16 research outputs found

    Implementation of a complete gate for quantum-dot cellular automata

    Get PDF
    In the last few decades, scaling in feature size and increase in processing power have been achieved by conventional CMOS technology.  Due to basic physical limitations, the conventional VLSI technology faces serious challenging problems in feature size reduction. Quantum dot cellular automata (QCA) has the potential to be one of the features promising nanotechnologies because of higher speed, smaller size and lower power consumption in comparison with transistor-based technology. In this paper, a complete Gate structure for implementation in QCA is presented. The inputs of the proposed structure are a, b and Cin (carry in) and the outputs are AND, OR, NAND, NOR, XOR, XNOR, NOT (Not a), Sum and Cout (carry out). The proposed layout is designed and simulated in the QCA Designer software. The results show that, our complete Gate structure is optimized in terms of cell count, area, and delay. Therefore, this structure can be used in designing of QCA based circuits

    Design of QCA Full Adders without wire crossing

    Get PDF
    In the scale of nanometer, Quantum-dot Cellular Automata (QCA) is a new technology, which utilizes the QCA cells in order to design and implement logical circuits. QCA makes it possible for us to design in Nano scale. Furthermore, in comparison to CMOS technology, it has highly low consumption power. Thus, in the future, QCA technology will be a powerful rival for VLSI. This paper presents two new and optimized QCA designs for Full adder. In comparison to the previous designs, all of the QCA Full adders presented in this paper are relatively optimized. In addition, they are implemented without any wire crossing. In order to test the proposed QCA Layouts and also display the results of the simulations, QCADesigner software is used

    Implementation of Binary to Gray Code Converters in Quantum Dot Cellular Automata

    Get PDF
    Quantum dot cellular automaton (QCA) are dominant nanotechnology which has been used extensively in digital circuits and systems. It is a promising alternative to complementary metal–oxide–semiconductor (CMOS) technology with many enticing features such as high-speed, low power consumption and higher switching frequency than transistor based technology. The code converters are the basic unit for transformation of data to execute arithmetic processes. In this paper, QCA based 2-bit binary-to- gray; 3-bit binary-to-gray and 4-bit binary-to-gray code converter have been proposed. The proposed design reduces the number of cells, area and raises switching speed. The simulations are completed using QCADesigner and Microwindlite tool which is widely used for simulation and verification

    A thermally aware performance analysis of quantum cellular automata logic gates

    Get PDF
    The high-performance digital circuits can be constructed at high operating frequency, reduced power dissipation, portability, and large density. Using conventional complementary-metal-oxide-semiconductor (CMOS) design process, it is quite difficult to achieve ultra-high-speed circuits due to scaling problems. Recently quantum dot cellular automata (QCA) are prosed to develop logic circuits at atomic level. In this paper, we analyzed the performance of QCA circuits under different temperature effects and observed that polarization of the cells is highly sensitive to temperature. In case of the 3-input majority gate the cell polarization drops to 50% with an increase in the temperature of 18 K and for 5 input majority gate the cell polarization drops more quickly than the 3-input majority. Further, the performance of majority gates also compared in terms of area and power dissipation. It has been noticed that the proposed logic gates can also be used for developing simple and complex and memory circuits

    NOVEL SINGLE LAYER FAULT TOLERANCE RCA CONSTRUCTION FOR QCA TECHNOLOGY

    Get PDF
    Quantum-dot Cellular Automata (QCA) technology has become a promising and accessible candidate that can be used for digital circuits implementation at Nanoscale, but the circuit design in the QCA technology has been limited due to fabrication high-defect rate. So, this issue is an interesting research topic in the QCA circuits design. In this study, a novel 3-input Fault Tolerance (FT) Majority Gate (MG) is developed. Accordingly, an efficient 1-bit QCA full adder is developed using the developed 3-input MG. Then, a new 4-bit FT QCA Ripple Carry Adder (RCA) is developed based on the proposed 1-bit FT QCA FA. The developed circuits are implemented in the QCADesigner tool version 2.0.3. The results indicate that the developed QCA circuits provide advantages compared to other QCA circuits in terms of double and single cell missing defect, area and delay time

    New efficient designs of reversible logic gates and circuits in the QCA technology

    Get PDF
    Quantum-dot cellular automata (QCA) is a developing nanotechnology, which seems to be a good candidate to replace the conventional complementary metal-oxide-semiconductor (CMOS) technology. The QCA has the advantages of very low power dissipation, faster switching speed, and extremely low circuit area, which can be used in designing nanoscale reversible circuits. In this paper, the new efficient QCA implementations of the basic reversible Gates such as: CNOT, Toffoli, Feynman, Double Feynman, Fredkin, Peres, MCL, and R Gates are presented based on the straight interactions between the QCA cells. Also, the designs of 4-Bit reversible parity checker and 3-bit reversible binary to Grey converter are introduced using these optimized reversible Gates. The proposed layouts are designed and simulated using QCADesigner software. In comparison with previous QCA designs, the proposed layouts are implemented with the minimum area, minimum number of cells, and minimum delay without any wire-crossing techniques. Also, in comparison with the CMOS technology, the proposed layouts are more efficient in terms of the area and power. Therefore, our designs can be used to realize quantum computation in ultralow power computer communication

    New Symmetric and Planar Designs of Reversible Full-Adders/Subtractors in Quantum-Dot Cellular Automata

    Full text link
    Quantum-dot Cellular Automata (QCA) is one of the emerging nanotechnologies, promising alternative to CMOS technology due to faster speed, smaller size, lower power consumption, higher scale integration and higher switching frequency. Also, power dissipation is the main limitation of all the nano electronics design techniques including the QCA. Researchers have proposed the various mechanisms to limit this problem. Among them, reversible computing is considered as the reliable solution to lower the power dissipation. On the other hand, adders are fundamental circuits for most digital systems. In this paper, Innovation is divided to three sections. In the first section, a method for converting irreversible functions to a reversible one is presented. This method has advantages such as: converting of irreversible functions to reversible one directly and as optimal. So, in this method, sub-optimal methods of using of conventional reversible blocks such as Toffoli and Fredkin are not used, having of minimum number of garbage outputs and so on. Then, Using the method, two new symmetric and planar designs of reversible full-adders are presented. In the second section, a new symmetric, planar and fault tolerant five-input majority gate is proposed. Based on the designed gate, a reversible full-adder are presented. Also, for this gate, a fault-tolerant analysis is proposed. And in the third section, three new 8-bit reversible full-adder/subtractors are designed based on full-adders/subtractors proposed in the second section. The results are indicative of the outperformance of the proposed designs in comparison to the best available ones in terms of area, complexity, delay, reversible/irreversible layout, and also in logic level in terms of garbage outputs, control inputs, number of majority and NOT gates

    New Symmetric and Planar Designs of Reversible Full-Adders/Subtractors in Quantum-Dot Cellular Automata

    Full text link
    Quantum-dot Cellular Automata (QCA) is one of the emerging nanotechnologies, promising alternative to CMOS technology due to faster speed, smaller size, lower power consumption, higher scale integration and higher switching frequency. Also, power dissipation is the main limitation of all the nano electronics design techniques including the QCA. Researchers have proposed the various mechanisms to limit this problem. Among them, reversible computing is considered as the reliable solution to lower the power dissipation. On the other hand, adders are fundamental circuits for most digital systems. In this paper, Innovation is divided to three sections. In the first section, a method for converting irreversible functions to a reversible one is presented. This method has advantages such as: converting of irreversible functions to reversible one directly and as optimal. So, in this method, sub-optimal methods of using of conventional reversible blocks such as Toffoli and Fredkin are not used, having of minimum number of garbage outputs and so on. Then, Using the method, two new symmetric and planar designs of reversible full-adders are presented. In the second section, a new symmetric, planar and fault tolerant five-input majority gate is proposed. Based on the designed gate, a reversible full-adder are presented. Also, for this gate, a fault-tolerant analysis is proposed. And in the third section, three new 8-bit reversible full-adder/subtractors are designed based on full-adders/subtractors proposed in the second section. The results are indicative of the outperformance of the proposed designs in comparison to the best available ones in terms of area, complexity, delay, reversible/irreversible layout, and also in logic level in terms of garbage outputs, control inputs, number of majority and NOT gates

    Robust QCA Full Adders Using a Novel Fault Tolerant Five-Input Majority Gate

    Get PDF
    A novel technique for creating logic gates and digital circuitry at the nanoscale is quantum cellular automata (QCA). The sensitivity of the circuit is enhanced and quantum circuits are more susceptible to unfavorable external conditions when component size are reduced. In this article, we offer a five-input majority gate with fault-tolerant feature in QCA technology, taking into account the significance of constructing circuits that can withstand flaws. We also assess all potential defects in the process of arranging cells in specific locations on the surface. These errors consist of extra cells, rotation, deletion, and displacement. The gate under study is subjected to the aforementioned four failure categories in the first stage. The QCADesigner simulator engine is then used to assess the accuracy of the circuit performance in the second step. 41 quantum cells have been used to make the gate of this five-input majority gate with fault-tolerant feature in QCA technology. Several techniques are explored to discover such a majority gate, such as adding cells (i.e., introducing redundancy into the circuit) and particular cell layout techniques. The goal is to come up with a design that can ideally withstand possible faults with the least amount of overhead on the circuit for fault-tolerant through a certain cell layout. The findings demonstrate the implemented majority gate's notable advantage over comparable scenarios
    corecore