177 research outputs found

    Dependability-driven Strategies to Improve the Design and Verification of Safety-Critical HDL-based Embedded Systems

    Full text link
    [ES] La utilización de sistemas empotrados en cada vez más ámbitos de aplicación está llevando a que su diseño deba enfrentarse a mayores requisitos de rendimiento, consumo de energía y área (PPA). Asimismo, su utilización en aplicaciones críticas provoca que deban cumplir con estrictos requisitos de confiabilidad para garantizar su correcto funcionamiento durante períodos prolongados de tiempo. En particular, el uso de dispositivos lógicos programables de tipo FPGA es un gran desafío desde la perspectiva de la confiabilidad, ya que estos dispositivos son muy sensibles a la radiación. Por todo ello, la confiabilidad debe considerarse como uno de los criterios principales para la toma de decisiones a lo largo del todo flujo de diseño, que debe complementarse con diversos procesos que permitan alcanzar estrictos requisitos de confiabilidad. Primero, la evaluación de la robustez del diseño permite identificar sus puntos débiles, guiando así la definición de mecanismos de tolerancia a fallos. Segundo, la eficacia de los mecanismos definidos debe validarse experimentalmente. Tercero, la evaluación comparativa de la confiabilidad permite a los diseñadores seleccionar los componentes prediseñados (IP), las tecnologías de implementación y las herramientas de diseño (EDA) más adecuadas desde la perspectiva de la confiabilidad. Por último, la exploración del espacio de diseño (DSE) permite configurar de manera óptima los componentes y las herramientas seleccionados, mejorando así la confiabilidad y las métricas PPA de la implementación resultante. Todos los procesos anteriormente mencionados se basan en técnicas de inyección de fallos para evaluar la robustez del sistema diseñado. A pesar de que existe una amplia variedad de técnicas de inyección de fallos, varias problemas aún deben abordarse para cubrir las necesidades planteadas en el flujo de diseño. Aquellas soluciones basadas en simulación (SBFI) deben adaptarse a los modelos de nivel de implementación, teniendo en cuenta la arquitectura de los diversos componentes de la tecnología utilizada. Las técnicas de inyección de fallos basadas en FPGAs (FFI) deben abordar problemas relacionados con la granularidad del análisis para poder localizar los puntos débiles del diseño. Otro desafío es la reducción del coste temporal de los experimentos de inyección de fallos. Debido a la alta complejidad de los diseños actuales, el tiempo experimental dedicado a la evaluación de la confiabilidad puede ser excesivo incluso en aquellos escenarios más simples, mientras que puede ser inviable en aquellos procesos relacionados con la evaluación de múltiples configuraciones alternativas del diseño. Por último, estos procesos orientados a la confiabilidad carecen de un soporte instrumental que permita cubrir el flujo de diseño con toda su variedad de lenguajes de descripción de hardware, tecnologías de implementación y herramientas de diseño. Esta tesis aborda los retos anteriormente mencionados con el fin de integrar, de manera eficaz, estos procesos orientados a la confiabilidad en el flujo de diseño. Primeramente, se proponen nuevos métodos de inyección de fallos que permiten una evaluación de la confiabilidad, precisa y detallada, en diferentes niveles del flujo de diseño. Segundo, se definen nuevas técnicas para la aceleración de los experimentos de inyección que mejoran su coste temporal. Tercero, se define dos estrategias DSE que permiten configurar de manera óptima (desde la perspectiva de la confiabilidad) los componentes IP y las herramientas EDA, con un coste experimental mínimo. Cuarto, se propone un kit de herramientas que automatiza e incorpora con eficacia los procesos orientados a la confiabilidad en el flujo de diseño semicustom. Finalmente, se demuestra la utilidad y eficacia de las propuestas mediante un caso de estudio en el que se implementan tres procesadores empotrados en un FPGA de Xilinx serie 7.[CA] La utilització de sistemes encastats en cada vegada més àmbits d'aplicació està portant al fet que el seu disseny haja d'enfrontar-se a majors requisits de rendiment, consum d'energia i àrea (PPA). Així mateix, la seua utilització en aplicacions crítiques provoca que hagen de complir amb estrictes requisits de confiabilitat per a garantir el seu correcte funcionament durant períodes prolongats de temps. En particular, l'ús de dispositius lògics programables de tipus FPGA és un gran desafiament des de la perspectiva de la confiabilitat, ja que aquests dispositius són molt sensibles a la radiació. Per tot això, la confiabilitat ha de considerar-se com un dels criteris principals per a la presa de decisions al llarg del tot flux de disseny, que ha de complementar-se amb diversos processos que permeten aconseguir estrictes requisits de confiabilitat. Primer, l'avaluació de la robustesa del disseny permet identificar els seus punts febles, guiant així la definició de mecanismes de tolerància a fallades. Segon, l'eficàcia dels mecanismes definits ha de validar-se experimentalment. Tercer, l'avaluació comparativa de la confiabilitat permet als dissenyadors seleccionar els components predissenyats (IP), les tecnologies d'implementació i les eines de disseny (EDA) més adequades des de la perspectiva de la confiabilitat. Finalment, l'exploració de l'espai de disseny (DSE) permet configurar de manera òptima els components i les eines seleccionats, millorant així la confiabilitat i les mètriques PPA de la implementació resultant. Tots els processos anteriorment esmentats es basen en tècniques d'injecció de fallades per a poder avaluar la robustesa del sistema dissenyat. A pesar que existeix una àmplia varietat de tècniques d'injecció de fallades, diverses problemes encara han d'abordar-se per a cobrir les necessitats plantejades en el flux de disseny. Aquelles solucions basades en simulació (SBFI) han d'adaptar-se als models de nivell d'implementació, tenint en compte l'arquitectura dels diversos components de la tecnologia utilitzada. Les tècniques d'injecció de fallades basades en FPGAs (FFI) han d'abordar problemes relacionats amb la granularitat de l'anàlisi per a poder localitzar els punts febles del disseny. Un altre desafiament és la reducció del cost temporal dels experiments d'injecció de fallades. A causa de l'alta complexitat dels dissenys actuals, el temps experimental dedicat a l'avaluació de la confiabilitat pot ser excessiu fins i tot en aquells escenaris més simples, mentre que pot ser inviable en aquells processos relacionats amb l'avaluació de múltiples configuracions alternatives del disseny. Finalment, aquests processos orientats a la confiabilitat manquen d'un suport instrumental que permeta cobrir el flux de disseny amb tota la seua varietat de llenguatges de descripció de maquinari, tecnologies d'implementació i eines de disseny. Aquesta tesi aborda els reptes anteriorment esmentats amb la finalitat d'integrar, de manera eficaç, aquests processos orientats a la confiabilitat en el flux de disseny. Primerament, es proposen nous mètodes d'injecció de fallades que permeten una avaluació de la confiabilitat, precisa i detallada, en diferents nivells del flux de disseny. Segon, es defineixen noves tècniques per a l'acceleració dels experiments d'injecció que milloren el seu cost temporal. Tercer, es defineix dues estratègies DSE que permeten configurar de manera òptima (des de la perspectiva de la confiabilitat) els components IP i les eines EDA, amb un cost experimental mínim. Quart, es proposa un kit d'eines (DAVOS) que automatitza i incorpora amb eficàcia els processos orientats a la confiabilitat en el flux de disseny semicustom. Finalment, es demostra la utilitat i eficàcia de les propostes mitjançant un cas d'estudi en el qual s'implementen tres processadors encastats en un FPGA de Xilinx serie 7.[EN] Embedded systems are steadily extending their application areas, dealing with increasing requirements in performance, power consumption, and area (PPA). Whenever embedded systems are used in safety-critical applications, they must also meet rigorous dependability requirements to guarantee their correct operation during an extended period of time. Meeting these requirements is especially challenging for those systems that are based on Field Programmable Gate Arrays (FPGAs), since they are very susceptible to Single Event Upsets. This leads to increased dependability threats, especially in harsh environments. In such a way, dependability should be considered as one of the primary criteria for decision making throughout the whole design flow, which should be complemented by several dependability-driven processes. First, dependability assessment quantifies the robustness of hardware designs against faults and identifies their weak points. Second, dependability-driven verification ensures the correctness and efficiency of fault mitigation mechanisms. Third, dependability benchmarking allows designers to select (from a dependability perspective) the most suitable IP cores, implementation technologies, and electronic design automation (EDA) tools. Finally, dependability-aware design space exploration (DSE) allows to optimally configure the selected IP cores and EDA tools to improve as much as possible the dependability and PPA features of resulting implementations. The aforementioned processes rely on fault injection testing to quantify the robustness of the designed systems. Despite nowadays there exists a wide variety of fault injection solutions, several important problems still should be addressed to better cover the needs of a dependability-driven design flow. In particular, simulation-based fault injection (SBFI) should be adapted to implementation-level HDL models to take into account the architecture of diverse logic primitives, while keeping the injection procedures generic and low-intrusive. Likewise, the granularity of FPGA-based fault injection (FFI) should be refined to the enable accurate identification of weak points in FPGA-based designs. Another important challenge, that dependability-driven processes face in practice, is the reduction of SBFI and FFI experimental effort. The high complexity of modern designs raises the experimental effort beyond the available time budgets, even in simple dependability assessment scenarios, and it becomes prohibitive in presence of alternative design configurations. Finally, dependability-driven processes lack an instrumental support covering the semicustom design flow in all its variety of description languages, implementation technologies, and EDA tools. Existing fault injection tools only partially cover the individual stages of the design flow, being usually specific to a particular design representation level and implementation technology. This work addresses the aforementioned challenges by efficiently integrating dependability-driven processes into the design flow. First, it proposes new SBFI and FFI approaches that enable an accurate and detailed dependability assessment at different levels of the design flow. Second, it improves the performance of dependability-driven processes by defining new techniques for accelerating SBFI and FFI experiments. Third, it defines two DSE strategies that enable the optimal dependability-aware tuning of IP cores and EDA tools, while reducing as much as possible the robustness evaluation effort. Fourth, it proposes a new toolkit (DAVOS) that automates and seamlessly integrates the aforementioned dependability-driven processes into the semicustom design flow. Finally, it illustrates the usefulness and efficiency of these proposals through a case study consisting of three soft-core embedded processors implemented on a Xilinx 7-series SoC FPGA.Tuzov, I. (2020). Dependability-driven Strategies to Improve the Design and Verification of Safety-Critical HDL-based Embedded Systems [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/159883TESI

    Dynamic Partial Reconfiguration for Dependable Systems

    Get PDF
    Moore’s law has served as goal and motivation for consumer electronics manufacturers in the last decades. The results in terms of processing power increase in the consumer electronics devices have been mainly achieved due to cost reduction and technology shrinking. However, reducing physical geometries mainly affects the electronic devices’ dependability, making them more sensitive to soft-errors like Single Event Transient (SET) of Single Event Upset (SEU) and hard (permanent) faults, e.g. due to aging effects. Accordingly, safety critical systems often rely on the adoption of old technology nodes, even if they introduce longer design time w.r.t. consumer electronics. In fact, functional safety requirements are increasingly pushing industry in developing innovative methodologies to design high-dependable systems with the required diagnostic coverage. On the other hand commercial off-the-shelf (COTS) devices adoption began to be considered for safety-related systems due to real-time requirements, the need for the implementation of computationally hungry algorithms and lower design costs. In this field FPGA market share is constantly increased, thanks to their flexibility and low non-recurrent engineering costs, making them suitable for a set of safety critical applications with low production volumes. The works presented in this thesis tries to face new dependability issues in modern reconfigurable systems, exploiting their special features to take proper counteractions with low impacton performances, namely Dynamic Partial Reconfiguration

    Computer Architectures to Close the Loop in Real-time Optimization

    Get PDF
    © 2015 IEEE.Many modern control, automation, signal processing and machine learning applications rely on solving a sequence of optimization problems, which are updated with measurements of a real system that evolves in time. The solutions of each of these optimization problems are then used to make decisions, which may be followed by changing some parameters of the physical system, thereby resulting in a feedback loop between the computing and the physical system. Real-time optimization is not the same as fast optimization, due to the fact that the computation is affected by an uncertain system that evolves in time. The suitability of a design should therefore not be judged from the optimality of a single optimization problem, but based on the evolution of the entire cyber-physical system. The algorithms and hardware used for solving a single optimization problem in the office might therefore be far from ideal when solving a sequence of real-time optimization problems. Instead of there being a single, optimal design, one has to trade-off a number of objectives, including performance, robustness, energy usage, size and cost. We therefore provide here a tutorial introduction to some of the questions and implementation issues that arise in real-time optimization applications. We will concentrate on some of the decisions that have to be made when designing the computing architecture and algorithm and argue that the choice of one informs the other

    Conception de systèmes embarqués fiables et auto-réglables : applications sur les systèmes de transport ferroviaire

    Get PDF
    During the last few decades, a tremendous progress in the performance of semiconductor devices has been accomplished. In this emerging era of high performance applications, machines need not only to be efficient but also need to be dependable at circuit and system levels. Several works have been proposed to increase embedded systems efficiency by reducing the gap between software flexibility and hardware high-performance. Due to their reconfigurable aspect, Field Programmable Gate Arrays (FPGAs) represented a relevant step towards bridging this performance/flexibility gap. Nevertheless, Dynamic Reconfiguration (DR) has been continuously suffering from a bottleneck corresponding to a long reconfiguration time.In this thesis, we propose a novel medium-grained high-speed dynamic reconfiguration technique for DSP48E1-based circuits. The idea is to take advantage of the DSP48E1 slices runtime reprogrammability coupled with a re-routable interconnection block to change the overall circuit functionality in one clock cycle. In addition to the embedded systems efficiency, this thesis deals with the reliability chanllenges in new sub-micron electronic systems. In fact, as new technologies rely on reduced transistor size and lower supply voltages to improve performance, electronic circuits are becoming remarkably sensitive and increasingly susceptible to transient errors. The system-level impact of these errors can be far-reaching and Single Event Transients (SETs) have become a serious threat to embedded systems reliability, especially for especially for safety critical applications such as transportation systems. The reliability enhancement techniques that are based on overestimated soft error rates (SERs) can lead to unnecessary resource overheads as well as high power consumption. Considering error masking phenomena is a fundamental element for an accurate estimation of SERs.This thesis proposes a new cross-layer model of circuits vulnerability based on a combined modeling of Transistor Level (TLM) and System Level Masking (SLM) mechanisms. We then use this model to build a self adaptive fault tolerant architecture that evaluates the circuit’s effective vulnerability at runtime. Accordingly, the reliability enhancement strategy is adapted to protect only vulnerable parts of the system leading to a reliable circuit with optimized overheads. Experimentations performed on a radar-based obstacle detection system for railway transportation show that the proposed approach allows relevant reliability/resource utilization tradeoffs.Un énorme progrès dans les performances des semiconducteurs a été accompli ces dernières années. Avec l’´émergence d’applications complexes, les systèmes embarqués doivent être à la fois performants et fiables. Une multitude de travaux ont été proposés pour améliorer l’efficacité des systèmes embarqués en réduisant le décalage entre la flexibilité des solutions logicielles et la haute performance des solutions matérielles. En vertu de leur nature reconfigurable, les FPGAs (Field Programmable Gate Arrays) représentent un pas considérable pour réduire ce décalage performance/flexibilité. Cependant, la reconfiguration dynamique a toujours souffert d’une limitation liée à la latence de reconfiguration.Dans cette thèse, une nouvelle technique de reconfiguration dynamiqueau niveau ”grain-moyen” pour les circuits à base de blocks DSP48E1 est proposée. L’idée est de profiter de la reprogrammabilité des blocks DSP48E1 couplée avec un circuit d’interconnection reconfigurable afin de changer la fonction implémentée par le circuit en un cycle horloge. D’autre part, comme les nouvelles technologies s’appuient sur la réduction des dimensions des transistors ainsi que les tensions d’alimentation, les circuits électroniques sont devenus de plus en plus susceptibles aux fautes transitoires. L’impact de ces erreurs au niveau système peut être catastrophique et les SETs (Single Event Transients) sont devenus une menace tangible à la fiabilité des systèmes embarqués, en l’occurrence pour les applications critiques comme les systèmes de transport. Les techniques de fiabilité qui se basent sur des taux d’erreurs (SERs) surestimés peuvent conduire à un gaspillage de ressources et par conséquent un cout en consommation de puissance électrique. Il est primordial de prendre en compte le phénomène de masquage d’erreur pour une estimation précise des SERs.Cette thèse propose une nouvelle modélisation inter-couches de la vulnérabilité des circuits qui combine les mécanismes de masquage au niveau transistor (TLM) et le masquage au niveau Système (SLM). Ce modèle est ensuite utilisé afin de construire une architecture adaptative tolérante aux fautes qui évalue la vulnérabilité effective du circuit en runtime. La stratégie d’amélioration de fiabilité est adaptée pour ne protéger que les parties vulnérables du système, ce qui engendre un circuit fiable avec un cout optimisé. Les expérimentations effectuées sur un système de détection d’obstacles à base de radar pour le transport ferroviaire montre que l’approche proposée permet d’´établir un compromis fiabilité/ressources utilisées

    CAD Techniques for Robust FPGA Design Under Variability

    Get PDF
    The imperfections in the semiconductor fabrication process and uncertainty in operating environment of VLSI circuits have emerged as critical challenges for the semiconductor industry. These are generally termed as process and environment variations, which lead to uncertainty in performance and unreliable operation of the circuits. These problems have been further aggravated in scaled nanometer technologies due to increased process variations and reduced operating voltage. Several techniques have been proposed recently for designing digital VLSI circuits under variability. However, most of them have targeted ASICs and custom designs. The flexibility of reconfiguration and unknown end application in FPGAs make design under variability different for FPGAs compared to ASICs and custom designs, and the techniques proposed for ASICs and custom designs cannot be directly applied to FPGAs. An important design consideration is to minimize the modifications in architecture and circuit to reduce the cost of changing the existing FPGA architecture and circuit. The focus of this work can be divided into three principal categories, which are, improving timing yield under process variations, improving power yield under process variations and improving the voltage profile in the FPGA power grid. The work on timing yield improvement proposes routing architecture enhancements along with CAD techniques to improve the timing yield of FPGA designs. The work on power yield improvement for FPGAs selects a low power dual-Vdd FPGA design as the baseline FPGA architecture for developing power yield enhancement techniques. It proposes CAD techniques to improve the power yield of FPGAs. A mathematical programming technique is proposed to determine the parameters of the buffers in the interconnect such as the sizes of the transistors and threshold voltage of the transistors, all within constraints, such that the leakage variability is minimized under delay constraints. Two CAD techniques are investigated and proposed to improve the supply voltage profile of the power grids in FPGAs. The first technique is a place and route technique and the second technique is a logic clustering technique to reduce IR-drops and spatial variation of supply voltage in the power grid

    Contributions to the fault tolerance of soft-core processors implemented in SRAM-based FPGA Systems.

    Get PDF
    239 p.Gracias al desarrollo de las tecnologías de diseño y fabricación, los circuitos electrónicos han llegado a grandes niveles de integración. De esta forma, hoy en día es posible implementar completos y complejos sistemas dentro de un único dispositivo incorporando gran variedad de elementos como: procesadores, osciladores, lazos de seguimiento de fase (PLLs), interfaces, conversores ADC y DAC, módulos de memoria, etc. A este concepto de diseño se le denomina comúnmente SoC (System-on-Chip). Una de las plataformas para implementar estos sistemas que más importancia está cobrando son las FPGAs (Field Programmable Gate Array). Históricamente la plataforma más utilizada para albergar los SoCs han sido las ASICs (Application- Specific Integrated Circuits), debido a su bajo consumo energético y su gran rendimiento. No obstante, su costoso proceso de desarrollo y fabricación hace que solo sean rentables en el caso de producciones masivas. Las FPGAs, por el contrario, al ser dispositivos configurables ofrecen, la posibilidad de implementar diseños personalizados a un coste mucho más reducido. Por otro lado, los continuos avances en la tecnología de las FPGAs están haciendo que éstas compitan con las ASICs a nivel de prestaciones (consumo, nivel de integración y eficiencia). Ciertas tecnologías de FPGA, como las SRAM y Flash, poseen una característica que las hace especialmente interesantes en multitud de diseños: la capacidad de reconfiguración. Dicha característica, que incluso puede ser realizada de forma autónoma, permite cambiar completamente el diseño hardware implementado con solo cargar en la FPGA un archivo de configuración denominado bitstream. La reconfiguración puede incluso permitir modificar una parte del circuito configurado en la matriz de la FPGA, mientras el resto del circuito implementado continua inalterado. Esto que se conoce como reconfiguración parcial dinámica, posibilita que un mismo chip albergue en su interior numerosos diseños hardware que pueden ser cargados a demanda. Gracias a la capacidad de reconfiguración, las FPGAs ofrecen numerosas ventajas como: posibilidad de personalización de diseños, capacidad de readaptación durante el funcionamiento para responder a cambios o corregir errores, mitigación de obsolescencia, diferenciación, menores costes de diseño o reducido tiempo para el lanzamiento de productos al mercado. Los SoC basados en FPGAs allanan el camino hacia un nuevo concepto de integración de hardware y software, permitiendo que los diseñadores de sistemas electrónicos sean capaces de integrar procesadores embebidos en los diseños para beneficiarse de su gran capacidad de computación. Gracias a esto, una parte importante de la electrónica hace uso de la tecnología FPGA abarcando un gran abanico de campos, como por ejemplo: la electrónica de consumo y el entretenimiento, la medicina o industrias como la espacial, la aviónica, la automovilística o la militar. Las tecnologías de FPGA existentes ofrecen dos vías de utilización de procesado- res embebidos: procesadores hardcore y procesadores softcore. Los hardcore son procesadores discretos integrados en el mismo chip de la FPGA. Generalmente ofrecen altas frecuencias de trabajo y una mayor previsibilidad en términos de rendimiento y uso del área, pero su diseño hardware no puede alterarse para ser personalizado. Por otro lado, un procesador soft-core, es la descripción hardware en lenguaje HDL (normalmente VDHL o Verilog) de un procesador, sintetizable e implementable en una FPGA. Habitualmente, los procesadores softcore suelen basarse en diseños hardware ya existentes, siendo compatibles con sus juegos de instrucciones, muchos de ellos en forma de IP cores (Intellectual Property co- res). Los IP cores ofrecen procesadores softcore prediseñados y testeados, que dependiendo del caso pueden ser de pago, gratuitos u otro tipo de licencias. Debido a su naturaleza, los procesadores softcore, pueden ser personalizados para una adaptación óptima a diseños específicos. Así mismo, ofrecen la posibilidad de integrar en el diseño tantos procesadores como se desee (siempre que haya disponibles recursos lógicos suficientes). Otra ventaja importante es que, gracias a la reconfiguración parcial dinámica, es posible añadir el procesador al diseño únicamente en los casos necesarios, ahorrando de esta forma, recursos lógicos y consumo energético. Uno de los mayores problemas que surgen al usar dispositivos basados en las tecnologías SRAM o la flash, como es el caso de las FPGAs, es que son especialmente sensibles a los efectos producidos por partículas energéticas provenientes de la radiación cósmica (como protones, neutrones, partículas alfa u otros iones pesados) denominados efectos de eventos simples o SEEs (Single Event Effects). Estos efectos pueden ocasionar diferentes tipos de fallos en los sistemas: desde fallos despreciables hasta fallos realmente graves que comprometan la funcionalidad del sistema. El correcto funcionamiento de los sistemas cobra especial relevancia cuando se trata de tecnologías de elevado costo o aquellas en las que peligran vidas humanas, como, por ejemplo, en campos tales como el transporte ferroviario, la automoción, la aviónica o la industria aeroespacial. Dependiendo de distintos factores, los SEEs pueden causar fallos de operación transitorios, cambios de estados lógicos o daños permanentes en el dispositivo. Cuando se trata de un fallo físico permanente se denomina hard-error, mientras que cuando el fallo afecta el circuito momentáneamente se denomina soft-error. Los SEEs más frecuentes son los soft-errors y afectan tanto a aplicaciones comerciales a nivel terrestre, como a aplicaciones aeronáuticas y aeroespaciales (con mayor incidencia en estas últimas). La contribución exacta de este tipo de fallos a la tasa de errores depende del diseño específico de cada circuito, pero en general se asume que entorno al 90 % de la tasa de error se debe a fallos en elementos de memoria (latches, biestables o celdas de memoria). Los soft-errors pueden afectar tanto al circuito lógico como al bitstream cargado en la memoria de configuración de la FPGA. Debido a su gran tamaño, la memoria de configuración tiene más probabilidades de ser afectada por un SEE. La existencia de problemas generados por estos efectos reafirma la importancia del concepto de tolerancia a fallos. La tolerancia a fallos es una propiedad relativa a los sistemas digitales, por la cual se asegura cierta calidad en el funcionamiento ante la presencia de fallos, debiendo los sistemas poder soportar los efectos de dichos fallos y funcionar correctamente en todo momento. Por tanto, para lograr un diseño robusto, es necesario garantizar la funcionalidad de los circuitos y asegurar la seguridad y confiabilidad en las aplicaciones críticas que puedan verse comprometidos por los SEE. A la hora de hacer frente a los SEE existe la posibilidad de explotar tecnologías específicas centradas en la tolerancia a fallos, como por ejemplo las FPGAs de tipo fusible, o, por otro lado, utilizar la tecnología comercial combinada con técnicas de tolerancia a fallos. Esta última opción va cobrando importancia debido al menor precio y mayores prestaciones de las FPGAs comerciales. Generalmente las técnicas de endurecimiento se aplican durante la fase de diseño. Existe un gran número de técnicas y se pueden llegar a combinar entre sí. Las técnicas prevalentes se basan en emplear algún tipo de redundancia, ya sea hardware, software, temporal o de información. Cada tipo de técnica presenta diferentes ventajas e inconvenientes y se centra en atacar distintos tipos de SEE y sus efectos. Dentro de las técnicas de tipo redundancia, la más utilizada es la hardware, que se basa en replicar el modulo a endurecer. De esta forma, cada una de las réplicas es alimentada con la misma entrada y sus salidas son comparadas para detectar discrepancias. Esta redundancia puede implementarse a diferentes niveles. En términos generales, un mayor nivel de redundancia hardware implica una mayor robustez, pero también incrementa el uso de recursos. Este incremento en el uso de recursos de una FPGA supone tener menos recursos disponibles para el diseño, mayor consumo energético, el tener más elementos susceptibles de ser afectados por un SEE y generalmente, una reducción de la máxima frecuencia alcanzable por el diseño. Por ello, los niveles de redundancia hardware más utilizados son la doble, conocida como DMR (Dual Modular Redundancy) y la triple o TMR (Triple Modular Redundancy). La DMR minimiza el número de recursos redundantes, pero presenta el problema de no poder identificar el módulo fallido ya que solo es capaz de detectar que se ha producido un error. Ello hace necesario combinarlo con técnicas adicionales. Al caso de DMR aplicado a procesadores se le denomina lockstep y se suele combinar con las técnicas checkpoint y rollback recovery. El checkpoint consiste en guardar periódicamente el contexto (contenido de registros y memorias) de instantes identificados como correctos. Gracias a esto, una vez detectado y reparado un fallo es posible emplear el rollback recovery para cargar el último contexto correcto guardado. Las desventajas de estas estrategias son el tiempo requerido por ambas técnicas (checkpoint y rollback recovery) y la necesidad de elementos adicionales (como memorias auxiliares para guardar el contexto). Por otro lado, el TMR ofrece la posibilidad de detectar el módulo fallido mediante la votación por mayoría. Es decir, si tras comparar las tres salidas una de ellas presenta un estado distinto, se asume que las otras dos son correctas. Esto permite que el sistema continúe funcionando correctamente (como sistema DMR) aun cuando uno de los módulos quede inutilizado. En todo caso, el TMR solo enmascara los errores, es decir, no los corrige. Una de las desventajas más destacables de esta técnica es que incrementa el uso de recursos en más de un 300 %. También cabe la posibilidad de que la salida discrepante sea la realmente correcta (y que, por tanto, las otras dos sean incorrectas), aunque este caso es bastante improbable. Uno de los problemas que no se ha analizado con profundidad en la bibliografía es el problema de la sincronización de procesadores soft-core en sistemas TMR (o de mayor nivel de redundancia). Dicho problema reside en que, si tras un fallo se inutiliza uno de los procesadores y el sistema continúa funcionando con el resto de procesadores, una vez reparado el procesador fallido éste necesita sincronizar su contexto al nuevo estado del sistema. Una práctica bastante común en la implementación de sistemas redundantes es combinarlos con la técnica conocida como scrubbing. Esta técnica basada en la reconfiguración parcial dinámica, consiste en sobrescribir periódicamente el bitstream con una copia libre de errores apropiadamente guardada. Gracias a ella, es posible corregir los errores enmascarados por el uso de algunas técnicas de endurecimiento como la redundancia hardware. Esta copia libre de errores suele omitir los bits del bitstream correspondientes a la memoria de usuario, por lo que solo actualiza los bits relacionados con la configuración de la FPGA. Por ello, a esta técnica también se la conoce como configuration scrubbing. En toda la literatura consultada se ha detectado un vacío en cuanto a técnicas que propongan estrategias de scrubbing para la memoria de usuario. Con el objetivo de proponer alternativas innovadoras en el terreno de la tolerancia a fallos para procesadores softcore, en este trabajo de investigación se han desarrollado varias técnicas y flujos de diseño para manejar los datos de usuario a través del bitstream, pudiendo leer, escribir o copiar la información de registros o de memorias implementadas en bloques RAMs de forma autónoma. Así mismo se ha desarrollado un abanico de propuestas tanto como para estrategias lockstep como para la sincronización de sistemas TMR, de las cuales varias hacen uso de las técnicas desarrolladas para manejar las memorias de usuario a través del bitstream. Estas últimas técnicas tienen en común la minimización de utilización de recursos respecto a las estrategias tradicionales. De forma similar, se proponen dos alternativas adicionales basadas en dichas técnicas: una propuesta de scrubbing para las memorias de usuario y una para la recuperación de información en memorias implementadas en bloques RAM cuyas interfaces hayan sido inutilizadas por SEEs.Todas las propuestas han sido validadas en hardware utilizando una FPGA de Xilinx, la empresa líder en fabricación de dispositivos reconfigurables. De esta forma se proporcionan resultados sobre los impactos de las técnicas propuestas en términos de utilización de recursos, consumos energéticos y máximas frecuencias alcanzables

    Asynchronous techniques for new generation variation-tolerant FPGA

    Get PDF
    PhD ThesisThis thesis presents a practical scenario for asynchronous logic implementation that would benefit the modern Field-Programmable Gate Arrays (FPGAs) technology in improving reliability. A method based on Asynchronously-Assisted Logic (AAL) blocks is proposed here in order to provide the right degree of variation tolerance, preserve as much of the traditional FPGAs structure as possible, and make use of asynchrony only when necessary or beneficial for functionality. The newly proposed AAL introduces extra underlying hard-blocks that support asynchronous interaction only when needed and at minimum overhead. This has the potential to avoid the obstacles to the progress of asynchronous designs, particularly in terms of area and power overheads. The proposed approach provides a solution that is complementary to existing variation tolerance techniques such as the late-binding technique, but improves the reliability of the system as well as reducing the design’s margin headroom when implemented on programmable logic devices (PLDs) or FPGAs. The proposed method suggests the deployment of configurable AAL blocks to reinforce only the variation-critical paths (VCPs) with the help of variation maps, rather than re-mapping and re-routing. The layout level results for this method's worst case increase in the CLB’s overall size only of 6.3%. The proposed strategy retains the structure of the global interconnect resources that occupy the lion’s share of the modern FPGA’s soft fabric, and yet permits the dual-rail iv completion-detection (DR-CD) protocol without the need to globally double the interconnect resources. Simulation results of global and interconnect voltage variations demonstrate the robustness of the method
    corecore