, it is difficult to detect transition between non-stationary ac-

tivities. In this , we employ a method in which transition between the activities can

be determined accurately. Example cases for both transition and wrong detection are

given in Figure3.12. If the results of the consecutive HS or TS events is different. Next

HS or TS result is compared with the previous HS or TS result. If they match each

other, transition takes place last HS or TS result is incorrect. This makes algorithm

more intuitive in terms of detecting transitions.

3.5 Experiments and Results

In order to verify the performance of the proposed algorithm, four trails of activity

experiments performed by two healthy users. In each trail, data of six physical ac-

tivities sitting, standing, going upstairs, going downstairs, walking and jogging were

collected for total of 6 minutes. Experiment was planned to include all the transi-

tions between different activities. Data collected during first trail of data is used for

training the system, identifying correct mean of Gaussian membership functions used

for fuzzifying the inputs. Before training, the data is normalized transforming to new

data vector whose norm is 1. Then, the model is tested on data collected for other

three trails of the same subject (subject dependent) and different subject (subject
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independent). For subject dependent tests, testing is performed on the subject by

the fuzzy inference model developed using the data collected from the same subject.

Where as for subject independent tests, model is developed using the data collected

from another subject. Subject independent tests are useful for real life applications,

because the trained model need not to be re-trained for different subjects. The main

objective of the IFI algorithm is to provide higher activity recognition accuracy for

both subject dependent and independent tests.

During jogging, there is an instant of time where both feet do not touch the

ground, i.e., no GCF are exerted by the user on the ground. This can be inferred

from the Figure 3.13, where 0.1 second time instants are marked for both the shoes.

Also, the jogging GCF plot is compared with walking plot, where difference in double

foot support instances can be noticed. This information is used in the algorithm to

classify jogging activity from rest of the activity. For walking states, HS or TS are

used to extract average knee joint angles of both legs as shown in Figure 3.14(a) and

3.14(b). These calculated average knee joint angles are used as the features for FIS.

In Figure 3.14(a) and 3.14(b), clear differences in joint angles during HS for upstairs

and TS for downstairs can be noticed. The knee angle is around 61 deg for upstairs

and 6 deg for downstairs. A knee joint angle plot for both the legs during walking

activity is shown in Figure 3.15. Here at every left heel strike, it can be seen that left

knee exhibits less angle around 8 deg and right knee exhibit medium angle of 27 deg.

The performance of the algorithm can be visualized using confusion matrix. The

confusion matrices for subject dependent and subject independent tests using RFS

and RFI are given in TABLES II-V. It is clear that IFI algorithm performs better in

both subject dependent and subject independent tests exhibiting an overall accuracy

(OA) of 99.17 % and 95.52% respectively. RFS performs equally well in subject

dependent tests giving OA of 97.41%. But, it exhibits lesser OA of 81.2% for subject
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Left Shoe

Right Shoe

Figure 3.13: GCF plot for a) jogging showing no double support instances, b)
walking showing support instances
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Heel Strike Heel Strike Heel Strike

Toe Strike Toe Strike Toe Strike

Figure 3.14: Detection periods for left leg heel strike and toe strike for a) upstairs
and b) downstairs activities

Left Heel 
Strike

Right Heel 
Strike

Figure 3.15: Left and right knee angles for walking
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Activity Sit Stand Up Down Walk Jog Accuracy(%)

Sit 603 0 0 0 0 0 100

Stand 0 605 0 0 0 0 100

Up 0 0 240 15 5 1 91.95

Down 0 0 21 201 0 3 89.93

Walk 0 0 4 1 207 0 97.64

Jog 0 0 3 4 0 249 97.27

OA=97.41%

Table 3.4: Subject dependent confusion matrix for RFS algorithm

Activity Sit Stand Up Down Walk Jog Accuracy(%)

Sit 603 0 0 0 0 0 100

Stand 0 605 0 0 0 0 100

Up 0 0 140 85 24 12 53.64

Down 0 0 97 107 7 14 47.56

Walk 0 0 68 15 129 0 60.85

Jog 0 0 57 23 5 171 66.80

OA=81.20%

Table 3.5: Subject independent confusion matrix for RFS algorithm

independent tests compared to proposed algorithm. Most of the confusion takes place

between upstairs and downstairs, where as other activities are classified with 100%

precision. The OA for detecting the transitions between the six activities for subject

dependent tests is 100% and 97.68% for subject independent tests. For RFS, OA for

detecting the transitions between the six activities for subject dependent tests is 78%

and 52.3%. It is clear that the IFI is capable of detecting transitions smoothly.
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Activity Sit Stand Up Down Walk Jog Accuracy(%)

Sit 618 0 0 0 0 0 100

Stand 0 625 0 0 0 0 100

Up 0 0 319 10 3 0 96.08

Down 0 0 7 317 4 0 96.65

Walk 0 0 0 0 391 0 100

Jog 0 0 0 0 0 610 100

OA=99.17%

Table 3.6: Subject dependent confusion matrix for IFI algorithm

Activity Sit Stand Up Down Walk Jog Accuracy(%)

Sit 618 0 0 0 0 0 100

Stand 0 625 0 0 0 0 100

Up 0 0 279 41 12 0 84.04

Down 0 0 32 278 18 0 84.76

Walk 0 0 0 0 391 0 100

Jog 0 0 0 0 0 610 100

OA=95.52%

Table 3.7: Subject independent confusion matrix for IFI algorithm

The proposed algorithm gives an update about the activity at every HS or TS. For

our data-sets, subjects performed HS or TS on an average 0.6 sec. On the other hand,

adaptive time window segmentation approach is adopted for baseline algorithm. It

generally gives update about the activity faster than fixed or sliding window. The

stride frequency of the subject on an average is 1 Hz. The sampling frequency of the

sensor is 100 Hz. To calculate the period of the of the activity, auto-correlation needs
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to be calculated for atleast no less than periods. Therefore, update time of RFS is

minimum of 2 sec. It is clear that the proposed algorithm can be useful for real-time

applications, where activity needs to identified at a faster rate. The major advantage

is that it will be helpful for faster transitions.

In this chapter, A design for smart shoes was reviewed. Each shoe contained four

sensing units to measure GCFs at the heel, Meta1, Meta4 and toe positions. Static

and dynamic calibration tests were performed on each sensing unit using Instron

material testing machine. A digital filter was proposed which could compensate for the

hysteresis effect in sensing unit and provide accurate GCFs estimates. The approach

followed in designing this filter constituted of two parts: 1) dynamic modeling of

the air bladder using standard linear solid (SLS) model, and 2) The PEM approach

to identify transfer function of the compensate model. The filtered signal and raw

data were compared with the data from Instron. In addition, standing and walking

practical experiments were conducted on a healthy subject to verify the performance

of the proposed filter.

In this chapter, classification of six human activities using HAR system consisting

of four IMUs and smart shoes was proposed. This system utilized body movement

accurately captured from the inertial and pressure sensors. An algorithm was imple-

mented which could classify stationary from non-stationary activities in the first step,

then jogging from three walking states. Finally, an FIS was implemented to classify

the three walking states. Instead of implementing one FIS taking features from all

sensors into one, two separate FISs were adopted for accuracy, reliability and faster

update on the activity. The IFI algorithm detected transitions smoothly which made

it reliable to implement in real time. The proposed algorithm exhibited higher overall

accuracy compared to the RFS for both subject dependent and independent tests.

The algorithm developed in this chapter need measurements from a total of six
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sensors (four IMUs and two smart shoes) to perform activity classification. There will

always be trade-off between number of sensors and activity classification accuracy.

Reducing the number of sensors may increase comfort to the users at the cost of fall

in detection accuracy of activities and transitions among the activities. Therefore,

the question arises is that is it possible to reduce the number of sensors and maintain

considerable activities detection accuracy? In next chapter, an approach is proposed

for human activity classification with a single sensor. A new two-dimensional feature

space is derived from the thigh angle measurements from a IMU.
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Chapter 4

A TWO-DIMENSIONAL FEATURE SPACE BASED APPROACH FOR HUMAN

LOCOMOTION RECOGNITION

There are a variety of periodic activities in human movements that includes walk-

ing, running, stair ascent and stair descent. Current state-of-the-art methods utilize

multiple sensors and derive numerous features to classify periodic human activities.

The derivation of numerous features for the classification poses real-time processing

issues. Also, the use of multiple sensors causes discomfort to the users. This presents

a real-time human locomotion recognition system using a single inertial measurement

unit (IMU). The recognition method employs two novel features amplitude (A) and

omega (ω) that are derived from thigh segment angular data measured using one

IMU sensor. The machine learning algorithms such as linear support vector machine

(SVM) and k-nearest neighbors (k-NN) are employed on the A-ω feature space to per-

form the classification. The periodic activities considered in this include level walking,

stair ascent, stair descent, uphill, downhill, jogging and running. The experiments

are performed in controlled (motion capture laboratory) and uncontrolled (outdoor)

environmental conditions to evaluate the efficacy of the algorithm. The A-ω feature

based method achieved significant accuracy in both environmental conditions for six

subjects. The real-time classification advantages and potential benefits of this system

to tune the parameters of the wearable robot are also discussed.

The contributions of this chapter can be summarized into:

• A real-time human locomotion recognition system is developed using single IMU

sensor
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• Two novel features A and ω are derived from thigh kinematic data which pro-

vides distinguishable feature space for classification of periodic activities.

• A transition detection module is designed that can detect the transitions be-

tween the activities in real-time.

• Both indoor (controllable environment) and outdoor (uncontrollable environ-

ment) experiments are performed to verify the efficacy of the proposed algorithm

in both the environmental conditions.

The scope of this algorithm is to classify activities such as level, uphill and down-

hill walking, and running in the indoor environment equipped with instrumented

treadmill. Also, to classify the activities such as level walking, stair ascent, stair de-

scent and jogging in outdoors. In addition to this, transitions between all the given

activities is considered in outdoors. Experimental assessments were performed on six

healthy subjects who performed the activities at three different speeds. In indoor,

treadmill setting is used to adjust the speed. Whereas in outdoors, metronome is

used to set beats per minute and asked subjects the follow the sound beats while

performing the activities.

The remainder of this chapter is organized as follows: section 4.1 gives details

about the wearable sensor device and setup for the data acquisition. The algorithm for

deriving A and ω features and transition detection (TD) module details are discussed

in section 4.2. Experiment protocol is presented in section 4.3. The results of the

experiments are given in section 4.4. Section 4.5 discusses classification accuracy of

the algorithm, personalization of the system and potential benefits of the system with

integration to the wearable robot.
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(a) IMU sensor module

IMU sensor

(b) The subject wearing wear-

able sensor device

Figure 4.1: IMU sensor with Intel Edison and subject walking on the treadmill
wearing wearable sensor device on his right thigh.

4.1 Human Locomotion Recognition System

The wearable sensor device consists of an inertial measurement unit (IMU) to

measure thigh kinematic data in real-time. The sensor configuration, processing

unit and the subject wearing the device is displayed in Figure 4.1. The Adafruit

BNO055 9-DOF IMU module stacked on the Intel Edison is used for full range motion

sensing shown in Figure 4.1(a). It is clear from the Figure 4.1(b) that the wearable

sensor device is small in size which allows the subject to wear the device without

any discomfort. The sampling rate of the IMU sensor is set to 100 Hz. The code

for processing kinematic data, peak detection and the feature extraction is written in

python environment. The Intel Edison is chosen due to its high processing speed and

ability to handle computations in real-time.

The IMU module also provides Euler angles and quaternions. A calibration proce-

dure is followed for the IMU sensor before placing the sensor on the subject to acquire
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reliable measurements. Also, a standing calibration procedure is designed in which

the subject need to stand still for 30 seconds before performing the series of activities.

This is needed to identify the sagittal direction axis. Once axis is identified, the thigh

angle is calculated with respect to the sagittal plane. The wearable sensor device is

connected wireless to a desktop to visualize the feature space and classification results

in real time. A TCP/IP protocol is setup between the device which transmits the

data at 100 HZ. The wireless network configuration finds a balance between system

portability and measurement delays.

4.2 Algorithm Description

The human locomotion activities such as walking, jogging, stair ascent and stair

descent are periodic in nature. In literature, time-domain and frequency-domain fea-

tures were computed to perform classification. Then, dimension reduction techniques

were applied to reduce the number of features. Most of the work reported in periodic

human activity classification were performed off-line. In this chapter, an approach is

proposed to extract two features A and ω which helps in classifying periodic activ-

ities in real-time. The primary step in this approach is to identify the fundamental

frequency f of the activity signal which helps to derive features A and ω.

4.2.1 Finding angular frequency ω

The fundamental frequency f can be identified using any of the three methods:

1. Compute Fast Fourier Transform (FFT) of the signal.

2. Compute autocorrelation function (ACF) of the signal.

3. Peaks search method (PSM): compute the average distance between two adja-

cent peaks of the signal.
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(a) The FFT spectrum of the thigh gyro signal during walking
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(b) The ACF plot of the thigh gyro signal during walking
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(c) The PSM result of the thigh gyro signal during walking

Figure 4.2: The comparison between three methods: FFT, ACF and PSM for thigh
angular data recorded using IMU for a healthy subject. The f estimated using FFT,
ACF and PSM are 0.817 Hz, 0.79 Hz and 0.78 Hz.
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Among the three methods, FFT computations are expensive in real-time in compar-

ison to the other two methods. The computation of normalized ACF requires the

data of two adjacent time windows which results in the lag of f update. Considering

this, PSM method is chosen in this work which is not computationally expensive and

provides real-time f update. However, it is difficult to detect the peaks of the signal

in presence of the noise. Therefore, there is a need for a method that can accurately

detect peaks in presence of the noise. In this work, PeakUtils package from python

is used for peak detection of the thigh angular data [111]. The comparison between

three methods is shown in Figure 4.2. The f is calculated using three methods and

it is clear that all the methods provide nearly similar result. The f calculated using

FFT, ACF, and PSM methods are 0.82 Hz, 0.79 Hz, and 0.78 Hz, respectively for the

thigh gyro signal during walking.

For the first peak detection in gyro signal, time window length ts and ω are not

calculated as shown in Procedure 1. The time window construction starts as soon

as the second peak is detected and it continues for every consecutive peak detection.

The advantage of this time window is that it is adaptive in nature and changes with

the pattern of the signal.

4.2.2 Finding amplitude A

As it can be seen from Figure 4.2(a) that the FFT spectrum of the gyro signal

during walking resulted in three dominant peaks. This similar pattern is observed in

gyro signals of the other periodic activities such as stair ascent and stair descent. The

frequency associated with the highest peak is fundamental frequency f and frequencies

related to other two peaks are multiples of f i.e., f1 = 2f , f2 = 3f . The other peaks

in the spectrum are negligible. Therefore, it is possible to approximate the periodic

signal related to these activities with three frequencies f , f1, f2 in the following form:
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Procedure 1: Compute angular frequency ω

Input: Thigh angular data g(t)

Output: The angular frequency ω of the signal

Start

[loct, pkst] = findpeaks(g(t)) . findpeaks function finds the location (loct)

and values (pkst) of the peaks

j = length(loct)

currentj = j, previousj = j − 1

while currentj > 1 do

ts = currentj−previousj
fs

. fs: sampling frequency

ω = 2π
ts

.

previousj = currentj, currentj = j + 1

end

End

g(t) = A1e
jωt + A2e

2jωt + A3e
3jωt (4.1)

Where ω = 2π
f

and g(t) is the gyro signal. The derivative and double derivatives

of g(t) gives gyro velocity and gyro acceleration respectively. The feature ω is found

using peaks search method and amplitudes A1, A2, A3 can be obtained by solving

the following matrix:
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

g(t)

ġ(t)
ω

g̈(t)
ω2


=



ejωt e2jωt e3jωt

jejωt 2je2jωt 3je3jωt

−1ejωt −4e2jωt −9e3jωt





A1

A2

A3


(4.2)

4.2.3 Algorithm summary for A-ω features extraction

1. Construction of time window: identify two consecutive peaks of gyro angle

signal g(t) and the distance between these two peaks is the length of the time

window used for feature extraction.

2. Using two adjacent peaks, calculate f and ω.

3. Calculate gyro velocity and gyro acceleration and then compute the three am-

plitudes A1, A2, A3 at every sample point.

4. Calculate the mean of the absolute values of the three amplitudes for all the

data points in the time window.

5. The resultant amplitude A is calculated by taking the resultant of the three

mean absolute amplitude values:

A =
√
|Am1|2 + |Am2|2 + |Am3|2 (4.3)

where Am1, Am2 and Am3 are the three mean absolute amplitude values for all

the data samples in the time window.

6. Identify next peak and repeat the steps 1 to 5
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Procedure 2: Compute A

Input: Thigh angular data g(t), Thigh angular velocity ġ(t), and thigh angular ac-

celeration g̈(t).

Output: A: The amplitude of the signal

Start

[loct, pkst] = findpeaks(g(t)) . findpeaks function finds the locations (loct)

and values (pkst) of the peaks

j = length(loct)

currentj = j, previousj = j − 1

while currentj > 1 do

l = loct(previousj) : loct(currentj) . Construction of the time window

Compute A1(l), A2(l), and A3(l) for given input g(l), ġ(l), and g̈(l) using matrix

relation given in (7.2)

[Am1, Am2, Am3] = [mean(A1(l)),mean(A2(l))l, ...

... mean(A3(l))]

A =
√
|Am1|2 + |Am2|2 + |Am3|2

previousj = currentj, currentj = j + 1

end

End
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For every two peaks, the angular frequency ω and resultant amplitude A are

calculated. Then, these features extracted from the training data are trained with

ML algorithms to build the classification models.

4.2.4 Machine Learning (ML) algorithms

After preprocessing of the raw data and extraction of features, the next step is to

implement the classification algorithms. In this , two classification algorithms linear

Support Vector Machine (SVM) and k-nearest neighbors (k-NN) are implemented on

the A-ω features space.

Support Vector Machine (SVM)

The SVM classifier is a kernel-based classifier which classifies the data into two or

more classes. During the training phase, SVM builds a model, maps the decision

boundary for each class and specifies the hyperplane that separates different classes.

More details about SVM is given in [112]. Basically, a kernel function is the mapping

procedure performed to the training dataset to improve its resemblance to a linearly

separable dataset. Some of the commonly used kernel functions are linear, RBF,

quadratic, polynomial and multilayer perceptron kernel. In this work, a linear kernel

is used considering computation requirements of the real-time classification. It is

known that linear kernel performs well with the linearly separable dataset and takes

less time to train the model in comparison to the other kernel methods. Therefore, it

makes sense to use linear SVM as a classifier, if the features are linearly separable. The

performance of the SVM classifier relies on the choice of the regularization parameter

C which is known as the hyperplane parameter. The value of C was set to 1.
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k-nearest neighbors (k-NN)

The k-NN is the instance based learning algorithm which classifies the objects based

on their closest training examples in the feature space. In k-NN, an object is classified

based on the majority votes of its neighbors i.e., the object is assigned to the class

that is most common amongst its k nearest neighbors, where k is a positive integer

[113]. In this work, (k-NN) is implemented using Euclidean distance metrics to locate

the nearest neighbors [114]. The Euclidean distance d(x, y) between two points x and

y are calculated using the following equation:

d(x, y) =
N∑
i=1

2

√
x2
i − y2

i (4.4)

WhereN is the number of features such that x = x1, x2, x3.......xN and y = y1, y2, y3.......yN .

The number of neighbors k is used to classify the new test vector. In our case, N is

2. In this work, weighted k-NN method is used as an another classifier.

4.2.5 Transition detection between the activities

It is important to detect the transitions between the activities. In this work, a

method is developed based on the location of the points in the clusters of A-ω feature

map. The peaks in the thigh angle are observed during the swing phase of the gait

cycle. Therefore, ML algorithms give activity classification result during the swing

phase of every gait cycle.

The SVM builds hyperplanes to differentiate different classes and k-NN tries to

find the classification result based on the voting result of the nearest neighbors. The

transition algorithm compares every two consecutive points in the A-ω feature map.

The algorithm for the transition detection is given below:

It is clear from the Procedure 3 that it needed a minimum of three consecutive

peaks classification results to check the transitions between the activities. The ad-

70



Procedure 3: Detect transitions
Input: Feature vector [A, ω], trained SVM or k-NN model

Output: : T (T equals to 0, 1, and -100 which represent transition, no transition,

and error in the transition, respectively)

Start

j = size([A, ω])

while j >= 3 do

prev = j − 2, mid = j − 1, next = j

. ML(a) gives classification result using the trained model for ath feature

point

if ML(mid) = ML(prev) then

T = 0 . No transition

else

if ML(mid) = ML(next) then

T = 1 . Transition

else if ML(prev) = ML(next) then

T = 0 . No transition, ML(mid) classification result is wrong

else

T = -100 . Transition result runs into error, detection result is not

given at this point

end

end

end

End
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vantage of this algorithm is that along with transition detection, it also identifies false

detection of the classification. As shown in the condition of Procedure 3 that if there

is a change in classification result between two consecutive points, next point classifi-

cation result is checked to make sure that the transition really took place. Otherwise,

previous point classification result is considered as false detection.

4.3 Experiment Protocol

To assess the real-time classification performance of the proposed approach, the

wearable sensor device was tested on six healthy subjects (five men and one woman).

Two types of environmental conditions were chosen for the experiments: Controlled

(indoor labs) and uncontrolled (outdoors). The age, height, and weight of the subject

is shown in Table 4.1. We have the application approved by Arizona State University

(ASU) Institutional Review Board (IRB) regarding human subjects experiments. In

the controlled environment, the subject was made to do the activity on the instru-

mented treadmill which has an option to control the speed of the treadmill. In the

uncontrolled environment, the subject had the flexibility to complete the activities

at his or her own pace in outdoors. However, in some experiments metronome was

used to specify the steps rate to the subject. These experiments were designed to

perform analysis on the A-ω feature map for same activity with different step rates.

For this, the subject was asked to synchronize the steps with the beats sound from

metronome. The activities chosen for the controlled environment were level walking,

uphill, downhill and running. Three different speeds: slow, medium and fast were set

on the treadmill. The speeds set for the three walk states level walking, uphill, and

downhill were 0.4 m/s, 0.6 m/s, and 0.8 m/s. For Running, the speeds were 1.4 m/s,

1.7 m/s, and 2 m/s. The time duration of each experiment on the treadmill is one

minute each. The slope of the treadmill was set to 0, 0, +10 and -10 degree for level
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walking, running, uphill, and downhill. In uncontrolled environment, the subject is

made to perform level walking, upstairs, downstairs and jogging. Also, the transitions

between the activities were included in uncontrolled environment experiments to test

the efficacy of the transition module of the algorithm.

For experiments, the subject was asked to performed three trials of each activity

experiment. In this, two trials experimental data was used for training the ML

algorithms. Then, the trained ML algorithm is tested on the subject in real-time

for the third trial. The metric used for analysis is the total classification accuracy

% which is the percentage of correctly classified activities divided by a number of

incorrect classifications. This metric was computed in real time and given after the

end of the trial.

4.4 Results

The proposed approach in this focuses on subject specific training and testing

of the classification algorithm. Therefore, every subject performed three trials of

experiments for each activity. The data of first two trials were used to extract A-ω

Subject Id Age(Y) Gender Height (ft) Weight (lb)

1 30 Male 6 170

2 24 Male 5 11’ l51

3 27 Female 5 4’ 115

4 30 Male 5 4’ 159

5 25 Male 5 10’ 143.3

6 26 Male 6 223

Table 4.1: The details of the subjects participated in the experiment
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a) b) c) d)

(a) The setup for experiments in indoor laboratory: a) level walking at 0 degree

slope , b) uphill at +10 degree slope, c) downhill at -10 degree slope, and d)

running at 0 degree slope.

a) b) c) d)

(b) The setup for experiments in outdoors: a) level walking, b) upstairs, c) down-

stairs, and d)jogging.

Figure 4.3: The experiment setup for all the activities of a healthy subject in both
environmental conditions

features and ML algorithms: SVM and k-NN were trained on these features. Then,

the trained models were tested for the third trial to verify the classification accuracy.

The A-ω feature map for the test trial on a healthy subject in the controlled en-

vironment for slow, medium and fast speeds is shown in Figure 4.4. It is clear from

the Figure 4.4 that the features in the map are clearly distinguishable for four activ-
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(a) A-ω feature map for slow speeds in the con-

trolled environment
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(b) A-ω feature map for medium speeds in the

controlled environment
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(c) A-ω feature map for fast speeds in the con-

trolled environment

Figure 4.4: A-ω feature map for three different speeds in the controlled environment
for a healthy subject in a test trial. The speed setting for level walking, uphill, and
downhill was 0.4 m/s, 0.6, and 0.8 m/s, respectively. For running, it was 1.4 m/s, 1.7
m/s, and 2 m/s, respectively.
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Figure 4.5: The A-ω feature map for uphill activity at three speeds 0.4 m/s, 0.6
m/s, and 0.8 m/s, respectively for a healthy subject in a test trial. It is observed here
that as speed increases the ω increases and A decreases.
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Figure 4.6: The A-ω feature map for locomotion activities for a healthy subject in
the uncontrolled environment. Here, the test subjects performs activities at flexible
speed in out doors.

ities: level walking, uphill, downhill and running for all the speeds. The amplitude is

higher in uphill in comparison with the other activities. Whereas, downhill exhibited

less amplitude. It is also observable that the deviation of feature points is more in

uphill and downhill when compared to walking and running. A clear distinction in

the features is also observable in the same activity such as uphill at different speeds

shown in the Figure 4.5. Therefore, it is possible to make a point here that the same

activity at different speeds is also differentiable using A-ω features. The feature map

for a test trial on a healthy subject in the uncontrolled (outdoor) environment is

shown in Figure 4.6. In this trial, the subject performed the activities with flexibility

at his or her own pace. The features here in the uncontrolled environment are more

spread than the features in the controlled environment for four activities that can

be inferred from Figure 4.4 and 4.6. The feature map for a healthy subject at three

different step rates for level walking, uphill, and downhill is shown in the Figure 4.7.

It is observable that A-ω feature space provides considerable distinction among the

same activity at different step rate shown in Figure 4.7.

The controlled environment classification results for slow, medium and fast speeds

are presented in terms of the confusion matrices displayed in the Tables 4.2 to 4.4.

The subject-specific classification accuracy results for each subject is reported in the
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Figure 4.7: A-ω feature map for three walk states at different step rate in the un-
controlled environment for a healthy subject in a test trial. The step rates considered
in this experiment were 60, 80, and 100 steps/min, respectively.

form of bar charts shown in the Figure 4.8. It can be seen from Figure 4.9 and

Table 4.5 that the classification accuracies are comparatively less for uncontrolled

environment experiments. The transitions are detected with 100% accuracy for all

the outdoor experiments.

4.5 Discussion

4.5.1 Classification accuracy

It is clear from Figure 4.8 and 4.9 that the classification accuracy in the uncon-

trolled environment is comparatively lower than the controlled environment. The
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possible reason is that the subject takes flexibility to walk at his/her comfortable

speed and may not be uniform in terms of spatial or temporal gait parameters such

as stride length or cadence in the outdoors. However, the A- ω feature space still

can be able to differentiate the activities. Also, the deviation of the feature points in

the map gives inference about the uniformity in the strides. Comparing the feature

map of the two environment results, it is clear that feature points in the controlled

environment for a corresponding activity are less deviated than the uncontrolled envi-

ronment which shows that the subject performs more uniform strides in the controlled

environment. It should also be noted that this deviation does not affect the feature

distinction between the activities. Therefore, ML algorithms SVM and k-NN ex-

hibited good performance in terms of classification using extracted features in both

environmental conditions. The A - ω feature map also differentiates the same activity

at different speeds in both environmental conditions. It can be seen from the Figure

4.5 that A decreases and ω increases with the increase in the speed of the treadmill

that helps to differentiate different speeds of the same activity. This trend is also

observed in the feature maps of the activities performed in uncontrolled environment

Activity Walk Uphill Downhill Running Accuracy (%)

Walk 173|172 1|2 0|0 1|1 98.8|98.2

Uphill 0|1 158|157 0|0 0|0 100|99.4

Downhill 0|0 0|1 164|163 0|0 100|99.4

Running 8|7 6|6 0|0 254|255 94.8|95.5

OA = 97.9|97.6

Table 4.2: The slow walk experiment results in controlled environment for both
SVM and k-NN represented in the form of confusion matrix. The element in the
matrix represent SVM|k-NN result
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at different step rates shown in Figure 4.7. It can be inferred from the confusion

matrices shown in Tables 4.2, 4.3 and 4.4 that uphill and downhill activities gets

less confused with the other activities. Whereas, level walking and running confuses

more. Both SVM and k-NN exhibited high accuracy in slow, medium and fast speed

experiments. It can be inferred form the Figure 4.8 that SVM and k-NN exhibited a

higher accuracy of 100% , 100% and lower accuracy of 95.6%, 95.3% respectively for

slow speed experiments in subjects with ID 1 and 2. For medium speed experiments,

it is 100%, 100% and 96%, 96% respectively for SVM and k-NN in the same subjects.

The SVM and k-NN exhibited a high percentage of 99.8% and 98.8% and a low per-

centage of 96% and 95.4% in subjects with Id 1 and 5 for fast speed experiments.

In the uncontrolled environment, running activity classification is 100%. The walk

states level walking, upstairs and downstairs confuses a lot that can be seen from

Table 4.5. From the bar chart shown in the Figure 4.9, it can be seen that SVM

exhibited a higher and lower classification accuracy of 97.3% and 88.5% in subjects

with Id 2 and 5. Whereas, k-NN exhibited 96.5% and 87% for the same subjects.

Activity Walk Uphill Downhill Running Accuracy (%)

Walk 211|208 1|2 2|2 1|3 98.1|96.7

Uphill 0|0 197|197 0|0 0|0 100|100

Downhill 4|1 0|0 210|213 0|0 98.1|99.5

Running 8|11 0|0 1|0 278|276 96.9|96.2

OA = 98.1|97.8

Table 4.3: The Medium walk experiment results in controlled environment for both
SVM and k-NN represented in the form of confusion matrix. The element in the
matrix represent SVM|k-NN result
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4.5.2 Personalized device

The wearable sensor device that is developed in this can be considered a personal-

ized device. The training data given to the algorithm is taken from subject’s activity

itself. The activity profile changes from subject to subject. For example, gait pattern

is not similar and the thigh movement during the locomotion activity can differ from

subject to subject. Therefore, it becomes difficult to build a system that is general

for all. However, a personalized system with less training data to train the model

serves as an alternative solution to this specific problem. Therefore, in this , one such

system is proposed which needs 1 to 2 minutes of data of each activity to train the

algorithm and be able to provide real-time detection of the activities. Also, the A-ω

feature map provides insight into the patterns of the activities performed by a specific

subject. The stride to stride comparison is possible through these features. For in-

stance, more deviation in the feature space of one activity gives information that the

activity is not performed uniformly. This system is useful in medical as well as sports

training, where physiotherapist needs to check the improvement in the subject and

athletes needs to improve their performance on a regular basis. Also, these features

Activity Walk Uphill Downhill Running Accuracy (%)

Walk 275|273 4|5 0|0 3|4 97.5|96.8

Uphill 0|0 261|261 0|0 0|0 100|100

Downhill 0|0 0|1 275|273 0|1 100|99.3

Running 5|5 2|2 4|5 324|323 96.7|96.4

OA = 98.4|98

Table 4.4: The Fast walk experiment results in controlled environment for both
SVM and k-NN represented in the form of confusion matrix. The element in the
matrix represent SVM|k-NN result
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give distinction between all the periodic activities that helps in rehabilitation training

of the patients while performing different activities.

4.5.3 Integration to wearable assistive robot

The wearable sensor device can be easily be integrated to any assistive robot that

needs to provide assistance during various activities. The adaptive phase oscillators

algorithms were proposed for the exoskeleton to assist periodic activities in the lit-

erature which needs learning of the signal’s parameters [96, 115, 116]. During the

transition from one periodic activity to another, it becomes difficult for the adaptive

oscillators architecture to learn the parameters of the new signal in a short period.

Therefore, the approach proposed in this will be useful in providing frequency and

amplitude parameters that are needed for the new signal. However, the current ap-

proach needs improvement to account for the new features to provide parameters for

the signal. Now, the algorithm detects the periodic activities in real-time. The addi-

tion of a prediction module to the current algorithm that can predict the probability

of next feature point belonging to a specific activity is needed. For instance, after

Activity Walk Uphill Downhill Jogging Accuracy (%)

Walk 108|104 8|10 4|6 0|0 90|86.7

Uphill 14|10 106|110 0|0 0|0 88.3|91.7

Downhill 8|9 0|0 112|111 0|1 93.3|92.5

Jogging 0|0 0|0 0|0 120|120 100|100

OA = 93|92.3

Table 4.5: The activity results in uncontrolled environment for both SVM and k-
NN represented in the form of confusion matrix. The element in the matrix represent
SVM|k-NN result
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Figure 4.9: Classification accuracy % for 6 subjects in the uncontrolled environment
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detection of two peaks in the thigh angular data, it needs to give current activity

state and also predict the next probable state. This prediction module will be helpful

in tuning the adaptive oscillator parameters and also impedance parameters if the

robot is designed to tune the impedance parameters based on various activities.

In this chapter, an approach for real-time periodic activities classification is pro-
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posed which works on 2 dimensional feature space A-ω. The features are extracted

from a single IMU attached to the thigh segment of the user. The algorithm is tested

in two types of environment: controlled (indoor labs)and uncontrolled (outdoors).

The activities considered in this are level walking, uphill, downhill and running on

instrumented treadmill, and level walking, upstairs, downstairs and jogging in out-

doors. The SVM and k-NN exhibited higher activities classification accuracies in

both controlled and uncontrolled environmental conditions. The next step will be the

integration of this human locomotion recognition system with the hip exoskeleton

that is developed to assist the soldiers in outdoor activities such as level walking,

uphill and downhill [117] that is given in chapter 7. Implement the prediction module

in addition to this activity detection module that will help to tune the parameters

for the adaptive oscillator that will be used in the hip exoskeleton.
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Chapter 5

AUTOMATIC VIRTUAL IMPEDANCE ADAPTATION OF A KNEE

EXOSKELETON FOR PERSONALIZED WALKING ASSISTANCE

This chapter attempts to address the problem of online tuning of virtual impedance

for an assistive robot based on real-time gait measurement data to personalize the

assistance for different users. In this work, smart shoes and inertial sensors are em-

ployed to measure the ground contact forces and knee joint kinematics, respectively.

An automatic impedance tuning (AIT) approach is presented for a knee-joint ex-

oskeleton based on real-time activity recognition and gait phase detection. Human

knee joint impedance is identified with the walking data collected on two healthy par-

ticipants. A Gaussian mixture model (GMM) is employed to map the fuzzy likelihood

of various activities and gait phases to the desired robot virtual impedance. Experi-

ments are conducted on these two participants to evaluate the benefit of the proposed

algorithm by comparing muscle activities and gait metrics. The results demonstrate

that the robot assistive torque is smoother and EMG signal of Vastus Medialis is

reduced, compared to constant impedance and finite state machine approaches. It is

also noticed that the AIT reduces knee range of motion and step length but increases

walking cadence.

This work serves as our first step to tackle the personalization issue of assis-

tive robots from the robot planning and control perspective. We develop an online

impedance tuning approach to adaptively control wearable assistive robots. Smart

shoes and inertial sensors are employed to collect GCF and kinematic data. Activity

recognition and gait phase detection algorithms are developed to understand human

walking in real time. Instead of having a deterministic answer on the current activ-

84



ity and gait phase, a likelihood value is introduced to account for uncertainties and

fuzziness. A Gaussian mixture model (GMM) is trained to map the fuzzy likelihood

of activities and gait phases to the desired virtual impedance of the robot, based

on the identified user knee impedance for different activities and gait phases. The

contributions of this chapter include: 1) an online activity and gait phase detection

approach is developed based on force and kinematic data, 2) an automatic online

impedance tuning approach is developed based on human knee characterization and

GMM to allow smooth transitions and personalize the assistance, and 3) the efficacy

of these algorithms is verified by experiments with two human participants and its

potential benefit is illustrated using gait and EMG metrics.

The remainder of this chapter is organized as follows: Section 5.1 reviews the

related literature for impedance based control strategies. Section 5.2 discusses the

mechatronic design of the wearable sensors and assistive robot. In section 5.3, the

human knee impedance is studied. Section 5.4 introduces the activity and gait phase

detection algorithms. The online impedance tuning algorithm is discussed in section

5.5. Experimental results with two participants are presented in section 5.6.

5.1 Related Work

The proper assistance of wearable robots significantly depend on planning and

control. For motion planning of the wearable robots, impedance control has been the

most popular approach due to its simple implementation and clear physical intuition

[118]. Over the years, the finite state machine (FSM) is a widely adopted strategy

to modulate the impedance parameters in the robot controller based on gait phases

and activities. To implement FSM, it becomes important to integrate the real-time

gait and activity detection algorithms into the high-level control of the assistive robot.

Hybrid Assistive Limb (HAL3) is a famous lower-extremity wearable robot. It broadly
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classified one walking cycle into support and swing phases based on force resistive

sensor threshold, and constant torque is applied to hip and knee joints [119]. Apart

from HAL, other companies such as ReWalk [120] and Ekso Bionics [121] built hip-

knee exoskeletons and employed FSM controller strategy to assist individuals with

SCI. In [122], a FSM based controller is designed for five gait phases to allow variation

in impedance for the knee joint. The gait phases are detected based on knee angles

and manually defined thresholds of GCFs. A FSM controller is implemented in [123],

in which the stiffness of the knee actuator is modulated based on stance and swing

phases of the gait cycle. In MINDWALKER exoskeleton, a FSM based impedance

controller is designed for nine states in a gait cycle [76]. A FSM based impedance

controller is implemented for modulating impedance parameters in the robotic device

with knee and ankle actuators for sitting, standing and walking activities in [46], and

for stair ascent and descent in [124]. Although FSM has shown promising results,

there still remains a major limitation, as it leads to discrete jumps in the impedance

parameters during state transitions [76, 125].

In the aforementioned work, the impedance parameters are manually set for differ-

ent gait phases or activities which requires a lot of time and experience from medical

professionals. Moreover, these parameters may differ across users. Therefore, it is

not possible to design generalized impedance parameters profile across the users, in-

stead, they need to be personalized based on user’s requirements. To address these

issues, researchers started focusing on the human joint impedance studies to get

more insight on the joint impedance modulation, and to design the assistive robots

that mimic the physiological joint behavior [126]. The conventional methods to de-

termine joint impedance involve perturbing the joint in a controlled manner, and

describing impedance as the dynamic relationship between applied perturbations and

corresponding joint torques [127]. Some developed methods to estimate the elastic
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components of the knee joint impedance that depends on muscle activation [128].

Others modeled the knee joint as a spring-damper system and identified knee stiff-

ness, damping and setpoint for gait phases [129]. The results from the aforementioned

human studies demonstrated that the human modulates the impedance parameters

in a smooth and continuous manner within a gait cycle and these impedance param-

eters profile changes from subject to subject. Despite ongoing research on human

joint impedance studies, there still exists a gap in embedding those insights into

impedance-based controller strategy for robots.

Inspired by the aforementioned limitations of the existing work, the main focus

of this is to provide smooth impedance modulation for the robotic assistive device

to assist the user in a personalized manner. This is approached by imparting the

identified impedance parameters in human study experiments to the robot controller.

An automatic impedance tuning (AIT) algorithm is proposed which automatically

modulates the impedance parameters for gait phases and activities. Smart shoes and

inertial sensors are introduced to collect GCF and kinematic data. Activity recogni-

tion and gait phase detection algorithms are developed to understand human walking

in real time. These algorithms provide fuzzified values instead of deterministic deci-

sions. These fuzzy likelihood values provide flexibility for smoothing the impedance

parameters profile. A Gaussian mixture model (GMM) is trained to map the fuzzy

likelihood of activities and gait phases to the desired virtual impedance of the robot,

based on the identified user knee impedance for different activities and gait phases.

The scope of this is to provide assistance during stance and implement zero impedance

case to allow user free motion during swing.
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5.2 Mechatronic Design

5.2.1 Wearable sensing system

The wireless wearable sensing system comprises inertial measurement units (IMUs)

and smart shoes to measure knee joint angles and GCFs. The system is connected

to a high-performance computer through a stable wireless ad-hoc network using the

TCP/IP protocol. The smart shoes are developed to measure GCFs at four points:

heel, first metatarsal joint (Meta 1), fourth metatarsal joint (Meta 4) and toe while

the silicone tubes are wound into air bladders and connected to barometric pressure

sensors shown in Fig.5.1(a) and (b). The sampling rate of the smart shoes is set

to 100 Hz and a model-based filter is implemented to compensate for hysteresis and

estimate GCFs from pressure sensor readings in real time [130].

Four IMUs are placed on bilateral thighs and shanks to measure acceleration

and angular rate in real time. The placement of IMUs on the participant is shown in

Fig.5.1. The combined Bosch Sensortec’s BNO055 IMU and an Intel Edison processor

is used for motion sensing, as shown in Fig.5.1(d). The sampling rate of all IMUs

is set to 100 Hz. The knee angle is estimated by initially aligning the sensor frames

of thigh and shank using functional alignment procedure and then calculating the

relative orientation using an extended Kalman filter [106].

5.2.2 Knee assistive device (KAD)

A knee assistive device (KAD) is an exoskeleton with a compact rotary series

elastic actuator (cRSEA) [131]. In a cRSEA, a worm gear and spur gear combination

is used to amplify and change the direction of assistive torque generated by a DC

motor. The mechanical design of KAD is shown in Fig.5.1(c). The cRSEA is compact

and light with a weight of 1.57 kg to avoid unbalance and discomfort to users. The
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Figure 5.1: Wearable sensing system and knee assistive device

maximum power consumed by the knee joint is about 80W for a male subject with

the body weight of 70 kg and during level walking and the knee angular velocity

ranges between ±60 rpm [131]. Considering this, Maxon RE40, a 150W DC Motor is

used to power the KAD. With a combined gear set reduction ratio of 63.6:1, the end

Component Specification Value

Torsion spring Spring constant 6.59 N·mm/deg

Max angular deflection 317 degrees

Worm gear Gear ratio 10:1

Pressure angle 25 degrees

Lead angle 18.26 degrees

Spur gear Gear ratio 6.36:1

Pressure angle 14.5 degrees

Encoders Resolution 2000 counts/turn

Table 5.1: Design Specification of KAD Components
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Figure 5.2: The gait cycle of human walking. HS - heel strike, LR - loading response,
MST - mid stance, TST - terminal stance, PSW - pre-swing, ISW - initial swing, MSW
- mid swing, and TSW - terminal swing.

effector can reach a maximum angular velocity of 120 rpm and the KAD can provide

a maximum continuous assistive torque of 11.26 N·m. Two incremental optical rotary

encoders (US Digital) are used to measure both motor and human knee angles, which

are re-initialized at the beginning of each experiment. The torsion spring serves as a

torque sensor and also provides an energy buffer to prevent injuries from unexpected

high motor torques. The specifications of the components used in the KAD are given

in Table 5.1. The design of KAD targets people with unilateral impairment which

affects knee function. In this , the KAD is used to assist right side knee.

5.3 The Study of Human Knee Motion

The scope of this chapter is to provide knee assistance during stance phase by

tuning the impedance parameters of the assistive robot. It is important to understand

the impedance modulation performed by the human as it is necessary for stable

and efficient gait cycle. In a gait cycle, human continuously modulates their joint

impedance depending on the activity, speed and terrain. The understanding of human

knee impedance is critical for proper virtual impedance of the assistive robot, as shown

in Section 5.5.1.

The experiments were set up in the motion capture laboratory which was equipped
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Figure 5.3: The comparison of knee kinematics and kinetics for three activities
experiments performed on a healthy participant. The slope of the treadmill was set
to 0, +10, and -10 degree and the speed of the treadmill was 0.8 m/s, 0.6 m/s, and
0.6 m/s for level, uphill, and downhill walking experiments.
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with 12 high-speed infrared cameras (Vicon Motion Systems Ltd.,) and instrumented

treadmill (Bertec Corporation) at Arizona State University (ASU). Two healthy par-

ticipants with height and weight 180 cm, 183 cm and 59.96 kg, 77.61 kg, were chosen

to participate in the experiments. The activity experiments level, uphill, and downhill

walking at 0, +10, and -10 degree slope were planned. The speed of the treadmill was

set to 0.8 m/s for the level walking and 0.6 m/s for both uphill and downhill based on

the comfort level of the participants. There is a limitation related to the instrumented

treadmill that it does not allow changing the slope of the contact surface while run-

ning. Therefore, the experiments of three activities were planned separately without

focusing on their transitions. There are two objectives associated with performing

experiments: 1) to get the kinematics and kinetics data of the knee to study human

impedance modulation and also to identify the parameters of the model that will be

discussed in section 5.3.1. 2) To get the experimental data to train GMM in AIT

algorithm that will be proposed in section 5.5.1. For the experiments, participant

worn markers, IMUs, and smart shoes. The knee angle and GCFs data from IMUs

and smart shoes will be used as the inputs to activity recognition and gait phase de-

tection modules which is detailed in Sections 5.4.1 and 5.4.2. The ASU Institutional

Review Board (IRB) reviewed and approved the studies in this .

5.3.1 Human knee impedance model

This primarily focuses on identifying the knee stiffness and damping during the

stance phase of the level, uphill, and downhill walking. In this , a spring damper

model is considered for modeling the human knee torque with respect to the knee

angle and angular velocity [129]. The kinematics and kinetics data are processed for

the right knee as our KAD is designed for right side. The spring damper model is

defined as [129]:
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Gait phases Parameters
Activities

Level Uphill Downhill

Stance flexion

kSF 1.796 3.203 4.418

bSF 0.011 -0.314 -0.052

θSF 12.56 36.46 8.790

Mid stance

kMST 5.716 2.115 5.335

bMST -0.293 -0.106 0.064

θMST 10.74 37.17 10.13

Terminal stance

kTST 0.426 5.377 3.304

bTST -0.462 -0.487 -0.081

θTST 0.012 26.37 4.350

Table 5.2: The identified mean stiffness k (N·m/degree), mean damping b
(N·m·s/degree) and mean set point θ0 (degree) for 45 gait cycles of participant 1.

Th(t) = k(θh(t)− θ0) + bθ̇h(t), (5.1)

where Th(t), θh(t) and θ̇h(t) are the human knee moment, angle, and angular velocity,

respectively. k, b, and θ0, represent the knee stiffness, damping, and setpoint, re-

spectively. A gait cycle can be divided into two main phases: stance (ST) and swing

(SW). The ST can be further divided into three subphases: stance flexion (SF), mid

stance (MST) and terminal stance (TST), as shown in Figure 5.2. The SF phase

includes the heel strike (HS) and loading response (LR). In this , k, b and θ0 are

identified for three phases SF, MST, and TST using a least square method with Th(t)

as output and θh(t), θ̇h(t) as inputs. The identified k, b and θ0 for participant 1 are

given in Table 5.2.
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5.3.2 Discussion

The knee angle, angular velocity, and moment for the activities for a healthy

participant are shown in Figures 5.3(a) to 5.3(c). The knee moment versus angle and

knee moment versus angular velocity during one gait cycle for different activities are

shown in Figures 5.3(d) to 5.3(i), and it can be seen that the SF takes place from

HS to LR. Whereas, MST is from LR to heel off (HO) and the TST is up to toe off

(TO). The swing knee flexion is observed from TO to maximum swing flexion (MWF)

and swing knee extension takes place up to the next HS. The knee flexion during HS

is higher for uphill in comparison with the level or downhill walking which can be

seen in Figure 5.3(a). The knee plays a wide range of roles during the execution

of the gait, including supporting the body weight and deceleration during stance

by applying a large knee moment. The knee undergoes a resistive flexion during

SF and a propulsion extension during MST. On the other hand, knee undergoes a

ballistic movement demanding a less significant effort during swing phase. This trend

is observed in knee moment plots shown in Figure 5.3(c).

The knee stiffness follows a more linear profile in the stance compared to swing

in three activities shown in Figures 5.3(d) to 5.3(f). It can be seen from Table

5.2 that maximum stiffness for level and downhill walking is observed during MST

phase, but for uphill it is observed during terminal stance, which is also shown in

the knee angle-moment plots Figures 5.3(d) to 5.3(f). This can be justified from the

biomechanical perspective that the moment where the body begins to transit from

force absorption at impact to force propulsion happens during MST in level, and

downhill walking. Whereas, this transition happens during TST in uphill walking

[132]. The knee damping values for the stance phases in three activities are also

shown in Table 5.2. The knee damping values for downhill during MST and TST are
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Figure 5.4: The overview of AIT algorithm structure.

relatively high compared to level and uphill walking. This can also be inferred from

the knee angular velocity and moment plots shown in Figures 5.3(g) to 5.3(i) that

the knee moment is higher in downhill compared to other activities during MST and

TST. This is consistent with the biomechanical analysis that higher knee moment is

exhibited in downhill to account for the negative slope of the contact surface during

MST and TST [132].

The identified knee stiffness, damping, and setpoints in the experiments are used

in tuning the actuator impedance for the same participant wearing the KAD. The

input to the impedance tuning algorithm for ST phase is set to 10% of the identified

impedance exhibited by the participant as shown in Table 5.2. For swing phase, the

impedance is set to zero. The percentage value is selected based on both the torque

limit of the actuator and peak human knee torque values.

5.4 Human intention estimation algorithm

The overview of the human intention estimation algorithm is shown in Fig. 5.4.

This algorithm utilizes the fuzzy logic method [133] and includes two modules: gait

phase detection (GPD) and activity recognition (AR). The GPD module detects four

phases in every gait cycle: SF, MST, TST, and SW. In addition to the four phases,

the GPD module will provide HS detection as well. Meanwhile, the AR module is

used to provide estimation of three activities: level, uphill and downhill walking
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5.4.1 Gait phase detection (GPD) module

The GPD module’s fuzzy logic rule base is inspired by [97], where two hyperbolic

functions are used as input membership functions while our GPD module’s input

and output membership functions are changed to partially overlapped trapezoid and

triangular functions, as shown in Fig. 5.5(a) and (b). This change accounts more

samples into the gait phase transition period instead of a specific gait phase and

provides a smoother gait fuzzy output profile, shown in Fig. 5.6. Once a new gait

phase is detected by the GPD module, the value of the knee setpoint will change

correspondingly. Also, the outputs of this module will be used as part of the training

data set for GMM and the input to AIT which is discussed in Section 5.

5.4.2 Activity recognition (AR) module

An fuzzy inference algorithm was developed in our previous work that can detect

six activities in real time [134]. The algorithm is based on the knee angle and GCF

(a) Input membership func-

tions

(b) Output membership

functions

Figure 5.5: Example of the input and output membership functions of the GPD
module
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Figure 5.6: The result of the GPD module for a gait cycle of participant 1.

measurements from IMUs and smart shoes. The design of the rule base in Table 5.3

is inspired by the human walking patterns, shown in Fig. 5.3(a). It is obvious that

during the SF phase, the right side knee angle is larger in the uphill case compared

to the other two activities. This difference brings the definitions of high and low in

the rule base for right side. Once the rule base is built, the input and output fuzzy

logic membership functions are defined using trapezoid functions. The max method

of aggregation and centroid method of de-fuzzification is used to generate a final fuzzy

output [134]. Like the output from GPD module, this fuzzy output value will be used

in impedance tuning algorithm. However, limited by the treadmill, the module is

simplified to detect three activities: level, uphill, and downhill walking. To make it

clear, this module will only be activated when the right side HS is detected by GPD

module and the output will be kept until the next right HS happens. For both of the

participants, the ranges of the activity fuzzy output values defined for level, uphill,
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Activity θR θL

Level walk low medium

Uphill high low

Downhill low high

Table 5.3: The rule base for activity detection with θR (right) and θL (left) knee
angles.
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Figure 5.7: The training data set for GMM with participant 1. The participant
walks at the speed of 0.8 m/s on the level surface and 0.6 m/s on 10 deg up-
hill/downhill condition.

and downhill walking are 0–0.3, 0.31–0.6, and 0.61–1, respectively.

5.5 Automatic impedance tuning (AIT) algorithm

The AIT algorithm is an online impedance tuning algorithm which tunes the vir-

tual stiffness and damping values based on the fuzzy outputs from GPD and AR

modules. In AIT, a GMM is trained with the gait and activity fuzzy output val-

ues obtained from the participant’s walking experiments. The training dataset of a

healthy participant is shown in Fig. 5.7 in which gait and activity fuzzy values are

plotted on x and y axes, respectively. It can be seen from Fig. 5.7 that fuzzy values
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along y axis is more separated compared to x axis, since the training data does not

contain transitions among the activities.

Procedure 4: AIT
Input: l1, l2, l3, l4: GCF for heel, Meta 1, Meta 4 and toe sensing points, θL, θR: Left

and right knee angle, kij, bij: Stiffness and damping values by knee characteriza-

tion where i and j stand for the activity and gait phase classes, g0: Threshold of

fuzzy likelihood for HS detection

Output: k, b: desired actuator stiffness and damping value

1: q2 = 0 . AR module initialized with level walking

2: loop

3: q1 = GPD(l1, l2, l3, l4) . Gait fuzzy output q1 updated

4: if q1 < g0 then . HS detected

5: q2 = AR(θL, θR) . Activity fuzzy output q2 updated

6: else

7: . HS not detected q2 = q2 . Keep the previous activity detection

8: end if

9: (k, b) = GMM(q1, q2, kij, bij) . Impedance updated

10: end loop

5.5.1 Gaussian mixture model (GMM)

The GMM is a parametric probability density function represented as a weighted

sum of Gaussian component densities. In this , three activity components (level, uphill

and downhill walking) and four gait phase components (SF, MST, TST, and SW) are

separately defined on y axis and x axis which forms a 3 by 4 Gaussian components

group. The Gaussian component is labeled as Cij where i and j represents the activity
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(a) The SF Gaussian components distribution in

different activities for participants.

(b) The SF Gaussian components distribution in

level walking for participants.

Figure 5.8: Examples of GMM components distribution.

and gait phase components respectively. Meanwhile, the outputs from GPD and AR

modules are labeled as q1 and q2, respectively. Using the Expected Maximization

(EM) method, the parameters of the GMM are identified from the training data

[135]. A given new data point (q1,q2) firstly generates a feature vector q = [q1, q2]T .

Then, the probability of this data belonging to component Cij is given by Bayes rule:

p(Cij | q) =
p(Cij)p(q | Cij)

p(q)
(5.2)

where the prior component weighting factors p(Cij) are set to be the same. After the

possibility for each component is acquired, the desired actuator stiffness and damping

values are calculated as:

k =
3∑
i=1

4∑
j=1

p(Cij | q)kij, b =
3∑
i=1

4∑
j=1

p(Cij | q)bij (5.3)

where kij and bij are the identified stiffness and damping values mentioned in Section

5.3, with 3 activities and 4 gait phases, k and b are the actuator stiffness and damping

values for the KAD. The AIT algorithm is described in Algorithm 4. Note that the

AR module is executed only in the HS phase once every gait cycle, and the algorithm

is initiated at level walking activity (q2 = 0). If the HS is not detected in the next gait

cycle, the algorithm will use the last AR module output (q2) to generate the stiffness

and damping values.
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In this , the algorithm is reduced to a 1D GMM which focuses on the gait phase

transition and its performance is verified for three activities level, uphill, and downhill

with inclination angles of 0, +10 and -10 degrees. A comparison of GMM components

is shown in Fig. 5.8(a) and (b). As presented in Fig. 5.8(a), the distributions of SF

component in three activities: level, uphill and downhill are different which means,

for a single participant, the possibilities that a gait fuzzy output value, i.e. q1 = 0.05

belongs to the SF component are dependent on the activity condition. It is also

obvious in Fig. 5.8(b) that, in the same activity condition, the distributions of SF

component are distinct between the two participants which indicates the possibility

that a given input q1 belongs to the SF component is dependent on participant as well.

These variances in the distributions of the GMM components reflect the individual’s

walking pattern and make this algorithm personalized to each participant.

5.5.2 Control structure of KAD

The impedance parameters need to be tuned for the KAD to provide the per-

sonalized assistance. There are two ways in the literature to provide the desired

knee assistive torque by: 1) using reference knee trajectory for the gait cycle and 2)

providing setpoint knee angle conditions for the gait phases [129]. There are limita-

tions associated with the first method as the participant trajectory may deviate from

the reference and it does not follow a constant pattern across gait cycles. To avoid

this problem, setpoints are defined for each gait phase separately. The desired knee

assistive torque follow

Td(t) = k(θh(t)− θ0) + bθ̇h(t), (5.4)

where Td is the desired torque, k, b, and θ0 are the actuator stiffness, damping and

set point angle calculated from the AIT algorithm and θh is knee angle measurement
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from human-side encoder. The complete control diagram of the KAD is shown in

Figure 5.9. Regarding the rotary series elastic structure of the KAD, the torque is

generated by the deflections of two sides of the torsional spring which is also amplified

by the spur gear set shown in Figure 5.1. Therefore,

T = Ks(θM∗ − θh∗)Ns, (5.5)

where T is the torque provided by the KAD, θM∗ = θMNW , θh∗ = θh/Ns, θM is the

motor angle, Ns and NW are the spur and worm gear ratios, θM∗ and θh∗ are the worm

and spur gear angles. Hence, the position reference for the motor can be calculated

using (5.5) and the desired torque given by (5.4), and the torque control problem is

converted to a position control problem of the motor. The motor tracks the reference

position using a cascaded PID control loop, in which the inner loop controls the motor

velocity and the outer loop controls the position.

5.6 Experiments and results

To verify the performance of the AIT algorithm, the same two participants in

Section 3 volunteered in the identical experimental setup. The experiment proto-
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Figure 5.9: Control block diagram for the KAD. θ0: knee angle setpoint, k: actuator
stiffness, b: actuator damping, q1: gait phase fuzzy output, q2: activity fuzzy output,
θh: human knee angle, and, θ̇h: human knee angular velocity. IC: impedance control.
TC: torque control. AR and GPD modules are discussed in Section 5.4.

102



(a) Stiffness profile for three activities.

(b) Damping profile for three activities.

(c) Assistive torque profile for three activities.

Figure 5.10: The impedance parameters and assistive torque profile in level, uphill,
and downhill activities for three cases: CI, FSM, and AIT for a healthy participant.
The x axis in plots represent gait cycle in terms of percentage.
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col mainly consisted of two cases: passive and active. In passive case, the device

was not powered and it did not provide assistance to the participant. Whereas, the

KAD provided stance assistance for the knee flexion and extension in the active case.

Three types of active cases were designed for the experiment protocol: a) constant

impedance (CI), b) FSM, and c) AIT. The focus of this section is to compare the

performance of the AIT with the two baseline cases: CI and FSM. All the experimen-

tal sessions were planned on a single day for a participant. There were five types of

sessions proposed: normal walking without KAD (w/o KAD), passive, CI, FSM, and

AIT cases for each activity. The time duration for sessions and relax time between

the sessions was similar to the protocol given in Section 3. Also, the sequence of the

sessions were randomized to make them unbiased.

5.6.1 Impedance and assistive torque

For the implementation of CI and FSM approaches, the gait phase detection out-

puts need to be deterministic instead of fuzzy. To account for this, the algorithm

implemented in [97] was chosen. In the CI case, the impedance was set to a con-

stant predefined value obtained from Table 5.2 throughout the stance phase. The

impedance was predefined as 10% of the normal impedance exhibited by the partici-

pant in FSM case. In the AIT case, the impedance parameters were set as 10% of the

impedance obtained from the trained GMM. The desired assistive torque Td for KAD

for gait phases SF, MST, or TST was given by (5.4). The maximum desired torque

for the KAD was set to 9 N·m for all activity sessions as to restrict the actuator from

reaching the saturation limit.

The actuator stiffness, damping, and assistive torque for three activities are shown

in Fig. 5.10. The profiles of impedance parameters and assistive torque differ for

three active cases. It is clear from Fig. 5.10 that the AIT case provided smoother
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impedance parameters and assistive torque profiles, and also smoother transitions

between the gait phases in contrast to FSM case. It can been seen from Figs. 5.10(a)

and 5.10(b) that the stiffness and damping values reaches to zero at nearly 60% of

the gait cycle for three activities, which suggests the participant is in swing phase

and no assistive torque is provided by KAD. It can be observed from Fig. 5.10(c)

that the knee assistive torque for level walking drops closer to zero at nearly 30%

of the gait cycle which is not the case in downhill or uphill walking. The reason is

that the stiffness and damping values of the level walking are much lower in TST

compared to SF or MST. It should be noted that applying smoothing function, for

instance, the sigmoid function to FSM impedance parameters profile can lead to

smoother transitions between the states. However, the drawback in such approach

is parameters of the sigmoid function need to set manually to account for slope and

time shift. In the case of AIT algorithm, the smoother transitions happen due to

fuzzy likelihood values obtained from the trained GMM model specific to participant

shown in section V. Therefore, the steepness and time shift of the transitions in

AIT are participant specific. To compare the performance of proposed AIT with the

standard CI and FSM approaches, there is a need to define relevant metrics. The

details about the metrics are given in the following subsection.

5.6.2 Metrics and results

Three types of metrics were chosen for comparison: 1) joint kinematics, 2) gait

parameters and 3) muscle activities. For muscle activity comparison, an EMG sensor

was attached to vastus medialis as it plays a crucial role in generating knee assistive

torque for the stance phase in all the three activities [136].
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Figure 5.11: The mean knee ROM with SD for 45 gait cycles in three activities for
two participants.

Joint kinematics and gait parameters

The right knee range of motion (ROM) for the two participants is shown in the Fig.

5.11 with the mean and standard deviation (SD) from 45 gait cycles during five cases.

It is clear from Fig. 5.11 that the right knee ROM decreases for the active case in

comparison to w/o KAD and passive cases for three activities. The participants

exhibited lowest knee ROM in AIT case.

The right side step length was computed as the KAD is designed for right knee

assistance. The cadence and the average right side step length in meters were calcu-

lated for 45 gait cycles shown in the Table 5.4. It is clear from Table 5.4 that cadence

increases and the step length reduces with assistance. The AIT case exhibited higher

cadence and lower step length in all the three activities, which can be inferred from

Table 5.4. The device in passive case adds extra weight to participant’s body and

lower the performance of walking that is reflected in gait parameters. However, the

KAD helps participants spend less effort on the knee joint in active case.
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Activity Cases
Participant 1 Participant 2

p1 p2 p1 p2

Level

w/o KAD 79.65 0.523 86.15 0.492

Passive 80.84 0.511 87.21 0.478

CI 81.16 0.497 87.67 0.457

FSM 82.08 0.475 88.61 0.448

AIT 82.62 0.471 89.16 0.436

Downhill

w/o KAD 83.71 0.418 90.19 0.378

Passive 84.32 0.405 91.96 0.366

CI 85.16 0.383 92.82 0.351

FSM 85.79 0.374 93.09 0.348

AIT 86.21 0.365 94.45 0.341

Uphill

w/o KAD 69.31 0.449 77.47 0.464

Passive 70.21 0.437 78.55 0.453

CI 71.04 0.424 79.64 0.445

FSM 72.32 0.416 80.98 0.438

AIT 73.14 0.410 81.64 0.429

Table 5.4: The cadence p1 (steps/min) and average step length p2 (m) for 45 gait
cycles in all cases.

Muscle activity

The maximal voluntary contraction (MVC) experiment on vastus medialis was per-

formed prior to all experiment sessions on each participant to get the reference of

the muscle activity. The procedure for MVC experiment was followed as given in

[137]. The processing of the EMG signals involves full-wave rectification, detrending,

and low pass filtering using 5th order Butter-worth filter [138]. The EMG signals

were recorded with a sampling rate of 1000 Hz. Two metrics for muscle activity were

chosen: 1) Average EMG activity reduction (P%): first, the average of the peak
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(b) Uphill walking
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(c) Downhill walking

Figure 5.12: The average RMS of EMG signals of vastus medialis with SD measured
for 45 gait cycles in three activities and five cases, respectively.

values of the processed EMG signals was normalized with respect to MVC value for

all five cases; Second, P% was obtained by computing the percentage reduction of

those values in passive and three active cases with respect to w/o KAD case. In

conclusion, P% metric gives the measure of change in normalized muscle activation

levels in four cases with respect to normal walking. 2) Average root mean square

(RMS) of EMG: The RMS of the processed EMG signal with a moving fixed time

window is calculated.

The average RMS of the EMG signals with SD during three activities for 45 gait

cycles are reported using a bar chart in Fig. 5.12. Along with the four cases, w/o KAD

case is included for comparisons. It is clear that the AIT performed best in reducing

the average RMS value of the EMG signals. The passive and CI cases showed more

average RMS in EMG signals in comparison with w/o KAD. This can be explained
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Activity case Participant 1 Participant 2

Level

Passive −11.19% −8.06%

CI −4.78% −1.48%

FSM 1.53% 5.07%

AIT 6.64% 9.27%

Downhill

Passive −8.16% −6.57%

CI −5.17% 1.05%

FSM 1.77% 6.33%

AIT 5.80% 10.99%

Uphill

Passive −6.95% −9.14%

CI −3.40% −4.82%

FSM 2.69% 2.07%

AIT 8.14% 6.78%

Table 5.5: The average EMG activity reduction (P%) for 45 gait cycles in all cases.

by the weight of the KAD device on the participant. The FSM showed nearly the

same or less RMS value compared to w/o KAD. This can also be verified from P%

displayed in Table 5.5. The passive and CI case showed negative P% which suggests

that the normalized EMG value increased in comparison with the w/o KAD case.

5.7 Discussion

The KAD assists the participants in stance phase and follows zero impedance

strategy during swing phase. It can be seen from the knee angular velocity plot shown

in Fig. 3(b) that the swing phase is characterized by high angular velocities. During

high angular velocities, the KAD response is increasingly governed by the intrinsic

stiffness of the joint which results in resisting torque. Therefore, this alternative
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assistance and resistance provided by the KAD during stance and swing phases of

the gait cycle influences the participants knee ROM. As shown in Fig. 5.11, the

reduced knee ROM is observed in active cases in comparison to passive or w/o KAD

case. Also, the other reason could be that the device introduces inertia and friction

due to its weight, which leads to decreased knee ROM. From Table 5.4, it is clear

that the participants exhibited increased cadence and decreased step length. The

probable reason can be that as the speed of the treadmill is fixed, the subject need to

compensate for reduced knee ROM with increased cadence. This is confirmed in the

study of Aoyagi et al. where the inertia of assistive device results in a reduced range

of pelvic motion during zero impedance case [139]. Also, a decrease in knee ROM is

observed when walking with LOPES lower limb orthosis in zero impedance case [140].

From the studies [139] and [140], it was shown the reduced joint ROM caused direct

effect on gait parameters: step time, step length, and stance time. Also, the subjects

showed a tendency to take shorter and quicker steps. As KAD follows zero impedance

strategy in swing phase, similar results of reduced knee ROM are observed.

The percentage improvement of the RMS value of the EMG signals for participant

1 in the AIT case compared to w/o KAD for level, uphill, and downhill walking are

6.03%, 6.22%, and 8.52%. Whereas, FSM showed 1.8%, 1.4%, and 1.92% improve-

ment. Similarly, for participant 2, the AIT case exhibited a noticeable improvement

in EMG RMS value with respect to w/o KAD that is 10.88%, 8.80%, and 11.36%

for level, uphill and downhill walking. Similar results can be inferred by looking at

P% for both the participants. The FSM and AIT active cases provided nearly equal

assistive torques for gait phases. However, a clear distinction in the muscle activity

is observable and AIT performs better than FSM. The possible reason can be that

AIT provides smoother impedance and torque profile for the actuator in comparison

with the FSM.

110



5.7.1 Clinical implications

The approach proposed in this addresses the limitations of FSM and provides

smooth continuous impedance parameters using the identified human joint impedance.

The approach has the potential to become a personalized training system for patients.

More experiments need to run to define the impedance parameters for the fuzzy clus-

ters of gait and activity based on the requirements of the patients and the GMM will

output the impedance parameters adaptively. As a proof of concept, the knee joint

is considered in this . It is possible to extend this framework to multiple joints. As

the AIT approach provides flexibility in designing the impedance parameters for the

clusters of gait and activity, it will be advantageous in clinical settings, as it allows

variability in walking pattern, more personalized walking patterns. Also, AIT can

provide different impedance parameter profiles, thereby providing various levels of

assistance depending on early, mid, and final stages of rehabilitation.

Regarding the effectiveness of this approach in rehabilitation, a clinical protocol

with a therapist is needed, in practice, to evaluate the method of automatic impedance

modulation and its effect on patients. With this purpose, a graphical user interface

(GUI) will be useful for the therapists, in order to facilitate the monitoring of variable

such as knee ROM, step length, or cadence and choosing impedance profile.

5.7.2 Limitations of this study

Due to the limitation of the slope change operation of instrumented treadmill

used for the experiments, the transitions between different activities are not evalu-

ated. Therefore, the three activity experiments are conducted separately. In future

experiments, the activity transitions will be included. In experiment trails, the speed

is fixed along with slope of the treadmill. The speed change during experiments might
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have provided more insights into the study of human impedance modulation. In this

study, the AIT approach is evaluated on healthy subjects and not on impaired sub-

jects. It will be useful to observe the fuzzy likelihood profiles of gait and activity for

impaired subjects. In this work, the AIT approach is designed to make it suitable

for rehabilitation training in the indoor environment. The authors believe that the

AIT have the potential for the applications in outdoors as well. However, the com-

plexity of the problem increases in terms of gait speed, terrain conditions, and more

activities.

To summarize, an online impedance tuning algorithm was proposed for a knee

exoskeleton to provide personalized assistance based on simultaneous detection of ac-

tivity and gait phase. Human knee impedance was characterized by collected walking

data. The uncertainty of activity and gait phases was modeled with a fuzzy likeli-

hood, and a GMM was developed to determine the desired robot impedance. The AIT

was compared with CI and FSM approaches in a study with two participants. The

AIT algorithm led to reduction of vastus medialis muscle activity, and it also yielded

increased cadence and reduced step length in comparison to baseline approaches.
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Chapter 6

THE ASSESSMENT OF OVERALL STABILITY OF HUMAN-LEAD SYSTEM

USING METRICS DERIVED FROM DYNAMICAL SYSTEMS THEORY

A variety of Lower Extremity Assistive Devices (LEADs) have been proposed for

gait assistance to elderly and patients with neurological issues. The main focus of

these systems is to provide assistance, however, the dynamic gait stability of the

human-LEAD system has not been examined thoroughly. This focuses on assessing

the stability metrics derived from dynamical systems theory to evaluate unilateral

knee assistance applied to the healthy participants, and moreover, to understand

the influence of unilateral assistance on the walking pattern from chaotic dynamics

perspective. A knee assistive device (KAD) is designed to provide unilateral knee

assistance to the right knee joint during the stance phase. In this , we hypothesize

unilateral knee assistance applied during stance phase as the perturbation applied to

the human in a gait cycle, and stability is defined as the gait that does not lead to

falling in spite of perturbations. The metrics related to global stability (the maximum

Floquet multiplier Max FM), local stability (divergence exponents λs and λl), and

variability (median absolute deviation MAD) are considered. These metrics are de-

rived for joint angle time series of bilateral hip, knee, and ankle joints. Additionally,

a biomechanical metric, the minimum margin of stability (bmin) between the center

of pressure and center of mass is assessed. Full biped model walking simulations

are performed to understand the influence of the assistance on the normal walking

pattern. To assess the stability metrics for the human-LEAD system, experiments

are conducted on 8 healthy participants for five conditions: normal walking, pas-

sive, zero impedance, finite state machine (FSM), and automatic impedance tuning
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(AIT). The Max FM and λs yield statistically significant results, showing that the

unassisted (left) leg is more stable for unilateral right knee assistance conditions (FSM

and AIT) when compared to the normal walking condition due to inter-limb coordi-

nation. On the other hand, MAD and λl converged well to bipedal simulation results,

showing that the variability and chaotic order of walking pattern during assistance is

lower than the normal walking. The assessment of stability metrics for human-LEAD

system presented in this set foundations to better analyze the dynamic stability of

the human-LEAD system and further improve the control strategies of the assistive

devices to maintain both gait stability and gait variability.

6.1 Related work

The aging in population has become a socio-economic problem in many countries.

A survey from the United Nations reveals that people older than 60 years which are

11.5% of the global population in 2012, will be nearly doubled by 2050 [141]. Aging is

reflected by reduced daily physical activities due to increased muscle weakness. This

deterioration of muscles could further accelerate the degradation of the neuromus-

culoskeletal systems and their interactions and may lead to impaired gait disorders

[142]. Similar problems are prevalent in patients encountered with stroke and spinal

cord injuries. These neurological injuries and weaknesses of the skeletal muscles se-

riously limit the ability of the patients to perform walking [143]. Current research

challenges mainly focus on the development of new assistance modes that help the el-

derly/patients to improve their walking performances and to restore lost or impaired

motion control. Lightweight and wearable robotic Lower Extremity Assistive Devices

(LEADs) provide one promising solution by assisting their walking [144]. Some suc-

cessful examples include Hybrid Assistive Limb known as HAL (Cyberdyne, Japan)

[145], Rewalk (Argo Medical Technologies, Israel) [120], Ekso (Ekso Bionics, USA)
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[121], and Vanderbilt Exoskeleton (Vanderbilt University, USA) [146].

One main concern among the elderly and patients with neurological diseases is

falling during walking which pose a major challenge and can lead to serious health

problems [147, 148]. In the aforementioned examples for LEADs, the major focus is

put on providing assistance to improve walking performance and the assessment of

the dynamic gait stability of the combined human LEAD system is not considered

[149, 72]. The metrics related to muscle activity and metabolic cost are assessed

to evaluate the level of assistance provided by LEAD to the human [149]. However,

there has not been much focus put on evaluating dynamic gait stability of the human-

LEAD system. Dynamic stability is defined as the response of the system to the

perturbations such that the states of the system do not go unbounded and stay

within a certain range. Therefore, we can define the stable gait as the gait that does

not lead to falling in spite of perturbations [150]. We hypothesize that LEAD as an

external device attached to the body may induce perturbations during assistance and

may influence the inherent stability of the human. Therefore, it becomes important

to study the human gait and introduce stability metrics as an assessment to compare

the inherent stability of human with the overall dynamic gait stability of the human-

LEAD system.

The stability assessment methods allow discrimination of the individuals at the

risk of falling. Although many gait stability criteria have been proposed, there is still

no commonly accepted method to assess locomotor stability. Most of these metrics

reflect the robustness (the ability to respond to large perturbations such that the

system states stay in safe range) and the performance (how quick the system can

respond to the perturbations and stay in the safe range) [150]. Nevertheless, these

measure can still be used to assess the likelihood of falling as they quantify how

system respond to perturbations.
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There are metrics derived from dynamical systems theory (the maximum Lya-

punov exponent, the maximum Floquet multiplier, variability measures, and long-

range correlations) for stability assessment during gait. The computation of these

metrics is based on the time series data of kinematics and/or gait parameters. Ding-

well et al. used the maximum Lyapunov exponent to estimate gait stability [151].

The maximum Lyapunov exponent (λ) quantifies the average logarithmic rate of di-

vergence of a system after a small perturbation. For chaotic systems, (λ) is always

negative. The lesser the λ value, the more stable is the system. In many gait studies,

the maximum Lyapunov exponents are defined over two regions, 0 to 1 stride (labelled

as λs), 4 to 10 strides (labelled as λl). Lockhart and Liu reported that a greater λs

in fall-prone elderly subjects than in normal elderly subjects [152]. McAndrew et al.

reported that gait destabilization by means of support surface perturbations or visual

scene perturbations was reflected in λs, but probably not in λl [153]. This finding has

recently been confirmed by Hak et al, who even showed a dose-response relationship

between the amplitude of the perturbations applied and the increase in λs [154]. In

summary, the findings obtained in experimental studies suggest that, in actual human

gait, λs, but not λl, as a valid measure to estimate the probability of falling.

Another measure derived from dynamic systems theory is the concept of orbital

stability which was defined by computing the maximum Floquet multiplier which

quantifies the rate of convergence or divergence of continuous gait variables (e.g.

segmental motions and joint angles) towards a limit cycle (e.g. the nominal gait cycle).

The system with the maximum FM value less than 1 is considered as a stable system.

The lesser the Max FM below 1, the more orbitally stable is the system. Granata and

Lockhart reported that the maximum Floquet multiplier was larger in a group of four

fall-prone elderly (i.e. elderly who had a self-reported history of falling) than in four

elderly controls [155]. In [153], the maximum Floquet multiplier showed expected
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effect on gait destabilization by means of visual perturbation experiments. However,

in [156], the maximum Floquet multiplier does not correspond to the probability

of falling. The concept of orbital stability showed mixed results in relation to the

probability of falling. Some used the variability of certain parameters over strides

as a measure to assess stability during walking. The median absolute deviation was

proposed as a measure for gait variability [157, 158]. In general, the median absolute

deviation is more robust than the standard deviation, and may thus be a good choice

to use as an indicator of variability [159]. Others tried long-range correlation which

exhibit dependencies i.e., future variations are dependent on past variations [160].

These long-range correlation metrics did not show any experimental evidence related

to the falling.

Apart from the measures from dynamical systems theory, the biomechanical mea-

sures are the most commonly used to assess stability during gait due to their general

principles and physical intuition. In a study, the extrapolated center of mass (margin

of stability) is derived for the subjects who are destabilized using the platform and

visual perturbations [161]. It is found that during destabilized conditions, subjects

walked with a higher margin of stability, indicating that subjects were actually more

stable when walking in a destabilizing environment. Some introduced the concept

of stabilizing and destabilizing forces to assess stability during gait [162]. However,

these metrics did not show any experimental evidence relating to the risk of falling.

6.1.1 Chaos and Optimal Variability

Human gait is not strictly periodic. Any variations from the periodic pattern have

traditionally been considered to be noise in the neuromuscular system [163]. However,

later investigations have shown that these variations follow chaotic structure [164,

165]. To understand gait variability, we cite [166], a theoretical model (predictability
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Figure 6.1: Theoretical model for optimal variability illustrated using random,
chaotic, and periodic signals. Behavior in terms of variability should be viewed in a
continuum as being more or less predictable (on the x-axis) or exhibiting or not chaos
(on the y-axis).

vs complexity) proposed to explain movement variability as it is related to motor

learning and health. The model is based on the idea that mature motor skills are

associated with optimal movement variability that reflects the adaptability of the

underlying control system. The principle of optimality in movement variability is

pioneering in the sense that it relates in an inverted U-shape relationship the presence

of chaotic temporal variations in the steady state output of a healthy biological system

with the concept of predictability (shown in Figure 6.1). Practically at this optimal

state of movement variability (chaotic block), the biological system is in a healthy

state and is characterized by exhibiting chaotic temporal variations in the steady state

output (i.e., the uppermost point along the inverted U-shaped function), attaining

high values only in the intermediate region between excessive order (i.e., maximum

118



predictability) and excessive disorder (i.e., no predictability). Thus this variability

has deterministic structure and reflects the adaptability of the system. This model

provides an explanation for the neuromuscular control of the human gait. This implies

that the stride to stride variability follows chaotic structure i.e., optimal variability.

Also, chaotic systems are described as being both stable and flexible. This system has

an ergodotic property that the trajectories come close to a fixed point’s neighborhood

but never converge to the specific point. Therefore, useful insights will be gained

studying human gait from chaos perspective and stability metrics related to chaos

and nonlinear dynamics will be useful in assessing the stability of the human gait.

In the previous chapter, we developed an impedance based control strategy known

as automatic impedance tuning (AIT) algorithm for KAD. The AIT algorithm dis-

played better performance in terms of EMG muscle activity reduction compared to

the baseline approaches constant impedance (CI) and finite state machine (FSM).

However, the dynamic stability of human wearing KAD is not discussed. In this

chapter, the focus is put on the evaluation of the influence of KAD on the inherent

dynamic stability of the human. To assess dynamic gait stability of the human-

KAD system, the stability metrics are derived from dynamical systems theory. The

dynamical systems and chaos theory is adopted to understand the human walking

pattern. As a primary step, simulations are performed on a full bipedal model with

hip, bilateral knee, and bilateral ankle joints to understand chaos in gait. To assess

the influence of assistive device through simulations, an active actuator at the knee

joint is implemented. Then, to verify the simulation results and assess the stability

metrics, the experiments are performed on eight healthy participants. The metrics

derived from dynamical system theory such as the maximum Floquet multiplier, the

finite-time Lyapunov exponents and median absolute deviation (MAD) variability

measures are used on the lower limb joint kinematic time series. Along with these
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metrics, the extrapolated center of mass (XCoM) is used as a biomechanical measure.

As a LEAD system, in this chapter, a knee assistive device (KAD), which provides

assistive torque to the knee joint is used. Five types of walking modes are tested on

each participant: normal walking, passive (KAD not active), zero impedance (ZI), a

finite state machine (FSM), and automatic impedance tuning (AIT).

The chapter is organized as follows: Section 6.2 gives details about the experimen-

tal setup and hardware used in the experiments. Section 6.3 introduces the stability

metrics derived from dynamical systems theory and biomechanics. Section 6.4 dis-

cusses the results of biped simulations and stability metrics for all the experiment

cases. Section 6.5 assesses the stability metrics results obtained in the results and

discusses the effects of unilateral assistance on both legs.

6.2 Methods

6.2.1 Experimental Protocol

The experiments for this were setup in the motion capture laboratory equipped

with 12 high-speed infrared cameras (Vicon Motion Systems Ltd.,) and instrumented

treadmill (Bertec Corporation) at Arizona State University (ASU). The ASU Insti-

tutional Review Board (IRB) reviewed and approved this study. The details of the

healthy participants volunteered in this experiment are given in Table 1. The ex-

perimental protocol mainly consisted of five sessions: normal walking, passive, zero

impedance (ZI), the finite state machine (FSM), and automatic impedance tuning

(AIT). In passive case, the knee assistive device (KAD) was not powered and it did

not provide assistance. In ZI case, the impedance parameters of the KAD was set to

zero and the KAD tracked the knee range of motion of the human without providing

assistance. In FSM and AIT conditions, the KAD provided assistive torque to the
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right knee. The slope and speed of the treadmill for the walking experiments was set

to 0 degrees and 0.8 m/s, respectively. Each session lasted for three minutes. The

participants relaxed for 15 minutes before starting the next session. All the sessions

were planned on a single day. Also, the sequence of the sessions was randomized

to make them unbiased. The experiment setup for the participant walking on the

treadmill is shown in Figure 6.2.

For the experiments, the participants wore 16 reflective markers, KAD, and smart

shoes. The Vicon cameras capture markers at a frame rate of 100 Hz. The in-

strumented treadmill captures 3D ground reaction forces at 1000 Hz. The plug-in

gait Vicon computes the lower body joint angular displacements and gait parame-

ters using measurements from cameras and instrumented treadmill. The smart shoes

provide ground contact forces (GCFs) measurements in real-time. Using GCFs mea-

surements, the impedance parameters of KAD are modulated for both FSM and AIT

conditions. The implementation details for tuning the impedance parameters of KAD

for FSM and AIT conditions are given in chapter 5. The knee angle and knee torque

data collected from the normal walking session was used to identify the human knee

impedance parameters. Then, smart shoes GCFs data along with identified human

impedance parameters were used to train the AIT algorithm.

6.2.2 Hardware Design

The knee assistive device (KAD) design targets people with unilateral impairment

which affects knee function. In this , the KAD is used to assist right side knee. A

knee assistive device (KAD) is an exoskeleton with a compact rotary series elastic

actuator (cRSEA). In a cRSEA, a worm gear and spur gear combination is used

to amplify and change the direction of assistive torque generated by a DC motor.

The mechanical design of KAD is shown in Figure 6.3 (a). The cRSEA is compact

121



Instrumented Treadmill

16 Markers

Smart Shoes

KAD

10 Vicon 

Cameras

Figure 6.2: Experiment setup: participant walking on the instrumented treadmill
wearing reflective markers, smart shoes, and KAD.

Motor encoder

DC motor

Worm gear set

Torsional 

spring

Spur gear 

set
Human-side 

encoder

Level arm connected 

to the shank

Sensors + 

battery box
Silicone tubes

Toe

Meta 4
Meta 1

Heel

(b) (c)(a)

Figure 6.3: Hardware design of the wearable system. (a) The CAD for knee assistive
device (KAD). (b) sensor box and (c) shoe insoles of the smart shoes
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ID Gender Age Height (cm) Weight (kg)

1 Male 23 180 60

2 Male 20 175 94

3 Male 25 178 69

4 Male 22 182 61

5 Male 24 173 62

6 Male 26 172 67

7 Male 29 165 70

8 Male 20 175 79

Table 6.1: The details of healthy participants volunteered for the experiments.

and light with a weight of 1.57 kg to avoid unbalance and discomfort to users. The

maximum power consumed by the knee joint is about 80W for a male subject with the

body weight of 70 kg and during level walking and the knee angular velocity ranges

between ±60 rpm Considering this, Maxon RE40, a 150W DC Motor is used to power

the KAD. With a combined gear set reduction ratio of 63.6:1, the end effector can

reach a maximum angular velocity of 120 rpm and the KAD can provide a maximum

continuous assistive torque of 11.26 N·m. Two incremental optical rotary encoders

(US Digital) are used to measure both motor and human knee angles, which are re-

initialized at the beginning of each experiment. The torsion spring serves as a torque

sensor and also provides an energy buffer to prevent injuries from unexpected high

motor torques.

The smart shoes are developed to measure GCFs at four points: heel, first metatarsal

joint (Meta 1), fourth metatarsal joint (Meta 4) and toe while the silicone tubes are

wound into air bladders and connected to barometric pressure sensors shown in Fig-

ure 6.3 (b) and (c). The sampling rate of the smart shoes is set to 100 Hz and a
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model-based filter is implemented to compensate for hysteresis and estimate GCFs

from pressure sensor readings in real time [130]. The gait phases are detected using

the fuzzy logic based algorithm developed in [134].

6.3 Stability Metrics

6.3.1 Measures from dynamical systems theory

There are two types of stability: global or orbital stability, and local stability.

Global stability refers to the ability of the system to accommodate finite perturbations

[167]. Whereas, local stability refers to the sensitivity of the system to infinitesimally

small perturbations [165]. In this section, three measures derived from dynamical

systems theory are described, namely the maximum Lyapunov exponent, the max-

imum Floquet multiplier, and median absolute deviation (MAD). These measures

are generally computed from a steady-state walking pattern without any external

perturbations other than those that are present in the system itself.

State space reconstruction

It is important to reconstruct the state space for time series signals for both local

and orbital stability analysis. The state spaces for each individual time series are

constructed from the original data and time-delayed copies using standard techniques

given in [168]

S(t) = [x(t), x(t+ τ), x(t+ 2τ), ..., x(t+ (dE − 1)τ)] (6.1)

where S(t) is the dE dimensional state vector, x(t) is the original one-dimensional

data. τ and dE are the time delay and embedding dimension. The time delays are

calculated from the first minimum of the average mutual information (AMI) function

[168]. The embedding dimensions are determined from global false nearest neighbors
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(GFNN) analysis [168]. An example for the computation of dE and τ is shown in

Figure 6.4 (b) and (c). In Figure 6.4 (b), the FNNs (%) does not change for dE > 5.

This implies the optimal dE for time series signal x(t) is 5. The first minimum in

the plot between AMI and τ occurs at 36th sample, which implies the optimal time

delay τ should be 36. It should be noted that as long as τ is reasonable and dE is

sufficiently large, the reconstructed state space exhibit same dynamical properties as

the original state variables. Thus, the results of local and orbital stability analysis

will be insensitive to moderate changes in the parameters.

Local stability

The local stability measures provide a direct way to analyze the chaotic order of

the system using finite-time divergence exponents. The local stability is quantified

by estimating the average exponential rates of divergence of initially neighboring

trajectories in state space as they evolved in time. These local divergence exponents

provide a direct measure of the system’s sensitivity to local perturbations. Positive

exponents indicate local instability and larger exponents indicate greater sensitivity

to local perturbations.

The nearest neighbor points in adjacent trajectories in the reconstructed state

space represent the effects of small local perturbations of the system. The average

exponential divergence for each embedded time series is provided by the algorithm

given in [169]. The euclidean distance between neighboring trajectories are computed

as a function of time and averaged overall original pairs of initially nearest neighbors.

The local divergence exponents (λ) are estimated from the slopes of linear fits to these

exponential divergence curves.

y(i) =
1

∆t
< ln[dj(i)] > (6.2)
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Figure 6.4: The representation of the process of the FM and λ calculation from
the kinematic time series data: (a) sample knee joint time series data. (b) and
(c) the FNNs and AMI plots resulting from the time series, to calculate the proper
embedding dimension (dE) and time delay (τ). (d) the three dimensional view of the
reconstructed state space from the time delayed copies of the time series data (the
original state space is 5 dimensional). (e) representation of a 2d map to calculate the
FM values. (f) diverging of the distance between neighbouring trajectories which will
be reflected in λ values.

Where dj(i) is the Euclidean distance between jth pair of the initially nearest neigh-

bors after i discrete time steps (i.e., i∆t seconds) as shown in Figure 6.4(f), and < . >

denotes average over all pairs of j. The embedding dimension of the reconstructed
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space j is determined using GFNN analysis [168]. The short-term exponent (λs) is

calculated from the slopes of linear fits to the divergence curve between 0 and 1 stride.

The long-term exponent is calculated between 4 and 10 strides.

Orbital stability

The orbital stability concept is based on the assumption that the gait has a fixed

period. It is defined using Floquet multipliers (FMs) that quantify, discretely from one

gait cycle to the next, the tendency of the system’s state to return to the periodic limit

cycle orbit after small perturbation [170]. FMs are the eigenvalues of the Jacobian of

the map. The first step for calculating the FMs is to normalize the state space data

of each stride to 101 samples (0-100% gait cycle) as previously done in [171]. This

will allow us to define 101 maps for the system as

Sk+1 = F (Sk) (6.3)

where k is the index of the individual strides and Sk represents the system state given

in (6.1) for a single point in normalized time within each gait cycle. Limit cycle

trajectories that correspond to single fixed points in each map is

S∗ = F (S∗) (6.4)

For walking data, fixed points at each section (i.e., each % of the gait cycle) are

defined by the average trajectory across all the strides with in a trail. Orbital stability

at each section is estimated the effects of small perturbation away from these fixed

points, using a linear approximation of (6.4) given by

[Sk+1 − S∗] = J(S∗)[Sk − S∗] (6.5)

where J(S∗) is the Jacobian matrix for the system at each section. The FMs are

the eigenvalues of J(S∗). Any deviation from the fixed point is multiplied by FM
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of the subsequent cycle. Therefore, the condition for the limit cycle to be orbitally

stable is that the complex valued FMs must have magnitude < 1 (i.e., must all lie

inside the unit circle). The limit cycle FMs with magnitude > 1 are considered as

orbitally unstable. For statistical analysis, the largest of the maximum FMs (Max

FM) across all sections are extracted as this represents the instant during the gait

cycle that is most unstable.

Variability

The measured variability in the complex dynamical system may arise from the de-

terministic dynamics of the system itself (for example chaotic attractor, which is the

case for human gait). In such case, variability is a just a reflection of multiple degrees

of freedom available to the system and does not imply destabilization of the system.

Although, the variability in the biological system is likely to obtain from either noise

or deterministic sources, it is difficult to separate them. However, on a pragmatic

level, the variability is critical to the stability of the walking which gives the insights

regarding state deviation which may lead to falling. In general, the median absolute

deviation is more robust than the standard deviation, and may thus be a good choice

to use as an indicator of variability [26]. For continuous variables such as joint angle

time series, they are first separated into individual strides using heel strike events.

These individual strides are then time normalized (0-100%) and aligned. For each

of the aligned time intervals, the variability is then calculated using median absolute

deviation (MAD) metric.
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Figure 6.5: Schematic representation of inverted pendulum model to calculate the
minimum margin of stability (bmin) in AP direction

6.3.2 Measures from Biomechanical Principles

The Extrapolated Center of Mass (Margin of Stability)

The extrapolated center of mass (XCoM) method extends the condition of the static

equilibrium of the inverted pendulum model, in which the CoM must be positioned

over the base of support (BoS) by adding a linear function of the velocity of the CoM

to the CoM position [172]. This concept is widely used to describe human walking,

and is a representative of gait robustness. In theory, this method describes how close

an inverted pendulum is to falling, given the position and velocity of its CoM , and

the positions of the margins of its BoS as shown in Figure 6.3.2. The XCoM can be

used to calculate the spatial margin of stability ’b’.The margin of stability refers to

the distance between CoM and border of the BoS. The calculation is derived in [172]

for unperturbed walking. Given the position and velocity of the CoM , the XCoM

129



can be calculated as:

XCoM = CoM +
VCoM
ω0

(6.6)

ω0 =

√
g

l
(6.7)

where VCoM is the velocity of CoM , ω0 is the pendulum eigenfrequency, g is the

acceleration of gravity, and l is the pendulum length, which in this case will be the

height of the position of CoM . The margin of stability can be defined as:

b = BoS −XCoM (6.8)

Which is a representative of the maximum perturbation to the CoM before the in-

verted pendulum become unstable (CoM moving past the BoS). The minimum of b

(bmin) shows the most unstable point within a step [172].

For the calculation of margin of stability, the positions of CoM and BoS need to be

determined. The center of pressure (CoP ) is estimated using the force measurements

from the instrumented treadmill. It is assumed that BoS coincides with the CoP

[173]. The CoM can be estimated using the filtering of the CoP estimates as given

in [173].

6.4 Results

6.4.1 Biped Walking Simulations

Although the control of the gait can arise from the nervous system, the mechanical

factors such as mass, inertia, and gravitational forces influence the behavior of the

human’s gait. Therefore, it is important to understand how the external assistive

devices influence the dynamics and chaotic structure of the human locomotion. These

insights will be gained through the walking simulations of a full bipedal model i.e.,

combining the stance and swing legs together. Later the results will be compared to

130



E

S

S

E

E

S

S
E

S
E

S

E

S

S

E

E

Figure 6.6: Poincare sections of step time for bipedal walking model at four different
slopes (0.095 rad, 0.10 rad, 0.105 rad, and 0.11 rad) for two conditions: b1(normal
biped walking) and b2(biped walking with assistance). S and E represent the start
and end period of the walking.

the experimental results with the assistive device to see how closely the biped model

can simulate the effect of assistance on human gait dynamics from Chaos perspective.

Biped dynamics

The dynamics of the biped were taken from [174]. There were separate models given

for stance and swing legs, which were coupled through interaction forces. The coupled

dynamics for the two legs were given in [174]. For simplicity, the symmetry was

assumed in the full biped. The energy for the locomotive pattern was supplied to

the model via a slightly sloped rigid walking surface ( γ < 0.12 radians). The stance

period was divided into three phases: heel contact, flat foot and toe contact for which

appropriate holonomic contact constraints were defined. The biped model converges
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to stable, natural looking gait using joint impedance control. The control torque of

each joint was constructed using an energetically passive spring-damper coupled with

phase-dependent equilibrium points. This control paradigm was adopted to generate

dynamic walking gaits that preserve the ballistic swing motion and the energetic

efficiency down slopes that were characteristic of human locomotion. The model

parameters for the biped model consisted of the average values from adult males

reported in [174]. The human torque for a single joint in υ is given by

υj = −Kpj(θj − θ̄j)−Kdj θ̇j (6.9)

where Kpj, Kdj, and θ̄j, respectively, correspond to the stiffness, damping, and

equilibrium angle of the joint j ∈ {a, k, h, sk, sa}. Here a, k correspond to the ankle

and knee joints of the stance leg, and sa, sk correspond to the ankle and knee joints

of the swing leg. h represents the hip joint of the biped robot. To incorporate the

knee assistance into these simulations, an additional similar impedance based control

strategy was implemented given stiffness and damping parameters as 25% of the

human impedance parameters. It is to be noted that assistance was provided in both

stance and swing phases of the biped walking due to the limitation of the simulation

framework to separate stance and swing phases separately. However, in experiments

with participants, the KAD provides knee assistance only in stance phase.

Biped simulation results

The biped simulations were dependent on the initial leg conditions and slope of the

rigid walking surface (γ). Here simulations were performed at four different slopes

from 0.095 radians to 0.11 radians with the increment of 0.05 radians for 100 footfalls

each. In simulations, two cases: biped without knee assistance (b1) and biped with

knee assistance (b2) were analyzed. The model’s walking pattern was analyzed using
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maps on the step time interval for each foot step of the model.

The maps for the step interval time for the bipedal walking at four different slopes

are given in Fig. 6.6. For γ = 0.095 radians, the biped model walked at same step

time interval (period 1) for every step of the continuous walking pattern in b1 case.

Whereas, in b1, biped increased walking pattern to period 6 chosen alternate step time

intervals. For γ = 0.1 radians, the biped model in b1 exhibited higher locomotive order

with period 7. However, for the b2 case, the order decreased to period 4. This similar

trend was observed for other two slopes γ = 0.105 radians and γ = 0.110 radians that

biped model in b2 exhibited lower locomotive order (period 5 and period 7) than in

b1 (period 8 and period 10). All simulations have shown that biped model started

with a period on the map marked with ’S’ and converges to a stable limit cycle i.e., a

specific period in map marked with ’E’. The simulations results were consistent except

for γ = 0.095 radians, the biped walking model with assistance exhibited lower order

in comparison with the normal bipedal walking without assistance. In both cases,

b1 and b2, the biped exhibited a stable walking pattern, converged to a stable limit

cycle. The difference is seen in terms of the number of step time periods utilized

i.e., the order of the walking pattern. It is clear from the results that the assistance

makes biped walking pattern reduced to lower order but still maintain stability. The

inference from the simulations is that the assistance reduces the chaotic order of the

gait i.e., decreases the gait variability, but still maintains gait stability.

6.4.2 Orbital and Local Stability

Orbital stability results

Six joint segment angle time series i.e., bilateral hip, knee, and ankle joints were con-

sidered. Using GFNN, the embedded dimension for the state space reconstruction
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(b) Subject×condition plots (left side).
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(c) Subject×Condition plots (right side).

Figure 6.7: Orbital stability results for five conditions. (a) Max FM values for all six
time series measures examined. Error bars indicate between subject pooled standard
deviations. Differences were statistically significant for all six time series. (b) subject
× condition interaction plots for left side joint segments, (c) subject × condition
interaction plots for right side joint segments, where ANOVA revealed significant
differences.

was found out to be five for all the cases. The embedded state space for each time

series exhibited a strong periodic structure with an expected stride to stride variabil-

ity during walking. The four-dimensional maps were possible with five-dimensional

data. For the computation of the FM values, 100 strides of joint segment time series

were used. The strides were segmented using heel-strike events detected using force

measurements from the instrumented treadmill. These 100 continuous strides were

taken from the middle of the session removing start and end 30 seconds of data each.
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The mean and SD of the maximum FM values (Max FMs) for eight healthy

participants for six segments during five conditions is shown in Figure 6.7. Differences

between the Max FMs for five conditions were analyzed using three factor (participant

× condition × segment) ANOVA analysis. The p values were computed to determine

the statistical significance. The statistical significance was judged based on p ≤ 0.05.

The Max FMs were statistically significant for all six joint segment time series with

respect to both subjects and conditions. The statistical significance in Max FMs here

refers to Max FMs that are statistically different in both subject as well as condition

wise. Therefore, subject × condition interaction plots are given for all participants

to visualize the variation of the MAX FMs during five conditions for each participant

as shown in Figure 6.7(b) and 6.7(c). It can be seen from Figure 6.7(b) that Max

FMs during assistance in AIT and FSM conditions were lower than normal walking

for the left leg joint segments. Whereas, passive and ZI cases exhibited higher FM

values than normal walking. This similar trend was followed on the right side joint

segments (shown in Figure 6.7(c)) for passive and ZI case. However, the Max FMs

for AIT and FSM were slightly higher than normal walking for the right leg joint

segments. We expected that wearing KAD will increase Max FM compared to the

normal walking. Our hypothesis was confirmed for the right leg. However, for the

left side, the KAD active conditions (FSM and AIT) exhibited lower Max FMs than

normal walking. The passive and ZI conditions exhibited higher Max FMs for both

legs.

Local stability results

The algorithm to compute divergence exponents λs and λl was shown to be robust for

small data sets [169]. The extracted 100 continuous strides were first divided into 33,

33, and 34 strides. Then, λs (0 and 1 stride) and λl (4 and 10 strides) were computed
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for all six joint segments for these 3 stride blocks and then averaged them to obtain

final λs and λl. The same (participant × condition × segment) ANOVA analysis was

performed to determine statistical significance.

The local divergence exponents λs and λl exhibited positive divergence values for

all the five cases which infer that the system is chaotic in nature. The higher the

divergence value, the higher is the order of the chaotic system. It can be seen in

the Figure 6.8(a) that the λs estimates were statistically significant for all the joint

segments. Also, they followed the trend similar to that of the Max FMs in joint

segments with respect to five conditions. Whereas, the trend of λl are much different

from that of Max FMs and λs. The statistical significance for λl can be seen in left

knee, right hip, right knee, and right ankle, respectively. All participants exhibited

the Max FM values below the unit circle, which implies that they were orbitally

stable. However, they exhibited positive local divergence exponents which imply that

they were locally unstable. The less positive value means less locally unstable. From

Figures 6.7 and 6.8, it is clear that the participants were more orbitally stable and

less locally unstable in the AIT for the left leg, and normal walking for the right leg.

This result is interesting as the assisted side becomes less stable and unassisted side

becomes more stable in AIT compared to the normal walking. The λl infer that the

participants were locally less unstable for all the joint segments except left hip in

AIT compared to the four other cases. Whereas, the participants were more locally

unstable for all the joint segments in normal walking.

6.4.3 Variability results

The stride to stride variability was evaluated for six joint segment angles for all

the conditions in 8 participants. The mean and SD of the joint angle trajectories

for one participant is shown in Figure 6.9. The median absolute deviation (MAD)
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(b) Subject×Condition interaction plots for

left leg.
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(c) Subject×Condition interaction plots for

right leg.
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(e) Subject×Condition interaction plots for

left leg.
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(f) Subject×Condition interaction plots for

right leg.

Figure 6.8: Local stability results for five conditions. (a) and (d): the mean and SD
of λs and λl for all six time series were examined. Error bars indicate between subject
pooled standard deviations. Differences were statistically significant for all six time
series. (b) and (e): subject × condition interaction plots for left side joint segments,
(c) and (f): subject × condition interaction plots for right side joint segments, where
ANOVA revealed significant differences.
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segment Normal* Passive* ZI* FSM* AIT*

Left hip 0.85±0.099 0.89±0.179 1.19±0.844 0.79±0.136 0.66±0.089

Left knee* 1.51±0.223 1.41±0.375 1.69±0.789 1.26±0.359 1.13±0.206

Left ankle* 0.98±0.212 0.96±0.413 1.17±0.661 0.79±0.153 0.69±0.109

Right hip* 1.30±0.380 1.37±0.474 1.10±0.201 1.31±0.508 0.85±0.181

Right knee 1.72±0.451 2.06±0.299 2.09±0.551 2.25±0.619 1.56±0.227

Right ankle* 1.61±0.439 1.43±0.442 1.24±0.378 1.33±0.535 0.95±0.215

Table 6.2: The mean and SD of MAD (variability) for 8 participants
(segment×condition). ’*’ indicates statistical significance between the subjects
(p ≤ 0.05).

measure was used as an metric to evaluate variability as it is more robust than the

typical SD measure. The mean and SD of six joint angles i.e., for both left and right

leg joint angles are displayed in Table 6.2. It can be seen from the Table 6.2 that AIT

exhibited less MAD values for all the joints compared to four other conditions. The

MAD values were higher for right knee compared to other five joints which is due

to KAD. The reason is that the weight of the KAD influences the right knee joint’s

range of motion (ROM) and increases variability. This increased variability of knee

joint ROM may cause changes to the knee joint loads applied during gait and may

influence the walking pattern. Comparing MAD values for both normal walking and

AIT, it is clear that the KAD reduced normal kinematic variability of the participants

in AIT.

6.4.4 Extrapolated XCoM (margin of stability) results

The extrapolated (XCoM) concept was used to study the stability in both medi-

olateral (ML) and anteroposterior (AP) directions. In general, XCoM values were

negative in AP direction stating that gait cannot be stopped within that step. The
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.

(a) Left hip angle

.

(b) Left knee angle

.

(c) Left ankle angle

.

(d) Right hip angle

.

(e) Right knee angle

.

(f) Right ankle angle

Figure 6.9: The mean and SD of the left and right leg joint angles for 100 strides for
one participant. The right leg joints SD is comparatively higher than left leg joints.
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Figure 6.10: The mean and SD of margin of stability (bmin) values in both ML and
AP directions for 8 participants for five conditions.

mean and SD of bmin values for all participants in both ML and AP directions are

plotted in the Figure 6.10. The p values for ML and AP stability are 0.0359, 0.1537

and 0.001, 0.004 with respect to participant and condition, respectively. This means

AP stability results are statistically significant (p ≤ 0.05) with respect to both partic-

ipant and condition, respectively. Whereas, the ML stability results are statistically

significant (p ≤ 0.05) with respect to the participant. It can be seen from Figure that

bmin mean value is lower compared to other cases in AP direction which means the

participants in AIT exhibits lesser instability compared to other cases. Whereas, in

ML direction, the trend of mean values of bmin were reverse that of in AP direction

which implies that participant exhibited less mediolateral stability in AIT.
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6.5 Discussion

6.5.1 Assessment of Stability Metrics

It is important to evaluate if there exists any correlation between the metrics de-

rived from dynamical system theory to have a better understanding of the stability

metrics. To achieve this, correlation factor (r2) for fitting a linear model were cal-

culated related to both segments and conditions. For segment-based analysis, each

segment is considered separately containing 40 points (subjects × condition). The

statistical significance was judged based on Bonferroni correction p < 0.05/30 where

30 is the number segments (6) × Condition (5). This similar analysis was performed

for conditions for which 48 (number of segment × condition) data points were consid-

ered. The results are shown in table 6.3. Almost no strong correlation or statistical

significance were observed except for λs × λl of left knee and ankle (%r2 > 29,

p < 0.0001). However, it was excepted that the correlation between λs and λl would

be stronger since they both are the measure of local stability. It is also can be seen

from the results that generally the correlation are stronger on the left side than the

right side (the side with the KAD). In the condition-based analysis, it can be seen

that the correlations were much weaker, which inferred that each segments stability

should be analyzed separately. The other hypothesis that in FSM and AIT the cor-

relations are higher compared to normal walking, is not strongly supported, as the r2

values are only slightly higher for these two modes compared to normal. Since FM

and λl both showed a similar trend of how they change condition wise for all segments

and subjects (Figure 6.7 and Figure 6.2 (a) to (c)), a further analysis was done to

judge the statistical significance of this hypothesis. The ANOVA analysis on (FM-

λs)× Condition interaction showed that the difference of this pair of stability metrics

in different conditions for each segment are statistically significant (P < 0.005/6),
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meaning FM and λs trends over different conditions are similar.

Some clinical studies reported the correlation of Max FMs and λs to the actual fall

incidence. For instance, the Max FMs showed expected correlation to the probability

of falling in gait destabilization experiments with visual perturbations [153]. Some

reported a greater λs in fall-prone elderly subjects than in normal elderly subjects

[152]. There are no optimal values for stability metrics to maintain dynamic gait

stability are not defined in the literature [150]. However, our experiment protocol

was not designed to assess stability metrics for fall incidence. The focus was to assess

the influence of the assistive device on the inherent dynamic gait stability of the

human. Practically, the results reported in this study does not directly correlate

to the probability of falling. To the best of knowledge of the authors till date, the

stability assessment metrics were not defined in the literature to assess the dynamic

gait stability of the human wearing LEAD. This study serves as an initial foundation

to assess the dynamic gait stability of the human-LEAD system. In literature, Max

FMs and λs when compared to λl and MAD correlated well with the probability of

falling in various studies [150]. Therefore, Max FMs and λs metrics are evaluated

to assess the dynamic gait stability of the human-KAD system. Whereas, λl and

MAD are used to assess gait variability. The Max FMs and λs displayed statistical

significant results that the unassisted side in AIT is more stable compared to other

cases. The improved stability could be due to smooth transitions between the gait

phases and reduced unexpected perturbations between stance and swing.

6.5.2 The Effects of Unilateral Assistance

To the best of knowledge of the authors, the overall dynamic stability analysis of

human-LEAD system subjected to unilateral knee assistance was not performed in

the past. We hypothesize that knee assistance provided by KAD is a type of per-
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%r2

Segment-wise FM×λs FM×MAD λs×MAD FM×λl MAD×λl λs×λl

Left hip 16.3 12 2.2 1.4 0.5 0.8

Left knee 16.3 20.9 8.7 15.5 3.1 44*

Left ankle 13.5 13.9 2.9 4.6 3.7 29.4*

Right hip 19.6 5.8 3.2 7.6 7.9 9.3

Right knee 16.3 8.7 4.3 4.3 5.8 13.7

Right ankle 5.7 0.4 5.2 0.3 18.8 15.7

Condition-wise

Normal 8.7 4.7 0.4 0.0 0.0 1.5

Passive 1.0 7.8 6.2 1.5 4.8 0

ZI 0.5 1.2 2.8 0.4 1.0 0

FSM 0.9 14.6 3.5 4.0 0.1 4.0

AIT 0.3 12.5 2.0 6.0 0.8 5.7

Table 6.3: Correlation between metrics derived from dynamical systems theory

turbation, although useful perturbation. This unilateral assistance to a specific joint

will help us to understand intra and inter lower-limb joints behavior with respect

to assistance. Also, this will gain insights into inter-limb coordination during such

scenarios. Based on the experimental evidence from the literature, Max FM and λs

were the most reliable measures to assess local and global stability [150]. It can be

seen from Figures 6.7(a) and 6.8(a) that Max FM and λs for assistance conditions

FSM and AIT are lower than normal walking for the left (unassisted) leg. Whereas,

for the right leg, AIT and FSM exhibited slightly higher Max FM and λs than normal

walking. Both Max FM and λs showed a similar trend with respect to five condi-

tions (P < 0.001). This result can be analyzed from the human locomotor adaption
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paradigm. In literature, there were motor adaptation studies conducted to examine

bilateral responses subjected to unilateral limb perturbations [175, 176, 177]. The

perturbations produced bilateral changes in kinematics. In studies [178, 179, 180],

the unilateral perturbations evoked contralateral leg responses. In [178], the unilat-

eral stiffness perturbations using variable stiffness treadmill (VST) evoked repeatable

and scalable evoked muscle activity and kinematic response of the contralateral leg.

Also, they provide strong evidence that supra-spinal activity can be evoked by induc-

ing unilateral stiffness perturbations. These studies provide experimental evidence

that human neuromuscular system trains to unilateral perturbations in such a way

that it compensates the perturbations by responses from the unperturbed leg. In

our case, it is possible that participants adopted the similar strategy to compensate

the perturbations in the right (assisted) leg by responses from the left leg. From the

adaptation strategy perspective, the responses from the unassisted leg would have

acquired both reactive feedback mechanisms or predictive feed-forward mechanisms

to counteract perturbations in the right leg. In passive and ZI cases, the KAD is just

adding the extra weight of 2.3 kg to the right leg and not providing assistance, it

causes discomfort to the participants. This is similar to the studies performed in the

past by adding weight to a limb providing resistance while walking [181, 182, 183].

The bilateral adaptation was observed showing variability in kinematics. Therefore,

Max FM and λs are generally higher for both legs in passive and ZI conditions.

6.5.3 Convergence of Biped Simulation Results

The biped results have shown that the order of the walking decreases with assis-

tance compared to normal bipedal walking. The results of the biped walking simu-

lations converge well with λl and MAD results. The λl has been used as a measure

to study chaotic order and variability in the system in most of the studies [150].
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Figure 6.11: Correlations between λl and MAD for all six time series examined.
The comparisons with these two metrics was statistically significant for all joints
except right knee after Bonferroni correction (p ≤ 0.004). For 5 statistical significant
comparisons, (3% ≤ r2 ≤ 42.5%). Although there is no strong linear correlation
between MAD and λl, they follow similar trend that they are higher for normal
walking condition and lower for AIT.

ANOVA statistical significance test λl× MAD × condition (normal and AIT) was

conducted for five joints except right knee. The result was statistically significant for

all five joints (p ≤ 0.05
12

) showing that both λl and MAD decreases from normal to

AIT. Although, from the r2 values shown in the Figure 6.11, it is clear that there is

no strong correlation between λl and MAD. The statistical significance value is based

on Bonferroni correction, 12 is the number of comparisons (segment × condition).

Therefore, it is possible to make inference that λl gives measure of chaotic order and
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variability in the system. Whereas, λl gives the measure of the local stability. This

inference agrees with the results from the studies [150].

6.5.4 Limitations of this Study

In this study, the muscle activities of lower limb muscles were not recorded. The

muscular response of bilateral joints will give more insights into the relationship be-

tween dynamic gait stability and lower-limb muscular responses. Also, it will help us

to understand how the participants apply the compensatory actions to perturbations

with the unassisted leg from muscular level. Also, this study was conducted at the

constant slope (0 degrees) and speed (0.8 m/s) of the treadmill. Multiple speeds and

slope of the treadmill will provide more insights into the stability of the human-lead

system with respect to various conditions. Also, overground experiments were not

conducted in this study. The main reason is that participants exhibit more vari-

ability during overground walking. The outdoor experiments with different terrains

will be helpful to evaluate the dynamic gait stability of the human-KAD system.

As a first step to study the stability of the human-KAD system, the experiments

were conducted on the treadmill with constant speed, where participants exhibit less

variability.

To summarize, the overall dynamic gait stability of the human-LEAD system

subjected to unilateral knee assistance was studied. The participants in AIT condition

exhibited more dynamic stability on left side in terms of Max FM and λs compared to

other four conditions. Whereas, for the right (assisted) side, higher dynamic stability

is observed in normal walking. The biped walking simulation results showed that the

variability decreases with joint assistance. The metrics λl and MAD converged to

these simulation results showing that participants exhibited less kinematic variability

in AIT compared to normal walking.
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Chapter 7

HUMAN LOCOMOTION ACTIVITIES ASSISTANCE USING A− ω FEATURES

BASED ADAPTIVE OSCILLATOR

In this chapter, an adaptive oscillator method known as amplitude omega adap-

tive oscillator (AωAO) is proposed for providing bilateral hip assistance during human

locomotion activities. A real-time human locomotion recognition algorithm is inte-

grated to AωAO to make it robust for different locomotion activities. The human

locomotion recognition algorithm comprises of both low-level (to detect activities) and

high-level classifiers (to detect transitions between the activities). The support vector

machine (SVM) and discrete hidden Markov model (DHMM) are used as low-level

and high-level classifiers, respectively. The human locomotion recognition algorithm

is trained using two-dimensional features amplitude (A) and omega (ω) obtained from

thigh angle measurements using a single inertial measurement unit (IMU). AωAO is

a trajectory free method in the sense that this method provides user assistance ir-

respective of the human movements and require no other sensing than thigh angle

measurements from IMU. In AωAO, the pool with four adaptive oscillators (AOs)

is used to estimate the filtered thigh angle trajectory. This pool converges to the

frequency and the phase of the signal adaptively. To account for amplitude conver-

gence, the amplitude parameters of the oscillators need to be reinitialized based on

the locomotion activity which is provided by human locomotion algorithm. In addi-

tion to the adaptive oscillators, the Gaussian kernel functions based nonlinear filter

is used to predict the future estimates of the thigh angles. These predicted estimates

along with the user thigh angles are used to calculate hip assistive torque in real-time

which attracts user joint in the force field. To verify the efficacy of the proposed ap-
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proach, experiments were performed using hip exoskeleton for superior augmentation

(HeSA) on three healthy subjects. The human locomotion algorithm reported higher

classification and prediction accuracy of 95.2% and 94.9%, respectively.

7.1 Related Work on Adaptive Oscillators

In recent years, the robotic assistive devices to aid human locomotion have gained

huge popularity due to its applications in various fields. This increasing interest

is primarily based on three reasons. First, aging population has become a critical

concern among the developed countries. It is estimated that the people older than

60 years which are 11.5% of the global population in 2012, will be nearly doubled by

2050 according to the United Nations survey report [1]. A strong decline is locomotor

skills is observed among the aged population. Also, there is a high incidence of gait

disorders and lower-limb impairments which are prevalent for most of their age such

as stroke is associated with hemiparesis and cardiovascular diseases lead to lower-limb

amputation [184]. Therefore, there is a need for assistive devices that can provide

stable, efficient, and autonomous locomotion assistance [57, 185]. Second, the people

with lifelong disabilities such as spinal cord injured (SCI) patients are interested in the

assistive device to enhance their locomotion skills. Third, the assistive devices are of

huge interest for power augmentation purposes in industrial and military applications.

Extensive reviews of the types of wearable assistive devices and their control strate-

gies is given in [8, 149]. These review reveal that there is still an existing need to

maintain reliable human-robot interactions while evolving in complex environments

with minimum effort from the user. Also, the assistive devices need to adapt to the

movements of the user. Therefore, it becomes important to first identify the user’s

activities in real-time and then integrate it into the controller strategy of the robot

to provide seamless interaction between the user and robot. The MINDWALKER
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exoskeleton was developed to assist SCI patients with noninvasive brain control [186].

However, brain-machine interfaces (BMI) complexity limits their applications in daily-

life ambulation. Some used electromyography (EMG) signals information from the

user to drive the lower-limb exoskeletons [187, 188, 189]. In Hybrid Assistive Limb

(HAL) unilateral knee exoskeleton, the features extracted from EMG signals are used

to provide knee flexion and extension assistive torque [190]. Apart from HAL, there

are only a few exoskeletons that uses EMG signals to estimate user’s intentions. The

reason is that the EMG signals are not reliable as they are prone to the noise in the

measurement system, sensitive to the human motions, and power of the signal varies

on daily basis. Also, the robustness of the EMG sensing is prone to fade in prolonged

use because of the skin temperature variations, swearing, and relative movements

between the skin and the electrode. Therefore, alternative approaches have recently

abandoned brain and EMG sensing and preferred networks of mechanical sensors to

minimize the invasiveness of the interface and increase its dependability. The com-

mercial lower-limb orthosis is often controlled monitoring the mechanical feature of

the human-exoskeleton system, such as the tilting of the trunk [79, 80]. In [81], the

on-board sensors potentiometer (to measure hip joint angle) and an IMU (to detect

foot contact) are used to perform human activities classification and then control the

hip exoskeleton to provide assistive torque to the users during various activities.

The impedance-based controller strategy for the assistive devices has become pop-

ular due to its simplicity and intuitiveness [191]. This strategy is based on defining

impedance parameters specific to gait phases or human activities such as walking and

running. The finite-state machine (FSM) is the mostly used impedance based control

strategy used in assistive devices. The FSM has been implemented by many differ-

ent groups and with a wide variety of devices [82, 83, 46]. However, FSM exhibits

sharp changes in impedance parameters when the state i.e., gait phase or the activity
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changes. This may cause discomfort to the user and reduce the assistance efficiency

offered by the wearable robot. This motivated researchers to develop adaptive os-

cillators (AOs) method to continuously synchronize with the user’s movements and

provide assistance adaptively. The AOs proved to learn the frequency and the phase

of the periodic signals of the locomotion activities and predict the future trajectories.

Seo et al. [93] used an adaptive frequency oscillator to assist the hip during gait.

They use a series of adaptive frequency oscillators to estimate the state of the phase

angle and then, use a multidimensional table to select what kind of torque assistance

they provide given the estimated value. A. Jan Ijspeert et al. [95, 94, 96] also uses a

phase based oscillator to provide assistance to periodic motions. In their case, they

synchronize adaptive oscillators with the external signal and then estimate position

and velocity. The aforementioned approaches, although learns the parameters of the

signal, their system architecture is very complex and delays in providing controller

input.

The main objective of this is to provide intuitive, robust, and adaptive control

strategy for the assitive device which can decode the user’s locomotion activities in

real-time and can provide coherent and collaborative assistance to the user based

on their activities. To identify human activities in real-time, a low level classifier

(SVM) is trained on the feature vector containing A and ω. On the top of low-level

classifier, a high-level classifier (DHMM) is used to detect the transitions between

the activities. This human locomotion recognition algorithm is integrated to the pool

of AOs to make this approach robust to any locomotion activity. Also, a Gaussian

kernel based non-linear filter is used to predict the future thigh angle trajectory of

the user. The contributions of this include:

1. Extending our previous work of real-time human locomotion algorithm to ac-

count for transitions between the locomotion activities using DHMM approach
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Figure 7.1: a) Block diagram of the integrated system (human + assistive de-
vice). This system mainly consists of feature computation block, human locomotion
recognition algorithm (low-level classifier + high-level classifier) block and controller
strategy (pool of adaptive oscillators + nonlinear filter with local kernels) for assistive
device. b) Pool of adaptive oscillators learning periodic input signal θ(t). c) Kernel
based nonlinear filter mapping the main phase φ(t) of the periodic signal to the input
envelope.

2. Proposing re-initialization (RI) approach for the AOs to converge to the ampli-

tude change that happens when locomotion activity changes.

3. Real-time trajectory prediction of the periodic signals related to four locomotion

activities: walking, jogging, going upstairs, and going downstairs.

4. Validation of the proposed approach through experiments on three healthy ex-

oskeleton wearing HeSA.

The rest of the chapter is structured as follows: Section 7.2 talks about the hard-

ware used in this . Section 7.3 details the approach of human locomotion recognition

algorithm (low-level and high-level classifiers). Section 7.4 discusses the framework of
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AωAO approach. Section 7.5 gives the details of the experimental setup and discusses

the results of both human locomotion algorithm and AωAO.

7.2 Hardware Setup

A bilateral hip exoskeleton HeSA (Hip exoskeleton for Superior Augmentation)

is developed to provide bilateral hip assistance to the user. The design of the HeSA

is displayed in the Fig. HeSA applies assistive torque at the bilateral hip using two

direct-drive motors. The specifications of the direct drive motor include rated voltage,

power, and torque of 24 V, 180 W, and 11.2 N·m. The Maxon controller ESCON
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is used as the motor driver. The electronics are powered through a portable lipo

battery.

Two inertial measurements are mounted on bilateral thighs to measure thigh an-

gles in real-time. The placement of IMUs on the participant is shown in Fig. The

combined Bosch Sensortec’s BNO055 IMU and an Intel Edison processor are used for

motion sensing, as shown in Fig.7.2. The sampling rate of all IMUs is set to 100 Hz.

The human locomotion algorithm (SVM and DHMM) runs on the Intel Edison pro-

cessor. In real-time, the processor communicates with the ESCON to generate input

signals to drive the motor. Also, the wearable sensor device is connected wirelessly to

a desktop to visualize the results in real-time. A TCP/IP protocol is set up between

the device which transmits the data at 100HZ. The wireless network configuration

finds a balance between system portability and measurement delays.

7.3 Human Locomotion Recognition Algorithm

7.3.1 Feature extraction

The algorithm is trained using a feature vector consisting of two features A and ω

which are derived from the adaptive time window. An adaptive time window is built

using two consecutive peaks detected using peak detection algorithm. Thus, the time

window is adaptive in nature as it depends on the frequency of the thigh angle signal.

Here, an assumption is made that thigh angle signal during any locomotion activity

can be approximated using three harmonics. It is given in the following form:

g(t) = A1e
jωt + A2e

2jωt + A3e
3jωt (7.1)

Where ω = 2πf , f is the fundamental frequency of the signal and g(t) is the

gyro signal. The derivative and double derivative of g(t) give gyro velocity and gyro
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acceleration, respectively. The feature ω is found by calculating the length of the

adaptive time window and amplitudes of the three harmonics A1, A2, and A3 can be

obtained by solving the following matrix:



g(t)

ġ(t)
ω

g̈(t)
ω2


=



ejωt e2jωt e3jωt

jejωt 2je2jωt 3je3jωt

−1ejωt −4e2jωt −9e3jωt





A1

A2

A3


(7.2)

The resultant amplitude A is calculated by taking the resultant of the three mean

absolute amplitude values:

A =
√
|Am1|2 + |Am2|2 + |Am3|2 (7.3)

where Am1, Am2 and Am3 are the three mean absolute amplitude values for all

the data samples in the time window. For every two consecutive peaks, A and ω are

calculated. These features are used for training the low-level classifier.

7.3.2 Low-level classifier

The support vector machine (SVM) is used as a low-level classifier to perform

locomotion activities detection. The SVM classifier is a kernel-based classifier which

classifies the data into two or more classes. During the training phase, SVM builds

a model, maps the decision boundary for each class and specifies the hyperplane

that separates different classes. More details about SVM is given in [112]. Basically,

a kernel function is the mapping procedure performed to the training dataset to

improve its resemblance to a linearly separable dataset. Some of the commonly used

kernel functions are linear, RBF, quadratic, polynomial and multilayer perceptron

kernel. In this work, a linear kernel is used considering computation requirements
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of the real-time classification. It is known that linear kernel performs well with the

linearly separable dataset and takes less time to train the model in comparison to

the other kernel methods. Therefore, it makes sense to use linear SVM as a classifier,

if the features are linearly separable. The performance of the SVM classifier relies

on the choice of the regularization parameter C which is known as the hyperplane

parameter. The value of C was set to 1. In this work, the training labels are given

to the four activities as well as the transitions between these activities.

7.3.3 High-level classifier

Discrete hidden Markov model (DHMM) [192] is used as a high-level classifier on

the top of SVM. The main objective of the DHMM is to predict the next probable

state (activity) using the past sequence of the activities classified by SVM. DHMM

treats discrete time sequences as the output of the Markov process whose states cannot

be observed directly.

A DHMM which has N states Q = q1, q2, , qN and M output symbols V =

v1, v2, ..., vM is fully specified by the triplet λ = A,B, π. The state transition ma-

trix A with dimension N ×N is represented as

A = {aij|aij = P (st+1 = qj|st = qi)}, (7.4)

Where aij indicate the probability of transition from ith state to jth state and st is

the state at time step t. The output probability matrix B with dimension N ×M is

given as

B = {bj|bj = P (st+1 = vj|st = qi)}, (7.5)

and the initial state distribution vector is the state at time step t. The emission

probability matrix B with dimension N ×M is given as

π = {πi|πi = P (s1 = qi)}. (7.6)
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Finally, the prediction problem can be formulated as the given the sequence of

observations such as walking, jogging, and upstairs from the SVM classifier, what is

the next probable activity? It can be obtained using the Forward-Backward algorithm

given in [193]. According to it, the future hidden state (qt+1) can be predicted given

past observations (v1:t) and past hidden state (qt) by

P (qt+1|qt, v1:t) =
∑
xt

P (qt+1|qt)P (qt+1|v1:t) (7.7)

7.3.4 Algorithm Summary

The steps of the human locomotion algorithm training are shown in the Figure

7.3. The algorithm training and testing can be summarized into:

Training

First, the low-level classifier SVM is trained using the feature vector containing A

and ω features.

• Obtain the confusion matrix from the trained SVM classifier.

• Use the obtained confusion matrix to initialize emission probability matrix (B)

for the training of DHMM.

• Randomly initialize the state transition matrix (A).

• Finally, train the DHMM on the sequence of the activities classified i.e., obser-

vations through SVM using Baum Welch algorithm to obtain an optimal A and

B. In our case, the length of the sequential data is chosen to two.

Testing

The testing of the SVM and HMM is performed simultaneously. The testing procedure

is listed in the following steps:
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Figure 7.3: The steps of human locomotion recognition algorithm (SVM + DHMM)
training. The confusion matrix from trained SVM is used to initialize the emission
probability matrix B of DHMM. The optimized state transition matrix A and B are
found using Baum Welch algorithm.

• SVM gives real-time activity detection results. This classification results are

used as observations for DHMM model.

• Future hidden state i.e., next probable activity state is given using Forward-

Backward algorithm.

The human locomotion algorithm (SVM and DHMM) is integrated to the pool

of adaptive oscillators to give inference about the current activity and predict future

activity state as shown in Fig. 7.1(a).
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7.4 Real-time Prediction of Periodic Signals

7.4.1 Pool of AOs

The pool of AOs configuration given in [194] is applied to learn the intrinsic

parameters of the periodic signal such as frequency and phase of the signal. However,

the number of AOs is reduced to four by integrating real-time human locomotion

algorithm which can initialize the parameters for the AOs. This makes the algorithm

less computationally intensive. The pool of AOs is shown in Figure 7.1(b). The

equations for the pool of AOs are :

φ̇i(t) = iω(t) + νF (t)cosφi(t), (7.8)

ω̇(t) = νF (t)cosφ1(t), (7.9)

α̇(t) = ηF (t)sinφi(t), (7.10)

where, φ(t) and ω(t) are the oscillator phase and intrinsic frequency of the periodic

signal. α is the amplitude of the input signal. ν is the learning parameter that

determines the speed of the phase synchronization of the periodic teaching signal

F (t). η is the integration gain. The periodic teaching signal F (t) = θ(t) − θ̂(t),

θ̂(t) =
∑3

i=0 αi(t)sinφi(t), and i ∈ [0, 3] are the four parallel oscillators. The 0th

oscillator is just an integrator which learns the input offset. The phase of the 0th

oscillator φ0(t) = φ0(0) = π/2.

This configuration of AOs is suitable for the periodic teaching signal F (t) with

fixed amplitude, varying frequency, and phase. However, if the amplitude of F (t)

changes, the learning signal takes a significant amount of time to converge to the

new amplitude as the parameters of the AOs were chosen for the fixed amplitude.

Therefore, it is necessary to reinitialize parameters (α1, α2, α3) based on the new
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amplitude. Additionally, ω is reinitialized for the new signal. Thus, re-initialization

helps the pool of AOs to converge to the varying amplitude of the periodic signal as

well. The decision to whether reinitialize the parameters or not is made by Human

locomotion recognition algorithm as shown in Fig. 7.1(a). Therefore, this modified

AOs based approach is robust to various locomotion activities.

7.4.2 Kernel-based Nonlinear Filter

To improve the quality of the signal estimate and predict the future signal tra-

jectories, a kernel-based nonlinear filter given in [195, 196] is used. This approach

is a supervised learning problem which trains between the main phase φ1(t) and the

input estimate θ̂∗(t) and given by:

θ̂∗(t) =

∑
ψi(φ1(t))wi∑
ψi(φ1(t))

(7.11)

where ψi(φ1(t)) is a set of Gaussian-like kernel functions. wi are the weights of

the kernel based non-linear filter. This non-linear filter constructs a series of the local

mappings of the input θ̂∗(t) as a function of the main phase φ1(t). The online version

is implemented using recursive least squares.

The φt in equation (7.12) is changed to φt + ∆φ changed in order to provide the

estimates of the future signal trajectory. Therefore, equation (7.12) becomes

θ̂∗,∆(t) =

∑
ψi,∆(φ1(t))wi∑
ψi,∆(φ1(t))

(7.12)

θ̂∗,∆(t) is the prediction of the future thigh angle trajectory. The estimated future

position of thigh angle θ̂∗,∆(t) can be used to provide assistive torque as

τe(t) = kf (θ̂∗,∆(t)− θ(t)) (7.13)

τe(t) and kf are the desired assistive torque and field stiffness, respectively. For

simplicity, field damping is not considered to obtain desired assistive torque. This
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Subject Id Age(Y) Gender Height (ft) Weight (lb)

1 24 Male 5 11’ l51

2 25 Male 5 10’ 143.3

3 26 Male 6 223

Table 7.1: The details of the participants who took part in the experiment. W, U,
D, and J represent walking, going upstairs, going downstairs, and jogging.

assistance is intuitive in the sense as it adapts to the user’s thigh motion to provide

assistance based on the locomotion activity.

7.5 Results and Discussion

7.5.1 Experimental Setup

Three healthy participants took part in the experiments. The details of the par-

ticipants are given in Table 7.1. The participant wearing HeSA and performing level

walking and downstairs is shown in the Fig. 7.4. The Arizona State University

(ASU) Institutional Review Board (IRB) reviewed and approved our study. Two ex-

perimental sessions were planned on each subject in the outdoors. The first session

was conducted to train and test the human locomotion algorithm. Four activities

walking, going upstairs, going downstairs, and jogging and transitions between these

activities were included in the experimental trial. Each participant performed three

experimental trials. Out of which, two trials of data were used to train the algorithm

and remaining trial data is used to test the algorithm. In the second session, the

experiments were conducted with Hesa robot. The participants wore the Hesa robot

and performed all the activities continuously.
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Activity W U D J W-U U-D D-J J-U U-W D-W W-D J-W Accuracy (%)

W 269 13 18 0 0 0 0 0 0 0 0 0 89.6%

U 9 261 0 0 0 0 0 0 0 0 0 0 96.7%

D 11 0 259 0 0 0 0 0 0 0 0 0 95.9%

J 0 0 0 450 0 0 0 0 0 0 0 0 100%

W-U 0 0 0 0 30 0 0 0 0 0 0 0 100%

U-D 0 0 3 0 0 25 0 0 2 0 0 0 83.3%

D-J 0 0 0 0 0 0 30 0 0 0 0 0 100%

J-U 0 0 0 0 0 0 0 15 0 0 0 0 100%

U-W 4 0 0 0 0 2 0 0 9 0 0 0 75%

D-W 3 0 0 0 0 0 0 0 0 12 0 0 80%

W-D 0 0 4 0 0 0 0 0 0 0 11 0 73.3%

J-W 0 0 0 0 0 0 0 0 0 0 0 15 100%

OA = 95.2%

Table 7.2: The classification result of the low-level classifier SVM for four activities
and 8 transition events. W, U, D, and J represent walking, going upstairs, going
downstairs and jogging activities.

Rule Previous state Current state Next state

1 walk walk walk

2 walk Twalk−up up

3 Twalk−up up up

4 walk up N/A

Table 7.3: Example showing the possible prediction results corresponding to two
sequential states
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(a) (b)

Figure 7.4: The participant 1 performing (a) level walking and (b)downstairs ex-
periments.

Activity W U D J N/A Accuracy (%)

W 256 0 2 0 36 87%

U 0 261 0 0 9 96.6%

D 4 0 254 0 14 93.3%

J 0 0 0 450 0 100%

OA = 94.9%

Table 7.4: The prediction results of future activities using high-level classifier
DHMM
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Walk (1) Up (2) Down (3) Jog (4)

1-2 transition 2-3 transition

3-4 transition

(a) The thigh angle signal for four locomotion activities.

Walk (1)

Down (3)

Jog (4)

Up (2)

1-2 transition point

2-3 transition point

3-4 transition point

(b) A-ω feature space showing the clusters of activities and transitions.

Figure 7.5: The thigh angle recorded for participant2. a) displays the peak de-
tection of the thigh angle recorded during four locomotion activities: walking, going
upstairs, going downstairs, and jogging. b) shows the distinction between the clusters
of lcomotion activities and transition points in the A− ω feature space.

7.5.2 Classification and Prediction Results

The participant’s thigh data and A−ω feature space for four locomotion activities

walking, going upstairs, going downstairs, and jogging is shown in the Fig. 7.5. It
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can be observed from the Fig. 7.5(b) that transitions points clearly differ from the

clusters of the activities. It is intuitive in the sense that when locomotion activity

changes, the A and ω of the thigh signal varies and leads to a sudden change in A−ω

point in the feature space. In our previous work, SVM was trained with activity labels

only and transition points were not labeled. The reason was that the trained SVM

ignores the transition points as outliers as there were only a few transition points.

However, in this work, we labeled transitions along with the activities considering

transition points will be useful in predicting the transitions. Therefore, along with

the four activity labels, eight transitions labels were included in the training of the

algorithm. The activities walking, jogging, going upstairs, and going downstairs were

denoted as W, J, U, and D. Transitions were labeled as activity 1- activity 2. For

example. the transition between W and U was labeled as W-U. The classification

results of SVM for three healthy subjects are shown in Table 7.2 in terms of the

confusion matrix. The overall accuracy of the detection of activities and transitions

is 95.2%. The classification accuracy of the activities and transitions between the

activities are 96% and 90%, respectively.

The confusion matrix of the trained SVM is used to initialize B of DHMM. The

sequential input for the DHMM consists of two observations: previous and current

activity which are classified using SVM. An example is shown in the Table 7.3 for

the possible prediction output corresponding to two sequential inputs. The transition

between the activities happens only after the transition point. For example, in the

Fig 7.5, it is clear that the transition between W and U happens only if there is

a transition point W-U in between W and U. Therefore, DHMM gives N/A (not

available) output, if two activity inputs are in the sequence as given in Table 7.3. The

prediction result using high-level classifier is shown in the Table 7.4. The prediction

accuracy of DHMM is 94.9%.

164



7.5.3 Trajectory generation results

The difference in the filtered estimate and predicted a future estimate of the thigh

trajectory provided by AωAO alone, AωAO and nonlinear kernel filter is shown in

the Fig. 7.6. It can be seen that θ̂∗,∆(t) provide a good estimate of the future

thigh angle trajectory. As it can be seen in the Fig. 7.1(a), the output of DHMM

decides whether to reset the amplitude parameters of AOs or not. The reinitialization

procedure mainly involve three reasons. If the output of the DHMM infers transition

in the state, the next state is checked whether it matches with the transition state to

reinitialize the parameters. Otherwise, the transition detection is considered as the

wrong result. If the output of the DHMM is N/A, it means there is no transition point

in between the activities. In that case, the next two classification results were checked

to confirm the transition. This procedure helps to decrease the misclassifications

and increase the accuracy of the transitions. It can be seen in the Fig. 7.7 that

transition happens between walking and going upstairs activity. The comparison is

given with and without reinitialization. It is clear that without reinitialization, the

θ̂∗,∆(t) does not properly converge to the amplitude of the upstairs signal. Whereas,

reinitialization helps to improve θ̂∗,∆(t) estimate when the activity changes.

7.5.4 Hip assistive torque generation

The desired assistive torque for HeSA is generated based on the prediction estimate

of the future thigh position given by kernel based non-linear filter. An example for

the hip assistive torque generation in real-time for participant 2 while performing

locomotion activities is given in Fig. 7.8. We included the zero torque condition

when changing from one activity to another for two purposes: i) to identify the

correct locomotion activity and ii) to learn the signal trajectory of new locomotion
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Figure 7.6: The comparison between the filtered estimate and future prediction
estimate of the thigh angle trajectory during walking. The Gaussian kernel func-
tions based non-linear filter provide a good future estimate θ̂∗,∆(t) of the thigh angle
trajectory.
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Figure 7.7: The comparison between AOs with and without reinitilization of the
amplitude parameters for walking to going upstairs activity transition. The AOs with
reinitilization converge faster to the amplitude of the transition activity.
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Walk Up Down Jog

Figure 7.8: The example of assistive torque generation during four activities and
transitions.

activity. The zero torque mode helps to acquire safety of the participant when activity

changes. A threshold condition of 7 degree is defined for difference between predicted

and original thigh trajectory to initiate zero torque condition. It can be seen from

the Fig 7.8 that HeSA provides appropriate assitive torque based on the locomotion

activity and zero torque when transitions happen.
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Chapter 8

CONCLUSION

To summarize, an approach for the hysteresis compensator was designed as a part

of this dissertation. The static and dynamic calibration tests were performed on each

sensing coil to get the training data that is required to establish the model between

internal pressure readings from the sensor and the GCF. An human activity recog-

nition algorithm called as intelligent fuzzy inference (IFI) algorithm was proposed

using smart shoes and IMUs. This algorithm achieved significant accuracy in both

subject dependent and independent experiments. The inference can be drawn that

the algorithm is more of a generalized one and does not require subject specific data

to train the algorithm.

Another human activity recognition algorithm was proposed which classified pe-

riodic activities with the help of a single sensor. This system was easy to wear and

eliminated the problem of mounting multiple sensors on the body for users. Although,

this required subject specific data to train the algorithm, it only needed 2 to 3 minutes

of data of each activity. This makes it more of a personalized system. Both indoor

and outdoor experiments were performed to evaluate the efficacy of the algorithm in

different conditions.

The problem of modulating the virtual impedance of the wearable robot based

on activities and gait phases detection was addressed using an automatic impedance

tuning (AIT) algorithm. A Gaussian mixture model (GMM) was employed to map

the fuzzy likelihood of various activities and gait phases to the desired robot virtual

impedance. Experiments were conducted on two participants to evaluate the benefit

of the proposed algorithm by comparing muscle activities and gait metrics. The
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results demonstrated that the robot assistive torque is smoother and EMG signal of

Vastus Medialis is reduced, compared to constant impedance and finite state machine

approaches.

To evaluate the effectiveness of both AIT and unilateral assistance on the inherent

stability of the healthy subjects, the metrics were derived from dynamical systems

theory to assess the overall stability of the human-LEAD system. The participants

in AIT condition exhibited more dynamic stability on left side in terms of Max FM

and λs compared to other four conditions. Whereas, for the right (assisted) side,

higher dynamic stability is observed in normal walking. The biped walking simulation

results showed that the variability decreases with joint assistance. The metrics λl and

MAD converged to these simulation results showing that participants exhibited less

kinematic variability in AIT compared to normal walking.

To provide bilateral assistance during locomotive activities, an adaptive oscillator

based method was proposed. This adaptive oscillator was based on A and ω features.

A low-level classifier SVM was trained to perform activity classifications. On the top

of low-level classifier, DHHM was built to perform future activity predictions. The

AωAO along with non-linear kernel filter predicted future trajectories of thigh angle

which was used to attract assistive device to the user’s force field. To verify the

efficacy of the proposed approach, experiments were performed using hip exoskeleton

for superior augmentation (HeSA) on three healthy subjects. The human locomotion

algorithm reported higher classification and prediction accuracy of 95.2% and 94.9%,

respectively.

8.1 Future Work and Research Opportunities

In this dissertation work, the performance of human activity recognition algo-

rithms was evaluated with experiments on healthy subjects. It will be helpful to
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evaluate the performance of IFI and Aω methods on patients with abnormal gaits.

For AIT approach, activity transitions can be included to evaluate its performance

during transitions. The AIT can be tested in outdoor environmental conditions.

EMG sensors can be put on the muscles around the knee to comprehensively study

the effect of the modulation of impedance parameters, and patients can be recruited

to evaluate the efficacy of AIT in abnormal gaits. From a stability perspective, the

future work could be studying the effect of unilateral assistance from the muscular

level of lower limb joint muscles. This will help us to understand how humans adapt

to assistance and modify their control strategy from muscular level. Also, optimizing

the controller strategy of the knee assistive device using insights from these studies

will be helpful. A similar study can be conducted on patients with abnormal gaits to

study their walking pattern from the dynamical systems theory perspective. It will

be interesting to see the application of these metrics to study abnormal gaits.

AωAO can be improved to track fast transitions and generate faster future tra-

jectory predictions. Currently, the method is based on subject-specific training. It

can be improved to make the approach to be subject independent. This work can be

extended by transforming the human locomotion algorithm into a semi-supervised or

unsupervised approach to account for more activities and transitions.
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