
C�WS: A timed service-oriented calculus?

Alessandro Lapadula, Rosario Pugliese and Francesco Tiezzi

Dipartimento di Sistemi e Informatica Università degli Studi di Firenze
{lapadula,pugliese,tiezzi}@dsi.unifi.it

Abstract. COWS (Calculus for Orchestration of Web Services) is a founda-
tional language for Service Oriented Computing that combines in an original
way a number of ingredients borrowed from well-known process calculi, e.g.
asynchronous communication, polyadic synchronization, pattern matching, pro-
tection, delimited receiving and killing activities, while resulting different from
any of them. In this paper, we extend COWS with timed orchestration constructs,
this way we obtain a language capable of completely formalizing the semantics
of WS-BPEL, the ‘de facto’ standard language for orchestration of web services.
We present the semantics of the extended language and illustrate its peculiarities
and expressiveness by means of several examples.

1 Introduction

Service-Oriented Computing (SOC) is an emerging computing paradigm that uses
loosely coupled ‘services’ to support the development of interoperable, evolvable sys-
tems and applications, and exploits the pervasiveness of the Internet technologies. Ser-
vices are computational entities made available on a network as autonomous, platform-
independent resources that can be described, published, discovered, and dynamically
assembled, as the basic blocks for building applications. Companies like IBM, Mi-
crosoft and Sun have invested a lot of efforts to promote their deployment on Web Ser-
vices, that are one of the present more successful instantiation of the SOC paradigm.

Many research efforts are currently addressed to define clean semantic models and
rigorous methodological foundations for SOC applications. A main line of research
aims at developing process calculi-like formalisms that provides in a distilled form
the paradigm at the heart of SOC (see, e.g., [2–5, 9, 10, 12, 13, 16]). Most of these for-
malisms, however, do not model the different aspects of currently available SOC tech-
nologies in their completeness. One such aspect is represented by timed activities that
are frequently exploited in service orchestration and are typically used for handling
timeouts. For example, in WS-BPEL [21], timeouts turn out to be essential for dealing
with service transactions or with message losses. Thus, a service process could wait
a callback message for a certain amount of time after which, if no callback has been
received, it invokes another operation or throws a fault. However, only a few process
calculi for SOC deal with timed activities. In particular, [12, 13] introduce webπ, a timed
extension of the π-calculus tailored to study ‘web transactions’. [8, 9] present a timed
calculus based on a more general notion of time, and an approach to verify WS-BPEL

? This work has been supported by the EU project SENSORIA, IST-2 005-016004.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IMT Institutional Repository

https://core.ac.uk/display/12096373?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

specifications with compensation/fault constructs. [11] proposes a general purpose task
orchestration language that manages timeouts as signals returned by dedicated services
after some specified time intervals. Furthermore, all these formalisms, do not take into
account such fundamental aspects of SOC as service instantiation and correlation.

To meet the demands arising from modelling SOC middlewares and applications,
in [15] we have introduced COWS (Calculus for Orchestration of Web Services), a
new modelling language that takes its origin from linguistic formalisms with opposite
objectives, namely from WS-BPEL, the ‘de facto’ standard language for orchestration
of web services, and from well-known process calculi, that represent a cornerstone of
current foundational research on specification and analysis of concurrent and mobile
systems. In [14] we show that COWS can model different and typical aspects of (web)
services technologies, such as, e.g., multiple start activities, receive conflicts, routing
of correlated messages, service instances and interactions among them. In this paper,
since it is not known to what extent timed computation can be reduced to untimed
forms of computation [22], we extend COWS with timed activities. Specifically, we
introduce a WS-BPEL-like wait activity, that causes execution of the invoking service
to be suspended until the time interval specified as an argument has elapsed, and permit
using it to choose among alternative behaviours, alike the WS-BPEL pick activity. This
way, the resulting language, that we call C�WS (timed COWS), can faithfully capture
also the semantics of WS-BPEL timed constructs.

For modelling time and timeouts, we draw again our inspiration from the rich lit-
erature on timed process calculi (see, e.g., [7, 20] for a survey). Thus, in C�WS, basic
actions are durationless, i.e. instantaneous, and the passing of time is modelled by using
explicit actions, like in TCCS [18]. Moreover, actions execution is lazy, i.e. can be de-
layed arbitrary long in favour of passing of time, like in lTCCS [19]. Finally, since many
distributed systems offer only weak guarantees on the upper bound of inter-location
clock drift [1], passing of time is modelled synchronously for services deployed on a
same ‘service engine’, and asynchronously otherwise.

The rest of the paper is organized as follows. The syntax of C�WS is presented in
Section 2, while its operational semantics is introduced in Section 3. Section 4 presents
an extension that makes it explicit the notion of service engine and of deployment of
services on engines. Section 5 illustrates three example applications of our framework
and Section 6 concludes the paper. We refer the interested reader to [14] for further
motivations on the design of COWS and C�WS, for many examples illustrating their
peculiarities and expressiveness, for comparisons with other process-based and orches-
tration formalisms, and for the presentation of a variant of the wait activity, that sus-
pends the invoking service until the absolute time reaches its argument value.

2 C�WS syntax

The syntax of C�WS, given in Table 1, is parameterized by three countable and pair-
wise disjoint sets: the set of (killer) labels (ranged over by k, k′, . . .), the set of values
(ranged over by v, v′, . . .), and the set of ‘write once’ variables (ranged over by x, y,
. . .). The set of values is left unspecified; however, we assume that it includes the set of
names, ranged over by n, m, . . . , mainly used to represent partners and operations, and a

Table 1. C�WS syntax

s ::= (services) g ::= (input-guarded choice)
kill(k) (kill) 0 (nil)

| u • u′!ē (invoke) | p • o?w̄.s (request processing)
| g (input-guarded choice) | � e.s (wait)
| s | s (parallel composition) | g + g (choice)
| {|s|} (protection)
| [d] s (delimitation)
| ∗ s (replication)

set of positive numbers (ranged over by δ, δ′, . . .), used to represent time intervals. The
language is also parameterized by a set of expressions, ranged over by e, whose exact
syntax is deliberately omitted; we just assume that expressions contain, at least, values
and variables. Notably, killer labels are not (communicable) values. Notationally, we
prefer letters p, p′, . . . when we want to stress the use of a name as a partner, o, o′, . . .
when we want to stress the use of a name as an operation. We will use w to range over
values and variables, u to range over names and variables, and d to range over killer
labels, names and variables. Notation ·̄ stands for tuples of objects, e.g. x̄ is a shortening
for the tuple of variables 〈x1, . . . , xn〉 (with n ≥ 0). We assume that variables in the same
tuple are pairwise distinct. All notations shall extend to tuples component-wise.

Partner names and operation names can be combined to designate communication
endpoints, written p •o, and can be communicated, but dynamically received names
can only be used for service invocation (as in the Lπ [17]). Indeed, communication
endpoints of receive activities are identified statically because their syntax only allows
using names and not variables. Services are structured activities built from basic activ-
ities, i.e. the empty activity 0, the kill activity kill() , the invoke activity • ! , the
receive activity • ? and the wait activity� , by means of prefixing . , choice + ,
parallel composition | , protection {| |} , delimitation [] and replication ∗ . The ma-
jor difference with COWS is that the choice construct can be guarded both by receive
activities and by wait activities. In particular, the wait activity � e specifies the time
interval, whose value is given by evaluation of e, the executing service has to wait for.
We adopt the following conventions about the operators precedence: monadic operators
bind more tightly than parallel composition, and prefixing more tightly than choice. We
shall omit trailing occurrences of 0, writing e.g. p • o?w̄ instead of p • o?w̄.0, and use
[d1, . . . , dn] s in place of [d1] . . . [dn] s.

The only binding construct is delimitation: [d] s binds d in the scope s. In fact,
to enable concurrent threads within each service instance to share (part of) the state,
receive activities in C�WS bind neither names nor variables, which is different from
most process calculi. Instead, the range of application of the substitutions generated by
a communication is regulated by the delimitation operator, that additionally permits to
generate fresh names (as the restriction operator of the π-calculus) and to delimit the
field of action of kill activities. Thus, the occurrence of a name/variable/label is free if it
is not under the scope of a delimitation for it. We denote by fk(t) the set of killer labels
that occur free in t, and by fd(t) that of free names/variables/killer labels in t. Two terms

Table 2. C�WS structural congruence (excerpt of laws)

∗ 0 ≡ 0 ∗ s ≡ s | ∗ s {|0|} ≡ 0
{| {|s|} |} ≡ {|s|} {|[d] s|} ≡ [d] {|s|} [d] 0 ≡ 0

[d1] [d2] s ≡ [d2] [d1] s s1 | [d] s2 ≡ [d] (s1 | s2) if d < fd(s1)∪fk(s2)

Table 3. Matching rules

M(x, v) = {x 7→ v} M(v, v) = ∅
M(w1, v1) = σ1 M(w̄2, v̄2) = σ2

M((w1, w̄2), (v1, v̄2)) = σ1] σ2

are alpha-equivalent if one can be obtained from the other by consistently renaming
bound names/variables/labels. As usual, we identify terms up to alpha-equivalence.

3 C�WS operational semantics

The operational semantics of C�WS is defined over an enriched set of services that
also includes those auxiliary services where the argument of wait activities can also
be 0. Moreover, the semantics is defined only for closed services, i.e. services without
free variables/labels (similarly to many real compilers, we consider terms with free
variables/labels as programming errors), but of course the rules also involve non-closed
services. Formally, the semantics is given in terms of a structural congruence and of a
labelled transition relation. We assume that evaluation of expressions and execution of
basic activities, except for � e, are instantaneous (i.e. do not consume time units) and
that time elapses between them.

The structural congruence ≡ identifies syntactically different services that intuitively
represent the same service. It is defined as the least congruence relation induced by a
given set of equational laws. We explicitly show in Table 2 the laws for replication,
protection and delimitation, while omit the (standard) laws for the other operators stat-
ing that parallel composition is commutative, associative and has 0 as identity element,
and that guarded choice enjoys the same properties and, additionally, is idempotent.
All the presented laws are straightforward. In particular, commutativity of consecutive
delimitations implies that the order among the di in [〈d1, . . . , dn〉] s is irrelevant, thus in
the sequel we may use the simpler notation [d1, . . . , dn] s. Notably, the last law can be
used to extend the scope of names (like a similar law in the π-calculus), thus enabling
communication of restricted names, except when the argument d of the delimitation is
a free killer label of s2 (this avoids involving s1 in the effect of a kill activity inside s2).

To define the labelled transition relation, we need a few auxiliary functions. First,
we exploit a function [[]] for evaluating closed expressions (i.e. expressions without
variables): it takes a closed expression and returns a value. However, [[]] cannot be
explicitly defined because the exact syntax of expressions is deliberately not specified.

Then, through the rules in Table 3, we define the partial functionM(,) that per-
mits performing pattern-matching on semi-structured data thus determining if a receive

Table 4. Is there an active kill(k)? / Are there conflicting receives along p • o matching v̄?

kill(k) ↓kill

s ↓kill ∨ s′ ↓kill

s | s′ ↓kill

s ↓kill

{|s|} ↓kill

s ↓kill

[d] s ↓kill

s ↓kill

∗ s ↓kill

|M(w̄, v̄) |< `

p • o?w̄.s ↓`p • o,v̄

s ↓`p • o,v̄ d < {p, o}
[d] s ↓`p • o,v̄

s ↓`p • o,v̄

{|s|} ↓`p • o,v̄

g ↓`p • o,v̄ ∨ g′ ↓`p • o,v̄

g + g′ ↓`p • o,v̄

s ↓`p • o,v̄ ∨ s′ ↓`p • o,v̄

s | s′ ↓`p • o,v̄

s ↓`p • o,v̄

∗ s ↓`p • o,v̄

and an invoke over the same endpoint can synchronize. The rules state that two tuples
match if they have the same number of fields and corresponding fields have matching
values/variables. Variables match any value, and two values match only if they are iden-
tical. When tuples w̄ and v̄ do match,M(w̄, v̄) returns a substitution for the variables in
w̄; otherwise, it is undefined. Substitutions (ranged over by σ) are functions mapping
variables to values and are written as collections of pairs of the form x 7→ v. Application
of substitution σ to s, written s · σ, has the effect of replacing every free occurrence of
x in s with v, for each x 7→ v ∈ σ, by possibly using alpha conversion for avoiding v to
be captured by name delimitations within s. We use |σ | to denote the number of pairs
in σ and σ1] σ2 to denote the union of σ1 and σ2 when they have disjoint domains.

We also define a function, named halt(), that takes a service s as an argument and
returns the service obtained by only retaining the protected activities inside s. halt() is
defined inductively on the syntax of services. The most significant case is halt({|s|}) =

{|s|}. In the other cases, halt() returns 0, except for parallel composition, delimitation
and replication operators, for which it acts as an homomorphism.

halt(kill(k)) = halt(u1 • u2!ē) = halt(g) = 0 halt(s1 | s2) = halt(s1) | halt(s2)

halt({|s|}) = {|s|} halt([d] s) = [d] halt(s) halt(∗ s) = ∗ halt(s)

Finally, in Table 4, we inductively define two predicates: s↓kill checks if s can im-
mediately perform a kill activity; s↓`p •o,v̄, with ` natural number, checks existence of
potential communication conflicts, i.e. the ability of s of performing a receive activity
matching v̄ over the endpoint p • o that generates a substitution with fewer pairs than `.

The labelled transition relation
α̂−−→ is the least relation over services induced by the

rules in Table 5, where label α̂ is generated by the following grammar:

α̂ ::= α | δ
α ::= †k | (p •o) C v̄ | (p •o) B w̄ | p •o bσc w̄ v̄ | †

In the sequel, we use d(α) to denote the set of names, variables and killer labels occur-
ring in α, except for α = p •o bσc w̄ v̄ for which we let d(p •o bσc w̄ v̄) = d(σ), where
d({x 7→ v}) = {x, v} and d(σ1]σ2) = d(σ1)∪d(σ2). The meaning of labels is as follows.
α̂ denotes taking place of computational activities α or time elapsing δ (recall that δ is a

Table 5. C�WS operational semantics

kill(k)
†k−−→ 0 (kill) p • o?w̄.s

(p • o)Bw̄−−−−−−−→ s (rec)

[[ē]] = v̄
(inv)

p • o!ē
(p • o)Cv̄−−−−−−→ 0

g1
α−−→ s

(choice)
g1 + g2

α−−→ s

s
p • o bσ]{x 7→v′}c w̄ v̄−−−−−−−−−−−−−−→ s′

(delsub)
[x] s

p • o bσc w̄ v̄−−−−−−−−→ s′ ·{x 7→ v′}

s
†k−−→ s′

(delkill)
[k] s

†−→ [k] s′

s
α−−→ s′ d<d(α) s ↓kill⇒ α=†, †k

(delpass)
[d] s

α−−→ [d] s′

s
α−−→ s′

(prot)
{|s|} α−−→ {|s′|}

s1
(p • o)Bw̄−−−−−−−→s′1 s2

(p • o)Cv̄−−−−−−→s′2 M(w̄, v̄)=σ ¬(s1 | s2 ↓|σ|p • o,v̄)
(com)

s1 | s2
p • o bσc w̄ v̄−−−−−−−−→ s′1 | s′2

s1
p • o bσc w̄ v̄−−−−−−−−→ s′1 ¬(s2 ↓|M(w̄,v̄)|

p • o,v̄)
(parcon f)

s1 | s2
p • o bσc w̄ v̄−−−−−−−−→ s′1 | s2

s1
†k−−→ s′1

(parkill)
s1 | s2

†k−−→ s′1 | halt(s2)

s1
α−−→ s′1 α , (p •o bσc w̄ v̄), †k

(parpass)
s1 | s2

α−−→ s′1 | s2

s ≡ s1 s1
α−−→ s2 s2 ≡ s′

(cong)
s

α−−→ s′

0
δ−→ 0 (nilelaps) ∗ s

δ−→ ∗ s (repl) u • u′!ē
δ−→ u • u′!ē (invelaps)

s
δ−→ s′

(protelaps){|s|} δ−→ {|s′|}
s

δ−→ s′
(scopeelaps)

[d] s
δ−→ [d] s′

p • o?w̄.s
δ−→ p • o?w̄.s (recelaps)

� 0.s
†−→ s (waittout)

[[e]] , δ′
(waiterr)� e.s

δ−→� e.s

δ 6 [[e]]
(waitelaps)� e.s

δ−→� [[e−δ]].s

g1
δ−→ g′1 g2

δ−→ g′2
(pick)

g1 + g2
δ−→ g′1 + g′2

s1
δ−→ s′1 s2

δ−→ s′2
(parsync)

s1 | s2
δ−→ s′1 | s′2

time interval). †k denotes execution of a request for terminating a term from within the
delimitation [k] . (p •o) C v̄ and (p •o) B w̄ denote execution of invoke and receive activ-
ities over the endpoint p • o, respectively. p •o bσc w̄ v̄ (if σ , ∅) denotes execution of a
communication over p • o with receive parameters w̄, matching values v̄ and substitution

σ to be still applied. † and p •o b∅c w̄ v̄ denote taking place of timeout/forced termination
or communication (without pending substitutions), respectively. A computation from a
closed service s0 is a sequence of connected transitions of the form

s0
α̂1−−→ s1

α̂2−−→ s2
α̂3−−→ s3 . . .

where, for each i, α̂i can be δ, † or p •o b∅c w̄ v̄ (for some p, o, w̄ and v̄).
The rules in the upper part of Table 5 model computational activities, those in the

lower part model time passing. We prefer to keep separate the two sets of rules to make
it evident that C�WS is a ‘conservative’ extension of COWS (indeed, the rules in the
upper part are exactly those of COWS). We now comment on salient points. Activity
kill(k) forces termination of all unprotected parallel activities (rules (kill) and (parkill))
inside an enclosing [k] , that stops the killing effect by turning the transition label †k
into † (rule (delkill)). Existence of such delimitation is ensured by the assumption that
the semantics is only defined for closed services. Sensitive code can be protected from
killing by putting it into a protection {| |}; this way, {|s|} behaves like s (rule (prot)). Sim-
ilarly, [d] s behaves like s, except when the transition label α contains d or when a kill
activity is active in s and α does not correspond to a kill activity or a timeout (rule
(delpass)): in such cases the transition should be derived by using rules (delsub) or (delkill).
In other words, kill activities are executed eagerly. A service invocation can proceed
only if the expressions in the argument can be evaluated (rule (inv)). A receive activity
offers an invocable operation along a given partner name (rule (rec)). The execution of a
receive permits to take a decision between alternative behaviours (rule (choice)). Com-
munication can take place when two parallel services perform matching receive and
invoke activities (rule (com)). Communication generates a substitution that is recorded
in the transition label (for subsequent application), rather than a silent transition as
in most process calculi. If more then one matching is possible, the receive that needs
fewer substitutions is selected to progress (rules (com) and (parcon f)). This mechanism
permits to correlate different service communications thus implicitly creating interac-
tion sessions and can be exploited to model the precedence of a service instance over
the corresponding service specification when both can process the same request. When
the delimitation of a variable x argument of a receive is encountered, i.e. the whole
scope of the variable is determined, the delimitation is removed and the substitution for
x is applied to the term (rule (delsub)). Variable x disappears from the term and cannot
be reassigned a value. Execution of parallel services is interleaved (rule (parpass)), but
when a kill activity or a communication is performed. Indeed, the former must trigger
termination of all parallel services (according to rule (parkill)), while the latter must en-
sure that the receive activity with greater priority progresses (rules (com) and (parcon f)).
Rule (cong) states that structurally congruent services have the same transitions.

Time can elapse while waiting on invoke/receive activities, rules (invelaps) and
(recelaps). When time elapses, but the timeout is still not expired, the argument of wait
activities � is updated (rule (waitelaps)). Time elapsing cannot make a choice within a
pick activity (rule (pick)), while the occurrence of a timeout can. This is signalled by la-
bel † (thus, it is a computation step), that is generated by rule (waittout) and used by rule
(choice) to discard the alternative branches. Time elapses synchronously for all services
running in parallel: this is modelled by rule (parsync) and the remaining rules for the

empty activity (nilelaps), the wait activity (waiterr), replication (repl), protection (protelaps)
and delimitation (scopeelaps). Furthermore, rule (waiterr) enables time passing for the wait
activity also when the expression e used as an argument does not return a positive num-
ber; in this case the argument of the wait is left unchanged. Notably, in agreement with
its eager semantics, the kill activity does not allow time to pass.

We end this section with a simple example aimed at clarifying some peculiarities of
our formalism and at specifying timeouts as described in [11, 22]. Consider the service:

[x, y, k] (p • o1?〈x〉.(p • o2?〈x, y〉+� 10.kill(k)) | {|p′ • o3!〈x〉|} | p′ • o4!〈x, y〉)
| [n] p • o1!〈n〉

Communication of private names is standard and exploits scope extension as in the π-
calculus. Notably, receive and invoke activities can interact only if both are within the
scopes of the delimitations that bind the variables argument of the receive. Thus, in the
example, to enable communication of the private name n, besides its scope, we must
extend the scope of variable x, as in the following computation:

[n, x] ([y, k] (p • o1?〈x〉.(p • o2?〈x, y〉+� 10.kill(k))
| {|p′ • o3!〈x〉|} | p′ • o4!〈x, y〉)

| p • o1!〈n〉)
p •o1 b∅c 〈x〉 〈n〉−−−−−−−−−−−→

[n, y, k] ((p • o2?〈n, y〉+� 10.kill(k)) | {|p′ • o3!〈n〉|} | p′ • o4!〈n, y〉) 6−−→
[n, y, k] ((p • o2?〈n, y〉+� 4.kill(k)) | {|p′ • o3!〈n〉|} | p′ • o4!〈n, y〉) 4−−→
[n, y, k] ((p • o2?〈n, y〉+� 0.kill(k)) | {|p′ • o3!〈n〉|} | p′ • o4!〈n, y〉) †−−→
[n, y, k] (kill(k) | {|p′ • o3!〈n〉|} | p′ • o4!〈n, y〉) †−−→
[n] {|p′ • o3!〈n〉|}

When the communication takes place, a timer starts and the substitution {x 7→ n} is ap-
plied to all terms delimited by [x] , not only to the continuation of the service performing
the receive. Then, the time elapses until the timeout expires, this way the receive along
p • o2 is discarded. Finally, the kill activity removes the unprotected invoke activity.

4 Service deployment

In the language presented so far, time passes synchronously for all services in parallel,
thus we can think of as all services run on a same service engine. As a consequence, the
services share the same clock and can be tightly coupled. Instead, existing SOC systems
are loosely coupled because they are usually deployed on top of distributed systems that
offer only weak guarantees on the upper bound of inter-location clock drift. Consider
for example a scenario including a customer service and a service provider composed
of two subservices – one used as an interface to interact with external services, the
other being an internal service that performs queries in a database – sharing a tuple of
variables, operations, The scenario could be modelled by the term

customer | [d̄shared] (provider inter f ace | provider internal service)

The customer and the provider service are loosely coupled and can be deployed on
different engines, while the provider subservices are tightly coupled and must be colo-
cated. To emphasize these aspects, we introduce explicitly the notions of service engine
and of deployment of services on engines and we will write the previous term as follows:

{ customer } | { [d̄shared] (provider inter f ace | provider internal service) }
Formally, we extend the language syntax with the syntactic category of (service) en-
gines (alike the ‘machines’ of [12]) defined as follows:

E ::= 0 | {s} | [n]E | E | E
Each engine {s} has its own clock (whose value does not matter and, hence, is not made
explicit), that is not synchronized with the clock of other parallel engines (namely,
time progresses asynchronously among different engines). Besides, (private) names can
be shared among engines, while variables and killer labels cannot. In the sequel, we
will only consider well-formed engine compositions, i.e. engine compositions where
partners used in communication endpoints of receive activities within different service
engines are pairwise distinct. The underlying rationale is that each service has its own
partner names and that the service and all its instances run within the same engine.

To define the semantics, we first extend the structural congruence of Section 3 with
the abelian monoid laws for engines parallel composition and with the following laws:

{s} ≡ {s′} if s ≡ s′ {0} ≡ 0 {[n] s} ≡ [n] {s} [n] 0 ≡ 0
[n] [m]E ≡ [m] [n]E E | [n] F ≡ [n] (E | F) if n < fd(E)

The first law lifts to engines the structural congruence defined on services, the second
law transforms an engine with empty activities into an empty engine, while the third law
permits to extrude a private name outside an engine. The remaining laws are standard.

Secondly, we define a reduction relation −→ among engines through the rules shown
in Table 6. Rule (loc) models occurrence of a computation step within an engine, while
rule (res) deals with private names. Rule (congE) says that structurally congruent engines
have the same behaviour, while rule (parasync) says that time elapses asynchronously be-
tween different engines (indeed, F and, then, the clocks of its engines remain unchanged
after the transition). Rule (comE), where fv(w̄) are the free variables of w̄, enables in-
teraction between services executing within different engines. It combines the effects
of rules (delsub) and (com) in Table 5. Indeed, since the delimitations [x̄] for the input
variables are singled out, the communication effect can be immediately applied to the
continuation s′2 of the service performing the receive. The last premise ensures that, in
case of multiple start activities, the message is routed to the correlated service instance
rather than triggering a new instantiation.

Notably, computations from a given parallel composition of engines are sequences
of (connected) reductions. Communication can take place intra-engine, by means of
rule (com), or inter-engine, by means of rule (comE). In both cases, since we are only con-
sidering well-formed compositions of engines, checks for receive conflicts are confined
to services running within a single engine, the one performing the receive, differently
from the language without explicit engines, where checks involve the whole compo-
sition of services. Notice that, to communicate a private name between engines, first

Table 6. Operational semantics of C�WS plus engines (additional rules)

s
α̂−−→ s′ α̂ ∈ {δ, †, p •o b∅c w̄ v̄}

{s} −→ {s′}
(loc)

E −→ E′

[n]E −→ [n]E′
(res)

E ≡ E′ E′ −→ F′ F′ ≡ F
E −→ F

(congE)
E −→ E′

E | F −→ E′ | F
(parasync)

s1
(p • o)Cv̄−−−−−−→ s′1 s2

(p • o)Bw̄−−−−−−−→ s′2 M(w̄, v̄)=σ fv(w̄)= x̄ ¬(s2 ↓|σ|p • o,v̄)

{s1} | { [x̄] s2} −→ {s′1} | {s′2 · σ}
(comE)

it is necessary to exploit the structural congruence for extruding the name outside the
sending engine and to extend its scope to the receiving engine, then the communication
can take place, by applying rules (comE), (res) and (congE).

5 Examples

In this section, we illustrate three applications of our framework. The first one is an
example of a web service inspired by the well-known game Rock/Paper/Scissors, while
the remaining ones are use-cases inspired by [6]. In the sequel, we will write Z , W to
assign a symbolic name Z to the term W. We will use n̂ to stand for the endpoint np • no

and, sometimes, we will write n̂ for the tuple 〈np, no〉 and rely on the context to resolve
any ambiguity. For the sake of readability, in the examples we will use assignment and
conditional choice constructs. They can be thought of as ‘macros’ corresponding to the
following C�WS encodings

〈〈[w = e].s〉〉 = [m̂] (m̂!〈e〉 | m̂?〈w〉.〈〈s〉〉)
〈〈if (e) then {s1} else {s2}〉〉 = [m̂] (m̂!〈e〉 | (m̂?〈true〉.〈〈s1〉〉 + m̂?〈false〉.〈〈s2〉〉))

where m̂ is fresh, and true and false are the values that can result from evaluation of e.

Rock/Paper/Scissors service. Consider the following service:

rps , ∗ [xchamp res, xchall res, xid, xthr 1, xthr 2, xwin, k]
((pchamp • othrow?〈xchamp res, xid, xthr 1〉.

(pchall • othrow?〈xchall res, xid, xthr 2〉.
(xchamp res • owin!〈xid, xwin〉 | xchall res • owin!〈xid, xwin〉)

+� 30 . ({|xchamp res • owin!〈xid, xchamp res〉|} | kill(k)))
+ pchall • othrow?〈xchall res, xid, xthr 2〉.

(pchamp • othrow?〈xchamp res, xid, xthr 1〉.
(xchamp res • owin!〈xid, xwin〉 | xchall res • owin!〈xid, xwin〉)

+� 30 . ({|xchall res • owin!〈xid, xchall res〉|} | kill(k))))
| Assign)

The task of service rps is to collect two throws, stored in xthr 1 and xthr 2, from two
different participants, the current champion and the challenger, assign the winner to
xwin and then send the result back to the two players. The service receives throws from
the players via two distinct endpoints, characterized by operation othrow and partners
pchamp and pchall. The service is of kind ‘request-response’ and is able to serve chal-
lenges coming from any pairs of participants. The players are required to provide the
partner names, stored in xchamp res and xchall res, which they will use to receive the re-
sult. A challenge is uniquely identified by a challenge-id, here stored in xid, that the
partners need to provide when sending their throws. Partner throws arrive randomly.
Thus, when a throw is processed, for instance the challenging one, it must be checked
if a service instance with the same challenge-id already exists or not. An instance of
service rps, that is created because of the reception of the first throw of a challenge,
waits the reception of the corresponding second throw for at most 30 time units. If this
throw arrives within the deadline, the instance behaves as usual. Otherwise, when the
timeout expires, the instance declares the sender of the first throw as the winner of the
challenge and terminates. We assume that Assign implements the rules of the game and
thus, by comparing xthr 1 and xthr 2, assigns the winner of the match by producing the
assignment [xwin = xchamp res] or [xwin = xchall res]. Thus, we have

Assign , if (xthr 1 == “rock” & xthr 2 == “scissors”)
then { [xwin = xchamp res] }
else { if (xthr 1 == “rock” & xthr 2 == “paper”)

then { [xwin = xchall res] }
else { . . . } }

A partner may simultaneously play multiple challenges by using different challenge
identifiers as a means to correlate messages received from the server. E.g., the partner

(pchall • othrow!〈p′chall, 0, “rock”〉 | [x] p′chall
• owin?〈0, x〉.s0)

| (pchall • othrow!〈p′chall, 1, “paper”〉 | [y] p′chall
• owin?〈1, y〉.s1)

is guaranteed that the returned results will be correctly delivered to the corresponding
continuations.

Let us now consider the following match of rock/paper/scissors identified by the
correlation value 0:

s , rps | pchamp • othrow!〈p′champ, 0, “rock”〉 | [x] p′champ
• owin?〈0, x〉.schamp

| pchall • othrow!〈p′chall, 0, “scissors”〉 | [y] p′chall
• owin?〈0, y〉.schall

where p′champ and p′chall denote the players’ partner names. Figure 1 shows a customized
UML sequence diagram depicting a possible run of the above scenario. The champion
and a challenger participate to the match, play their throws (i.e. “rock” and “scissors”),
wait for the resulting winner, and (possibly) use this result in their continuation pro-
cesses (i.e. schamp and schall). Here is a computation produced by selecting the cham-

Fig. 1. Graphical representation of the Rock/Paper/Scissors service scenario

pion’s throw:

s
pchamp •othrow b∅c 〈xchamp res,xid ,xthr 1〉 〈p′champ,0,“rock”〉
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

rps | [xchall res, xthr 2, xwin, k]
((pchall • othrow?〈xchall res, 0, xthr 2〉.

(p′champ
• owin!〈0, xwin〉 | xchall res • owin!〈0, xwin〉)

+� 30 . ({|p′champ
• owin!〈0, p′champ〉|} | kill(k)))

| Assign · {xchamp res 7→ p′champ, xid 7→ 0, xthr 1 7→ “rock”})
| [x] p′champ

• owin?〈0, x〉.schamp

| pchall • othrow!〈p′chall, 0, “scissors”〉 | [y] p′chall
• owin?〈0, y〉.schall , s′

In case the challenger’s throw is not consumed within the deadline, the timeout expires:

s′
30−−→ †−−→

rps | [xchall res, xthr 2, xwin, k]
({|p′champ

• owin!〈0, p′champ〉|} | kill(k)
| Assign · {xchamp res 7→ p′champ, xid 7→ 0, xthr 1 7→ “rock”})

| [x] p′champ
• owin?〈0, x〉.schamp

| pchall • othrow!〈p′chall, 0, “scissors”〉 | [y] p′chall
• owin?〈0, y〉.schall

Then, the kill activity terminates the instance and the champion is declared to be the
winner. Instead, if the challenger’s throw is consumed by the existing instance within
the deadline, the service evolves as follows:

s′
5−−→ pchall •othrow b∅c 〈xchall res,0,xthr 2〉 〈p′chall,0,“scissors”〉−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

rps | [xwin] (p′champ
• owin!〈0, xwin〉 | p′chall

• owin!〈0, xwin〉
| Assign · {xchamp res 7→ p′champ, xid 7→ 0, xthr 1 7→ “rock”,

xchall res 7→ p′chall, xthr 2 7→ “scissors”})
| [x] p′champ

• owin?〈0, x〉.schamp

| [y] p′chall
• owin?〈0, y〉.schall

In the computation above, rules (com) and (parcon f) allow only the existing instance to
evolve (thus, creation of a new conflicting instance is avoided). Once Assign determines

Fig. 2. Graphical representation of the Buyer/Seller/Shipper protocol

that pchamp won, the substitutive effects of communication transforms the system as
follows:

s′′ , rps | p′champ
• owin!〈0, pchamp〉 | p′chall

• owin!〈0, pchamp〉
| [x] p′champ

• owin?〈0, x〉.schamp

| [y] p′chall
• owin?〈0, y〉.schall

At the end, the name of the resulting winner is sent to both participants as shown by the
following computation:

s′′
p′champ •owin b∅c 〈0,x〉 〈0,pchamp〉−−−−−−−−−−−−−−−−−−−−−−→ p′chall •owin b∅c 〈0,y〉 〈0,pchamp〉−−−−−−−−−−−−−−−−−−−−−→

rps | schamp · {x 7→ pchamp} | schall · {y 7→ pchamp}

A Buyer/Seller/Shipper protocol. We illustrate a simple business protocol for purchasing
a fixed good. The protocol, graphically represented in Figure 2, involves a buyer, a seller
and a shipper. Firstly, Buyer asks Seller to offer a quote, then, after the Seller’s reply,
Buyer answers with either an acceptance or a rejection message (it sends the latter
when the quote is bigger than a certain amount). In case of acceptance, Seller sends
a confirmation to Buyer and asks Shipper to provide delivery details. Finally, Seller
forwards the received delivery information to Buyer. Moreover, after Seller presents a
quote, if Buyer does not reply in 30 time units, then Seller will abort the transaction. In
the end, the whole system is

{Buyer} | {Seller} | {Shipper}

Fig. 3. Graphical representation of the Investment Bank interaction pattern

where

Buyer , [id] (pS • oreqQuote!〈pB, id〉
| [xquote] pB • oquote?〈id, xquote〉 .

[k] (if (xquote ≤ 1000)
then { pS • oaccept!〈id〉

| pB • ocon f irmation?〈id〉 .
[xdet] pB • odeliveryDet?〈id, xdet〉 }

else { pS • ore ject!〈id〉 }
| pB • oabort?〈id〉 .kill(k)))

Seller , ∗ [xB, xid] pS • oreqQuote?〈xB, xid〉 .
(xB • oquote!〈xid, vquote〉
| pS • oaccept?〈xid〉 .

(xB • ocon f irmation!〈xid〉
| pS H • oreqDelivDet!〈xid, pS 〉
| [xdet] pS • odeliveryDet?〈xid, xdet〉 .

xB • odeliveryDet!〈xid, xdet〉)
+ pS • ore ject?〈xid〉
+� 30 . xB • oabort!〈xid〉)

Shipper , ∗ [xid, xS] pS H • oreqDelivDet?〈xid, xS 〉 .
[xdet] [xdet = computeDelivDet(xS)] . xS • odeliveryDet!〈xid, xdet〉

Function computeDelivDet() computes the delivery details associated to a seller. No-
tably, if Buyer receives an abort message from Seller, then it immediately halts its other
activities, by means of the killing activity.

Investment Bank interaction pattern. We describe a typical interaction pattern in In-
vestment Bank and other businesses, graphically represented in Figure 3. We consider
two participants, A and B. A starts by requiring a quote to B, that answers with an initial
quote. Then, B enters a loop, sending a new quote every 5 time units until A accepts a

quote. Of course, in order to receive new quotes, also A cycles until it sends the quote
acceptance message to B. Services A and B are modelled as follows:

A , pB • oreqQuote!〈pA, id〉
| [xquote] pA • oquote?〈id, xquote〉 .

[n̂] (n̂!〈xquote〉
| ∗ [x] n̂?〈x〉 .

[xnew] (� rand() . pB • oaccept!〈id, x〉
+ pA • ore f resh?〈id, xnew〉 . n̂!〈xnew〉))

B , ∗ [xA, xid] pB • oreqQuote?〈xA, xid〉 .
(xA • oquote!〈xid, vquote〉
| [n̂] (n̂!〈vquote〉

| ∗ [x] n̂?〈x〉 .
[xquote] (pB • oaccept?〈xid, xquote〉

+� 5 . (xA • ore f resh!〈xid, newQuote(x)〉
| n̂!〈newQuote(x)〉))))

Function newQuote(), given the last quote sent from B to A, computes and returns
a new quote. Notably, in both services, the iterative behaviour is modelled by means
of a private endpoint (i.e. n̂) and the replication operator. At each iteration, A waits a
randomly chosen period of time, whose value is returned by function rand(), before
replying to B. If this time interval is longer than 5 time units, a receive on operation
ore f resh triggers a new iteration.

Now, consider the system A | B. If the participant A does not accept the current
quote in 5 time units, then a new quote is produced by the participant B, because its
timeout has certainly expired. Instead, if we consider the system {A} | {B}, the clock of
B can be slower than that of A, thus the production of a new quote is not ensured.

6 Concluding remarks

We have introduced C�WS, a formalism for specifying and combining services, while
modelling their dynamic behaviour. We have first considered a language where all ser-
vices are implicitly allocated on a same engine. Then, we have presented an extension
with explicit notions of service engine and of deployment of services on engines.

We plan to continue our programme to lay rigorous methodological foundations
for specification and validation of SOC middlewares and applications. We are currently
working on formalizing the semantics of WS-BPEL through labelled transition systems.
We intend then to prove that this semantics and that defined by translation in COWS
do agree. Of course, the extension presented in this paper will be essential to faithfully
capture the semantics of WS-BPEL timed constructs. As a further work, we want to
develop type systems and behavioural equivalences capable of dealing also with time
aspects. Pragmatically, they could provide a means to express and guarantee time-based
QoS properties of services (such as, e.g., time to reply to service requests), that should
be published in service contracts.

Acknowledgements. We thank the anonymous referees for their useful comments.

References

1. M. Berger. Basic theory of reduction congruence for two timed asynchronous pi-calculi. In
CONCUR, volume 3170 of LNCS, pages 115–130. Springer, 2004.

2. L. Bocchi, C. Laneve, and G. Zavattaro. A calculus for long-running transactions. In
FMOODS, volume 2884 of LNCS, pages 124–138. Springer, 2003.

3. M. Boreale, R. Bruni, L. Caires, R. De Nicola, I. Lanese, M. Loreti, F. Martins, U. Montanari,
A. Ravara, D. Sangiorgi, V. T. Vasconcelos, and G. Zavattaro. SCC: a Service Centered
Calculus. In WS-FM, volume 4184 of LNCS, pages 38–57. Springer, 2006.

4. M.J. Butler, C.A.R. Hoare, and C. Ferreira. A trace semantics for long-running transactions.
In 25 Years Communicating Sequential Processes, volume 3525 of LNCS, pages 133–150.
Springer, 2005.

5. M. Carbone, K. Honda, and N. Yoshida. Structured communication-centred programming
for web services. In ESOP, volume 4421 of LNCS, pages 2–17. Springer, 2007.

6. M. Carbone, K. Honda, N. Yoshida, R. Milner, G. Brown, and S. Ross-Talbot. A theoretical
basis of communication-centred concurrent programming. Technical report, W3C, 2006.

7. F. Corradini, D. D’Ortenzio, and P. Inverardi. On the relationships among four timed process
algebras. Fundam. Inform., 38(4):377–395, 1999.

8. P. Geguang, Z. Huibiao, Q. Zongyan, W. Shuling, Z. Xiangpeng, and H. Jifeng. Theoretical
foundations of scope-based compensable flow language for web service. In FMOODS, pages
251–266, 2006.

9. P. Geguang, Z. Xiangpeng, W. Shuling, and Q. Zongyan. Towards the semantics and verifi-
cation of bpel4ws. In WLFM 2005. Elsevier, 2005.

10. C. Guidi, R. Lucchi, R. Gorrieri, N. Busi, and G. Zavattaro. SOCK: a calculus for service
oriented computing. In ICSOC, volume 4294 of LNCS, pages 327–338. Springer, 2006.

11. D. Kitchin, W.R. Cook, and J. Misra. A language for task orchestration and its semantic
properties. In CONCUR, volume 4137 of LNCS, pages 477–491. Springer, 2006.

12. C. Laneve and G. Zavattaro. Foundations of web transactions. In FoSSaCS, volume 3441 of
LNCS, pages 282–298. Springer, 2005.

13. C. Laneve and G. Zavattaro. web-pi at work. In TGC, volume 3705 of LNCS, pages 182–194.
Springer, 2005.

14. A. Lapadula, R. Pugliese, and F. Tiezzi. A Calculus for Orchestration of Web Services
(full version). Technical report, Dipartimento di Sistemi e Informatica, Univ. Firenze, 2006.
http://rap.dsi.unifi.it/cows.

15. A. Lapadula, R. Pugliese, and F. Tiezzi. A Calculus for Orchestration of Web Services. In
ESOP, volume 4421 of LNCS, pages 33–47. Springer, 2007.

16. M. Mazzara and R. Lucchi. A pi-calculus based semantics for WS-BPEL. Journal of Logic
and Algebraic Programming, 70(1):96–118, 2006.

17. M. Merro and D. Sangiorgi. On asynchrony in name-passing calculi. Mathematical Struc-
tures in Computer Science, 14(5):715–767, 2004.

18. F. Moller and C. Tofts. A temporal calculus of communicating systems. In CONCUR, pages
401–415, 1990.

19. F. Moller and C. Tofts. Relating processes with respect to speed. In CONCUR, pages 424–
438, 1991.

20. X. Nicollin and J. Sifakis. An overview and synthesis on timed process algebras. In CAV,
volume 575 of LNCS, pages 376–398. Springer, 1991.

21. OASIS. Web Services Business Process Execution Language Version 2.0. Technical report,
WS-BPEL TC OASIS, August 2006. http://www.oasis-open.org/.

22. R.J. van Glabbeek. On specifying timeouts. ENTCS, 162:173–175, 2006.

