
HAL Id: hal-00644061
https://hal.inria.fr/hal-00644061

Submitted on 23 Nov 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A type checking algorithm for qualified session types
Marco Giunti

To cite this version:
Marco Giunti. A type checking algorithm for qualified session types. 7th International Work-
shop on Automated Specification and Verification of Web Systems, Jun 2011, Reykjavik, Iceland.
�10.4204/EPTCS.61.7�. �hal-00644061�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49943727?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00644061
https://hal.archives-ouvertes.fr

To appear in EPTCS.

A type checking algorithm for qualified session types

Marco Giunti
INRIA Saclay and LIX,École Polytechnique, France

We present a type checking algorithm for establishing a session-based discipline in the pi calculus
of Milner, Parrow and Walker. Our session types are qualifiedas linear or unrestricted. Linearly
typed communication channels are guaranteed to occur in exactly one thread, possibly multiple times;
afterwards they evolve as unrestricted channels. Session protocols are described by a type constructor
that denotes the two ends of one and the same communication channel. We ensure the soundness
of the algorithm by showing that processes consuming all linear resources are accepted by a typing
system preserving typings during the computation and that type checking is consistent w.r.t. structural
congruence.

1 Introduction

Session types allow a concise description of protocols by detailing the sequence of messages involved
in each particular run of the protocol. Introduced for a dialect of the pi calculus [6, 12], the concept has
been transferred to different realms, including functional and object-oriented programming and operating
systems; refer to [2] for a recent overview.

To illustrate, consider the problem of designing a web system for the scheduling of meetings. In
our example, the system is implemented by means of a web service repeatedly waiting for requests to
create a poll. Once invoked, the service instantiates a fresh session for the poll and launches a thread
for managing it. In the pi calculus [9] the session could be modeled as a communication channel for
the exchange of the messages required by the scheduling protocol. The fresh channel for the poll is
forwarded back to the invoker on the channel she has providedin order to receive the information needed
for the start of the poll: the title and a tentative date for the meeting. Afterwards the thread repeatedly
waits for possible date proposals from the participants of the poll.

P1 =!x(y).(ν p)(y〈p〉.p(title).p(date).!p(date))

In order to have some guarantee on the behavior of the executable system, a static analysis of its code
should be performed during the compilation. A typed analysis permits indeed to verify the desired
properties of the protocol, namely that there is exactly onetitle and at least one date proposal for the
meeting. To this aim we need to enforce that the capability forwarded to the caller consists in (i) send
a string for the title and afterwards (ii) send one or more dates. This behavior could be described by
relying on polymorphic types qualified as linear or unrestricted. The idea is to introduce qualifiers for
types describing a session and to allow a linear usage of a session to evolve to an unrestricted usage. This
approach has been indeed advocated as effective independently from any programming language [14].
A qualified session type for the poll channel sent to the invoker is the one below.

S2 = lin !string.lin !date.S4 S4 = un !date.S4

The session type first describes the sending of a string to setthe title of the meeting; such usage is
qualified as linear because a title for the schedule is required. Similarly, the continuation type for sending

2 A type checking algorithm for qualified session types

the date of the schedule is qualified as linear because a date has to be set in order to start the poll.
Lastly zero or more date proposals could be send on the poll channel; this behavior is described by the
unrestricted recursive typeS4. The continuation of the serviceP1 is described by the typeS1 below that
could be seen as the “dual” ofS2.

S1 = lin?string.lin?date.S3 S3 = un?date.S3.

The session type describes the behavior of receiving a titleand one or more date proposals for the
schedule. The receiving of the title and of the date proposalare both qualified as linear because this
information is mandatory. Eventually, zero or more date proposals will arrive afterwards. The unbounded
behavior of receiving such proposals is described by the unrestricted recursive typeS3. The usage of the
poll channel is described by a type constructor(S1,S2) representing the concurrent behavior of the two
channel ends [5]. The intuition is that in typing (the continuation of) serviceP1 the type(S1,S2) is split
into two parts: the linear output end point is used to type thedelegation of one end of the session to the
invoker while the linear input end point is used to type the continuation process.

While the idea of split types and contexts is clear and concise, the inherent non-determinism con-
tained in its formulation makes a direct implementation infeasible. Algorithmic solutions for linear func-
tional languages avoid to split the context into parts before checking a complex expression by passing the
entire context as input to the first subexpression and have itreturn the unused portion as an output [15].
In the setting of concurrent computations, the idea is that when typing a parallel processP | Q the set
of linear identifiers used byP must be calculated in order to remove it before type checkingQ. This
approach, previously outlined for linear types of pi calculus in [7], has been implemented in the session
system of [3] by representing each channel end with a distinct identifier.

In this paper, we propose an algorithm to check protocols described by types of the form(S1,S2)
where eachSi is a qualified session type depicting one end of the communication. Channels could evolve
from linear to unrestricted usage. Reasoning at the type level, we do implement split by forbidding the
utilization of used parts of types and by a careful analysis of qualifiers. This construction permits us to
show that (i) type checked processes are accepted by a typingsystem satisfying subject reduction and
that (ii) type checking preserves structural congruence.

More in detail, type checking relies on the definition of several unambiguous patterns. The patterns
for linear input and output processes do return amarkedcontext. In the body of the function a recursive
call to type check the continuation is launched. If an exception is not raised, this call returns in output
a context. First, to ensure a subsequent linear usage to be finished within the continuation we verify
the type for the variable in the context to be unrestricted. Second, to prohibit the use of the variable in
the next thread we return a context with an “unusable” mark for the type of the variable. Similarly, in
delegating a channel end of a session we pass to the checking function for the continuation a context with
an unusable mark for the delegated type. Under replication,we do no admit to return new typings marked
as unusable, which would imply consumption of a linear resource. Lastly, the algorithm succeeds if the
context returned by the top-level call of the type checking function does not contain linear types.

The remainder of the paper is as follows. In Section 2 we introduce session types and pi calculus.
Section 3 presents the type checking algorithm. Section 4 isdevoted to establish the soundness of our
approach. In the last part of the section we investigate the expressiveness of the algorithm. Some exam-
ples of the concrete execution of the algorithm are illustrated in Section 5. We conclude in Section 6 by
discussing limitations and future work.

M. Giunti 3

Types and Processes

q ::= Qualifiers: T ::= Types:

lin linear S end point

un unrestricted (S,S) channel

p ::= Pre Types: P ::= Processes:

?T.S receive x〈y〉.P output

!T.S send x(y).P input

end termination P | P composition

S ::= End Point Types: (νx : T)P restriction

q p qualified channel !P replication

a type variable 0 inaction

µa.S recursive type

Rules for structural congruence

P | Q≡ Q | P (P | Q) | R≡ P | (Q | R) P | 0≡ P !P≡ P |!P

(νx : T)P | Q≡ (νx : T)(P | Q) (νx : T1)(νy : T2)P≡ (νy : T2)(νx : T1)P

(νx : un p)0≡ 0 (νx : (un p1,un p2))0≡ 0

Rules for reduction

x〈z〉.P | x(y).Q → P | Q[z/y] [R-COM]

P → Q
(νx)P → (νx)Q

P → Q
P | R → Q | R

P≡ P′ P′ → Q′ Q′ ≡ Q
P → Q

[R-RES] [R-PAR] [R-STRUCT]

Figure 1: Pi calculus

2 Pi calculus

This section introduces the syntax and the semantics of the typed pi calculus. The definition is in
Figure 1. We consider channel types of the form(S,S) whereS is a type describing the behavior of
a channel end point. An end point typeScan be a pre type qualified withlin or un, a recursive type or a
type variable. Each qualifier in a type controls the number oftimes the channel can be used at that point:
exactly once forlin; zero or more times forun. A pre type of the form !T.Sdescribes a channel end able
to send a variable of typeT and to proceed as prescribed byS. Similarly, pre type ?T.Sdescribes a chan-
nel end able to receive a variable of typeT and continue asS. Pre typeend describes a channel end on
which no further interaction is possible. For recursive (end point) types we rely on a set of type variables,
ranged over bya. Recursive types are required to be contractive, that is, containing no subexpression of
the formµa1 . . .µan.a1. Type equalityis not syntactic. Instead, we define it as the equality of regular
infinite trees obtained by the infinite unfolding of recursive types,modulo pair commutation. The formal
definition, which we omit, is co-inductive. In this way we usetypes(µa.lin!unend.lin?unend.a,unend)

4 A type checking algorithm for qualified session types

and(unend, lin!unend.µb.lin?unend.lin!unend.b) interchangeably, in any mathematical context. This al-
lows us never to consider a typeµa.Sexplicitly (or a for that matter). Instead, we pick another type in
the same equivalence class, namelyS[µa.S/a]. If the result of the process turns out to start with aµ , we
repeat the procedure. Unfolding is bound to terminate due tocontractiveness. In other words, we take an
equi-recursive view of types [10].

The syntax and the semantics of pi calculus processes are those of [9] but for restriction, for which
we require type annotation. This is only to facilitate type checking and has no impact on the semantics.
We rely on a set of variables, ranged over byx,y,z. For processes we have (synchronous, unary) output
and input, in the formsx〈y〉.P andx(y).P, as well as a parallel composition, annotated scope restriction,
replication and the terminated process. The binders for thelanguage appear in parenthesis:y is bound
in bothx(y).P and(νy : T)P. Free and bound variables in processes are defined accordingly, and so is
alpha conversion, substitution of a variablex by a variablez in a processP, denotedP[z/x]. We follow
Barendregt’s variable convention, requiring bound variables to be distinct from each other and from free
variables in any mathematical context.

Structural congruence is the smallest relation on processes including the rules in Figure 1. The first
three rules say that parallel composition is commutative, associative and has0as neutral element. The last
rule on the first line captures the essence of replication as an unbounded number of identical processes.
The rules in the second and third line deal with scope restriction. The first, scope extrusion, allows the
scope ofx to encompassQ; due to variable convention,x bound in(νx : T)P, cannot be free inQ. The
next rule allows exchanging the order of restrictions. The rules on the third line state that restricting
over a terminated process has no effect. Since it makes poor sense to declare a new variable with a
linear type for a terminated process, we require the type annotation to be unrestricted. The reduction is
the smallest relation on processes including the rules in Figure 1. The [R-COM] rule communicates a
variablez from an output prefixed onex〈z〉.P to an input prefixed processx(y).Q; the result is the parallel
composition of the continuation processes, where the boundvariabley is replaced by the variablez in
the input process. The rules on the last line allow reductionto happen underneath scope restriction and
parallel composition, and incorporate structural congruence into reduction.

3 Type checking algorithm

In this section we present an algorithm for type checking a picalculus process given a typing context.
Type checking relies on the definition of several patterns which, for the sake of clarity, we present in a
declarative style. Lastly, in Figure 2 we present an excerptof theML implementation.

Contexts. We letΓ be a map from variables to types and thevoidsymbol, noted◦; a void symbol permits
to mark an end point as unusable.

M,N,O ::= S| ◦ entry

Γ ::= /0 | Γ,x : M | Γ,x : (M,N) context

Context updating, noted⊎, is the procedure effected by the typing system to transforma void entry in an
end point entry:Γ,x : ◦ ⊎x : M = Γ,x : M. A safecontext is a map from variable to safe entries; we let
the predicatesafe(Γ) hold wheneverx∈ dom(Γ) implies safe(Γ(x)). A linear channel type is safe if (i)
the type of the variable sent in output corresponds to the type expected in input and (ii) the expected type
for the input is safe and (iii) the continuation is safe. For an unrestricted channel type we require (i) and

M. Giunti 5

(ii): (iii) will be enforced by the type system.

safe(M)

safe((M1,M2)) ∃i ∈ {1,2}. Mi = ◦,unend

safe((lin?T.S1, lin !T.S2)) = safe(T)∧ safe((S1,S2))

safe((un?T.S1,un !T.S2)) = safe(T)

A context isunrestrictedif it contains only unrestricted or void entries. We letun(Γ) wheneverx ∈
dom(Γ) impliesun(Γ(x)).

un(◦)

un(un p)

un((M,N)) = un(M) ∧ un(N)

Patterns. We present typing rules for processes of the formΓ1 ⊢ P⊲Γ2 whereΓ1 is a context received in
input andΓ2 is a context produced as output. Given thatΓ1 is a context such thatsafe(Γ1), the rules are
chosen deterministically by inspecting (i) the shape of thecontext and (ii) the shape of the process, in the
following way. Each rule is implemented as a pattern of a function with signaturecheck(g : context,p :
process) : context. For each function call with a safe context parameter, zero or one pattern does match;
in the first case a pattern exception indicating the reject ofthe process is raised while in the second case
a context is returned in output to the caller. The rules for variables have the formΓ1 ⊢ v : T ⊲Γ2 and are
implemented as patterns of a function with signaturecheckVar (g:context, v:var):context . In the rules
below the output context is obtained by setting to void the linear assumptions used to type the variable.
The last three rules permit to resolve any ambiguity in typing an unrestricted end point type with an
unrestricted channel type.

Γ = Γ1,x: lin p,Γ2

Γ ⊢ x: lin p⊲Γ1,x: ◦,Γ2

Γ = Γ1,x: un p,Γ2

Γ ⊢ x: un p⊲Γ
[A-V-L],[A-V-U]

Γ = Γ1,x: (lin p1, lin p2),Γ2

Γ ⊢ x: (lin p1, lin p2)⊲Γ1,x: (◦,◦),Γ2
[A-V-LL- L]

Γ = Γ1,x: (lin p1, lin p2),Γ2

Γ ⊢ x: (lin p2, lin p1)⊲Γ1,x: (◦,◦),Γ2
[A-V-LL- R]

Γ = Γ1,x: (lin p,N),Γ2

Γ ⊢ x: lin p⊲Γ1,x: (◦,N),Γ2

Γ = Γ1,x: (M, lin p),Γ2

Γ ⊢ x: lin p⊲Γ1,x: (M,◦),Γ2
[A-V-L- R],[A-V-L- L]

Γ = Γ1,x: (un p1,un p2),Γ2

Γ ⊢ x: (un p1,un p2)⊲Γ
Γ = Γ1,x: (un p1,un p2),Γ2

Γ ⊢ x: (un p2,un p1)⊲Γ
[A-V-UU- L],[A-V-UU- R]

Γ = Γ1,x: (un p,N),Γ2 un p 6= N
Γ ⊢ x: un p⊲Γ

Γ = Γ1,x: (M,un p),Γ2 un p 6= M
Γ ⊢ x: un p⊲Γ

[A-V-U- L],[A-V-U- R]

Γ = Γ1,x: (unend,unend),Γ2

Γ ⊢ x: unend⊲Γ
[A-V-EE]

Rule [A-OUT-L] is to type processes sending variables on a channel used in linear mode given that the
type for the channel in the context is an end point. The context changed by setting the channel to void is

6 A type checking algorithm for qualified session types

used to check the sent variable at the expected type and in turn to return a new context. The new context
updated with the continuation type for the linear channel ispassed as parameter in the call for checking
the continuation process. To ensure a linear use of the channel to be finished within the continuation, we
verify that the context returned by the call for the continuation does contain an unrestricted typing for
the channel. Finally, the returned context is given as output with the typing for the channel set to void.

Γ1,x : ◦ ⊢ y: T ⊲Γ2 Γ2⊎x: S⊢ P⊲Γ3,x : M un(M)

Γ1,x: lin !T.S⊢ x〈y〉.P⊲Γ3,x : ◦
[A-OUT-L]

Rules [A-OUT-L-L],[A-O UT-L-R] are used when the entry for the linear output in the context is a
channel type. The rules are implemented by the pattern [A-OUT-L]. In returning the context we set one
end of the channel type to void while we leave the other end as it has been received in input.

Γ1,x: lin !T.S⊢ x〈y〉.P⊲Γ3,x : ◦
Γ1,x: (lin !T.S,N) ⊢ x〈y〉.P⊲Γ3,x : (◦,N)

[A-OUT-L-L]

Γ1,x: lin !T.S⊢ x〈y〉.P⊲Γ3,x : ◦
Γ1,x: (M, lin !T.S) ⊢ x〈y〉.P⊲Γ3,x : (M,◦)

[A-OUT-L-R]

For sending a variable on an unrestricted channel we requirethe sent variable to be typable by the
same context received in input; that is, the type for the unrestricted output channel must be recursive.
The context obtained by the typing for the variable is then used to call the checking function for the
continuation process.

Γ1,x : S⊢ v: T ⊲Γ2 Γ2 ⊢ P⊲Γ3 S= un !T.S
Γ1,x: un !T.S⊢ x〈y〉.P⊲Γ3

[A-OUT-UN]

Γ1,x: (S,N) ⊢ v: T ⊲Γ2 Γ2 ⊢ P⊲Γ3 S= un !T.S
Γ1,x: (un !T.S,N) ⊢ x〈y〉.P⊲Γ3

[A-OUT-UN-L]

Γ1,x: (M,S) ⊢ v: T ⊲Γ2 Γ2 ⊢ P⊲Γ3 S= un !T.S
Γ1,x: (M,un !T.S) ⊢ x〈y〉.P⊲Γ3

[A-OUT-UN-R]

To type a linear usage of an input we require the expected typeto agree with the type of the input
channel and the continuation type for the channel to be consumed within the continuation. This is
implemented by requiring that the context returned by the call for the continuation does map the variable
to an unrestricted type. We also require a linear usage for the variable bound by the input to be finished
within its local scope. Lastly, the call returns a context (i) with the type for the linear variable set to void
and (ii) pruned by the variable bound by the input prefix. Thisis the rationale of rule [A-IN-L] and or
rules [A-IN-L-L],[A-I N-L-R] which are used for variables having respectively an end point or a channel
type.

M. Giunti 7

Γ1,x: S,y: T ⊢ P⊲Γ2,x : M,y : O un(M) un(O)

Γ1,x: lin?T.S⊢ x(y).P⊲Γ2,x : ◦
[A-I N-L]

Γ1,x: lin?T.S⊢ x(y).P⊲Γ2,x : ◦
Γ1,x: (lin?T.S,N) ⊢ x(y).P⊲Γ2,x : (◦,N)

[A-I N-L-L]

Γ1,x: lin?T.S⊢ x(y).P⊲Γ2,x : ◦
Γ1,x: (M, lin?T.S) ⊢ x(y).P⊲Γ2,x : (M,◦)

[A-I N-L-R]

The rules for unrestricted input take the context received in input and add the bound variable at the
expected type in order to type the continuation. The contextreturned by the call of the checking function
for the continuation needs to be first verified to ensure that the type for the bound variable is unrestricted,
and then pruned by the variable to be returned in output.

Γ1,x: S,y: T ⊢ P⊲Γ2,y : O un(O) S= un?T.S
Γ1,x: un?T.S⊢ x(y).P⊲Γ2

[A-I N-UN]

Γ1,x: (S,N),y: T ⊢ P⊲Γ2,y : O un(O) S= un?T.S
Γ1,x: (un?T.S,N) ⊢ x(y).P⊲Γ2

[A-I N-UN-L]

Γ1,x: (M,S),y: T ⊢ P⊲Γ2,y: O un(O) S= un?T.S
Γ1,x: (M,un?T.S) ⊢ x(y).P⊲Γ2

[A-I N-UN-R]

To type an inert process by using [A-INACT] any context suffices; the context received in input is for-
warded in output. To type a parallel process in [A-PAR] we check the first thread with the context
received in input. This operation returns in output a context that is used to type-check the next thread.
The context returned by the last typing is forwarded in output. While imposing an order on parallel
processes could appear restrictive, in Section 4 we will show that the chosen order makes no difference.

Γ ⊢ 0⊲Γ
Γ1 ⊢ P⊲Γ2 Γ2 ⊢ Q⊲Γ3

Γ1 ⊢ P | Q⊲Γ3
[A-I NACT],[A-PAR]

In order to type a process generating a new channel, in rule [A-RES] we require the typing for the channel
to be safe; if it is not, the algorithm stops and an exception is raised. Similarly to the input cases, if a
linear usage is prescript for the new variable then it must befinished within its scope.

safe(T) Γ1,y: T ⊢ P⊲Γ2,y : O un(O)

Γ1 ⊢ (νy: T)P⊲Γ2
[A-RES]

The rule for replication [A- REPL] is below. In the call for checking the process under the replication
we require the context returned in output to be equal to the one received in input. Indeed, a change in
the output context would be obtained by introducing a void symbol indicating that a linear resource has
been consumed. This must clearly be forbidden under replication. On contrast, we allow to return linear
entries in order to type check the next thread.

Γ1 ⊢ P⊲Γ2 Γ2 = Γ1

Γ1 ⊢!P⊲Γ2
[A- REPL]

8 A type checking algorithm for qualified session types

datatype qualifier = Lin | Un;

datatype preType = In of sessionType * endpointType | Out of sessionType * endpointType | End

and endpointType = Qualified of qualifier * preType | Void

and sessionType = EndPoint of endpointType | Channel of endpointType * endpointType;

type context = (string * sessionType) list;

datatype process = Zero | Replication of process | Parallel of process * process

| Input of string * string * process | Output of string * string * process

| New of string * sessionType * process;

fun safe (g:context):context;

fun unVar (g:context,v:string):context;

fun remove (g:context,v:string):context;

fun setVoid (g:context,v:string):context;

fun checkVar ((x, ((EndPoint (Qualified (Lin,p)))))::g,

(z, ((EndPoint (Qualified (Lin,r)))))) =

if p=r then (x, (EndPoint Void))::g (* A-V-L *)

| checkVar ((x, ((EndPoint (Qualified (Un,p)))))::g,

(z, ((EndPoint (Qualified (Un,r)))))) =

if p=r then ((x, ((EndPoint (Qualified (Un,p)))))::g) (* A-V-U *)

| checkVar ((x, ((Channel (Qualified (Lin,p), Qualified (Lin,s)))))::g,

(z, ((Channel (Qualified (Lin,r), Qualified (Lin,t))))))=

if p=r andalso s=t then

((x, ((Channel (Void, Void))))::g)

else

if p=t andalso s=r

then ((x, ((Channel (Void, Void))))::g) (* A-V-LL-L+R *)

| checkVar ((x, ((Channel (Qualified (Lin,p), Void))))::g,

(z, ((EndPoint (Qualified (Lin,r)))))) =

if p=r

then ((x, ((Channel (Void,Void))))::g) (* A-V-L-R *)

| checkVar ((x, ((Channel (Qualified (Lin,p), Qualified (Un,s)))))::g,

(z, ((EndPoint (Qualified (Lin,r)))))) =

if p=r

then ((x, ((Channel (Void, Qualified (Un,s)))))::g) (*A-V-L-R *)

(* | A-V-L-L | A-V-UU-L | A-V-U-L | A-V-U-R | A-V-E-E *);

fun check (g:context,Zero:process)=

g (* A-INACT *)

| check (g:context,Replication p)=

if g = check(g,p)

then g (* A-REPL *)

| check (g:context, Parallel (p1,p2)) =

check (check (g,p1) , p2) (* A-PAR *)

| check ((z,(Endpoint (Qualified (Lin,In (a,c)))))::t, Input (x,y,p))=

let val d = check ((x,Endpoint (c))::t,p) in

setVoid (remove (unVar (unVar (d,x), y), y) , x)

end (* A-IN-L *)

| check (g:context,New (x,t,p)) =

remove (unVar (check ((safe([(x,t)]))@g, p) , x) , x) (* A-RES *)

(* | A-IN-L-l | A-IN-L-r | A-IN-Un | A-IN-Un-l | A-IN-Un-r | A-OUT-L

| A-OUT-L-l | A-OUT-L-r | A-OUT-Un | A-OUT-Un-l | A-OUT-Un-r *);

fun typeCheck (g:context,p:process) =

un (check (safe(g) , p));

Figure 2: ML code of the algorithm (excerpt)

M. Giunti 9

Lemma 3.1. If safe(Γ1) andΓ1 ⊢ P⊲Γ2 thendom(Γ2) = dom(Γ1) andsafe(Γ2).

Type checking. Having defined typing rules corresponding to patterns of the checking function, we
devise an algorithm for establish a session-based type discipline. Figure 2 presents the ML definition for
types, processes and the type checking function. Typecontext associates variables to entries which are
formed apart the end point and the channel type. The functionsafe returns in output the same context
received in input whenever the context satisfies the safe predicate, otherwise it generates an exception.
FunctionunVar takes as parameters a context and a variable and verifies thatthe type for the variable in
the context is unrestricted; in this case the context is returned in output, otherwise an exception is raised.
Functionsremove andsetVoid do perform the required operations and return the updated context. We
also need auxiliary functions to push and pop entries to and from the context stack; we omit all the
details.

Thecheck function, the kernel of the type checking procedure, is defined by the union of the patterns
for the rules introduced in the current section. In order to illustrate the mechanism, we draw the trans-
lation of some patterns. In patterns for variables and in [A-IN-L] we assume the variable on the top of
the contextz to be equal to the variablex respectively for the value to type and for the input prefix of the
process. ThecheckVar function is called in patterns for output in order to type thesent variable and ob-
tain in output a context to pass together with the the continuation to the checking function. In [A-IN-L]
we launch the recursive call of the check function by passingas parameters the updated context and the
continuation process. After checking that the type for bothchannelx and the variable bound by the input
are unrestricted in the returned context, we return the context with the type forx set to void. In the pattern
for [A-RES] we launch thecheck function by passing as parameters the context with the new entry and
the continuation process. The inner call of the safe function immediately raises an exception if the type
for the bound variable is not safe. Lastly, we first control that in the returned context the variable is
unrestricted and then we return the context pruned by the variable. The algorithm is implemented by the
typeCheck function. The function receives in input a context and a process. If the context received in
input is not safe then the function exits immediately. Otherwise, a context is returned in input provided
that an exception has not been raised. The exception could raise (i) when no pattern matching is possible
for the chosen derivation or (ii) when a call of thesafe function in [A-RES] fails or (iii) when call of
unVar function fails. Since the choice of patterns is deterministic for safe contexts, no backtracking is
needed. Lastly, the process is accepted by the algorithm whenever the returned context satisfies theun
predicate defined in Section 2.

Lemma 3.2. If safe(Γ) thencheck(Γ,P) matches zero or one patterns.

Lemma 3.3. If check(Γ′,P′) has been recursively invoked bytypeCheck(Γ,P) then we havesafe(Γ′).

Proof. A call is a match of a patternΓ1 ⊢P⊲Γ2 which is an axiom wheneverP= 0, and has been inferred
from an hypothesis starting with a type environment∆ on the left otherwise. We proceed by induction and
show a stronger result, namely thatsafe(∆) impliessafe(Γ1). We close the proof by applying Lemma 3.1,
and eventually by exploiting transitivity in cases for output and parallel composition.

Corollary 3.4. If check(Γ′,P′) is a call invoked during the execution oftypeCheck(Γ,P) then there are
zero or one patterns to match.

10 A type checking algorithm for qualified session types

Context splitting rules

/0= /0· /0
I = I1 · I2 T = un p or (un p1,un p2)

I ,x: T = (I1,x: T) · (I2,x: T)
I = I1 · I2 T = lin p or (lin p1, lin p2)

I ,x: T = (I1,x: T) · I2

I = I1 · I2 T = lin p or (lin p1, lin p2)

I ,x: T = I1 · (I2,x: T)
I = I1 · I2

I ,x: (lin p1, lin p2) = (I1,x: lin p1) · (I2,x: lin p2)

I = I1 · I2
I ,x: (lin p1,un p2) = (I1,x: (lin p1,un p2)) · (I2,x: un p2)

I = I1 · I2
I ,x: (lin p1,un p2) = (I1,x: un p2) · (I2,x: (lin p1,un p2))

Typing rules for values

un(I)
I ,x: T ⊢D x: T

I ⊢D v: (S,un p)
I ⊢D v: S

[T-VAR] [T-STRENGTH]

Typing rules for processes

un(I)
I ⊢D 0

I1 ⊢D R1 I2 ⊢D R2

I1 · I2 ⊢D R1 | R2
[T-I NACT] [T-PAR]

I ⊢D R un(I)
I ⊢D!R

I,x: T ⊢D R safe(T)
I ⊢D (νx: T)R

[T-REPL] [T-RES]

I ,x: S,y: T ⊢D R (∗)

I ,x: q?T.S⊢D x(y).R
I1 ⊢D v: T I2,x: S⊢D R (∗∗)

I1 · (I2,x: q!T.S) ⊢D x〈v〉.R
[T-I N],[T-OUT]

I ,x: (S,S′),y: T ⊢D R (∗)

I ,x: (q?T.S,S′) ⊢D x(y).R
I1 ⊢D v: T I2,x: (S,S′) ⊢D R (∗∗)

I1 · (I2,x: (q!T.S,S′)) ⊢D x〈v〉.R
[T-I NC],[T-OUTC]

(∗) q= un⇒ q?T.S= S (∗∗) q= un⇒ q!T.S= S

Figure 3: Split-based typing system

4 Soundness

This section is devoted to establishing the soundness of thealgorithm. To this aim we project the pattern
rules presented in Section 3 into the typing system of Figure3, which satisfies subject reduction [5].
The syntax of types and processes occurring in Figure 3 is that of Figure 1. ContextsI are a map from
variables to typesT:

I ::= /0 | I ,x: T .

Typing rules in Figure 3 are based on a declarative definitionof context splitting; the intuition is that
unrestricted types are copied into both contexts, while linear types are placed in one of the two resulting
contexts. We refer to [5] for the details.

We introduce preliminary Lemmas and Definitions which will be useful to prove the main result of
this section. Given a judgmentΓ1 ⊢P⊲Γ2 of the algorithmic system of Section 3 , we let the used closure
of a type contextΓ1 w.r.t. Γ2, notedΓ1⊲Γ2, be the typing context /0 wheneverΓ1 = /0, and be defined by

M. Giunti 11

(Γ1⊲Γ2)(x) = Γ1(x)⊲Γ2(x) otherwise:

◦⊲◦= ◦ lin p1 ⊲ linp1 = ◦

lin p1⊲◦= lin p1 un p1⊲un p1 = un p1

(M,N)⊲ (M′,N′) = (M ⊲M′,N⊲N′) .

The map operation projects a type environmentΓ into a contextI of Figure 3. When applied to a used
closure, it permits to map linear typings which do not changefrom Γ1 to Γ2 into theunend type.

map(◦) = unend map(S) = S

map((M,N)) = (map(M),map(N)) map(Γ) =
⋃

x∈dom(Γ)
x : map(Γ(x))

Lemma 4.1. Assumesafe(Γ1). If Γ1 ⊢ P⊲Γ2 thenmap(Γ1⊲Γ2) is defined.

A used closure generated by the algorithmic system is sufficient to type a process with the system⊢D,
as we will show in a nontrivial manner below. We need a couple of lemmas for strengthening judgments
of the algorithmic system and weaken judgments of the split-based system.

Lemma 4.2(Algorithmic strengthening). The following hold.

1. If Γ1,x : linp⊢ P⊲Γ2, : x : linp thenΓ1 ⊢ P⊲Γ2;

2. If Γ1,x : (linp,S) ⊢ P⊲Γ2,x : (linp,N) thenΓ1,x : S⊢ P⊲Γ2,x : N′;

3. If Γ1,x : (M, linp) ⊢ P⊲Γ2,x : (M′, linp) thenΓ1,x : M ⊢ P⊲Γ2,x : M′;

4. If Γ1,x : ◦ ⊢ P⊲Γ2, : x : ◦ thenΓ1 ⊢ P⊲Γ2;

5. If Γ1,x : (◦,N) ⊢ P⊲Γ2, : x : (◦,N′) thenΓ1,x : N ⊢ P⊲Γ2,x : N′;

6. If Γ1,x : (M,◦) ⊢ P⊲Γ2,x : (M′,◦) thenΓ1,x : M ⊢ P⊲Γ2,x : M′;

7. If Γ1,x : un p⊢ P⊲Γ2,x : un p and x6∈ fv(P) thenΓ1 ⊢ P⊲Γ2;

8. If Γ1,x : (un p1,un p2) ⊢ P⊲Γ2,x : (un p1,un p2) and x 6∈ fv(P) thenΓ1 ⊢ P⊲Γ2.

Lemma 4.3(Weakening). I ,x : S⊢D P implies I,x : (S,un p) ⊢D P.

We have all the ingredients to prove the following result which is the wedge of the proof of soundness.

Lemma 4.4. Assumesafe(Γ1). The following hold.

1. If Γ1 ⊢ v: T ⊲Γ2 thenmap(Γ1⊲Γ2) ⊢D v: T ;

2. If Γ1 ⊢ P⊲Γ2 thenmap(Γ1⊲Γ2) ⊢D P.

Proof. We first prove (1). AssumeΓ1,x: lin p,Γ2 ⊢ x: lin p⊲Γ1,x: ◦,Γ2. Notice thatI =map((Γ1,Γ2)⊲
(Γ1,Γ2)) is a safe type context such thatun(I), i.e. it contains only unrestricted typings, and thatlin p⊲◦=
lin p. We apply [T-VAR] and infer I ,x : lin p ⊢D x : lin p. The cases for typing a linear or unrestricted
channel type, or an unrestricted channel type are analogous. AssumeΓ1,x: (lin p,N),Γ2 ⊢ x: lin p⊲
Γ1,x: (◦,N),Γ2. Let I =map((Γ1,Γ2)⊲ (Γ1,Γ2)). We haveI(x) = (lin p,S) with S= un p′ or S= unend.
From these results and [T-VAR] we infer I ,x : (lin p,S) ⊢ x : lin p. Now assume thatΓ ⊢D x: un p⊲ Γ
with Γ = Γ1,x: (un p,N),Γ2. From un(map(Γ ⊲ Γ)) and [T-VAR] we infer that there isS= un p′ or
S= unend such thatun(map(Γ ⊲ Γ)) ⊢D x: (un p,S). We apply [T-STRENGTH] and infer the desired
result:map(Γ⊲Γ) ⊢D x: un p.

To prove (2) we proceed by induction on the length of the derivation forΓ1 ⊢ P⊲Γ2. We prove the
most interesting cases. We use the notationΓ\x to indicate the contextΓ′ wheneverΓ = Γ′,x : M or
Γ = Γ′,x : (M,N).

12 A type checking algorithm for qualified session types

[A-PAR] We haveΓ1 ⊢ P | Q⊲ Γ3 inferred fromΓ1 ⊢ P⊲ Γ2 and Γ2 ⊢ Q⊲ Γ3. We proceed by case
analysis onΓ1. If Γ1 = /0 we are done by applying the first rule for context splitting. Otherwise
assumeΓ1 = Γ,x : T. We exploit Lemma 4.1 in order to infer the type ofΓ2(x) andΓ3(x).

(T = ◦). We havemap(Γ1 ⊲Γ2)(x) = unend andmap(Γ2 ⊲Γ3)(x) = unend. We apply [T-PAR]
to the I.H by using the second rule for context splitting tomap(Γ1 ⊲Γ2) ⊢D P andmap(Γ2⊲
Γ3) ⊢D Q.

(T = (◦,◦)). Analogous to the previous case.
(T = lin p). We have two cases formap(Γ1 ⊲Γ2)(x) corresponding to (i)lin p and (ii) unend. In

case (i) we havemap(Γ2 ⊲Γ3) = un p′. This is because by definition ofmap we have that
Γ2(x) = ◦. By applying Lemma 4.3 we weakenmap(Γ1 ⊲Γ2) and obtain an environment∆
equal tomap(Γ1⊲Γ2) but for the entryx which is weakened to(lin p,un p′). We apply the I.H.
and infer the desired result by applying the fifth rule for context splitting in [T-PAR]: ∆ ⊢D P
andmap(Γ2⊲Γ3) ⊢D Q. In case (ii) we haveΓ2(x) = linp. In sub casemap(Γ2⊲Γ3)(x) = lin p
we apply the I.H. and proceed by weakening the type to(unend, lin p) in order to apply the
sixth rule for splitting in [T-PAR]. In sub-casemap(Γ2⊲Γ3)(x) = unend we apply the second
splitting rule.

(T = (lin p1, lin p2)). We have four cases formap(Γ1⊲Γ2)(x) corresponding to (iii)(lin p1, lin p2)
and (iv) (lin p1,unend) and (v)(unend, lin p2) and (vi) (unend,unend). In case (iii) we infer
Γ2(x) = (◦,◦). We apply Lemma 4.2 and strengthen the algorithm’s judgmentby removing
the entry forx in Γ2: Γ2\x ⊢ Q⊲ Γ3\x. We apply the I.H. and by [T-PAR] we infer the
desired result by applying the fourth rule for context splitting to map(Γ1 ⊲ Γ2) ⊢D P and
map(Γ2\x⊲Γ3\x) ⊢D Q . In case (iv) we havemap(Γ2⊲Γ3)(x) = (unend,S) whereS= lin p2

or S= unend. If S= linp2 we know thatΓ2(x) = (◦, lin p2). We apply Lemma 4.2 and
infer both Γ,x : lin p1 ⊢ P⊲ (Γ2\x),x : ◦ and (Γ2\x),x : linp2 ⊢ Q⊲ (Γ3\x),x : ◦. We apply
the I.H. and infer the desired result by applying [T-PAR] with the fourth rule for context
splitting: map(Γ,x : lin p1⊲(Γ2\x),x : ◦) ⊢D P andmap((Γ2\x),x : linp2⊲(Γ3\x),x : ◦) ⊢D Q .
Otherwise whenS= unend by strengthening and I.H. we havemap(Γ,x : lin p1 ⊲ (Γ2\x),x :
◦) ⊢D P andmap(Γ2\x⊲ Γ3\x) ⊢D Q; we conclude by applying the third rule for context
splitting.

(T = (lin p1,◦),= (◦, lin p2)). Similar to the previous case.
(T = un p,= (unp1,unp2),= (unp1,◦),= (◦,un p2)). The result follows by applying the I.H. and

the second rule for context splitting in [T-PAR] to map(Γ1⊲Γ2) ⊢D P andmap(Γ2⊲Γ3) ⊢D Q.

[A-OUT-L] We haveΓ1,x: lin !T.S⊢ x〈y〉.P⊲Γ3,x : ◦ inferred fromΓ1,x : ◦ ⊢ v: T ⊲Γ2 andΓ2⊎x: S⊢
P⊲ Γ3,x : M providedun(M). By strengthening we inferΓ1 ⊢ v: T ⊲ Γ2\x. By I.H. we infer
map(Γ1,x : S⊲Γ3,x : M) ⊢D P. Let ∆ be equal to the environmentmap(Γ1,x : S⊲Γ3,x : M) for all
entries but forx, for which we let∆(x) = lin !T.(S⊲M). We apply [T-OUT] and the fourth rule for
context splitting and we conclude:map(Γ1⊲Γ2\x) ·∆.

[A-OUT-L-L] We haveΓ1,x: (lin !T.S,N) ⊢ x〈y〉.P⊲Γ3,x : (◦,N) inferred fromΓ1,x: lin !T.S⊢ x〈y〉.P⊲
Γ3,x : ◦. By I.H. we infermap(Γ1,x: lin !T.S⊲Γ3,x : ◦) ⊢D x〈y〉.P which we rewrite asmap(Γ1 ⊲
Γ3),x : lin !T.S⊢D x〈y〉.P. SinceN ⊲N is unrestricted, by weakening we infermap(Γ1 ⊲Γ3),x :
(lin !T.S,N⊲N) ⊢D x〈y〉.P. This is the requested result sincemap(Γ1 ⊲Γ3),x : (lin !T.S,N⊲N) =
map(Γ1,x: (lin !T.S,N))⊲Γ3,x : (◦,N).

[A- REPL] We haveΓ1 ⊢!P⊲Γ2 inferred fromΓ1 ⊢ P⊲Γ2 providedΓ1 = Γ2. By I.H. we havemap(Γ1⊲
Γ1) ⊢D P. SinceΓ1⊲Γ1 is an unrestricted context, so ismap(Γ1⊲Γ1). We apply [T-REPL] and we
conclude:map(Γ1⊲Γ1) ⊢D!P.

M. Giunti 13

[A-I NACT] We apply [T-INACT] and infermap(Γ⊲Γ) ⊢ 0.

By relying on this result we establish the soundness of the algorithm.

Corollary 4.5 (Soundness). If typeCheck(I ,P) then I⊢D P.

Proof. If the algorithm succeeds then we haveI ⊢ P⊲Γ with un(Γ). Considerx ∈ dom(I). If I(x) =
linp then we know thatΓ(x) = ◦. Thereforemap(I ⊲ Γ)(x) = linp. Similarly, if I(x) = (linp1, linp2)
thenmap(I ⊲ Γ)(x) = I(x). The last possibility isI(x) = unp,= (un p1,un p2) and we conclude that
map(I ⊲Γ)(x) = I(x). From these facts we infermap(I ⊲Γ) = I . The result then follows by applying
Lemma 4.4.

The hypothesissafe(I) in typeCheck(I ,P) allows us to infer that typings are preserved by the system
in Figure 3, in the following sense [5].

Lemma 4.6(Subject reduction). Assumesafe(I). If I ⊢D P and P⇒ P′ then I′ ⊢D P′ with safe(I ′).

Finally we prove an important result, namely that the algorithm preserves structural congruence. To
tackle the proof, we need a construction similar to the one ofLemma 4.4.

Lemma 4.7. Let Γ1 ⊢ P⊲Γ2. We haveΓ1⊲Γ2 ⊢ P⊲∇Γ1 with

∇Γ(x) =

◦ Γ(x) = lin, p

(◦,◦) Γ(x) = (lin p1, lin p2),= (lin p1,◦),= (◦, lin p2)

Γ(x) x∈ dom(Γ)

GivenΓ1,Γ2 with the same domain we define the update of contextsΓ1,Γ2 as the operation below:

Γ1⊎Γ2 =

{

M1⊎M2 Γ1(x) = M1,Γ2(x) = M2

(M1⊎N1,M2⊎N2) Γ1(x) = (M1,N1),Γ2(x) = (M2,N2)

Lemma 4.8(Algorithmic weakening). Let Γ1 ⊢ P⊲Γ2. The following hold.

1. if x 6∈ dom(Γ) then (i)Γ1,x : M ⊢ P⊲Γ2,x : M and (ii) Γ1,x : (M,N) ⊢ P⊲Γ2,x : (M,N);

2. if Γ1⊎Γ is defined thenΓ1⊎Γ ⊢ P⊲Γ2⊎Γ.

Lemma 4.9(Structural congruence). Assume P≡ Q. We haveΓ1 ⊢ P⊲Γ2 if and only ifΓ1 ⊢ Q⊲Γ2.

Proof. The most interesting case is parallel composition. AssumeΓ1 ⊢ P | Q⊲Γ3 inferred fromΓ1 ⊢
P⊲Γ2 andΓ2 ⊢ Q⊲Γ3. By Lemma 4.7 we haveΓ1⊲Γ2 ⊢ P⊲∇Γ1 andΓ2⊲Γ3 ⊢ Q⊲∇Γ2. In fact, it holds
∇Γ1 = ∇ = ∇Γ2. Let Γ4 be the solution of the linear system defined by equationsΓ1 = (Γ2⊲Γ3)⊎Γ4 and
Γ4 = (Γ1 ⊲Γ2)⊎Γ3. Such a solution does exist (see the Appendix). ByΓ2 ⊢ Q⊲Γ3 and Lemma 4.7 we
infer Γ2⊲Γ3 ⊢ Q⊲∇. By using Lemma 4.8 we haveΓ2⊲Γ3⊎Γ4 ⊢ Q⊲∇⊎Γ4. Next takeΓ1⊲Γ2 ⊢ P⊲∇
obtained by applying Lemma 4.7 toΓ1 ⊢ P⊲Γ2. We apply Lemma 4.8 and infer(Γ1⊲Γ2)⊎Γ3 ⊢ P⊲∇⊎
Γ3. Since the update of∇ with a type environmentΓ, whenever defined, satisfies the equation∇⊎Γ = Γ,
the judgments above could be rewritten asΓ1 ⊢ Q⊲Γ4 andΓ4 ⊢ P⊲Γ3. We apply [A-PAR] and obtain
Γ1 ⊢ Q | P⊲Γ3, as required. The other direction for the parallel case is analogous. The second rule
for congruence of parallel processes is straightforwardlyobtained from the definition of [A-PAR]. The
cases for replication and inaction follow easily from the fact that the context received in output is equal
to the context received in input. The cases for scope restriction follow from the definition of [A-RES]

14 A type checking algorithm for qualified session types

and from algorithmic strengthening and weakening (Lemmas 4.2 and 4.8). To illustrate, take the rule
(νx : un p)0≡ 0. AssumeΓ⊢ 0⊲Γ and letx 6∈ dom(Γ), eventually by alpha-renamingx in the left process.
By weakening we inferΓ,x : un p⊢ 0⊲Γ,x : un p. We apply [A-RES] and conclude:Γ ⊢ (νx : un p)0⊲Γ.
Now assumeΓ ⊢ (νx : un p)0⊲Γ1 inferred fromΓ,x : un p⊢ 0⊲Γ1,x : O. From the fact that this judgment
has been inferred by using [A-INACT], we infer Γ1 = Γ andO = un p. Sincex 6∈ fv(0), by applying
strengthening we infer the desired result,Γ ⊢ 0⊲Γ.

Theorem 4.10.ThetypeCheck algorithm is effective for establishing a session-based type discipline.

Proof. Apply Corollaries 3.4, 4.5 and Lemmas 4.6 and 4.9.

4.1 Towards semantic completeness

The algorithm is unable to type check some process that is typable by the type system in Figure 3. This
is trivially true for all processes typed by unsafe contexts, but also for typings of the form:

Γ,x : (lin?T.S, lin!T.S) ⊢D x(y).P P≡C[x〈z〉.P′]

Γ,x : (lin?T.S, lin!T.S) ⊢D x〈x〉 T = lin?T.S .

As argued in other works on session types (e.g. [3, 1]), it seems that ruling out such processes does
not comport an issue since they appear to be deadlocked. To deploy a formal proof of this statement, we
have developed a typed observational theory where the behavior of processes is contrasted w.r.t. the typed
knowledge of the observer [4]. The discerning capability ofthe observer is regulated by the type checker;
in particular, type checking forces contexts to not interfere with a session shared by two participants.
Behaviorally equivalent pi calculus processes exhibit thesame observables in all type checked contexts.
To avoid universal quantification, we rely on a proof technique based on bisimulation over typed labelled
semantics.

The aim is to prove that ifI ⊢D P has been inferred by using [T-INC] or [T-OUTC] with a lin-
ear channel type, thenP is indistinguishable from0 in all contexts type checked by a type environ-
mentY compatiblewith I , notedY |= P ∼= 0. To illustrate, assume that by applying [T-INC] we infer
I ,x: (lin?T.S, lin!T.S) ⊢D x(y).P. Intuitively, a process type checked byY cannot tell apart the input pro-
cess from0 because interaction onx is forbidden byY; the compatibility condition enforces the type
environmentY to do not contain input or output capabilities ofx, which are already used in a linear way
in I . Once obtained this result, we should be able to prove our algorithm to be semantically complete, in
the following sense.

Claim(Completeness). If I1 ⊢D P1 then there are a type environmentI2 and a processP2 s.t. typeCheck(I2,P2)
andY |= P1

∼= P2 with Y a type environment compatible with bothI1 andI2.

The idea is to buildP2 by descending the derivation tree forI1 ⊢ P1 and by substituting subtrees of
I1 ⊢ P1 with a leafI2 ⊢ 0 by following two rules:

[T-I NC] I1,x: (lin?T.S, lin!T.S) ⊢ x(y).Q is exchanged withI2 ⊢ 0;

[T-OUTC] I1,x: (lin!T.S, lin?T.S) ⊢ x〈v〉.Q is exchanged withI2 ⊢ 0;

Ideally, we would letI1 = I2. Unfortunately, the linear design of the algorithm forbidsthis option
since the call of the type checking function would return in output the linear entries not consumed by
[A-I NACT]. This approach indeed works if we relax the linearity of type checking an relies on an affine
setting where each session type is used at most once. Otherwise, we could prune the linear entries from

M. Giunti 15

I1,x: (lin?T.S, lin!T.S) and let the type environmentI2 to contain all unrestricted typings inI1. The proof
should proceed by co-induction by exploiting the typed bisimulation semantics defined in [4].

As a by-product, this technique could be also useful to detect simple deadlocks generated by erro-
neous programming of two opposite linear capabilities in a sequential way.

5 Examples

The protocol for the scheduling of a meeting discussed in Section 1 requires the interaction with one or
more clients executed in parallel with the service. The bootstrap is due to the interaction with a client
process acting as the creator of the poll, defined as processP2 below. The process, once it has received
the channel for the poll, sets the title and the date and then sends the invitation for the poll to a number
of recipients by forwarding the channel established to communicate the date proposals. An instance of
the protocol is obtained by considering the parallel composition of the serviceP1 and the clientP2; we
let string= unend= date.

P1 =!x(w).(ν p : (S1,S2)) (w〈p〉.p(title).p(date).!p(date))

P2 = x〈y〉.y(p).(p〈Meeting〉.p〈17March〉.(z1〈p〉 | · · · | zn〈p〉))

S1 = lin?string.lin?date.S3 S3 = un?date.S3

S2 = lin !string.lin !date.S4 S4 = un !date.S4

By passing the (safe) contextΓ below to the type checker we obtain thatP1 | P2 is accepted. Notice that,
due to Lemma 4.9,P2 | P1 is also accepted; we believe this feature to be of practical interest. For the sake
of compactness, in the following we will shorten the unrestricted typeunend with end.

Γ = x : Tx,y : (lin !S2.end, lin?S2.end),z1 : lin !S4.end, . . . ,zn : lin !S4.end

Tx = (µa.un?(lin !S2.end).a,µb.un!(lin !S2.end).b)

We present below the most interesting snippets of the execution of typeCheck(Γ , P1 | P2).

Typing the (linear) poll delegation. In typing the continuation ofP1, the [A-RES] pattern is matched.
Once verified that the type(S1,S2) is balanced, the following sub-call is launched by adding tothe context
the channel type for the poll:

Γ1 = check(Γ,w : lin !S2.end, p : (S1,S2) , w〈p〉.p(title).p(date).!p(date)) (1)

The call (1) matches the pattern [A-OUT-L] and a call for the continuation is invoked by setting to void
the sent end point typeS2.

Γ2 = check(Γ,w : end, p : (S1,◦) , p(title).p(date).!p(date)) (2)

When receiving the contextΓ2, the pattern [A-OUT-L] requiresΓ2(w) to be unrestricted. The context
returned in output to the call in (1) is obtained by settingΓ2(w) = ◦. When receiving the contextΓ1,
the pattern [A-RES] requiresΓ1(p) to be unrestricted, and the context returned in output to thecaller is
obtained by removing the entry forp from Γ1.

16 A type checking algorithm for qualified session types

Typing the replicated receiving of the date. In typing the continuation of the process above the pattern
[A-I N-L] is matched and the following call is launched by passing as parameter the contextΓ′ = Γ,w :
end, p : S3,title : string,date : date :

Γ3 = check(Γ′ , !p(date)) (3)

The pattern [A- REPL] is matched and the following call is launched.

Γ4 = check(Γ′, p(date)) (4)

To succeed in returning the context in output, [A- REPL] requires the contextΓ4 received from the
call (4) to be equal toΓ′. This is satisfied; in this way we know that any linear resource has not been
used under replication, because that would have implied thepresence of a new void typing. Finally the
contextΓ3 = Γ4 is returned by [A- REPL] to the caller.

Typing the (unrestricted) poll delegation. In typing the continuation of the clientP2, pattern [A-OUT-L]
is matched and the following call is launched by passing as argument the contextΓ3= x : Tx,y : (◦,end), p :
S4,z1 : lin !S4.end, . . . ,zn : lin !S4.end:

Γ5 = check(Γ3 , z1〈p〉 | · · · | zn〈p〉) (5)

The call (5) matches the [A-PAR] pattern and corresponds to the forwarding of the poll to therecipients
in order to propose a date. The checking procedure for the first delegation is invoked:

Γ6 = check(Γ3 , z1〈p〉) (6)

The contextΓ6 obtained by setting to void the entry forz1 in Γ3 is returned to the caller (5) in order to
type the next thread. Lastly contextΓ5 is obtained by setting to void the entries forz1, . . . ,zn in Γ3.

Remark.By setting typings to void at the end of the call for a linear typing we avoid unsound derivations
as the one below

Γ1,x : lin!T.un?T.S
?
⊢ x〈v〉.P | x(y).Q⊲Γ2,x : ◦ .

On contrast, we could type check a standard use of pi calculuschannels by using the rules for unrestricted
channel types of the formT = (µa.un?T ′.a,µb.un !T ′.b):

Γ1,x : T ⊢ x〈y〉.P | x(y).Q⊲Γ2,x : T .

6 Discussion

We have presented a type checking algorithm for establishing a session-based discipline in (a typed
version of) the pi calculus of Milner, Parrow and Walker. Following a recent approach [14] our session
types are qualified as linear or unrestricted; a linear session type could evolve to an unrestricted session
type. Each session type describes one end of the session; thewhole session is described by a type
constructor representing the concurrent behavior of the two channel ends [5]. We assess the soundness
of the algorithm by showing that type checked processes are accepted by a typing system satisfying
subject reduction.

Similarly to other approaches for type checking of linear and session types in the pi calculus [7, 3],
we rely on the idea to type a parallel processP |Q by ignoring the set of linear identifiers used byP before
type checkingQ. By reasoning at the type level, we provide for a clean account of the notion of used

M. Giunti 17

identifier by introducing explicit markers for consumed types. On contrast with the cited approaches, this
construction let us prove that the algorithm preserves structural congruence, and in turn that re-arranging
of parallel processes is possible; we think that this feature is of practical interest.

While the algorithm is not complete, we claim that we are not loosing expressiveness since the
algorithm should type checks all interesting processes accepted by the split-based typing system. We
are working on a proof of this result which is based on a typed observational theory which permits to
contrast the behavior of processes w.r.t. contexts regulated by type checking [4].

Qualified session types are expressive enough to represent linear types for lambda calculus [15] and
linear and session types for pi calculus [7, 3]: see [5] for the details. The presented algorithm is therefore
a useful tool to type check systems based on the notion of linearity of communications. For instance, the
qualified session typing system presented in [13] for a variant of pi calculus relies on the idea of a double
binder to represent the two ends of a communication. By projecting a qualified session typeS into its
dual S (cf. [5]) we could easily map this construct in our system andin turn provide a (different) type
checking algorithm:

[[(νxy: S)P]] = (νx: (S,S))[[P[x/y]]]

It should be noted that the choice of representing computations with a channel type representing the
two ends of the communication rules out some process that could be interesting. A process that we are
not able to type check is below.

!x(y).(νa)(y〈a〉.a(title).a(date).(!a(date) | a〈22March〉)

The process consists in a modified version of the poll servicewhere the service itself proposes a date
for the meeting. Both the algorithm and the split-based system do not accept this process because in the
(unrestricted) continuation type both capabilities wouldbe needed. While we do not envisage difficulties
in introducing subtyping for unrestricted types à la [11],this seems to go in the opposite direction of the
idea of channel types. We therefore need to investigate subtyping solutions which take into account the
channel type construct.

Lastly, a natural completion of this work would be to deploy an algorithm for type inference. We
are convinced that the channel type abstraction leads to a feasible implementation based on constraint
techniques (e.g. [8]).

Acknowledgments. This work was carried out during the tenure of an “Alain Bensoussan” Fellowship
Programme. This programme is supported by the Marie Curie Co-Funding of Regional, National and
International Programmes (COFUND) of the European Commission. The author was also supported
by the Comete project, INRIA Saclay-Île de France. I would like to thank the anonymous referees for
detailed comments.

References

[1] Giuseppe Castagna, Mariangiola Dezani-Ciancaglini, Elena Giachino & Luca Padovani
(2009): Foundations of session types. In: PPDP, ACM Press, pp. 219–230. Available at
http://doi.acm.org/10.1145/1599410.1599437.

[2] Mariangiola Dezani-Ciancaglini & Ugo de’Liguoro (2009): Sessions and Session Types: An Overview.
In: WS-FM, Lectures Notes in Computer Science6194, Springer, pp. 1–28. Available at
http://dx.doi.org/10.1007/978-3-642-14458-5_1.

http://doi.acm.org/10.1145/1599410.1599437
http://dx.doi.org/10.1007/978-3-642-14458-5_1

18 A type checking algorithm for qualified session types

[3] Simon J. Gay & Malcolm J. Hole (2005):Subtyping for Session Types in the Pi Calculus. Acta Informatica
42(2/3), pp. 191–225.

[4] Marco Giunti (2011):Typed Observational Equivalence for Sessions. Submitted.

[5] Marco Giunti & Vasco T. Vasconcelos (2010):A Linear Account of Session Types in the Pi Calcu-
lus. In: CONCUR, Lecture Notes in Computer Science6269, Springer, pp. 432–446. Available at
http://dx.doi.org/10.1007/978-3-642-15375-4_30.

[6] Kohei Honda, Vasco T. Vasconcelos & Makoto Kubo (1998):Language Primitives and Type Discipline for
Structured Communication-Based Programming. In: ESOP, Lectures Notes in Computer Science1381,
Springer, pp. 122–138. Available athttp://dx.doi.org/10.1007/BFb0053567.

[7] Naoki Kobayashi, Benjamin C. Pierce & David N. Turner (1999): Linearity and the pi-calculus.
ACM Transactions on Programming Languages and Systems21(5), pp. 914–947. Available at
http://doi.acm.org/10.1145/330249.330251.

[8] Michael Lienhardt, Claudio Antares Mezzina, Alan Schmitt & Jean-Bernard Stefani (2009):Typing
Component-Based Communication Systems. In: FMOODS/FORTE, Lectures Notes in Computer Science
5522, Springer, pp. 167–181. Available athttp://dx.doi.org/10.1007/978-3-642-02138-1_11.

[9] Robin Milner, Joachim Parrow & David Walker (1992):A Calculus of Mobile Processes, parts I and II.
Information and Computation100(1), pp. 1–77.

[10] Benjamin C. Pierce (2002):Types and Programming Languages. MIT Press.

[11] Benjamin C. Pierce & Davide Sangiorgi (1996):Typing and Subtyping for Mobile Processes. Mathematical
Structures in Computer Science6(5), pp. 409–453.

[12] Kaku Takeuchi, Kohei Honda & Makoto Kubo (1994):An Interaction-based Language and its Typing System.
In: PARLE, Lectures Notes in Computer Science817, Springer, pp. 398–413.

[13] Vasco T. Vasconcelos (2009):Fundamentals of Session Types. In: SFM, Lectures Notes in Computer Science
5569, Springer, pp. 158–186. Available athttp://dx.doi.org/10.1007/978-3-642-01918-0_4.

[14] Vasco T. Vasconcelos (2011):Sessions, from types to programming languages. In Luca Aceto, editor:The
Concurrency Column, Bulletin of the EATCS103, pp. 53–73.

[15] David Walker (2005):Advanced Topics in Types and Programming Languages, chapter Substructural Type
Systems. MIT Press.

A Appendix

The table in Figure 4 depicts the shape of contexts used in theproof of the case of congruence of parallel
processes in Lemma 4.9. The first three columns in the table represent all possible combinations for (an
entry of) safe contextsΓ1,Γ2 andΓ3 such that

Γ1 ⊢ P⊲Γ2 and Γ2 ⊢ Q⊲Γ3

Given these inputs, the next three columns show the output for the context in the header. ContextΓ4 in
the seventh column is the solution of the following linear system:

{

Γ1 = (Γ2 ⊲Γ3)⊎Γ4

Γ4 = (Γ1 ⊲Γ2)⊎Γ3

In the last column we have the environment∇Γ1 = ∇ = ∇Γ2.

http://dx.doi.org/10.1007/978-3-642-15375-4_30
http://dx.doi.org/10.1007/BFb0053567
http://doi.acm.org/10.1145/330249.330251
http://dx.doi.org/10.1007/978-3-642-02138-1_11
http://dx.doi.org/10.1007/978-3-642-01918-0_4

M. Giunti 19

Γ1 Γ2 Γ3 Γ1⊲Γ2 Γ2 ⊲Γ3 Γ1⊲Γ3 Γ4 ∇
lin p lin p lin p ◦ ◦ ◦ lin p ◦

lin p lin p ◦ ◦ lin p lin p ◦ ◦

lin p ◦ ◦ lin p ◦ ◦ lin p ◦

un p un p un p un p un p un p un p un p

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

(linp1, linp2) (linp1, linp2) (linp1, linp2) (◦,◦) (◦,◦) (◦,◦) (linp1, linp2) (◦,◦)

(linp1, linp2) (linp1, linp2) (linp1,◦) (◦,◦) (◦, linp2) (◦, linp2) (linp1,◦) (◦,◦)

(linp1, linp2) (linp1,◦) (linp1,◦) (◦, linp2) (◦,◦) (◦, linp2) (linp1, linp2) (◦,◦)

(linp1, linp2) (linp1, linp2) (◦, linp2) (◦,◦) (linp1,◦) (linp1,◦) (◦, linp2) (◦,◦)

(linp1, linp2) (◦, linp2) (◦, linp2) (linp1,◦) (◦,◦) (linp1,◦) (linp1, linp2) (◦,◦)

(linp1, linp2) (linp1, linp2) (◦,◦) (◦,◦) (linp1, linp2) (linp1, linp2) (◦,◦) (◦,◦)

(linp1, linp2) (linp1,◦) (◦,◦) (◦, linp2) (linp1,◦) (linp1, linp2) (◦, linp2) (◦,◦)

(linp1, linp2) (◦, linp2) (◦,◦) (linp1,◦) (◦, linp2) (linp1, linp2) (linp1,◦) (◦,◦)

(linp1, linp2) (◦,◦) (◦,◦) (linp1, linp2) (◦,◦) (linp1, linp2) (linp1, linp2) (◦,◦)

(linp1,◦) (linp1,◦) (linp1,◦) (◦,◦) (◦,◦) (◦,◦) (linp1,◦) (◦,◦)

(linp1,◦) (linp1,◦) (◦,◦) (◦,◦) (linp1,◦) (linp1,◦) (◦,◦) (◦,◦)

(linp1,◦) (◦,◦) (◦,◦) (linp1,◦) (◦,◦) (linp1,◦) (linp1,◦) (◦,◦)

(◦, linp1) (◦, linp1) (◦, linp1) (◦,◦) (◦,◦) (◦,◦) (◦, linp1) (◦,◦)

(◦, linp1) (◦, linp1) (◦,◦) (◦,◦) (◦, linp1) (◦, linp1) (◦,◦) (◦,◦)

(◦, linp1) (◦,◦) (◦,◦) (◦, linp1) (◦,◦) (◦, linp1) (◦, linp1) (◦,◦)

(unp1,unp2) (unp1,unp2) (unp1,unp2) (unp1,unp2) (unp1,unp2) (unp1,unp2) (unp1,unp2) (unp1,unp2)

(unp1,◦) (unp1,◦) (unp1,◦) (unp1,◦) (unp1,◦) (unp1,◦) (unp1,◦) (unp1,◦)

(◦,unp2) (◦,unp2) (◦,unp2) (◦,unp2) (◦,unp2) (◦,unp2) (◦,unp2) (◦,unp2)

(◦,◦) (◦,◦) (◦,◦) (◦,◦) (◦,◦) (◦,◦) (◦,◦) (◦,◦)

Figure 4: Contexts in [A-PAR]

	1 Introduction
	2 Pi calculus
	3 Type checking algorithm
	4 Soundness
	4.1 Towards semantic completeness

	5 Examples
	6 Discussion
	A Appendix

