1,421 research outputs found

    Priorities Without Priorities: Representing Preemption in Psi-Calculi

    Full text link
    Psi-calculi is a parametric framework for extensions of the pi-calculus with data terms and arbitrary logics. In this framework there is no direct way to represent action priorities, where an action can execute only if all other enabled actions have lower priority. We here demonstrate that the psi-calculi parameters can be chosen such that the effect of action priorities can be encoded. To accomplish this we define an extension of psi-calculi with action priorities, and show that for every calculus in the extended framework there is a corresponding ordinary psi-calculus, without priorities, and a translation between them that satisfies strong operational correspondence. This is a significantly stronger result than for most encodings between process calculi in the literature. We also formally prove in Nominal Isabelle that the standard congruence and structural laws about strong bisimulation hold in psi-calculi extended with priorities.Comment: In Proceedings EXPRESS/SOS 2014, arXiv:1408.127

    Formalising the pi-calculus using nominal logic

    Get PDF
    We formalise the pi-calculus using the nominal datatype package, based on ideas from the nominal logic by Pitts et al., and demonstrate an implementation in Isabelle/HOL. The purpose is to derive powerful induction rules for the semantics in order to conduct machine checkable proofs, closely following the intuitive arguments found in manual proofs. In this way we have covered many of the standard theorems of bisimulation equivalence and congruence, both late and early, and both strong and weak in a uniform manner. We thus provide one of the most extensive formalisations of a process calculus ever done inside a theorem prover. A significant gain in our formulation is that agents are identified up to alpha-equivalence, thereby greatly reducing the arguments about bound names. This is a normal strategy for manual proofs about the pi-calculus, but that kind of hand waving has previously been difficult to incorporate smoothly in an interactive theorem prover. We show how the nominal logic formalism and its support in Isabelle accomplishes this and thus significantly reduces the tedium of conducting completely formal proofs. This improves on previous work using weak higher order abstract syntax since we do not need extra assumptions to filter out exotic terms and can keep all arguments within a familiar first-order logic.Comment: 36 pages, 3 figure

    On the Computation Power of Name Parameterization in Higher-order Processes

    Full text link
    Parameterization extends higher-order processes with the capability of abstraction (akin to that in lambda-calculus), and is known to be able to enhance the expressiveness. This paper focuses on the parameterization of names, i.e. a construct that maps a name to a process, in the higher-order setting. We provide two results concerning its computation capacity. First, name parameterization brings up a complete model, in the sense that it can express an elementary interactive model with built-in recursive functions. Second, we compare name parameterization with the well-known pi-calculus, and provide two encodings between them.Comment: In Proceedings ICE 2015, arXiv:1508.0459

    Separability in the Ambient Logic

    Get PDF
    The \it{Ambient Logic} (AL) has been proposed for expressing properties of process mobility in the calculus of Mobile Ambients (MA), and as a basis for query languages on semistructured data. We study some basic questions concerning the discriminating power of AL, focusing on the equivalence on processes induced by the logic (=L>)(=_L>). As underlying calculi besides MA we consider a subcalculus in which an image-finiteness condition holds and that we prove to be Turing complete. Synchronous variants of these calculi are studied as well. In these calculi, we provide two operational characterisations of =L_=L: a coinductive one (as a form of bisimilarity) and an inductive one (based on structual properties of processes). After showing =L_=L to be stricly finer than barbed congruence, we establish axiomatisations of =L_=L on the subcalculus of MA (both the asynchronous and the synchronous version), enabling us to relate =L_=L to structural congruence. We also present some (un)decidability results that are related to the above separation properties for AL: the undecidability of =L_=L on MA and its decidability on the subcalculus.Comment: logical methods in computer science, 44 page

    On the Distributability of Mobile Ambients

    Get PDF
    Modern society is dependent on distributed software systems and to verify them different modelling languages such as mobile ambients were developed. To analyse the quality of mobile ambients as a good foundational model for distributed computation, we analyse the level of synchronisation between distributed components that they can express. Therefore, we rely on earlier established synchronisation patterns. It turns out that mobile ambients are not fully distributed, because they can express enough synchronisation to express a synchronisation pattern called M. However, they can express strictly less synchronisation than the standard pi-calculus. For this reason, we can show that there is no good and distributability-preserving encoding from the standard pi-calculus into mobile ambients and also no such encoding from mobile ambients into the join-calculus, i.e., the expressive power of mobile ambients is in between these languages. Finally, we discuss how these results can be used to obtain a fully distributed variant of mobile ambients.Comment: In Proceedings EXPRESS/SOS 2018, arXiv:1808.08071. Conference version of arXiv:1808.0159

    A type checking algorithm for qualified session types

    Get PDF
    We present a type checking algorithm for establishing a session-based discipline in the pi calculus of Milner, Parrow and Walker. Our session types are qualified as linear or unrestricted. Linearly typed communication channels are guaranteed to occur in exactly one thread, possibly multiple times; afterwards they evolve as unrestricted channels. Session protocols are described by a type constructor that denotes the two ends of one and the same communication channel. We ensure the soundness of the algorithm by showing that processes consuming all linear resources are accepted by a type system preserving typings during the computation and that type checking is consistent w.r.t. structural congruence.Comment: In Proceedings WWV 2011, arXiv:1108.208

    COWS: A Timed Service-Oriented Calculus

    Get PDF
    COWS (Calculus for Orchestration of Web Services) is a foundational language for Service Oriented Computing that combines in an original way a number of ingredients borrowed from well-known process calculi, e.g. asynchronous communication, polyadic synchronization, pattern matching, protection, delimited receiving and killing activities, while resulting different from any of them. In this paper, we extend COWS with timed orchestration constructs, this way we obtain a language capable of completely formalizing the semantics of WS-BPEL, the ‘de facto’ standard language for orchestration of web services. We present the semantics of the extended language and illustrate its peculiarities and expressiveness by means of several examples

    CaSPiS: A Calculus of Sessions, Pipelines and Services

    Get PDF
    Service-oriented computing is calling for novel computational models and languages with well disciplined primitives for client-server interaction, structured orchestration and unexpected events handling. We present CaSPiS, a process calculus where the conceptual abstractions of sessioning and pipelining play a central role for modelling service-oriented systems. CaSPiS sessions are two-sided, uniquely named and can be nested. CaSPiS pipelines permit orchestrating the flow of data produced by different sessions. The calculus is also equipped with operators for handling (unexpected) termination of the partner’s side of a session. Several examples are presented to provide evidence of the flexibility of the chosen set of primitives. One key contribution is a fully abstract encoding of Misra et al.’s orchestration language Orc. Another main result shows that in CaSPiS it is possible to program a “graceful termination” of nested sessions, which guarantees that no session is forced to hang forever after the loss of its partner
    • 

    corecore