-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by INRIA a CCSD electronic archive server

archives-ouvertes

A type checking algorithm for qualified session types

Marco Giunti

» To cite this version:

Marco Giunti. A type checking algorithm for qualified session types. 7th International Work-
shop on Automated Specification and Verification of Web Systems, Jun 2011, Reykjavik, Iceland.
10.4204/EPTCS.61.7 . hal-00644061

HAL Id: hal-00644061
https://hal.inria.fr /hal-00644061

Submitted on 23 Nov 2011

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://core.ac.uk/display/49943727?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00644061
https://hal.archives-ouvertes.fr

A type checking algorithm for qualified session types

Marco Giunti
INRIA Saclay and LIX Ecole Polytechnique, France

We present a type checking algorithm for establishing aicedsased discipline in the pi calculus
of Milner, Parrow and Walker. Our session types are qualifigdinear or unrestricted. Linearly
typed communication channels are guaranteed to occur ailgxae thread, possibly multiple times;
afterwards they evolve as unrestricted channels. Sesgioqols are described by a type constructor
that denotes the two ends of one and the same communicattmmeh We ensure the soundness
of the algorithm by showing that processes consuming ahlimesources are accepted by a typing
system preserving typings during the computation and fipat¢hecking is consistent w.r.t. structural
congruence.

1 Introduction

Session types allow a concise description of protocols bgiliey the sequence of messages involved
in each particular run of the protocol. Introduced for aekalof the pi calculug |6, 12], the concept has
been transferred to different realms, including functi@ral object-oriented programming and operating
systems; refer ta [2] for a recent overview.

To illustrate, consider the problem of designing a web syster the scheduling of meetings. In
our example, the system is implemented by means of a welcesempeatedly waiting for requests to
create a poll. Once invoked, the service instantiates & fsession for the poll and launches a thread
for managing it. In the pi calculus][9] the session could baleded as a communication channel for
the exchange of the messages required by the schedulingcplotThe fresh channel for the poll is
forwarded back to the invoker on the channel she has prowidedler to receive the information needed
for the start of the poll: the title and a tentative date far theeting. Afterwards the thread repeatedly
waits for possible date proposals from the participanthiefgoll.

P =IX(y).(vp)(¥(p)-p(title).p(date).! p(date))

In order to have some guarantee on the behavior of the exsdelggstem, a static analysis of its code
should be performed during the compilation. A typed analymrmits indeed to verify the desired
properties of the protocol, namely that there is exactly tithee and at least one date proposal for the
meeting. To this aim we need to enforce that the capabilitywdoded to the caller consists in (i) send
a string for the title and afterwards (ii) send one or moreesglatThis behavior could be described by
relying on polymorphic types qualified as linear or unreséd. The idea is to introduce qualifiers for
types describing a session and to allow a linear usage okgds evolve to an unrestricted usage. This
approach has been indeed advocated as effective indeglgnilem any programming language [14].
A qualified session type for the poll channel sent to the ievok the one below.

S =linlstring.linldate.& S =unldate.Sy

The session type first describes the sending of a string ttheetitle of the meeting; such usage is
qualified as linear because a title for the schedule is requiimilarly, the continuation type for sending

To appear in EPTCS.

2 A type checking algorithm for qualified session types

the date of the schedule is qualified as linear because a datélbe set in order to start the poll.
Lastly zero or more date proposals could be send on the pafred; this behavior is described by the
unrestricted recursive typ®,. The continuation of the servid® is described by the typ8; below that
could be seen as the “dual” 8.

S = linstring.lin ?date.S3 S = undate.Ss.

The session type describes the behavior of receiving aditlk one or more date proposals for the
schedule. The receiving of the title and of the date propasalboth qualified as linear because this
information is mandatory. Eventually, zero or more datgpsals will arrive afterwards. The unbounded
behavior of receiving such proposals is described by theatricted recursive typ8;. The usage of the
poll channel is described by a type construdi®r, ;) representing the concurrent behavior of the two
channel ends [5]. The intuition is that in typing (the congtion of) service?; the type(S;,S) is split
into two parts: the linear output end point is used to typeddlegation of one end of the session to the
invoker while the linear input end point is used to type thetowation process.

While the idea of split types and contexts is clear and cendlge inherent non-determinism con-
tained in its formulation makes a direct implementatiorasible. Algorithmic solutions for linear func-
tional languages avoid to split the context into parts kefitrecking a complex expression by passing the
entire context as input to the first subexpression and haetuitn the unused portion as an output [15].
In the setting of concurrent computations, the idea is tHamtyping a parallel proce$3| Q the set
of linear identifiers used b must be calculated in order to remove it before type checkIngrhis
approach, previously outlined for linear types of pi calsuin [7], has been implemented in the session
system of[[3] by representing each channel end with a distilentifier.

In this paper, we propose an algorithm to check protocolsrde=i by types of the forniS;,S)
where eacl§ is a qualified session type depicting one end of the commtinicaChannels could evolve
from linear to unrestricted usage. Reasoning at the typs,lexe do implement split by forbidding the
utilization of used parts of types and by a careful analyéigualifiers. This construction permits us to
show that (i) type checked processes are accepted by a tgpstgm satisfying subject reduction and
that (ii) type checking preserves structural congruence.

More in detail, type checking relies on the definition of sal@nambiguous patterns. The patterns
for linear input and output processes do retumarkedcontext. In the body of the function a recursive
call to type check the continuation is launched. If an exoepis not raised, this call returns in output
a context. First, to ensure a subsequent linear usage toibkefthwithin the continuation we verify
the type for the variable in the context to be unrestrictegicdBd, to prohibit the use of the variable in
the next thread we return a context with an “unusable” markhe type of the variable. Similarly, in
delegating a channel end of a session we pass to the checkictipi for the continuation a context with
an unusable mark for the delegated type. Under replicatierdo no admit to return new typings marked
as unusable, which would imply consumption of a linear resmuLastly, the algorithm succeeds if the
context returned by the top-level call of the type checkungction does not contain linear types.

The remainder of the paper is as follows. In Seclibn 2 we thtce session types and pi calculus.
Section B presents the type checking algorithm. Setliondévsted to establish the soundness of our
approach. In the last part of the section we investigate xpeessiveness of the algorithm. Some exam-
ples of the concrete execution of the algorithm are illusttan Sectiom 5. We conclude in Sectidn 6 by
discussing limitations and future work.

M. Giunti 3

Types and Processes

q:= Qualifiers: T = Types:
lin linear S end point
un unrestricted (S9 channel

p = Pre Types: P = Processes:
7T.S receive x(y).P output
IT.S send x(y).P input
end termination PIP composition

S = End Point Types: (vx:T)P restriction
ap qualified channel P replication
a type variable 0 inaction
pa.S recursive type

Rules for structural congruence

PIQ=Q|P (P|Q|R=P|(Q|R) P|0=P IP=P|IP
(vx:T)P|Q=(vx:T)(P|Q) (vx:T1)(vy:)P = (vy: To)(vx:Tp)P
(vx:unp)0=0 (vx: (unp1,unp2))0=0

Rules for reduction

X(2).P|x(y).Q — P|Q[z/y] [R-Com]
P—Q P—Q P=P P—-Q Q=Q
(v)P = (vx)Q PIR— QIR P—Q

[R-RES] [R-PAR] [R-STRUCT]

Figure 1: Pi calculus

2 Picalculus

This section introduces the syntax and the semantics ofyipedtpi calculus. The definition is in
Figure[1l. We consider channel types of the fof&S) whereSis a type describing the behavior of
a channel end point. An end point tySean be a pre type qualified with or un, a recursive type or a
type variable. Each qualifier in a type controls the numbeinaés the channel can be used at that point:
exactly once fotin; zero or more times fain. A pre type of the formT.Sdescribes a channel end able
to send a variable of typ€ and to proceed as prescribed ®ySimilarly, pre type P.Sdescribes a chan-
nel end able to receive a variable of typeand continue aS. Pre typeend describes a channel end on
which no further interaction is possible. For recursived(pnint) types we rely on a set of type variables,
ranged over by. Recursive types are required to be contractive, that igaaming no subexpression of
the formpua; ... Uay.a;. Type equalityis not syntactic. Instead, we define it as the equality of leegu
infinite trees obtained by the infinite unfolding of recuestypesmodulo pair commutatianThe formal
definition, which we omit, is co-inductive. In this way we ugpes(ua.linlunend.lin?unend.a,unend)

4 A type checking algorithm for qualified session types

and (unend, linlunend.ub.lin?unend.linlunend.b) interchangeably, in any mathematical context. This al-
lows us never to consider a type.S explicitly (or a for that matter). Instead, we pick another type in
the same equivalence class, nam@jya.S/a). If the result of the process turns out to start with,ave
repeat the procedure. Unfolding is bound to terminate deemtractiveness. In other words, we take an
equi-recursive view of types [10].

The syntax and the semantics of pi calculus processes ae ti¢9] but for restriction, for which
we require type annotation. This is only to facilitate tyfpecking and has no impact on the semantics.
We rely on a set of variables, ranged ovendyy,z. For processes we have (synchronous, unary) output
and input, in the form&(y).P andx(y).P, as well as a parallel composition, annotated scope réstrjc
replication and the terminated process. The binders folathguage appear in parenthesjss bound
in bothx(y).P and(vy : T)P. Free and bound variables in processes are defined acdgrding so is
alpha conversion, substitution of a varialley a variablez in a process?, denotedP[z/x]. We follow
Barendregt’s variable convention, requiring bound vdealio be distinct from each other and from free
variables in any mathematical context.

Structural congruence is the smallest relation on proseasstuding the rules in Figuifg 1. The first
three rules say that parallel composition is commutatigspeiative and ha¥as neutral element. The last
rule on the first line captures the essence of replicatiomasihounded number of identical processes.
The rules in the second and third line deal with scope reisnic The first, scope extrusion, allows the
scope ofx to encompas®); due to variable conventiorx, bound in(vx: T)P, cannot be free iQ. The
next rule allows exchanging the order of restrictions. Thleg on the third line state that restricting
over a terminated process has no effect. Since it makes posego declare a new variable with a
linear type for a terminated process, we require the typetation to be unrestricted. The reduction is
the smallest relation on processes including the rulesgnrel. The [R-©M] rule communicates a
variablez from an output prefixed or&z).P to an input prefixed processy).Q; the result is the parallel
composition of the continuation processes, where the bearidbley is replaced by the variablein
the input process. The rules on the last line allow redudiidmappen underneath scope restriction and
parallel composition, and incorporate structural congeaeinto reduction.

3 Type checking algorithm

In this section we present an algorithm for type checking eafiulus process given a typing context.
Type checking relies on the definition of several patterngkyHor the sake of clarity, we present in a
declarative style. Lastly, in Figufeé 2 we present an exaogfrgiie ML implementation.

Contexts We letl” be a map from variables to types and toéd symbol, noted; a void symbol permits
to mark an end point as unusable.

M,N,O ::= S|o entry
Fa=0|rx:M|F,x:(M,N) context

Context updating, noted, is the procedure effected by the typing system to transtoumid entry in an
end point entryl" . x:owXx: M =T ,x: M. A safecontext is a map from variable to safe entries; we let
the predicataafe(I") hold whenevex € dom(I") impliessafe(I"(x)). A linear channel type is safe if (i)
the type of the variable sent in output corresponds to the égpected in input and (ii) the expected type
for the input is safe and (iii) the continuation is safe. Fowarestricted channel type we require (i) and

M. Giunti 5

(ii): (iii) will be enforced by the type system.

safe(M)

safe((M1,My)) Ji € {1,2}. Mj = o,unend
safe((lin?T.S,1inIT.Sy)) = safe(T) Asafe((S1,S))
safe((un?T.S,un!T.S)) = safe(T)

A context isunrestrictedif it contains only unrestricted or void entries. We let(I") wheneverx €
dom(I") impliesun(I" (x)).

un(o)
un(unp)
un((M,N)) =un(M) A un(N)

Patterns. We present typing rules for processes of the forh P>, wherel ; is a context received in
input andr, is a context produced as output. Given thatis a context such thatfe(I"1), the rules are
chosen deterministically by inspecting (i) the shape oftihvetext and (ii) the shape of the process, in the
following way. Each rule is implemented as a pattern of a fiencwith signaturecheck(g : context, p :
process) : context. For each function call with a safe context parameter, zeane pattern does match;
in the first case a pattern exception indicating the rejetih®fprocess is raised while in the second case
a context is returned in output to the caller. The rules foialdes have the formh, -v: T, and are
implemented as patterns of a function with signatthreckVar (g:context, v:var):context . In the rules
below the output context is obtained by setting to void thedr assumptions used to type the variable.
The last three rules permit to resolve any ambiguity in tgpam unrestricted end point type with an
unrestricted channel type.

M=rq,x linp, I M=rq1,X unp, M2
A-V-L],[A-V-U
M=x:linp>Tq,X: 0, MEX:unpel [M]
M=rq,x: (lin P1,lin pz),rg
A-V-LL-
M= x: (lin P1,lin p2)1>r1,XZ (o,o),rz [L]
M=rq,x: (lin P1,lin pz),) [A-V—LL- R]

M Ex: (linpg,linpy)>T1,X: (0,0),I2

F=r1,x: (linp,N),I2 F=rq,x: (M,linp),l>
MEx:linp>Ta,x: (o,N),I MEx:linp>Tg,x: (M,0),I2

[A-V-L- R],[A-V-L- L]

Mr=T1,X: (unp,unpz),l2 Mr=T1,X: (unpg,unpz),l2

[A-V-UU- L],[A-V-UU- R]

MEx: (unpg,unp)>T I x: (unpg,unpr)>T
F=r1,x: (unp,N),l2 unp#N F=ry,x: (Myunp),l2 unp#M
FEx:unpol FEx:unpol [A-V-U-LLIA-V-U-R]

N =T41,X: (unend,unend),l>

M= X: unend>T [A-V-EE]

Rule [A-OuT-L] is to type processes sending variables on a channel ndatkar mode given that the
type for the channel in the context is an end point. The camtiexnged by setting the channel to void is

6 A type checking algorithm for qualified session types

used to check the sent variable at the expected type andiimatueturn a new context. The new context
updated with the continuation type for the linear channgkissed as parameter in the call for checking
the continuation process. To ensure a linear use of the ehtmhe finished within the continuation, we
verify that the context returned by the call for the contiimra does contain an unrestricted typing for
the channel. Finally, the returned context is given as dutftl the typing for the channel set to void.

M,X:oby: Tl MNwx: SFPrI3,x: M un(M)

A-OuT-L
M1,X: lin! T.SEX(y).P>T3,X: 0 []

Rules [A-QUT-L-L],[A-OuT-L-R] are used when the entry for the linear output in the contexd i
channel type. The rules are implemented by the pattern [A-0O]. In returning the context we set one
end of the channel type to void while we leave the other entlteasibeen received in input.

M1,X: lin! T.SEX(y).P>T3,X: 0
A-OUT-L-
Fx: (InT.SN) F X(y) PoTa,x: (o,N) [A-OuT-L-L]
M1,X: lin!T.SEX(y).P>T3,X: 0
A-OUT-L-R
F1,x: (M, lin!T.S) F X(y).P>T3,x: (M,0) []

For sending a variable on an unrestricted channel we reduiresent variable to be typable by the
same context received in input; that is, the type for the stnicted output channel must be recursive.
The context obtained by the typing for the variable is theedu® call the checking function for the

continuation process.

M,X:SFEv: Tl MEP>I3 S=unlT.S

A-OUT-UN
M1,X: un!T.SEX(y).P>T3 []
F,x: (SN)Fv: Tl ToFPel3 S=un!T.S
A-OUT-UN-
F1,x: (un!T.SN)FX(y).Pol3 [A-OUT-UN-L]
r M,SFv: Tl MobPol S=un!T.S
Lx: M,GFv: Tele 2 s = [A-OuT-UN-R]

M1,x: (M,un!T.S) FX(y).PoT3

To type a linear usage of an input we require the expected ttygree with the type of the input
channel and the continuation type for the channel to be enaduwithin the continuation. This is
implemented by requiring that the context returned by thifaathe continuation does map the variable
to an unrestricted type. We also require a linear usage éovdhiable bound by the input to be finished
within its local scope. Lastly, the call returns a contexith the type for the linear variable set to void
and (ii) pruned by the variable bound by the input prefix. Tikithe rationale of rule [A-L] and or
rules [A-IN-L-L],[JA-I N-L-R] which are used for variables having respectively an endtpmia channel

type.

M. Giunti 7

M,x: Sy: TEPeIy,x:M)y: O un(M) un(O)

I1,X: lin?T.SE X(y).P>T2,X: 0 [A-IN-L]
I1,X: lin?T.SE X(y).P>T2,X: 0

A-IN-L-L

M1,x: (lin?T.SN) Fx(y).P>T2,x: (o,N) []

M1,X: 1in?T.SE Xx(y).P>T2,X: 0 [A-I N-L-F]

M1,x: (M, 1in?T.S) F x(y).P>T2,x: (M,0)

The rules for unrestricted input take the context receivethput and add the bound variable at the
expected type in order to type the continuation. The comteirned by the call of the checking function
for the continuation needs to be first verified to ensure tiatytpe for the bound variable is unrestricted,
and then pruned by the variable to be returned in output.

M, x: Sy: TEP>I2y: 0O un(O) S=un?T.S

A-IN-UN
M1,X: un?T.SEX(y).P>T2 []

M1,x: (SN),y: TEP>T2y:0 un(O) S=un?T.S
A-IN-UN-L
M1,x: (un?T.SN) F x(y).P>T !]

M, x: (M,S),y: THP>I2,y: O o S=un?T.S
17X (U)7y > 27y Un() un [A_IN_UN_R]

M1,x: (M,un?T.S) Fx(y).P>T>

To type an inert process by using [ACT] any context suffices; the context received in input is for-
warded in output. To type a parallel process in [ARP we check the first thread with the context
received in input. This operation returns in output a contieat is used to type-check the next thread.
The context returned by the last typing is forwarded in outpdv/hile imposing an order on parallel

processes could appear restrictive, in Sedtion 4 we willvsthat the chosen order makes no difference.

MEP>I MkFQ>rs
MEP|Q>I3
In order to type a process generating a new channel, in ruleg4] we require the typing for the channel

to be safe; if it is not, the algorithm stops and an exceptoraised. Similarly to the input cases, if a
linear usage is prescript for the new variable then it mudiriighed within its scope.

r=osr [A-INACT],[A-PAR]

safe(T) T,y: TEPeI2,y: O un(O)
Mk (vy: T)P>T

The rule for replication [A- RPL] is below. In the call for checking the process under theicafibn
we require the context returned in output to be equal to tleereneived in input. Indeed, a change in
the output context would be obtained by introducing a voidhisgl indicating that a linear resource has
been consumed. This must clearly be forbidden under relicaOn contrast, we allow to return linear
entries in order to type check the next thread.

[A-RES]

M EPsTy =T,
ML FIPoT,

[A- REPL]

A type checking algorithm for qualified session types

datatype qualifier
datatype preType

and
and

endpointType =
sessionType

type context

datatype process

fun
fun
fun
fun
fun

(x

fun

safe
unVar
remove
setVoid
checkVar

checkVar

checkVar

checkVar

checkVar

check

check

check

check

check

typeCheck

= Lin | Un;

= In of sessionType * endpointType | Out of sessionType * endpointType | End

Qualified of qualifier * preType | Void

= EndPoint of endpointType | Channel of endpointType * endpointType;

= (string * sessionType) list;

= Zero | Replication of process | Parallel of process * process
[

Input of string * string * process | Output of string *
| New of string * sessionType * process;
(g:context) :context;
(g:context,v:string) :context;
(g:context,v:string) :context;
(g:context,v:string) :context;
((x, ((EndPoint (Qualified (Lin,p)))))::g,
(z, ((EndPoint (Qualified (Lin,r)))))) =
if p=r then (x, (EndPoint Void))::g
((x, ((EndPoint (Qualified (Un,p)))))::g,
(z, ((EndPoint (Qualified (Un,r)))))) =
if p=r then ((x, ((EndPoint (Qualified (Un,p)))))::g)

((x, ((Channel (Qualified (Lin,p), Qualified (Lin,s)))))::g,

(z, ((Channel (Qualified (Lin,r), Qualified (Lin,t))))))=
if p=r andalso s=t then
((x, ((Channel (Void, Void))))::g)
else
if p=t andalso s=r
then ((x, ((Channel (Void, Void))))::g)
((x, ((Channel (Qualified (Lin,p), Void))))::g,
(z, ((EndPoint (Qualified (Lin,r)))))) =
if p=r
then ((x, ((Channel (Void,Void))))::g)
((x, ((Channel (Qualified (Lin,p), Qualified (Un,s)))))::g
(z, ((EndPoint (Qualified (Lin,r)))))) =

if p=r
then ((x, ((Channel (Void, Qualified (Un,s)))))::g)
| A-V-L-L | A-V-UU-L | A-V-U-L | A-V-U-R | A-V-E-E
(g:context,Zero:process)=
g

(g:context,Replication p)=
if g = check(g,p)
then g
(g:context, Parallel (p1,p2)) =
check (check (g,pl) , p2)

((z, (Endpoint (Qualified (Lin,In (a,c)))))::t, Input (x,y,p))=

let val d = check ((x,Endpoint (c))::t,p) in
setVoid (remove (unVar (unVar (d,x), y), y) , x)
end
(g:context,New (x,t,p)) =

>

remove (unVar (check ((safe([(x,t)]))eg, p) , x) , %)
| A-IN-L-1 | A-IN-L-r | A-IN-Un | A-IN-Un-1 | A-IN-Un-r | A-OUT-L

| A-OUT-L-1 | A-OUT-L-r | A-OUT-Un | A-OUT-Un-1 | A-OUT-Un-r
(g:context,p:process) =
un (check (safe(g) , p));

(*x A-V-L

(x A-V-U

A-V-LL-L+R

(*x A-V-L-R

(*A-V-L-R

(* A-INACT

(* A-REPL

(* A-PAR

(* A-IN-L

(* A-RES

string * process

*)

*) ;

*)
*)

*) ;

Figure 2: ML code of the algorithm (excerpt)

M. Giunti 9

Lemma 3.1. If safe(I"1) andl"y - P>T, thendom(I"z) = dom(I";) andsafe(I"2).

Type checking Having defined typing rules corresponding to patterns efdhecking function, we
devise an algorithm for establish a session-based typipliiee Figure 2 presents the ML definition for
types, processes and the type checking function. €gpeext associates variables to entries which are
formed apart the end point and the channel type. The funetiinreturns in output the same context
received in input whenever the context satisfies the safiqate, otherwise it generates an exception.
FunctionunVar takes as parameters a context and a variable and verifiehéhyipe for the variable in
the context is unrestricted; in this case the context igmetlin output, otherwise an exception is raised.
Functionsremove andsetVoid do perform the required operations and return the updatetéxo We
also need auxiliary functions to push and pop entries to amuh the context stack; we omit all the
details.

Thecheck function, the kernel of the type checking procedure, is @efioy the union of the patterns
for the rules introduced in the current section. In ordelltsirate the mechanism, we draw the trans-
lation of some patterns. In patterns for variables and inAL] we assume the variable on the top of
the contextizto be equal to the variabberespectively for the value to type and for the input prefixiaf t
process. TheheckVar function is called in patterns for output in order to type slemt variable and ob-
tain in output a context to pass together with the the coation to the checking function. In [AN-L]
we launch the recursive call of the check function by pasamparameters the updated context and the
continuation process. After checking that the type for lmbthnnelk and the variable bound by the input
are unrestricted in the returned context, we return thessomiith the type fox set to void. In the pattern
for [A-RES] we launch thecheck function by passing as parameters the context with the nésy and
the continuation process. The inner call of the safe fundtiomediately raises an exception if the type
for the bound variable is not safe. Lastly, we first contr@ttin the returned context the variable is
unrestricted and then we return the context pruned by thiablar The algorithm is implemented by the
typeCheck function. The function receives in input a context and a essc If the context received in
input is not safe then the function exits immediately. Ottige, a context is returned in input provided
that an exception has not been raised. The exception cds&l(ipwhen no pattern matching is possible
for the chosen derivation or (ii) when a call of tk&fe function in [A-ReS] fails or (iii) when call of
unVar function fails. Since the choice of patterns is determiai&ir safe contexts, no backtracking is
needed. Lastly, the process is accepted by the algorithnrmeviee the returned context satisfies time
predicate defined in Sectiénh 2.

Lemma 3.2. If safe(I") thencheck(I",P) matches zero or one patterns.

Lemma 3.3. If check(I'’,P’) has been recursively invoked typeCheck(I", P) then we haveafe(l"”).

Proof. A call is a match of a patter; - P>T"» which is an axiom whenevé = 0, and has been inferred
from an hypothesis starting with a type environm&min the left otherwise. We proceed by induction and
show a stronger result, namely tafe(A) impliessafe(I"1). We close the proof by applying Lemimal3.1,
and eventually by exploiting transitivity in cases for auttpnd parallel composition. O

Corollary 3.4. If check(l'’,P’) is a call invoked during the execution §fpeCheck(I",P) then there are
Zero or one patterns to match.

10 A type checking algorithm for qualified session types

Context splitting rules

[=11-15 T =unpor (unps,unpy)

0=00 1Lx: T=(I,x: T)-(I2,x: T)
[=11-15 T =linpor (lin pg,lin p2) [=11-15 T =linpor (linpg,linp2)
Lx: T=(1,x:T)-1 Ix: T=11-(l,x: T)
I =I1-12
[,x: (linpg,linp2) = (I1,X: linpg) - (I2,X: lin pp)
I=1l1-12
I,x: (linpg,unpz) = (I1,X: (linpg,unp2)) - (l2,X: unpp)
I =I1-12

I,x: (linpg,unpz) = (I1,X: unpz) - (I2,X: (lin p1,un p2))

Typing rules for values

un(l) [FpVv: (Sunp)

T-VAR] [T-STRENGTH
I,X: TFpx: T | FpVv: S [I]

Typing rules for processes

IU£(|3|)O : FI1D ilFD R|12!FRD2 & [T-INACT] [T-PAR]

lFDﬁqﬂém“) IX:T:EEW:;;?Oj [T-RePL[T-RES)

I7)I<,:xs:5 é’:?;;—DDRx(y).é*) - l_DI\lli (-Il-z,x: qlz!ili(.:S)S:DD;vyR - [T-INL[T-OuT]
(x) q=un=q?T.S=S (+%) q=un = T.S=S

Figure 3: Split-based typing system

4 Soundness

This section is devoted to establishing the soundness ald¢ioeithm. To this aim we project the pattern
rules presented in Sectigh 3 into the typing system of Fifdrevhich satisfies subject reductidn [5].
The syntax of types and processes occurring in Figlre 3 ioftaigure[1. Context$ are a map from
variables to typeg :

l=0]1,x:T.

Typing rules in Figuré]3 are based on a declarative definibibcontext splitting; the intuition is that
unrestricted types are copied into both contexts, whiledirtypes are placed in one of the two resulting
contexts. We refer td [5] for the details.

We introduce preliminary Lemmas and Definitions which wil liseful to prove the main result of
this section. Given a judgmeht - P, of the algorithmic system of Sectiéh 3, we let the used clsur
of a type contexi’ 1 w.r.t. I, notedl" ;> », be the typing context @ wheneviey = 0, and be defined by

M. Giunti 11

(F1>T2)(x) =T1(X)>2(x) otherwise:
obo=o0 linpp>linpy =o
linpyi>o =linpPg un pP1>unPr =unpg
(M,N)>(M’,N) = (M>M' N>N’) .

The map operation projects a type environmiemato a context of Figure[3. When applied to a used
closure, it permits to map linear typings which do not chaingm I'; to I into theunend type.

map(o) = unend map(S) =S
map((M,N)) = (map(M), map(N)) map(N) = (J x:map(r(x))

Lemma 4.1. Assumeafe(l'1). If 1 - P>T 5 thenmap(l1>T>) is defined.

A used closure generated by the algorithmic system is serfiti¢o type a process with the systeg,
as we will show in a nontrivial manner below. We need a coupleramas for strengthening judgments
of the algorithmic system and weaken judgments of the bpliied system.

Lemma 4.2(Algorithmic strengthening) The following hold.

1. fry,x:linpE Py, X linpthenl 1 - P>Ty;
Ifry,x: (linp,S) FP>To,x: (linp,N) thenl,x: Sk P>T2,x: N/;
IfM1,x: (M,linp) F P>To,x: (M’linp) thenl 1, x: M F P>, x: M’;
fri,x:oFPp>ly,:Xx:othenl 1 - PpTy;
IfF1,x: (o,N) P2, x: (o,N) thenl1,x: NF P>y x: N;
IfF1,x: (M,0) FP>Ta,x: (M o) thenl1,x: Mt PrTox: M
Ifry,X:unpk P>l x:unpand x¢ fv(P) thenly - P>Ty;

8. IfM1,x: (unpg,unp2) = P>T2,X: (un p1,unpz) and x¢ fv(P) thenlMy - P>,
Lemma 4.3(Weakening) |,x: Skp P implies Lx: (Sunp) Fp P.

We have all the ingredients to prove the following resultettis the wedge of the proof of soundness.
Lemma 4.4. Assumeafe(I'1). The following hold.

1. Ifrpkv: Telathenmap(FisMo) Fpv: T;

2. IfF1+PoTpthenmap(Fi>T) p P.

No o s~ DN

Proof. We first prove (1). AssumEy,x: linp,[2 F x: linp>T1,X: o,[,. Notice thatl = map((F'1,lM2) >
(M1, 2)) is a safe type context such thafl), i.e. it contains only unrestricted typings, and thapr>o =
linp. We apply [T-VAR] and inferl,x: linptp X: linp. The cases for typing a linear or unrestricted
channel type, or an unrestricted channel type are analogéssumerl 1,x: (linp,N),I2 - X: linp>
M1,%: (o,N),I2. Letl =map((F1,M2)>(I1,72)). We havel (x) = (lin p,S) with S= un p’ or S= unend.
From these results and [TA®] we infer I,x: (linp,S) F x: linp. Now assume thaf Fp x: unp>T
with ' = T1,x: (unp,N),l2. Fromun(map(l' >T)) and [T-VAR] we infer that there iS= unp’ or
S = unend such thatun(map(F'>T)) Fp x: (unp,S). We apply [T-SRENGTH] and infer the desired
result: map(l'>T) Fp X: unp.

To prove (2) we proceed by induction on the length of the @gidwn forl", - P>T». We prove the
most interesting cases. We use the notafigr to indicate the context’ whenever” =T’ x: M or
r=r’,x:(M,N).

12 A type checking algorithm for qualified session types

[A-PAR] We havel'; - P | QT3 inferred fromly - P>y andlMz H Q>T3. We proceed by case
analysis o ;. If 1 = 0 we are done by applying the first rule for context splittiri@therwise
assumd; =TI ,x: T. We exploit Lemm&4]1 in order to infer the typelof(x) andl3(x).

(T =0). We havemap('1>T2)(X) = unend andmap([2>T3)(X) = unend. We apply [T-RAR]
to the I.H by using the second rule for context splittingrtep (1 >2) Fp P andmap(l2>
M3) Fp Q.

(T = (o,0)). Analogous to the previous case.

(T =linp). We have two cases fonap(I'1>2)(x) corresponding to (i)in p and (ii) unend. In
case (i) we havenap(I',>T3) = unp. This is because by definition @iap we have that
2(x) = o. By applying Lemma 4]3 we weakenap(I'1>I,) and obtain an environmeit
equal tomap(I"'1>T,) but for the entryc which is weakened tdin p,un p’). We apply the I.H.
and infer the desired result by applying the fifth rule forteom splitting in [T-RAR]: A+Fp P
andmap(I2>3) Fp Q. In case (i) we hav€2(X) = linp. In sub casenap(2>T3)(X) =linp
we apply the I.H. and proceed by weakening the typ&itend, lin p) in order to apply the
sixth rule for splitting in [T-RAR]. In sub-casenap(I'2>I3)(X) = unend we apply the second
splitting rule.

(T = (lin pg, lin p2)). We have four cases fanap(I'1>2)(X) corresponding to (iiilin py, lin p2)
and (iv) (lin p1,unend) and (v) (unend, lin p2) and (vi) (unend,unend). In case (iii) we infer
[2(X) = (0,0). We apply Lemma4]2 and strengthen the algorithm’s judgrbgmemoving
the entry forx in I'2: To\xF Q>T3\x. We apply the I.H. and by [TAR] we infer the
desired result by applying the fourth rule for context $iplg to map(I'y>02) Fp P and
map(F2\x>3\X) Fp Q. In case (iv) we havenap (2> 3)(X) = (unend,S) whereS= lin pp
or S=unend. If S=linp, we know thatl;(x) = (o,linpz). We apply Lemma_4]2 and
infer both ", x : linpy - P> (F2\x),x : o and (IF2\x),x : linpz = Q> (M3\X),x : o. We apply
the I.H. and infer the desired result by applying [ARP with the fourth rule for context
splitting: map (I, X: lin p1>(F2\X),X: o) Fp Pandmap((I2\x),x: linpz>(M3\X),Xx:0) Fp Q.
Otherwise wher§ = unend by strengthening and I.H. we haveap(I", X : lin ps > (F2\X), X :
o) Fp P andmap(I'2\x>T3\X) Fp Q; we conclude by applying the third rule for context
splitting.

(T = (linpg,0),= (o,lin p2)). Similar to the previous case.

(T =unp,= (unpg,unpz),= (unps,o),= (o,unpz)). The result follows by applying the I.H. and
the second rule for context splitting in [TAR] to map([1>T2) Fp Pandmap(l2>T3) Fp Q.

[A-OuT-L] We havel 1, x: lin!T.SF X(y).P>T3,x: o inferred fromly,x: 0 Fv: T andlMWx: Sk
P>T3,x: M providedun(M). By strengthening we infeF; - v: T>T2\x. By I.LH. we infer
map(l1,x: S>T3,x: M) Fp P. LetA be equal to the environmentap(I'1,x: S>T3,x: M) for all
entries but forx, for which we letA(x) = Iin!T.(S>M). We apply [T-QuT] and the fourth rule for
context splitting and we concludetap(l1>2\X) - A.

[A-OUT-L-L] We havel 1, x: (lin!T.SN) FX(y).P>T3,x: (o,N) inferred froml 1, x: lin!T.Sk X(y).P>
3,X: 0. By LLH. we infermap(I'y,x: lin!T.S>T3,X: o) Fp X(y).P which we rewrite asnap(I'; >
M3),x: lin!T.Skp X(y).P. SinceN®>N is unrestricted, by weakening we infetap(l'y>13),X:
(lin!T.SN>N) Fp X(y).P. This is the requested result sineap(l1>T3),x: (lin!T.SN>N) =
map(1,x: (lin!T.SN))>T3,x: (o,N).

[A- REPL] We havel 1 H!P>T; inferred froml 1 - P>T"5 providedl'; = ;. By I.H. we havemap(I'; >
1) Fp P. Sincel’ 1> is an unrestricted context, sorisap(I'1>1). We apply [T-RepL] and we
conclude:map(l1>T1) Fp!P.

M. Giunti 13

[A-1NACT] We apply [T-INACT] and infermap(I>I") - O.

By relying on this result we establish the soundness of tyerdhm.
Corollary 4.5 (Soundness)If typeCheck(l,P) then I+p P.

Proof. If the algorithm succeeds then we have P>T with un(I"). Considerx € dom(l). If 1(x) =
linp then we know thaf (x) = o. Thereforemap(l >I)(x) = linp. Similarly, if I(x) = (linpg,linpz)
then map(l >I)(x) = [(x). The last possibility id (X) = unp,= (unpz1,un p2) and we conclude that
map(l >I)(x) = I(x). From these facts we infenap(l >I") = 1. The result then follows by applying

Lemmd4.4. O

The hypothesisafe(l) in typeCheck(l,P) allows us to infer that typings are preserved by the system
in Figure[3, in the following sens&l[5].
Lemma 4.6(Subject reduction) Assumeafe(l). If | Fp P and P= P’ then I -p P’ with safe(l’).

Finally we prove an important result, namely that the aliponi preserves structural congruence. To
tackle the proof, we need a construction similar to the orleeoimd 4.4.

Lemma4.7. Letl1 - P>l We havd 1> 2 = PO, with

o I(x) =lin,p
Dr(X) = (o,o) F(x) = (Iin P1,lin pz),: (lin p170)7: (o,lin pg)
r(X) x € dom(l")

GivenTl 1, with the same domain we define the update of contextE, as the operation below:

M1 @ M» Fl(x) = Ml, rz(X) =My

Myl =
{ (M]_H:J N1, Mo W Nz) Fl(x) = (Ml,Nl),rz(X) = (Mz,Nz)

Lemma 4.8(Algorithmic weakening) Letl1 - Pr-T». The following hold.
1. ifx¢ dom() then (i) 1,x: M EP>T2,x: M and (i) [1,x: (M,N) - P>T2,x: (M,N);
2. ifrwr is defined them W - PTowrl.
Lemma 4.9(Structural congruence)Assume P= Q. We havd ; - P>Ts if and only ifF1 - Qo Io.

Proof. The most interesting case is parallel composition. AssOme P | QT3 inferred fromI™y -
P>y andlMz - QT3 By Lemmd4y we havE > F P>0Or, andla>T3 - Q> Or,. In fact, it holds
Or, = 0= 0r,. Letl"4 be the solution of the linear system defined by equatians (M>3) w4 and
My = (F1>T2) W3 Such a solution does exist (see the Appendix).l'By QT3 and Lemma 417 we
infer >3+ Q. By using Lemma 418 we have,>M3W My F Q0w 4. Nexttakel 1>, - P[0
obtained by applying Lemnia 4.7 kg - P>T,. We apply Lemma4]8 and inf¢F 1>)Wz PeOW
I'3. Since the update @f with a type environmerit, whenever defined, satisfies the equatibnl =T,
the judgments above could be rewrittenfas- QT4 andlM4 - Pr-T'3. We apply [A-RAR] and obtain
N Q| P>I3, as required. The other direction for the parallel case &agous. The second rule
for congruence of parallel processes is straightforwaatitained from the definition of [A-#R]. The
cases for replication and inaction follow easily from thetfédnat the context received in output is equal
to the context received in input. The cases for scope réstri¢ollow from the definition of [A-RES]

14 A type checking algorithm for qualified session types

and from algorithmic strengthening and weakening (LemmasaAd [4.8). To illustrate, take the rule
(vx:unp)0=0. Assumd I O>I" and letx ¢ dom(I"), eventually by alpha-renamingn the left process.
By weakening we infeF ,x: un pt 0>, X : un p. We apply [A-Res] and concludef + (vx:unp)O>T.
Now assumeé + (vx:unp)O>T 4 inferred froml,x: un pk0>T1,Xx: O. From the fact that this judgment
has been inferred by using [ANACT], we infer[1 =T andO = unp. Sincex ¢ fv(0), by applying
strengthening we infer the desired reshlt; 0T . O

Theorem 4.10. ThetypeCheck algorithm is effective for establishing a session-baseake giscipline.

Proof. Apply Corollaried 3.4 4]5 and Lemmlas 4.6 4.9. O

4.1 Towards semantic completeness

The algorithm is unable to type check some process that abtgpy the type system in Figure 3. This
is trivially true for all processes typed by unsafe contelatg also for typings of the form:

r,x: (lin?T.S1in!T.S) Fp x(y).P P=C[x(2).P]
r,x: (lin?T.S1in! T.S) Fp X(X) T =1in?T.S.

As argued in other works on session types (e.gl[3, 1]), ilnsethat ruling out such processes does
not comport an issue since they appear to be deadlocked.playdeformal proof of this statement, we
have developed a typed observational theory where the lmettdyprocesses is contrasted w.r.t. the typed
knowledge of the observer|[4]. The discerning capabilitthefobserver is regulated by the type checker;
in particular, type checking forces contexts to not interfeith a session shared by two participants.
Behaviorally equivalent pi calculus processes exhibitsém@e observables in all type checked contexts.
To avoid universal quantification, we rely on a proof teclhigidpased on bisimulation over typed labelled
semantics.

The aim is to prove that if Fp P has been inferred by using [NWC] or [T-OuTC] with a lin-
ear channel type, theR is indistinguishable fron®D in all contexts type checked by a type environ-
mentY compatiblewith |, notedY = P = 0. To illustrate, assume that by applying [W<] we infer
I,x: (lin?T.S lin! T.S) Fp X(y).P. Intuitively, a process type checked ¥ycannot tell apart the input pro-
cess from0 because interaction onis forbidden byY; the compatibility condition enforces the type
environmenty to do not contain input or output capabilities)gfwhich are already used in a linear way
in I. Once obtained this result, we should be able to prove owrighgn to be semantically complete, in
the following sense.

Claim(Completeness)f 11 -p Py then there are a type environménand a process, s.t. typeCheck(I2, P)
andY E P = P, with Y a type environment compatible with bdthandl.

The idea is to build®, by descending the derivation tree fiqr— P; and by substituting subtrees of
I1 F Py with a leafl, - 0 by following two rules:
[T-INC] I1,x: (lin?T.Slin! T.S) - x(y).Q is exchanged witlt, I 0;
[T-OUTC] Iy, x: (lin!T.S1in?T.S) - X(V).Q is exchanged witlt, - O;
Ideally, we would letl; = I,. Unfortunately, the linear design of the algorithm forbithis option
since the call of the type checking function would return irput the linear entries not consumed by

[A-INACT]. This approach indeed works if we relax the linearity ofdyghecking an relies on an affine
setting where each session type is used at most once. Osieemué could prune the linear entries from

M. Giunti 15

I1,X: (Iin?T.S1in!T.S) and let the type environmeht to contain all unrestricted typings In. The proof
should proceed by co-induction by exploiting the typedrbidation semantics defined inl [4].

As a by-product, this technique could be also useful to defieaple deadlocks generated by erro-
neous programming of two opposite linear capabilities irguential way.

5 Examples

The protocol for the scheduling of a meeting discussed ini@€d requires the interaction with one or
more clients executed in parallel with the service. The &toap is due to the interaction with a client
process acting as the creator of the poll, defined as présdsslow. The process, once it has received
the channel for the poll, sets the title and the date and trdssthe invitation for the poll to a number
of recipients by forwarding the channel established to compate the date proposals. An instance of
the protocol is obtained by considering the parallel corijosof the serviceP;, and the client,; we

let string = unend = date.

PL=IX(W).(vp: (S1,S)) (W(p).p(title).p(date).! p(date))

P =X(y).y(p).(P{Meeting) . p(17March).(z(p) | - | Zn(P)))
S =linXtring lindate.S S =un?date.S

S =linlstring.linldate.& Sy =unldate.

By passing the (safe) conteixtbelow to the type checker we obtain ttat| P, is accepted. Notice that,
due to Lemm&4l®; | P, is also accepted; we believe this feature to be of practitatést. For the sake
of compactness, in the following we will shorten the uniiegtd typeunend with end.

F=x:TyY: (lin!S.end,lin?Sy.end), 7 : linlS.end, ..., Z, ! lin!Sy.end
Tx = (Ha.un?(lin!Sy.end).a, ub.un!(lin!Sy.end).b)

We present below the most interesting snippets of the execat typeCheck(I, Py | P,).

Typing the (linear) poll delegation. In typing the continuation dP;, the [A-RES] pattern is matched.
Once verified that the typs;, S) is balanced, the following sub-call is launched by addiniféocontext
the channel type for the poll:

1 =check(,w:lin!S.end, p: (S1,S) , W(p).p(title).p(date).! p(date)) (1)

The call [1) matches the pattern [Au@-L] and a call for the continuation is invoked by setting tadvo
the sent end point typs,.

2 =check(,w:end,p: (Si,0), p(title).p(date).!p(date)) 2

When receiving the context,, the pattern [A-@T-L] requiresl >(w) to be unrestricted. The context
returned in output to the call ifl(1) is obtained by settiigw) = o. When receiving the context;,
the pattern [A-Rs] requiresl 1(p) to be unrestricted, and the context returned in output taétler is
obtained by removing the entry farfrom I'1.

16 A type checking algorithm for qualified session types

Typing the replicated receiving of the date In typing the continuation of the process above the pattern
[A-IN-L] is matched and the following call is launched by passiagrarameter the contekt =", w:
end, p: S, title : string, date : date :

M3 =check(T’ , Ip(date)) (3)
The pattern [A- RPL] is matched and the following call is launched.
4 = check(', p(date)) 4)

To succeed in returning the context in output, [AEMR] requires the contexK 4 received from the
call (4) to be equal td”’. This is satisfied; in this way we know that any linear reseunas not been
used under replication, because that would have impliegtbeence of a new void typing. Finally the
contextl'3 =4 is returned by [A- RPL] to the caller.

Typing the (unrestricted) poll delegation In typing the continuation of the clie®, pattern [A-QuT-L]
is matched and the following call is launched by passing@smaent the contexts = x: Ty, y: (o,end), p:
S,71 1 linlS.end,. ..,z lin!1Sy.end:

s = check(T3,Zz(p) | -+ | Za(P)) (5)

The call [5) matches the [AAR] pattern and corresponds to the forwarding of the poll toréugpients
in order to propose a date. The checking procedure for thedtegation is invoked:

6 = check("s, Zi(p)) (6)

The context g obtained by setting to void the entry fay in '3 is returned to the callef{5) in order to
type the next thread. Lastly contexg is obtained by setting to void the entries far...,z,in 3.

Remark.By setting typings to void at the end of the call for a lineagihg we avoid unsound derivations
as the one below

2
M1,X:1in!T.un?T.SEX(V).P | X(y).QrT2,X: 0.

On contrast, we could type check a standard use of pi calchisnels by using the rules for unrestricted
channel types of the formi = (pa.un ?T’.a, ub.un!T'.b):

M, X: TEX(Y).P|X(y).Q>To,x:T.

6 Discussion

We have presented a type checking algorithm for estabishirsession-based discipline in (a typed
version of) the pi calculus of Milner, Parrow and Walker. IBoling a recent approach_[14] our session
types are qualified as linear or unrestricted; a linear sesgpe could evolve to an unrestricted session
type. Each session type describes one end of the sessiomhtile session is described by a type
constructor representing the concurrent behavior of tleedimannel ends [5]. We assess the soundness
of the algorithm by showing that type checked processes @repted by a typing system satisfying
subject reduction.

Similarly to other approaches for type checking of linead aassion types in the pi calculus [7, 3],
we rely on the idea to type a parallel proc®4<Q by ignoring the set of linear identifiers used®pefore
type checkingQ. By reasoning at the type level, we provide for a clean accotithe notion of used

M. Giunti 17

identifier by introducing explicit markers for consumedédgp On contrast with the cited approaches, this
construction let us prove that the algorithm preservessiral congruence, and in turn that re-arranging
of parallel processes is possible; we think that this feaisiof practical interest.

While the algorithm is not complete, we claim that we are maising expressiveness since the
algorithm should type checks all interesting processeeged by the split-based typing system. We
are working on a proof of this result which is based on a typeskovational theory which permits to
contrast the behavior of processes w.r.t. contexts resglilay type checking [4].

Qualified session types are expressive enough to représeat types for lambda calculus [15] and
linear and session types for pi calculusl[7, 3]: see [5] ferdbtails. The presented algorithm is therefore
a useful tool to type check systems based on the notion a@rilyeof communications. For instance, the
qualified session typing system presented in [13] for a maoépi calculus relies on the idea of a double
binder to represent the two ends of a communication. By ptiojg a qualified session ty@@into its
dual S(cf. [5]) we could easily map this construct in our system antlirn provide a (different) type
checking algorithm:

[(vxy: SP] = (vx: (S S))[Px/¥I]

It should be noted that the choice of representing compustivith a channel type representing the
two ends of the communication rules out some process th#d beuinteresting. A process that we are
not able to type check is below.

IX(y).(va)(y(a).a(title).a(date).(!a(date) | a(22March))

The process consists in a modified version of the poll semwicere the service itself proposes a date
for the meeting. Both the algorithm and the split-basedesysdo not accept this process because in the
(unrestricted) continuation type both capabilities wdagtheeded. While we do not envisage difficulties
in introducing subtyping for unrestricted types allal[1h]s seems to go in the opposite direction of the
idea of channel types. We therefore need to investigateysugt solutions which take into account the
channel type construct.

Lastly, a natural completion of this work would be to deplayagorithm for type inference. We
are convinced that the channel type abstraction leads tasibfe implementation based on constraint
techniques (e.g.[8]).

Acknowledgments. This work was carried out during the tenure of an “Alain Barssan” Fellowship
Programme. This programme is supported by the Marie Curi€@ualing of Regional, National and
International Programmes (COFUND) of the European ComiarissThe author was also supported
by the Comete project, INRIA Sacldie de France. | would like to thank the anonymous referees fo
detailed comments.

References

[1] Giuseppe Castagna, Mariangiola Dezani-Ciancaglini,len& Giachino & Luca Padovani
(2009): Foundations of session types In: PPDR ACM Press, pp. 219-230. Available at
http://doi.acm.org/10.1145/1599410.1599437.

[2] Mariangiola Dezani-Ciancaglini & Ugo de’Liguoro (20p9Sessions and Session Types: An Overview
In. WS-FM, Lectures Notes in Computer Sciend&94, Springer, pp. 1-28. Available at
http://dx.doi.org/10.1007/978-3-642-14458-5_1,

http://doi.acm.org/10.1145/1599410.1599437
http://dx.doi.org/10.1007/978-3-642-14458-5_1

18

(3]

[4]

[5]

[6]

[7]

(8]

[9]

[10]
[11]

[12]
[13]
[14]

[15]

A

A type checking algorithm for qualified session types

Simon J. Gay & Malcolm J. Hole (20058ubtyping for Session Types in the Pi Calculdsta Informatica
42(2/3), pp. 191-225.

Marco Giunti (2011):Typed Observational Equivalence for SessidBisbmitted.

Marco Giunti & Vasco T. Vasconcelos (2010)A Linear Account of Session Types in the Pi Calcu-
lus. In: CONCUR Lecture Notes in Computer Scien€269, Springer, pp. 432—-446. Available at
http://dx.doi.org/10.1007/978-3-642-15375-4_30.

Kohei Honda, Vasco T. Vasconcelos & Makoto Kubo (1998nguage Primitives and Type Discipline for
Structured Communication-Based Programmini: ESOR Lectures Notes in Computer Scient881,
Springer, pp. 122-138. Availableattp://dx.doi.org/10.1007/BFb0053567.

Naoki Kobayashi, Benjamin C. Pierce & David N. Turner 989: Linearity and the pi-calculus
ACM Transactions on Programming Languages and Syste2t(5), pp. 914-947. Available at
http://doi.acm.org/10.1145/330249.330251,

Michael Lienhardt, Claudio Antares Mezzina, Alan Sctin& Jean-Bernard Stefani (2009)Typing
Component-Based Communication Systeins FMOODS/FORTE Lectures Notes in Computer Science
5522, Springer, pp. 167-181. Availablehattp://dx.doi.org/10.1007/978-3-642-02138-1_11,

Robin Milner, Joachim Parrow & David Walker (19924 Calculus of Mobile Processes, parts | and |l
Information and Computatiob00(1), pp. 1-77.

Benjamin C. Pierce (2002)ypes and Programming Languag®sIT Press.

Benjamin C. Pierce & Davide Sangiorgi (1996)ping and Subtyping for Mobile Processédathematical
Structures in Computer Scien6é), pp. 409-453.

Kaku Takeuchi, Kohei Honda & Makoto Kubo (1994n Interaction-based Language and its Typing System
In: PARLE, Lectures Notes in Computer Scier®%¥7, Springer, pp. 398-413.

Vasco T. Vasconcelos (200Fjundamentals of Session Typbs SFM, Lectures Notes in Computer Science
5569, Springer, pp. 158-186. Availablehattp: //dx.doi.org/10.1007/978-3-642-01918-0_4.

Vasco T. Vasconcelos (2011$essions, from types to programming languagaed.uca Aceto, editor:-The
Concurrency ColumiBulletin of the EATCS303, pp. 53-73.

David Walker (2005)Advanced Topics in Types and Programming Languacfespter Substructural Type
Systems. MIT Press.

Appendix

The table in Figurkl4 depicts the shape of contexts used iprdw of the case of congruence of parallel
processes in Lemnia 4.9. The first three columns in the taptesent all possible combinations for (an
entry of) safe contextsy,I", andl"3 such that

MEP>IF and My = Q>F3

Given these inputs, the next three columns show the outpdahéocontext in the header. Contdx in
the seventh column is the solution of the following lineastsyn:

M= (F2>F3) Wiy
= (rll>r2) Wwls

In the last column we have the environméft, = U = Or,.

http://dx.doi.org/10.1007/978-3-642-15375-4_30
http://dx.doi.org/10.1007/BFb0053567
http://doi.acm.org/10.1145/330249.330251
http://dx.doi.org/10.1007/978-3-642-02138-1_11
http://dx.doi.org/10.1007/978-3-642-01918-0_4

M. Giunti 19
M Mo M3 Mol Mo>l3 Mels M4 O
linp linp linp o o o linp o)
linp linp o o linp linp o o
linp o o linp o o linp o)
unp unp unp unp unp unp unp unp
(linpg,linpz) | (linpg,linpz) | (linpy,linpy) (0,0) (0,0) (0,0) (linpy, linpy) (0,0)
(linpg,linpz) | (linpy,linpz) (linpy,0) (0,0) (o,linpz) (o,linpy) (linpy,0) (0,0)
(linpy,linp2) (linpg,o) (linpy,0) (o,linpz) (0,0) (o,linpy) (linpg, linpz) (0,0)
(linpg,linpz) | (linpg,linpy) (o,linpy) (0,0) (linpy, o) (linpy, o) (o,linpy) (0,0)
(linpy,linpy) (o,linpy) (o,linpz) (linpy,0) (0,0) (linpy,0) (linpg, linpz) (0,0)
(linpg,linpz) | (linpg,linpy) (0,0) (0,0) (linpg,linpz) | (linpg,linpy) (0,0) (0,0)
(linpy,linpy) (linpyg, o) (0,0) (o,linpz) (linpg,o0) (linpy,linpy) (o,linpz) (0,0)
(linpy, linp2) (o,linpy) (0,0) (linpg,0) (o,linp2) (linpy, linp2) (linpg,0) (0,0)
(linpg,linp2) (0,0) (0,0) (linpy,linpz) (0,0) (linpg,linpz) | (linpg,linpz) (0,0)
(linpg,o) (linpg,0) (linpy,0) (0,0) (0,0) (0,0) (linpy,0) (0,0)
(linpy,o) (linpy,0) (0,0) (0,0) (linpy, o) (linpy, o) (0,0) (0,0)
(linpg, o) (0,0) (0,0) (linpyg,0) (0,0) (linpg,0) (linpy,0) (0,0)
(o,linpy) (o,linpy) (o,linpy) (0,0) (0,0) (0,0) (o,linpy) (0,0)
(o,linpy) (o,linp1) (0,0) (0,0) (o,linpy) (o,linp1) (0,0) (0,0)
(o,linpy) (0,0) (0,0) (o,linpy) (0,0) (o,linpy) (o,linpy) (0,0)
(unpg,unpz) | (unpy,unpz) | (unpg,unpz) | (unpg,unpz) | (unpg,unpz) | (unpg,unpz) | (unpg,unp2) | (unpg,unps)
(unpy,o) (unpy,0) (unpy,o) (unpy,o) (unpy,o) (unpy,o) (unpy,o) (unpa,0)
(o, unpz) (o,unpz) (o,unpy) (o,unpz) (o, unpz) (o, unpz) (o,unpy) (o, unpz)
(0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)

Figure 4: Contexts in [A-RR]

	1 Introduction
	2 Pi calculus
	3 Type checking algorithm
	4 Soundness
	4.1 Towards semantic completeness

	5 Examples
	6 Discussion
	A Appendix

