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Abstract

The imperfections in the semiconductor fabrication process and uncertainty in operating
environment of VLSI circuits have emerged as critical challenges for the semiconductor
industry. These are generally termed as process and environment variations, which lead
to uncertainty in performance and unreliable operation of the circuits. These problems
have been further aggravated in scaled nanometer technologies due to increased process
variations and reduced operating voltage.

Several techniques have been proposed recently for designing digital VLSI circuits un-
der variability. However, most of them have targeted ASICs and custom designs. The
flexibility of reconfiguration and unknown end application in FPGAs make design under
variability different for FPGAs compared to ASICs and custom designs, and the techniques
proposed for ASICs and custom designs cannot be directly applied to FPGAs. Very few
techniques have been proposed for FPGA design under variability, with varying degrees of
improvement in timing/power variability. However, these have not dealt with leveraging
CAD, architecture and circuits co-design methodologies for FPGA design under variability,
and further, have not accounted for the impact of the variability in Vdd arising due to IR
drops which is important because the performance of a circuit becomes more sensitive to
process parameters as Vdd is reduced.

An important design consideration is to minimize the modifications in architecture and
circuit to reduce the cost of changing the existing FPGA architecture and circuit. The
work in this thesis develops CAD and architecture/circuit design techniques for FPGAs to
improve the timing and power yield of FPGA designs under process variations. In the case
of environment variations this work focuses on developing design techniques for reducing
IR-drops. The focus of this work can be divided into three principal categories, which
are, improving timing yield under process variations, improving power yield under process
variations and improving the voltage profile in the FPGA power grid.

The work on timing yield improvement implements a Statistical Static Timing Analysis
(SSTA) framework to analyze the circuit delay under process variations, such that the
statistical distribution of the critical delay can be computed. In this work, the structure
of the interconnect is analyzed and it is shown that an optimum number of buffers can be
inserted in the interconnect to reduce the variation in circuit delay. Several interconnect
architectures are analyzed, under the constraints of the FPGA structure, to find the best
architecture which leads to smallest (µ + 3σ) of the critical delay. The placement and
routing tools are then enhanced such that the delay variability is accounted for when
optimizing the critical delay of the circuit. Results indicate that up to 28% improvement
in (µ+ 3σ) of the critical delay can be obtained from the proposed methodology.

The work on power yield improvement for FPGAs selects a low power dual-Vdd FPGA
design as the baseline FPGA architecture for developing power yield enhancement tech-
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niques. A low power FPGA architecture is selected because, before applying power yield
enhancement techniques to a design, it is necessary that a low power design technique is
implemented. The power yield enhancement technique proposed in this work is essentially
a CAD technique for placement and dual-Vdd assignment. The proposed CAD techniques
reduce the correlation between leaking FPGA elements such that the total variability of
leakage is reduced and power yield is improved. Results indicate that an average reduction
of 15% in leakage variability can be obtained from the proposed methodology, with an
average of 7.8% power yield improvement. A mathematical programming technique is also
proposed to determine the parameters of the buffers in the interconnect such as the sizes
of the transistors and threshold voltage of the transistors, all within constraints, such that
the leakage variability is minimized under delay constraints. Results show a reduction of
26% in leakage variability without any delay penalty.

The variability in supply voltage in the power grid occurs due to currents being drawn
by the underlying devices. The IR-drops in the power grid leads to reduced speed of the
circuit and may also affect the functionality of the design. To reduce IR-drops in the
power grid of FPGAs two CAD techniques are proposed in this work. The first technique
is an IR-drop aware place and route technique which reduces the high currents drawn in
local regions of the chip to reduce the IR-drops. The placement and routing routines are
enhanced to incorporate the information about the current distribution profile in the power
grid. This is done by redistributing the blocks and nets in such a way so that the spatial
distribution of the switching activity profile is more smooth. The CAD techniques result in
maximum IR-drop reduction of up to 53% and a reduction in standard deviation of spatial
supply voltage distribution by up to 66%.

The second technique is also a CAD technique applied at the clustering stage, where
the LUTs are clustered into fixed size logic blocks. The idea here again is to reduce the
currents being drawn in a local region. This is achieved by carefully selecting the LUTs to
be added to form a cluster. This is because if a cluster has many LUTs with high switching
activity nets, then that cluster will experience a large IR-drop. The clustering technique
is enhanced such that the new IR-drop aware clustering technique takes into account the
switching activities of the nets in the current cluster and the switching activities of the nets
connected to potential LUTs that can be added to the current cluster. Results indicate
that up to 36% reduction in maximum IR-drop and 27% reduction in standard deviation
of the spatial distribution of Vdd can be achieved from the proposed techniques.
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Chapter 1

Introduction

1.1 Motivation

Integrated circuits are now virtually present in all high-performance computing, commu-
nications, and consumer electronics applications. With the increasing complexity of these
applications, there has been a growing need to integrate the functions of these applications
in smaller packages. To enable this integration, the semiconductor technology is continu-
ously being scaled in the nanometer regime. The high level and complexity of integration
along with scaled nanometer technologies present many enormous and critical challenges
which must be effectively managed by the designers. In the nanometer technologies, the
two most important design challenges cited by the semiconductor industry are the increas-
ing leakage power and the process variations in device characteristics. These two serious
issues threaten the life time of silicon technology, and will hinder the development of the
microelectronics industry if not addressed. Standby leakage power has been growing at an
alarming rate, and constitutes a larger fraction of the total chip power in current and future
technology generations. Moreover, the manufacturing process of nanometer transistors and
structures has introduced several new sources of variation that have made the control of
process (device dimensions) variations more difficult. Additionally, environmental varia-
tions are caused by uncertainty in the environmental conditions during the operation of a
chip, namely, power supply and temperature fluctuations. Both the process and the en-
vironmental variations significantly impact the chips’ performance, power dissipation and
reliability, and thereby reduce the yield of a design. In recent years several techniques
have been proposed for addressing the standby leakage power. The leakage power problem
is further aggravated by its strong dependence on process and environmental variations,
leading to variation in leakage power which can be as high as 20X [2]. This makes it more
difficult for designs to meet a power budget resulting in yield loss. Technology scaling has
resulted in circuits which can operate at higher speeds, but this has also made the timing
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optimization more complex. Traditionally, timing optimization has been done at all levels,
where maximum savings in the clock cycles are obtained at the architecture level design
optimization. However, circuit level techniques try to further push this limit to increase
the operating clock frequency. The delays of the logic gates and interconnects are strongly
dependent on the process and environmental parameters, which makes the clock frequency
to have significant variation due to variation in these parameters. Meeting the target clock
frequency with these variations is a challenge and results in timing yield loss.

Field Programmable Gate Arrays have emerged as a competitive alternative to Ap-
plication Specific Integrated Circuits (ASICs) to implement designs and their popularity
have grown in recent years. FPGAs are preferred means to implement a design for low
to medium volume productions because of significant cost reduction and time-to-market
advantages. Hence, FPGAs are now utilized extensively in various communication sys-
tems/devices. The number of design starts based on FPGAs is continuously increasing
because of advances in FPGA technology and newer architectures with improvement in
speed and area. Over the past decade, the management of leakage power in FPGA designs
has always been overshadowed by performance improvement and dynamic power minimiza-
tion techniques. However, with contemporary and future FPGAs being built in nanometer
technologies, leakage power cannot be ignored. This is aggravated by the very nature of
FPGAs, where typical block utilization is around 60% [4], such that 40% of the FPGA is
dissipating standby leakage power! Only recently have FPGA designers started to tackle
leakage power [5, 6, 7, 8]. The leakage power problem in FPGAs is further compounded
by the fact that FPGAs need more number of transistors per logic gate as compared to
custom VLSI designs and ASICs. In addition, process and environmental variations im-
pact FPGAs in these principal areas: timing analysis, leakage power prediction, leakage
tolerant design, and reliability. The focus of this research is to develop innovative architec-
tures/circuit/CAD co-design for optimization of timing and leakage yield of FPGAs under
process variations and improve the robustness of FPGAs under supply voltage variations
due to IR-drops. This would enable FPGA designers to answer the following question:
“How to utilize novel FPGA architecture, circuit and design automation techniques coop-
eratively to maximize the FPGA design yield and improve robustness under power, timing
and area constraints?”

1.2 Thesis Organization

This thesis is organized as follows:

Chapter 2 gives an overview of a typical SRAM-based FPGA architecture which is
targeted in this work and is widely used in industry.

Chapter 3 describes the process and environment variations and its impact on VLSI
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circuits. This section also explains the various modeling techniques for analyzing the
impacts of the variations and the modeling approach adopted in this work. This is then
followed by a discussion of the related work done for FPGAs.

Chapter 4 proposes a CAD and architecture co-design technique for improving the
timing yield of FPGA designs under process variations. Results are presented to show the
improvement in the timing yield.

Chapter 5 proposes a CAD methodology for improving the power yield of FPGA
designs under process variations. The CAD methodology is explained and the results are
presented to show the power yield improvement.

Chapter 6 proposes a mathematical programming technique for determining the pa-
rameters of the transistors of the buffers, such as the sizes and the threshold voltages, in
the FPGA interconnects for reducing leakage variability under delay constraints.

Chapter 7 proposes placement and routing techniques for improving the supply voltage
profile in the power grid of FPGAs. The proposed placement and routing techniques are
explained along with power grid modeling and the results for the improvement of voltage
profile in the power grid are discussed.

Chapter 8 proposes logic clustering technique to improve the supply voltage profile
in the power grid of FPGAs. The novel clustering technique is discussed along with the
trade-offs and supply voltage profile improvement.

Chapter 9 concludes the work in the thesis and outlines future work.
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Chapter 2

FPGA Architecture and CAD
Overview

2.1 Introduction

This chapter describes the FPGA architecture that has been adopted for this research. The
various elements of the FPGA is described and the CAD tools associated for implementing
an application on the FPGA has been discussed. The CAD flow and each of the stages in
the CAD flow is explained along with their algorithms.

2.2 FPGA Architecture

A basic FPGA is shown in Fig. 2.1. The FPGA architecture is very regular in structure. It
is made up of two main components - logic blocks (CLBs) and routing resources. The logic
blocks implement the functionality of the given circuit while the routing resources provide
the connectivity for implementing the logic. The logic blocks have the flexibility to connect
to the routing resources surrounding them. The logic blocks and the routing resources are
configurable, so that they can be programmed to implement any logic. Though many types
of architectures have been experimented with, the most popular one is the SRAM based
architecture which is described below and has been used in this work [1].

2.2.1 Logic Block

The logic block of the SRAM based FPGA is LUT (look-up-table) based and are composed
of basic logic elements (BLE). LUT is an array of SRAM cells to implement a truth table.
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Figure 2.4: Basic Logic Element [1]

Fig. 2.3 shows a two input LUT. It has 4 SRAM cells and a multiplexer to select one
of the SRAM cells. The selection is done by the two select signals to the multiplexer,
which serve as inputs to the truth-table. Each BLE consists of a k-input LUT, flip-flop
and a multiplexer for selecting the output either directly from the output of LUT or the
registered output value of the LUT stored in the flip-flop. Fig. 2.4 shows the basic logic
element. Previous works have shown that the 4-input LUT is the most optimum size as far
as logic density, and utilization of resources are concerned, and this has been widely used.
Cluster based logic blocks were investigated in [1] and it was shown that the cluster based
logic blocks are better in speed and area. The structure of a cluster based logic block is
shown in Fig. 2.5. In the cluster based logic block, the logic block is made up of N BLEs.
There are I inputs to the logic block such that each input can connect to all the BLEs.
Also the output of each BLE can drive one of the inputs of each of the BLEs. The clock
feeds all the BLEs. The work in [1] showed that the logic clusters containing 4 to 10 BLEs
achieve good performance. Each subblock is made up of a BLE and the corresponding
LUT input multiplexers.

2.2.2 Routing Resources

The routing resources are of various types, but the one used in this work is the island-
based architecture. In the island based architecture, the routing resources form a mesh
like structure with the horizontal and vertical routing channels. The horizontal and vertical
routing channels are connected by switch boxes which are programmable and thus provide
the flexibility in making the connections. The logic blocks are connected to the routing
channels through the connection boxes which are also programmable. Fig. 2.6 shows the
island style routing architecture [1]. The programmable switches used for implementing
the interconnections are shown in Fig. 2.2. These programmable switches have SRAM cells
which can be programmed to either turn on or turn off the switch. Apart from the logic
blocks and the routing resources, the clock distribution is assumed to have a dedicated
network. Most of the commercial FPGAs have a structure similar to the one described
above or some variant of the above architecture.
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Figure 2.7: Basic CAD flow for FPGAs

2.2.3 I/O Blocks

The I/O blocks are also programmable so that they can be configured either as input or
as output, or can be tri-stated.

2.3 CAD Tools

To implement a circuit on the current generation FPGAs, CAD tools are needed which can
generate the configuration bits for the SRAM cells of the FPGAs. Usually the circuit de-
scription is provided using Verilog, VHDL, SystemC, or other higher level descriptions. The
CAD tools for the FPGAs read this input and output a configuration file for programming
the FPGA. Fig. 2.7 shows the basic CAD flow for implementing a digital circuit/system
on FPGAs [1]. The CAD flow has three main tasks: Synthesis, placement and routing. In
the following sections synthesis, placement and routing for FPGAs are explained. Since
VPR and T-Vpack have been used in this work, the discussion will be kept in context of
these CAD tools. Almost all of the commercial FPGA CAD flows perform the same basic
functions of synthesis, placement and routing.
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2.3.1 Synthesis

The synthesis of a netlist involves conversion of a circuit description, usually in hardware
description language (HDL), into a netlist of basic gates. This netlist of basic gates is then
converted into a netlist of FPGA logic blocks. Fig. 2.8 shows the steps involved in the
synthesis of a circuit description into a netlist of logic blocks.

Technology independent logic optimization involves the removal of redundant logic and
simplification of the logic [9, 10]. The optimized netlist is then mapped to look-up tables,
which is a process of identifying the logic gates that would go into a LUT [11]. The final
step of the synthesis procedure is the clustering of the LUTs and flip-flops (for sequential
logic) into logic blocks. The goal here is usually to minimize the number of logic blocks
and/or minimize the delay. The work in [12] used a measure of closeness of LUTs to pack
them into a cluster to form a logic block.

The work in [1] uses a timing driven logic block packing tool, called T-VPack. The tool
targets packing the BLEs into a cluster shown in Fig. 2.5. It needs the parameters such as
number of BLEs per cluster, number of inputs per cluster, size of the LUTs, and number
of clocks per cluster. The first stage of the packing procedure simply forms the BLEs by
packing a register and a LUT together. Initially the packing procedure packs the BLEs
greedily into a cluster, followed by a hill climbing phase if the greedy phase is not able to
fill the cluster completely.

To enable a timing driven packing, it is necessary to get an estimate of delays through
various paths of the netlist. To enable this computation three types of delays are modeled:
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delay through a BLE, LogicDelay, delay between blocks in the same cluster, IntraClus-
terConnectionDelay, and the delay between blocks in different clusters, InterClusterCon-
nectionDelay. The values for these are set as 0.1, 0.1 and 1.0 for LogicDelay, IntraClus-
terConnectionDelay and InterClusterConnectionDelay, respectively. The InterClusterCon-
nectionDelay cannot be determined until the circuit has been implemented on the FPGA.
However, these values represent the correct trend of values, and the performance of T-
Vpack is not very sensitive to the exact values. The criticality of a connection is defined
as

ConnectionCriticality(i) = 1− slack(i)

MaxSlack
(2.1)

where MaxSlack is the largest slack amongst all the connections in the circuit. A
new cluster is created by selecting a seed BLE having the highest criticality amongst the
un-clustered BLEs. After the seed BLE has been selected, an attraction function is used
to determine the next un-clustered BLE, B, to be added to the current cluster C. The
attraction function is given by:

Attraction(B) = α.Criticality(B) + (1− α)

[
Nets(B) ∩Nets(C)

MaxNets

]
(2.2)

where the first term represents the timing part, and the second term represents the cost
of nets shared between the current cluster and the BLE under consideration. Any value
of α between 0.4 and 0.8 gives good results. The computation of Criticality of a BLE is
explained in [1] and also the tie-breaker mechanism used for the case when two or more
BLEs have the same criticality. Essentially, the tie-breaker mechanism selects that BLE
which reduces the length of the largest number of critical paths.

The hill-climbing phase tries to add more BLEs to the cluster in case it is not full. In
this phase adding a BLE to a cluster is allowed even if it leads to more inputs required
for the cluster than the maximum allowable. This is done because in some cases the BLE
being added might have all its inputs from the BLEs in the current cluster and also might
drive the inputs of some of the BLEs in the current cluster. In this case the number of
inputs required for the cluster decreases by one. However, this hill climbing phase increases
the logic utilization only by 1 - 2% in some of the circuits.

2.3.2 Placement

The work in [1] developed the tool VPR for placement and routing. For placement the
FPGA is considered as a set of legal discrete positions at which the logic blocks of the
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synthesized netlist can be placed. For placement, the architecture descriptions needed by
VPR are:

1. The number of logic block input and output pins.

2. The number of I/O pads that fit into one row or column of the FPGA.

3. The routing channel width (number of tracks in a routing channel).

The placement technique used in VPR is based on simulated annealing [13], which
imitates the annealing process used to gradually cool a molten metal to produce high
quality metal objects. The simulated annealing works by first starting with an initial
random placement by placing the logic blocks randomly on the available locations in the
FPGA. The placement then proceeds by making a large number of moves to improve the
placement. This is done by selecting a logic block randomly and its new location also
randomly. This would produce a change in the cost function, and if the cost function
improves, the move is always accepted. However, if the cost function worsens, there is
still some probability of acceptance of the move. The probability of acceptance is given
by e−4C/T , where 4C is the change in the cost function and the goal is to decrease
the cost function. The T is the temperature parameter and controls the probability of
acceptance of the moves which worsen the placement. The temperature is initially set to a
high value so that at the beginning of the annealing, virtually all the moves are accepted.
The temperature is gradually decreased as the placement improves, such that finally the
probability of accepting a bad move is almost negligible. The flexibility of accepting bad
moves allows the simulated annealing schedule to overcome the local minima in the cost
function.

The VPR sets the initial temperature in the same way as in [14]. The number of moves
attempted at each temperature is done as in [15]. It is set to

MovesPerTemperature = InnerNum.(Nblocks)
4/3 (2.3)

where the default value of InnerNum is 10, and Nblocks is the number of logic blocks in the
netlist. The fraction of moves accepted is kept close to 0.44 for as long as possible, as it
yields better results [15]. However, VPR uses a new method of updating the temperature.
The VPR computes the new temperature as Tnew = γ.Told, where the value of γ depends
on the fraction of moves accepted at Told. The idea is to spend maximum time near the
temperatures at which large improvements in placement occur. The annealing procedure
is not very sensitive to the exact value of γ, if it has the right form, γ is close to 1 if
the fraction of moves accepted is close to 0.44, whereas γ is small if the fraction of moves
accepted is near 1 or 0. VPR has a timing driven placement and uses a cost function to
optimize both the timing and the delay. The complete timing driven placement algorithm
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is explained in detail in [16]. The cost function for the timing driven placement developed
in [16] is given by

4C = λ.
4TimingCost

PreviousT imingCost
+ (1− λ).

4WiringCost

PreviousWiringCost
(2.4)

where 4TimingCost and 4WiringCost represent the change in the timing cost and the
change in the wiring cost, respectively, due to a move. The simulated annealing procedure
is terminated when

T < ε.
Cost

Nnets

(2.5)

where Nnets is the total number of nets in the circuit and the value of ε is set as 0.005.

2.3.3 Routing

The routing of the placed netlist, essentially, determines the switches that need to be turned
on in the routing resources of the FPGA. The routing algorithm in VPR is based on the
Pathfinder algorithm proposed in [17]. The Pathfinder repeatedly rips-up and re-routes
every net in the circuit until all congestion is resolved. One routing iteration involves
ripping-up and re-routing every net in the circuit. The first routing iteration routes for
minimum delay, even if it leads to congestion, or overuse of routing resources. To remove
this overuse another routing iteration is performed. The cost of overusing a routing resource
is increased after every iteration. This improves the chance of resolving the congestion. At
the end of each routing iteration all the nets are completely routed, although with some
congestion. Based on this routing, timing analysis can be done to compute the critical path
and also the slack of each source sink connection. The timing driven router uses an Elmore
delay model to compute the delays of all the connections. The criticality of a connection
beteen source of net i and one of its sink j is computed as follows:

Crit(i, j) = max

([
MaxCrit− slack(i, j)

Dmax

]η
, 0

)
(2.6)

where slack(i, j) is the slack available to the connection and Dmax is the delay of the
critical path. MaxCrit and η are the parameters which determine how the slack impacts
the congestion delay trade-off in the cost function. In VPR η is set to 1 and MaxCrit is
set to 0.99.

The VPR creates a routing resource graph to describe the FPGA architecture and
connectivity information. The wire and the logic block pins of the FPGA are represented
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as nodes in the routing resource graph, and the switches are represented as directed edges
in the graph. This routing resource graph is used to perform the routing.

The routing of a net is done by starting with a single node in the routing resource
graph, corresponding to the source of the net. A wave expansion algorithm is invoked
(k-1) times to connect the source to each of the net’s (k-1) sinks, in order of the criticality
of the sinks, the most critical sink being the first. The cost for using a node n during this
expansion is given by:

Cost(n) = Crit(i, j).delay(n, topology) + [1− Crit(i, j)].b(n).h(n).p(n) (2.7)

where b(n), h(n) and p(n) are the base cost, historical congestion, and present conges-
tion as explained in [1]. This procedure is repeated for each of the nets to get the complete
routing.

2.4 VPR and T-VPack

The CAD tools used in this work are VPR, for placement and routing, and T-VPack for
clustering of the BLEs [1]. VPR is invoked on the command line as follows [18]

vpr netlist.net architecture.arch placement.p routing.r [−options] (2.8)

where netlist.net is the circuit description providing the information about the connec-
tivity of the logic blocks, architecture.arch is the architecture file which describes the
architectural parameters of the FPGA. The output of the final placement is written in
placement.p, or, if the circuit is only being routed, the placement information is read from
the file placement.p. The final routing information is written in routing.p. VPR has two
basic modes of operation. In the first mode, VPR places a circuit on the FPGA and routes
it for minimum routing channel width. In the other mode, when the user specifies the rout-
ing channel width, VPR attempts to route the circuit only once and if it is un-routable it
simply aborts, reporting that the circuit is un-routable. The VPR also provides graphics
which shows the actual placement and routing of the logic blocks, along with the routing
switches.

T-VPack reads a netlist in the blif (Berkeley Logic Interchange Format) format having
look-up tables (LUTs) and flip-flops (FFs) and packs these into logic blocks. The output
of the T-Vpack is in the .net format, which is a netlist of logic blocks. T-VPack is invoked
on the command line by

t− vpack input.blif output.net [−options] (2.9)
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Figure 2.9: VPR CAD flow
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where options are used to specify the size of the LUTs, cluster size, inputs per cluster
and various optimization options.

The complete VPR CAD flow is shown in Fig. 2.9. SIS [19] is used for logic optimization
of the circuit. FlowMap [11] is used for technology-mapping to 4-LUTs and flip-flops.
FlowMap produces an output in the .blif format. T-VPack packs the netlist into logic
blocks and produces an output in the .net format. VPR is then used for the placement
and routing of the netlist. Other logic optimizers and technology mappers, instead of SIS
and FlowMap can also be used in this CAD flow.
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Chapter 3

Background and Related Work

3.1 Introduction

The parameter variations affect the performance and the reliability of a circuit, and tradi-
tionally guard-banding has been used by providing an excess of safety margin for circuit
delay and power. This is done to ensure that the worst case condition in the variations
of process, voltage and temperature (PVT) are satisfied. However, with too many process
corners it becomes extremely difficult to determine the actual worst case corner, resulting
in either too pessimistic or too optimistic designs. Further, designing at worst case corner
severely limits the achievable performance-cost trade-off for the circuit.

The variability also results in an increased cost of manufacturing because the chips
with lower performance are discarded. The 2006 International Technology Roadmap for
Semiconductor (ITRS) identifies the variability as one of the key difficult challenges in the
scaled technologies. Fig. 3.1 shows the variation in leakage and frequency of microproces-
sors in a wafer. It shows that for a 30% variation in frequency a 20X variation in leakage
is observed.

3.2 Classification of parameter variations

The parameter variations can be broadly classified into process and environment variations.
The process variations relate to all the physical variations caused during the manufacturing
process and/or through aging, whereas the environment variations relate to the variations
in the operating environment of the chip. Fig. 3.2 shows a general classification of the
parameter variations. Although the process parameter variations would in general affect the
voltage and temperature variations, the figure does not show that in order to simplify the
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Figure 3.1: Variation in Timing and Leakage [2]

depiction. A detailed figure showing the interaction between process parameters variations
and environment variations and their impact on power and timing is shown later in this
chapter.

3.2.1 Process variations

The process variations can be classified as die-to-die variations and within-die variations.
The die-to-die variations have their origin in lot-to-lot variations, wafer-to-wafer variations
and within wafer variations. The die-to-die variations impact the parameters in such a
way that the values of the parameters remain the same for all the devices on a single die,
but vary across different instances of the chip. Within-die variations cause the parameters
to vary across a single die. The systematic variations arise from such phenomena that has
a predictable behavior. These variations arise from phenomena such as Optical Proximity
Effect (OPC) and Chemical Mechanical Polishing (CMP). Therefore, theoretically these
variations can be modeled and accounted for, by using deterministic analysis. However,
since the layout is known at a later design stage and also the modeling is too complicated for
the deterministic analysis, it is advantageous to model these variations statistically. The
random variations arise from the truly random processes and for these parameters only
statistical behavior can be modeled. These variations thus need to be modeled through
random variables during the design phase. These random variations can be either inde-
pendent for each device or can exhibit a spatial correlation. A further classification of the
process variations based on their characteristics is as follows [20].

• Source: This relates to the variations arising from the sources such as polishing,
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Figure 3.2: A general classification of the parameter variations

lithography, resist, etching, and doping. The non-uniform layout density results
in a non-uniform dielectric thickness across the die, after the CMP process. The
denser parts of the chip slows down the polishing resulting in the part getting more
polished than the other parts. Smaller feature sizes have made lithography variations
become more prominent. Also, the stepper lens heating, uneven lens focusing, and
aberration lead to variations. The resist coating is non-uniform at the edges due
to surface tension and leads to thickness variations. After resist, the etching causes
variations due to uneven etching power and density. Since the number of dopant
atoms have decreased with scaling, depositing these small number of dopant atoms
uniformly for all the transistors is not possible and leads to variations in the dopant
concentration.

• Granularity: This classifies the variations according to the die-to-die or the within-
die variations.

• Manifestation: This refers to the systematic and the random variations.

• Design impact: The variations in the manufacturing process results in the vari-
ations in one or more design parameters such as the channel length, the threshold
voltage and the device and the interconnect widths. Further, the channel length vari-
ations impact the threshold voltage of the transistors, the channel length variations
caused due to factors such as wafer non-uniformity and lens focus and aberration.
The width of the devices vary because of polishing or lithography issues.
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• Aging: Most of the variations are static in nature, i.e., they do not change with
the age of the die. However, some parameters might vary with age, such as the
negative bias temperature instability (NBTI) effect in PMOS devices which cause
the threshold voltage of the PMOS devices to increase with aging.

The process variations classified above typically manifest themselves as variations in the
channel length, gate oxide thickness, and threshold voltage fluctuations. These process
variations have been modeled in this work.

3.2.2 Voltage Variations

The supply voltage,VDD has been scaling with technology, but a lower limit is set due to
reliability concerns. The switching activities and leakage currents in the different parts of
the circuit lead to a current distribution in the power supply network which is not uniform.
The non-uniformity of the current distributions and its variation with time leads to voltage
drops in the supply network across the chip which is both spatial and temporal and in
nature. The voltage drops occur due to resistance and inductance of the power supply
network. These voltage variations affect the performance of a circuit, and for example, a
10% VDD variation can cause a 20% variation in the delay [20].

3.2.3 Temperature Variations

Elevated temperatures occur in chips during the operation of a chip. The temperature
increase is due to the heat generation as a result of power dissipation through switching
and leakage. The temperature also gets affected by the ambient temperature of the chip.
A higher ambient temperature would decrease the rate of heat flow from the chip to the
outside atmosphere, resulting in temperature rise of the chip. The temperature variations
are spatial and temporal in nature. The spatial temperature variations are caused due
to higher power dissipation in certain parts of the chip as compared to the other parts,
resulting in hot spots in the areas with higher power dissipation. The temporal tempera-
ture variations are caused due to different periods of activity. During the idle period the
temperature of the chip would be lower than during the period in which it is active. The
temperature variations not only affect the performance of the chip but can also lead to
thermal runaways.
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3.3 Modeling of process variations

The modeling of the process variations for computing the delay and the power has been
investigated extensively. The process variations are random in nature, so they can be math-
ematically modeled as random variables. However, the main complexity in their behavior
is that they exhibit spatial correlation across a chip. Ignoring these spatial correlations can
lead to significant errors in analysis and design. Devices which are closer exhibit stronger
correlation than the devices which are far apart. Early on, the analog designers used the
Pelgrom model for computing the variation between different devices [21]. The Pelgrom
model states that for a group of equally designed MOSFET devices, the variance (or mis-
match) can be expressed as a function of their size and the distance between them. For
example, the threshold voltage variance can be written as,

σ2(VT0) =
A2
V T0

W.L
+ S2

V T0.D
2, (3.1)

where AV T0 and SV T0 are technology-dependent coefficients, W and L are the device
dimensions, and D is the distance between the devices. Although the Pelgrom model can
give a good insight into the nature of variations, it is difficult to scale it in for a design
with large number of gates. In such a scenario it is important to account for the impact of
multiple sources on a single location to analyze the overall effect of variations.

Two most popular methods for modeling spatially correlated process parameter varia-
tions are the principal components based model, and the quad-tree model. In the former,
after obtaining the correlation information, Principal Component Analysis (PCA) is ap-
plied. The PCA is used to develop a set of uncorrelated random variables from a set of
correlated random variables [22]. The quad-tree model proposed in [23], models the process
variations by diving the chip into hierarchical levels and is adopted in this work. The two
models are discussed in the following subsections.

3.3.1 Principal Components Analysis (PCA) Model

In the PCA model the spatial correlation is modeled by dividing the chip into n grids,
such that each grid is associated with a principal component. Each of the n principal
components are independent normal random variables with zero mean and unit variance.
The grid model for the spatial correlation is shown in Fig. 3.3. The spatial correlation
matrix is based on distance, location, orientation and other factors, and would give a
correlation value for each grid with all the grids on the chip.

The value of a process parameter, for example the channel length, of the gate i, is
expressed as,

Lg,i = Lnom,i +
∑
j

αi,j4Lj, (3.2)
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Figure 3.3: Grid Model for PCA

where 4Lj is the jth component and αi,j = σi.vi,j.
√
λj. The σi is the standard deviation

for grid i, vij is the ith element in the jth eigenvector of the correlation matrix and λj is
the jth eigenvalue of the correlation matrix [22]. The sensitivity matrix, P, for the PCA
model can be written as,

P =


α1,1 α1,2 α1,3 . . . α1,m

α2,1 α2,2 α2,3 . . . α2,m

α3,1 α3,2 α3,3 . . . α3,m
...

...
...

. . .
...

αn,1 αn,2 αn,3 . . . αn,m

 (3.3)

where each grid of the Fig. 3.3 is associated with one column and one row. Once the
spatially correlated parameters have been decomposed into a set of independent principal
components, any analysis can be easily performed.

3.3.2 Quad-Tree Model

In this work, the quad-tree model is selected for modeling the process parameter variations.
The process parameters, such as the gate lengths of two closely placed transistors have
almost identical variation, which means that one random variable can be used for modeling
the gate lengths of both transistors. However, the gate lengths of the transistors which
are far apart need to be modeled with different random variables with spatial correlation.
The quad-tree model accounts for spatial correlation through modeling the variations at
several hierarchical levels.

A process parameter, such as channel length is represented as sum of its nominal
value Lnom, inter-die variation 4Linter, intra-die variation 4Lintra, and random variation
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Figure 3.4: Layer model for representing the spatially correlated process parameters

4Lrandom.

Leff = Lnom +4Linter +4Lintra +4Lrandom. (3.4)

In the quad-tree model a process parameter for the complete chip is modeled at several
hierarchical levels. The entire chip is divided into several levels with each level modeling
a component of the total variation. Starting from the 0th level, each level (ith level) has
4i equal sized partitions as denoted in Fig. 3.4. Finally, a random level with only one
grid becomes the last level in the model. For each process parameter, there is a random
variable associated with each of the partitions of each level. All such random variables
are independent and identically distributed. To model the process variations for a logic
gate, the partition in which the logic gate lies in each of the levels is determined. These
variations are then added to obtain the total variation in a process parameter for a logic
gate. The spatial correlation of a process parameter between two logic gates is accounted
for, by the number of common partitions they share across the different levels. Fig. 3.4
illustrates the modeling of the variations for a chip with three levels. The level 0 represents
the inter-die variations because it is common for all the logic gates of the chip. Levels 1
and 2 represent the intra-die variations. Consider a logic gate lying at the top right side of
the die, i.e., at the grid location (3,0) in the level 2, and another logic gate lying adjacent
to it at the grid location (2,0) in the level 2. The total channel lengths for these logic gates
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are expressed:

Leffgate1 = Lnom + Leff0,(0,0) + Leff1,(2,0) (3.5)

+ Leff2,(3,0) + Lrandom

Leffgate2 = Lnom + Leff0,(0,0) + Leff1,(2,0) (3.6)

+ Leff2,(2,0) + Lrandom,

where Leffi,(j,k) represents the random variable for the channel length associated with the
level i and the partition (j, k). Lrandom represents the independent random variation. It
can be seen that the two logic gates share the [0,(0,0)] and the [1,(2,0)] partitions. This
sharing incorporates the spatial correlation in the model, implying that more the number
of grids shared, higher is the corresponding spatial correlation. Increasing the number
of levels for modeling can improve the accuracy of the model at the expense of the run
time. Since the random variables associated with the different partitions are independent
within and across the levels, the computation of the means and the variances of the leakage
or delay are easier. The total variation of a process parameter is distributed across the
different levels in accordance with their spatial correlation. Specifically, the total variance
for a process parameter is written as σ2 =

∑n
i=0 σ

2
i , where n is the total number of levels

and σi is the standard deviation of the corresponding random variable for the level i. The
quad-tree model is verified by the actual measurements in [24].

3.4 Yield of a design

The yield of a design is defined as the number of chips that meet the target performance
criterion. The performance parameter is typically the circuit delay or the power dissipation
(assuming that the functionality of the circuit is correct). Under parameter variations, the
performance characteristics no longer remain deterministic, but are modeled as random
variables. The yield of a design for a performance criterion is defined as the CDF of the
random variable representing the performance characteristic. For example, given a PDF,
f(Td), of the circuit delay, Td, the yield at the target delay is calculated by computing the
CDF, F (Td), and is given by the equation 3.7.

Y ield = F (Td < TargetDelay) =

∫ TargetDelay

0

f(Td)dTd (3.7)

The yield point represents the probability of a chip meeting the target delay. Fig. 3.5
shows the yield point for a target delay of 8.3ns for a circuit implemented on an FPGA.
In a manufacturing process fabricating a large volume of chips, 90% of the chips will meet
the target delay.
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Figure 3.6: PDF of a circuit delay and speed binning applied to improve the yield

Another technique commonly used for improving the yield of a design is binning, which
is worthwhile to point out in this discussion. An example of speed binning is shown in Fig.
3.6. The figure shows the PDF of the delay of a circuit implemented on an FPGA. The
PDF is divided into three bins, the high speed bin for chips with lower circuit delays, the
medium speed bin for chips with higher circuit delays, and the low speed bin for chips with
highest circuit delay. Any chip having a delay larger than the cut-off delay is discarded,
leading to yield loss. The speed binning is done to improve the profitability from selling
the chips. This is done by selling the chips in different bins at different prices, with the
chips from the lowest speed bin being sold at the least price, and the chips from the higher
speed bins being sold at a higher price.
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3.5 Managing Variability in ASICs

3.5.1 Process Variations

Traditionally, process corners have been used for analyzing designs to meet the targeted
performance, power and other design considerations at the best, nominal and worst case
process corners. However, this may lead to pessimistic or optimistic designs. Moreover, it
is very difficult to determine whether a particular process corner is indeed a best, nominal
or worst case corner, because of the significant increase in the number of varying process
parameters and operating conditions with technology scaling. Therefore, to design VLSI
circuits under process variations, statistical techniques need to be adopted.

Several research works have proposed techniques for designing and analyzing VLSI
circuits and systems under process variations for timing and power optimization [25, 26,
27, 28, 29, 30, 31, 32]. These papers have proposed techniques for statistical timing analysis
and/or statistical power analysis and their optimization. The work in [31] proposed a design
technique to reduce the build up of a wall of critical paths to make the circuit more robust
to variations. It argues that the deterministic optimizers builds up many critical paths
to reduce the critical delay by even a small amount. Under variations these large number
of critical paths will have a higher probability to exceed the critical delay and thus cause
an yield loss. In [32], a dual-Vt and gate sizing algorithm was proposed which considered
the delay and leakage variability. Results demonstrate that based on such a method,
a leakage saving of 15%-35% can be obtained compared to the deterministic algorithms
while accounting for the leakage variability. The results were reported for the 95th and 99th

percentile of the leakage power distribution. The authors in [25] proposed an Adaptive
Body Biasing technique for mitigating the impact of variability on performance and leakage.
A statistically-aware clustering technique is proposed to cluster the logic gates such that
a same body bias can be applied to a cluster. The results show a 38%-71% improvement
in the leakage power compared to a dual-Vt implementation, and the delay variability was
reduced by 2-9X. The work in [26] targets parametric yield improvement of the design under
leakage and timing constraints. The gate sizing is performed with incremental computation
of the yield gradient using a heuristic proposed in the paper. A non-linear optimizer is then
used to perform the optimization. The results show that up to 40% yield improvement
can be obtained compared to a deterministically optimized circuit. In [27], the authors
propose a joint design-time and post-silicon optimization for improving the parametric
yield for leakage power. This is achieved through a robust linear programming to obtain
an optimal body-bias policy, once the uncertain variables are known. An improvement of
5%-35% in leakage power is obtained from this methodology. The authors in [28] propose
a statistical gate sizing method based on the sensitivity computation. A new objective
function is proposed for optimizing the circuit and an algorithm is developed for computing
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the sensitivity. A pruning and statistical slack based approach is used, which shows an
improvement of 16% in the 99-percentile circuit delay and a 31% improvement in the
standard deviation for the same circuit area. A new approach is proposed in [30] for speed
binning where instead of optimizing for yield, total profit maximization is done. This is
based on the fact that chips in different bins are sold at different prices. Again, a sensitivity
based gate sizing algorithm is proposed. An algorithm is proposed to determine the optimal
bin boundaries. A joint sizing and optimal bin boundaries determination approach is also
investigated. Results show that a 36% improvement in profit can be obtained from the
proposed approach. In [29], a gate level method is proposed to estimate the parametric
yield of a design under leakage and timing constraints by finding a joint PDF of leakage and
timing. This is necessary because the leakage and timing are correlated and the assumption
of their independence will lead to errors in joint yield computation.

However, these papers have proposed techniques for custom VLSI designs and ASICs,
and cannot be directly applied to FPGAs because of the intrinsic nature of programmability
of FPGAs. Another challenge in FPGAs is that the circuits which are finally mapped to
the FPGAs are not known and the resources for FPGAs are fixed once they are fabricated,
thus limiting the flexibility for design optimization.

3.5.2 Supply Voltage Variations

Technology scaling has led to scaled wires and increased packing density of logic gates.
Scaling of wires increase their resistance proportionately, and high packing density of logic
gates cause more current to be drawn in a local area, which result in increased IR-drops
in the power supply network of a chip. Additionally, the currents are usually distributed
non-uniformly in the chip leading to spatial non-uniformity in IR-drops. The IR-drops
cause the logic gates to operate at a voltage lower than the full Vdd, which affects not only
the switching speed of the gates, but can also affect the correct operation of logic and
clock skew [33, 34]. Thus, it is very critical to develop efficient design techniques for robust
power grids which minimize IR-drops in the power network.

Several techniques have been proposed for designing a reliable power grid for a chip.
Most of these techniques relate to sizing the wires of the power grid [35, 36], topology
optimization [37, 38], and decoupling capacitances [39, 40]. Another technique proposed
in [41] involves determining the pitches and sizes of the wires in a non-uniform power grid.

The techniques proposed in these papers are for custom VLSI design and/or ASICs and
cannot be directly applied to FPGAs because of the programmable nature of the FPGAs
and the end application to be implemented on the FPGA is unknown. This necessitates
developing CAD techniques which reduce IR-drops while mapping the application to the
FPGA.
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3.6 FPGA Design under Variations

The major design challenges for FPGAs have been area and power in earlier technologies.
However, in scaled nanometer technologies it is critical for the FPGA industry to address
the design challenges stemming from the process and environment variations. Very few
published work exists targeting the design of FPGAs under variations [42, 43, 44, 45, 46,
47, 48, 49].

The work in [49] includes process variations by creating a variation map for each FPGA
chip, and then a detailed placement is performed for optimizing the timing. The variation
map describes the detailed variations in the devices and interconnects, after the fabrica-
tion of the chip. The variation map is obtained by applying test circuits for each chip
before mapping an application to the FPGA. A variation aware placement is developed for
considering the variation in the critical delay of a circuit. This is performed in a determin-
istic manner because the variation map for a chip gives the actual values of the process
parameters on a chip. The reported results indicate a performance improvement, by using
the proposed chip-wise variation aware placement, of 5.3%. However, the authors do not
provide details for obtaining the variation map, and generating a variation map for each
chip is expensive.

In [43], a placement algorithm is described for improving the timing yield of the FPGAs.
The delay of a circuit is modeled as a first order canonical form of the process variations.
The guard banding and speed binning is discussed and the reduction of yield due to within-
die variation and correlation is explained (with speed binning). The authors propose a
statistical placement methodology to reduce the yield loss. Versatile Place and Route
(VPR) [1] was augmented with the statistical placement methodology, which performs
SSTA at each placement iteration, and therefore, attempts to optimize the statistical delay
instead of the deterministic delay of the FPGA. Using this methodology, the authors report
a reduction in the yield loss of 5X with the guard banding and 25X with the speed binning.
The authors used a 10% global and 10% local random variation in the channel length and
the threshold voltage. However, it is not related how their methodology performs in the
presence of within-die variations with spatial correlations which becomes important in
scaled technologies.

Again, a variation aware placement technique is suggested for leakage power and timing
in [48]. A Block Discarding Policy scheme is provided to optimize the placement under
process variations for timing and leakage. The policy works on the principle of selecting a
block on the FPGA for the placement based on leakage and delay values. Then a leakage
and a delay thresholds are chosen for such a selection methodology. Although, a threshold
voltage variation is considered, the spatial correlations are not accounted for. The work is
based on the assumption that for an FPGA chip, the exact leakage and delay values for all
the blocks are available (i.e., with variations), and therefore, these leakage and delay values

27



can be used for optimizing the placement. Also, the VPR is modified such that each of the
blocks in the VPR placement routine has the leakage and delay values with variations. A
leakage cost function is used in the placement cost function, but its mathematical form is
not provided in the paper. The results show a 14% saving in leakage by using the scheme,
and a 10% improvement in the clock frequency. This improvement in clock frequency is
observed by simply providing the delays with the variations in the VPR framework. There
is no statistical analysis of the delay and leakage, and this work depends on obtaining
accurate values of the delay and leakage for each block and each FPGA chip, which is
computationally very expensive.

In [45], statistical leakage and timing models for computing the leakage and timing
yield for FPGAs are developed. The leakage model under variations is empirically derived,
whereas the timing variability model is obtained from SPICE simulations for the basic
circuit elements of the FPGA. Delay points are sampled from SPICE simulations and the
delay PDF is directly constructed from the PDF of channel length. Although leakage varies
with channel length, gate oxide thickness and threshold voltage, the delay is modeled to
vary only with the channel length of the devices. For computing the leakage yield, a baseline
architecture is assumed with the target leakage set as the nominal leakage with an offset
of 30%. The authors evaluate various combinations of logic block cluster sizes and LUT
sizes in the FPGAs for their yield and the simulations indicate that some combinations can
result in an improved yield. However, the authors do not consider the spatial correlation of
the intra-die variations of the process parameters. It is analyzed how the yield can change
if the supply voltage and the threshold voltage of the devices are changed in the FPGA.
Additionally, the timing yield is analyzed for different combinations of the cluster and the
LUT sizes. No CAD technique is proposed to enhance the timing and leakage yield in
FPGAs.

The researchers in [44] introduce an adaptive body biasing technique for the FPGAs to
compensate for the process variations. Each FPGA chip is proposed to have a characterizer
to measure the variations in the threshold voltage for each block by measuring the delay
through the block. The body biasing can be accomplished according to the threshold
voltage fluctuation for the block. Each tile has the extra configuration bits (2-3 SRAM
bits) for determining the applied biasing, and a circuitry to apply the bias. The results
indicate a 30.3% decrease in the standard deviation of delay for three levels of body biasing,
and 3.3X reduction in the standard deviation of delay for seven levels of body biasing can
be achieved. The standard deviation of the leakage is reduced by 78% for three levels of
body biasing, and by 18.8X for seven levels of body biasing. However, the area overhead
for each tile is 1.6%, whereas the area overhead of the characterizer is nine FPGA tiles.
Further, there will be an additional cost due to the triple well process for designing the
FPGAs.

The work in [47] uses the FPGA and ASIC CAD flows for a set of benchmarks to show
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the impact of process variations on the FPGA and the ASIC implementations, for the same
circuits. One of the conclusions is that, although the impact of the process variations is
more pronounced in the case of the ASICs, its impact on the FPGAs cannot be ignored.
It also proposes a variation aware routing methodology to improve the timing yield of the
FPGAs, with a 3.95% improvement in the delay for the same yield, from a deterministic
router with a 3σ guard banding for the delays of circuit elements. However, no architecture
evaluations were done for routing resources, which is an important design criterion, given
that the routing delay dominates the total delay of the circuit. Further, no statistical
placement optimization was considered which is also a critical factor governing the overall
circuit delay and thus the timing yield.

In [42], the authors propose statistical techniques for the major steps in the FPGA CAD
flow, i.e., logic clustering, placement, and routing. The stochastic clustering technique pro-
posed takes into account the uncertainty in the routing interconnect at the clustering level,
where no information about the routing is available. The uncertainty value in the inter-
connect delay arising due to the uncertainty in the interconnect usage is modeled as a
random variable apart from the process parameters. The actual values of these variables
are determined heuristically. The statistical information is embedded in the clustering
phase through the clustering cost function, by incorporating the statistical criticality of
a basic logic element. Similarly, during the placement and the routing phases the statis-
tical criticality as defined in [42], is computed for the cost functions. Again, no routing
architecture evaluations are done in this work.

No known work exists for dealing with supply voltage variations in the power grid of
FPGAs, apart from the work proposed in this thesis and discussed in chapters 7 and 8.

3.7 Proposed Techniques

These challenges in designing FPGAs under process variations in nanometer technologies,
motivate the following, which are the contributions of this work.

• Timing and power yield improvement: Earlier works for FPGAs have not ac-
counted for the intra-die variation with spatial correlations while performing the
optimization. The work in this thesis is based on a model suitable for both intra and
inter-die process variations, thus making it more flexible. The process parameters
under consideration in this work are the channel length, substrate dopants, gate ox-
ide thickness. However, the model developed is generic to incorporate any number
of process parameter variations. The timing yield improvement technique proposed
in this work develops architecture enhancements along with CAD tool improvements
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to increase the timing yield of the design. The power yield enhancement design tech-
nique is essentially a CAD technique used for a low power FPGA. The power yield
improvement targets reduction in leakage variability leading to improvement in total
power yield.

• CAD for IR-drop reduction in FPGA power grid: This work proposes an
enhanced IR-drop aware place and route technique to improve the voltage profile of
the power grid in FPGAs by reducing IR-drops and spatial variance of the supply
voltage. A faster technique at an earlier stage in design flow, at the clustering stage
is also proposed. The IR-drop aware clustering also improves the voltage profile of
the power grid in FPGAs in a similar way. The trade-offs associated with both these
techniques are also analyzed.

Fig. 3.7 shows the interaction between the process variations and environment vari-
ations and their impact on power and delay. This work targets power and timing yield
optimization under process variations and improving the supply voltage profile. It does not
intend to analyze and optimize impact of supply voltage variations on delay and power,
and temperature variations. The figure shows various links indicating how different factors
affect each other and also power and delay. It also shows the links that this work explores.

One of the objectives of this work was to minimize the changes to the existing architec-
tures and circuits such that most of the modifications are done to CAD tools for FPGAs.
This will prevent changes to the FPGA architectures and circuits which can be costly. As
will be observed in the later chapters which describe the work, the changes to circuits and
architectures are minimal and most of the modifications are proposed for the CAD tools
for FPGAs. Additionally, the proposed changes to the circuits and the architecture does
not alter the fundamental fabric of the generic SRAM-based FPGA.
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Chapter 4

Design for Timing Yield

4.1 Introduction

This chapter explains the work on timing yield improvement for FPGAs. The timing yield
of a VLSI design is defined as the fraction of chips which meets circuit delay target, out
of all the fabricated chips. This means that only those chips which meet the target circuit
delay can run at the desired frequency of operation. The rest of the chips which cannot
run at the target frequency of operation are then discarded and results in yield loss. The
main ideas and results proposed and discussed in this chapter are as follows:

1. Routing architecture enhancements for timing yield with SSTA: Earlier
works on FPGAs have not accounted for the intra-die variations with spatial corre-
lations, while the optimization is performed. This work is based on a model suitable
for both the intra and the inter-die process variations, thus introducing flexibility.
The process parameters under consideration in this work are the channel length, the
substrate dopants, and the gate oxide. An analysis of the routing architectures and
an evaluation of these routing architectures for their suitability under process varia-
tions is performed. It is imperative that the routing architecture design is considered,
because a principal part of the total delay is due to the routing segments.

2. Variability aware CAD for improved timing yield: The placement and routing
tools are enhanced to enable a statistical optimization. A variability-aware place
and route technique is proposed which accounts for the timing variability through
statistical delay information available during the place and route phases.

This chapter first discusses the statistical static timing analysis (SSTA) technique
adopted in this work and then explains the proposed design techniques from improving
the timing yield of FPGAs by reducing delay variability [50].
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4.2 Statistical Static Timing Analysis

Recently, many published works have proposed techniques for the SSTA, such as [23, 51, 22,
52]. The main ideas behind any SSTA technique are, (1) modeling the process parameter
variations along with their correlations, and (2) computing the statistical critical delay,
which can be either the block-based approach or the path-based approach. The work
in [53] is a high level model for 3-D circuits which first starts with the assumption of
knowing the number of critical paths in the circuit and is based on the work in [54] for 2-D
circuits. Also, it does not consider the spatial correlation of process parameters which leads
to additional complexity. The SSTA technique adopted in this work takes into account
the spatial correlations of the process parameters and propagates the delays without any
assumption of knowing the critical paths.

In this work the SSTA technique proposed in [23] is adopted for computing the critical
delay of the circuit. The inter-die and intra-die process parameter variations are modeled
as discussed in the Section 3.3. The two main steps performed by the STA (and SSTA)
are the propagation and the merging of the arrival times at the different circuit nodes.
In the propagation step the input arrival time at a logic gate is propagated to its output
by adding the delay of the gate, whereas in the merging step the maximum of all the
arrival times at the output of the gate is computed. However, in the case of the SSTA, the
arrival times are random variables and the Cumulative Distribution Function (CDF) or the
Probability Density Function (PDF) of the arrival times are propagated. The complexity of
the SSTA arises from the correlation between the arrival times at the same logic gate or at
different logic gates. This correlation is due to two factors: the re-convergent fanouts and
the spatial correlation of the process parameters. It has been shown in [55] that ignoring
the correlation due to the re-convergent fanouts, leads to an upper bound in the statistical
delay analysis, and as a result is conservative. However, the spatial correlation due to the
process parameters cannot be ignored [23].

The arrival time is modeled as follows:

a = Anom +
∑
i

si.pi + Arandom (4.1)

where Anom is the arrival time at the nominal process parameter values, si is the sensitivity
of the arrival time to the process parameter, pi, modeled as a random variable, and Arandom
is the random independent component of the arrival time.

Similar to the arrival time, the delay of a gate is modeled as follows:

d = Dnom +
∑
i

sdi.pi +Drandom, (4.2)

where sdi is the sensitivity of the gate delay to the process parameter, pi. The arrival
time propagation is achieved by adding the individual components of the arrival time
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a2 a3 = max(a1, a2)

Path Delay = a3 + dg

Figure 4.1: Merging arrival times

and the gate delay to obtain a canonical form of the arrival time at the gate output. This
operation is an exact one and does not lead to any inaccuracy. The next step is to compute
the maximum of the arrival times at the gate output.

Consider two arrival times a1 = Anom,1 +
∑

i si,1.pi + Arandom,1, and a2 = Anom,2 +∑
i si,2.pi + Arandom,2 as shown in Fig. 4.1. The max(a1, a2) is given by the arrival time

a3 = Anom,3+
∑

i si,3.pi+Arandom,3 such that each of the components of the max is calculated
as follows:

Anom,3 = max(Anom,1, Anom,2) (4.3)

si,3 = max(si,1, si,2) (4.4)

Arandom,3 = max(Arandom,1, Arandom,2) (4.5)

This process of computing the maximum of the two arrival times is not an exact compu-
tation, but gives an upper bound, resulting in a conservative estimate. In case of computing
the maximum of more than two arrival times, the simple procedure outlined in (4.3) - (4.5),
can result in a large error accumulation. The authors in [23] have introduced a heuristic to
reduce the error. Instead of propagating one arrival time at the output of a logic gate, mul-
tiple arrival times are propagated. The larger the number of the arrival times propagated,
the better the accuracy is. When no merging operation is performed at any intermediate
node, the arrival time computed at the primary output is exact, but the computation com-
plexity is large. At each node, the heuristic propagates only K arrival times by merging
some of the arrival times. For all the arrival times, ai, incident on a node the maximum
arrival times, mi,j, for each pair ai, aj, is calculated. All the maximum arrival times, mi,j,
are arranged in descending order and the mi,j with the minimum mean replaces the ai, aj
pair in the arrival time set. Thus, the number of arrival times is reduced by one. This
process is repeated, until only K arrival times remain. This procedure attempts to merge
only those arrival times which are likely to have the least or no impact on the critical delay
of the circuit. The arrival times are propagated in this manner, until the primary output
or a sink is reached, where the maximum operation is again performed to obtain the upper
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bound on the critical delay of the circuit. Some other works have instead proposed ana-
lytical techniques for computing the max operation [56]. However, the proposed technique
has the flexibility of being as accurate as desired by increasing the number of arrival times
to be propagated.

Besides the other parameters, the delay of a logic element is also dependent on the
threshold voltage of the transistors of a logic element. The threshold voltage varies with
the channel length of the transistors due to the short channel effects. In particular, a roll-
off in the threshold voltage is observed as the channel length is reduced. In this work, the
threshold voltage model from BSIM4 is chosen [57]. The threshold voltage of a transistor
is modeled as

V th = V th0 + V thbody − V thSCE − V thDIBL (4.6)

+ V thhalo − V thDITS,

where V thbody, is the body effect, V thSCE is the short channel effect, V thDIBL is the drain
induced barrier lowering effect, V thhalo is the threshold voltage shift due to the halo pocket
implants at the drain and source junctions, and V thDITS is the drain induced threshold
shift due to the source and the drain pocket implants. The various components of the
threshold voltage are functions of the channel length, the gate oxide thickness and the
substrate doping. The BSIM4 analytical models are employed for the threshold voltage
dependence on these process parameters.

The variation in the threshold voltage due to the random dopant fluctuations is modeled
as follows [58]:

σV thrdf =
Q.Tox
εox

√
Nch.Wdm

3.L.W
, (4.7)

where Wdm is the channel depletion width, Nch is the channel doping concentration, and
L, W are the channel length and width, respectively. To a first order approximation small
variations in L will not impact the random dopant fluctuations and hence variations in
L and threshold voltage variations due to random dopant fluctuations can be considered
independent. For a function y = g(x), where x is a random variable with variance σ2

x, the
variance of y is approximated by computing [59]

σ2
y =

(
dg(x)

dx

)2

· σ2
x. (4.8)

The delay of a circuit element is expressed as a function, f(Leff ), and the variance in the
delay, σ2

delayLeff
, is computed by (4.8). Similarly, the variance in the delay due to gate

oxide thickness variation σ2
delayTox

is calculated. A closed form expression for f(Leff ) and
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f(Tox) is unwieldy, and can be represented through a set equations presented in [57],
and is omitted here for brevity. Since the channel length variations, the random dopant
fluctuations and the gate oxide thickness variations are independent, the total variance of
delay is calculated by:

σ2
delay = σ2

delayrdf
+ σ2

delayLeff
+ σ2

delayTox
. (4.9)

To compute the variance and the mean of the delay, it is modeled as a function of
Leff , Tox and V th. Using the statistical model, the mean and the variance of delay D
for a logic element at location (j, k) for ith level, are computed as follows:

E{D} = D(Lnom, V thnom, T oxnom) (4.10)

+
1

2

n∑
i=0

(
∂2D

∂Leff 2 .σ
2
Leff i,(j,k)

+
∂2D

∂V th2
.σ2
V th(rdf)i,(j,k)

+
n∑
i=0

∂2D

∂Tox2
.σ2
Toxi,(j,k)

)
,

σ2
D =

n∑
i=0

(( ∂D

∂Leff

)2
.σ2

Leff i,(j,k)
(4.11)

+
( ∂D
∂V th

)2
.σ2
V th(rdf)i,(j,k)

+
( ∂D

∂Tox

)2
.σ2
Toxi,(j,k)

)
,

where all the partial derivatives, which represent the sensitivities of the delay to the process
parameters, are computed at the nominal values of these process parameters, at ith level
and location (j, k). Since the random variables, Leffi ,(j ,k), for the different values of i, j, k
are independent, the delay variances are added to obtain the total delay variance.

4.3 Proposed Technique

4.3.1 Impact of Segment Length on Variability

This section proposes a theoretical basis for routing architecture enhancements in this
work. Here a single wire segment is considered with buffers and expressions for its delay
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and its variability are discussed. Consider a wire segment with m buffers which are equally
placed along the length L of the wire. The propagation delay through the wire is given
by (4.12), [60]. The standard deviation of the propagation delay, under variations in the
channel length of the transistors, and the assumption that the variations are independent
across the buffers is computed from 4.12, and is given by (4.13),

tp = m

(
0.69

Rd

s

(
sγCd +

cL

m
+ sCd

)
(4.12)

+ 0.69

(
rL

m

)
(sCd) + 0.38rc

(
L

m

)2)
,

σtp =
0.69

s

(
cL√
m

+
√
m(sγCd + sCd)

)
∂Rd

∂Leff

σLeff
, (4.13)

where Rd is the resistance of the buffer (minimum-size), Cd is the input capacitance of the
buffer (minimum-size), γ is the ratio between the intrinsic output and input capacitances
of the buffers, s is the size of the buffer, r is the resistance of the wire per unit length,
and c is the capacitance of the wire per unit length. In FPGAs, the wiring capacitances
dominate the total capacitance in the routing segments. This is because the routing in
an FPGA requires more wiring resources than its ASIC counterpart. Also in the scaled
technologies, interconnects have become the dominant source of delays. Consequently,
(4.13) is simplified by ignoring the buffer capacitances such that

σtp =
0.69

s

(
cL√
m

)
∂Rd

∂Leff

σLeff
, (4.14)

which shows that the standard deviation of the propagation delay varies inversely with√
m. This implies that as the number of buffers increases for a given length of wire,

the standard deviation of the delay decreases. However, this decrease cannot continue
indefinitely, because the capacitances of the buffers will start to play a more dominant
role, as the number of buffers is increased, and the terms ignored in (4.14) can no longer
be ignored.

Consider two different examples of interconnect buffers in a routing segment in an
FPGA. In Fig. 4.2(a), the routing segment consists of three identical buffers, distributed
throughout the length of the wire such that the capacitance of each of the wire segment
is C1. The capacitance due to the buffers is ignored because it is much less than that of
the wire capacitance. In the Fig. 4.2(b), the complete wire is driven by a single buffer of
the same size, as the one in Fig. 4.2(a). The total capacitance of the wire is C2 where
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Figure 4.2: Impact of buffers on the delay variability

C2 = 3.C1. The average on-resistance of the buffers is given by R1 and the resistance of
the wires is ignored because it is small compared with the on-resistance of the buffers.

With these assumptions, the simple first order expressions for the variance of delay for
the two cases are calculated, with the variation in the channel length Leff . It is assumed here
that the process variations of each of the buffers are independent. Here, it is worthwhile
to point out that factors such as cross-talk can further complicate the scenario. However,
cross-talk would lead to increased dominance of wire capacitance and hence the above
discussion becomes even more relevant and important.

σ2
D1

= 3.

(
∂R1

∂Leff

.C1σLeff

)2

(4.15)

σ2
D2

=

(
∂R1

∂Leff

.3C1.σLeff

)2

(4.16)

= 3.σ2
D1

The equations (4.15) and (4.16) compute the variances of the delays for the two cases
in Fig. 4.2(a) and 4.2(b) respectively. It is evident that the delay variance (standard
deviation) in Fig. 4.2(b) is three (

√
3) times greater than the delay variance in Fig. 4.2(a).

These expressions indicate that the number of buffers for a wire segment can be increased
to reduce the delay variance, until the buffer capacitance becomes a significant part of the
total capacitance. Furthermore, the approximations in (4.15) and (4.16) are valid only to a
certain extent and are presented to intuitively analyze the impact of the number of buffers
in the routing segments.

Fig. 4.3 shows the routing of a net and how the delay variability is affected by the
number of buffers in the routing of the nets for two different cases. Fig. 4.3 (a) illustrates
a case when the routing uses fewer buffers resulting in larger delay variability, whereas in
Fig. 4.3 (b), more buffers are used by the net resulting in lesser delay variability.
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Figure 4.4: Extra wire segments in routing
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Another case which typically occurs in FPGAs is that of the unused parts of the tracks
being driven by the buffers. This occurs because of the location of source and sink pairs.
Consider the example illustrated in Fig. 4.4, which shows the interconnect between a pair
of source and sink. In Fig. 4.4 (a), the second buffer which ultimately connects to the sink
has to drive a long wire as well even though that is not required in the routing, and this
results in larger delay variability in accordance to (4.14), compared to Fig. 4.4 (b), where
the third buffer, which ultimately connects to the sink, drives a smaller wire segment not
necessary for the routing between the source and sink pair.

The above discussion shows that shorter wire segments are good for delay variability,
when the wire capacitances dominate the total interconnect capacitance. However, the
actual scenario in an FPGA is more complicated due to spatial correlation in the process
parameters across different buffers and also the capacitance of the buffers would affect the
actual mean and standard deviation of the circuit delay. Further, in case many buffers are
inserted in a routing, the capacitances of the buffers will become important and therefore
a simple architecture having only shorter wire segments will not suffice. An architecture
which supports both longer and shorter wire segments is required and is explored in this
work.

In ASICs, where there is more flexibility for buffer insertion and sizing a mathematical
optimization problem can be devised with more accurate delay models to determine the
location of these buffers. However, in an FPGA, since it is pre-fabricated, and the FPGA
design cannot be targeted for a particular application, the design approach that is adopted
in this work allows routing segments which have more buffers for a given wire length
than other routing segments. The router during the routing phase then selects the most
appropriate routing segments.

The timing yield of a design is defined as the number of chips meeting the target timing
cutoff. Therefore, one of the optimization approaches can be chosen to reduce the delay
variability such that most of the chips meet the required timing. A similar approach is
to reduce the delay at a certain confidence level, which can be the 3σ point on the delay
distribution curve. Since the target delay cutoff is not known for the FPGAs, the objective
of this work is to reduce the (µ+ 3σ) delay of the circuit.

4.3.2 Routing Architecture Evaluation

A typical FPGA routing architecture is composed of horizontal and vertical routing seg-
ments, connected by switch boxes. The routing fabric of an FPGA contains different
lengths of wire segments as shown in Fig. 4.5. Here, there are three different routing
segments, the wire that spans eight logic blocks with eight switch boxes, the wire that
spans eight logic blocks with four switch boxes, and the wire that spans four logic blocks
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Figure 4.5: A section of routing fabric showing different segment lengths

Table 4.1: Routing architecture evaluation

Architecture Length 2 segment Length 4 segment Length 8 segment
arch1 10% 45% 45%
arch2 20% 40% 40%
arch3 30% 35% 35%
arch4 40% 30% 30%
arch5 50% 25% 25%

with four switch boxes. In the first case of the wire spanning eight logic blocks with eight
switch boxes, the segment has the flexibility of connecting to the vertical routing segments
at all the intersections of horizontal and vertical routing tracks. In the second case of the
wire spanning eight logic blocks with four switch boxes, the segment has the flexibility of
connecting to the vertical routing segments at only four intersections of the horizontal and
the vertical routing segments.

An FPGA routing architecture consists of different ratios of these routing segments.
For instance, in an FPGA where the routing channels have 100 tracks, the distribution can
be 20 tracks with segments of length 2, 40 tracks with segments of length 4 and 40 tracks
with segments of length 8.

There can possibly be a very large number of combinations of segment lengths, resulting
in as many number of routing architectures. Theoretically, all of these can be evaluated,
however, the search space is too large such that it is computationally infeasible to evaluate
all the possible combinations. Instead, this work intends to demonstrate that by providing
some shorter segments in the existing routing fabric the timing variability can be reduced.
To this end, this work explores five different combinations of routing segments as shown
in Table 4.1. The baseline architecture consists of the architecture with 50% segments of
length 4 and 50% segments of length 8. Architectures with segments of length 4 and 8 are
explored in [1], in a similar manner, but not for variability aware design.

This work proposes a theoretical basis and a methodology for exploring routing archi-
tectures to reduce timing variability in FPGAs. An FPGA designer can incorporate shorter
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Table 4.2: Routing architecture evaluation: % Improvement

Architectures → arch1 arch2 arch3 arch4 arch5
Mean 3.61% 7.5% 8.79% 7.2% 5.97%
Std. Dev. 9.8% 9.1% 9.3% 8.7% 8.4%

segments in the FPGA according to the design constraints and evaluate which combination
leads to best results. Indeed, the different segment length combinations explored in this
work is not exhaustive and thus there is no guarantee that this set of combinations of rout-
ing segments contains the best routing architecture for reducing timing variability. The
methodology allows an FPGA designer to to judiciously select and design routing fabric
for FPGAs, such that the timing yield can be enhanced.

Table 4.2 shows the average improvements in the (µ + 3σ) point for different archi-
tectures compared to the baseline architecture for the 20 MCNC benchmarks. It can be
observed that the mean improvement for all the architectures vary between 4% and 9%.
This indicates that providing smaller routing segments would invariably lead to improve-
ment in timing variability. An architecture which leads to high improvements in certain
benchmarks while less improvements or degradations in other benchmarks is not desir-
able. In such a case just measuring the mean improvement will lead to an inappropriate
architecture selection. To prevent this, the standard deviations of the improvements are
also calculated to analyze the architectures. The last row in Table 4.2 lists the standard
deviation of the improvements. From the table, it can be seen that the architectures arch2,
arch3, and arch4, have mean improvements better than the other benchmarks, between
7% and 9%, and therefore these architectures are selected for further evaluation. To further
narrow down the choice to one architecture, the standard deviations are also evaluated.
It can be seen that although arch3 has the greatest mean improvement, arch4 is the best
candidate because of good mean improvement and smallest standard deviation. There-
fore, arch4 is selected as the candidate architecture for further evaluation. While there is
no guarantee that the suggested routing architecture is the best routing architecture, the
proposed methodology provides a framework and a theoretical basis to guide the design of
FPGAs for timing variability. Also, the best combination of routing segments, from among
those evaluated, suggested in this work may not be the best for all FPGAs, depending on
its application area and the benchmarks on which the FPGA is evaluated before its design
is finalized. Further, an FPGA designer might have to deal to additional constraints which
might make some routing segment combinations infeasible. However, even in such cases
the same methodology, with additional constraints, can be employed to arrive at the final
architecture. More discussion on the results is presented in Section 4.4.
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4.3.3 Variability-Aware Placement and Routing

The CAD approach employed to enhance the performance of the placement and routing
tool under the process variations, involves incorporating the delay variability information in
the placement and routing phase of the design flow. The VPR implements a timing driven
placement for a netlist to map an application to an FPGA [16]. VPR uses a simulated
annealing algorithm for the placement of the logic blocks on the CLBs. It is an algorithm
which mimics the annealing procedure to cool molten metal slowly for producing high
quality metal structures. The algorithm begins with a random placement, and repeatedly
moves the logic blocks to newer locations and evaluates whether the move can be accepted
or not. The acceptance or rejection depends on the placement cost, computed by the
VPR. If the move results in a reduction of the placement cost, the move is accepted. If the
placement cost increases as a result of the move, there is still some probability that the
move will be accepted. The acceptance of some bad moves prevents the placement tool
from being stuck at some local minimum.

The placement cost of the VPR is the sum of the timing cost and the wiring cost. The
timing cost is computed on a source sink basis. For a source sink pair (i, j) [16],

Timing Cost(i, j) = Delay(i, j).Crit(i, j)crit exp, (4.17)

Crit(i, j) = 1− Slack(i, j)

Dmax

, (4.18)

where Delay(i, j) is the delay between source (i) and sink (j), Crit(i, j) is the criticality
of the connection between them, Slack(i, j) is the slack available with the source and the
sink pair, Dmax is the critical path delay, and crit exp is for assigning large weights to
critical timing connections. The total timing cost is then computed as

Timing Cost =
∑
(i,j)

Timing Cost(i, j). (4.19)

The wiring cost is estimated by computing the bounding box of the placed logic blocks [16].
Essentially, the bounding box is the smallest rectangle within which all the logic blocks lie
for the current placement. The wiring cost is an estimate of the wire length used by the
netlist. The authors in [16] develop an auto-normalizing cost function for the placement.
The cost function, 4C, used for the placement routine, is defined as

4C = λ.
4Timing Cost

Previous T iming Cost
(4.20)

+ (1− λ).
4Wiring Cost

Previous Wiring Cost
,

where λ is a factor for giving different weights to the timing cost and the wiring cost,
4Timing Cost is the change in the Timing Cost because of the current move, and
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4Wiring Cost is the change in the Wiring Cost because of the current move. The timing
driven placement in the VPR optimizes both the wiring cost and the timing cost depending
on the value of λ. In [16], it is proposed that λ = 0.5 and crit exp = 8 are the best values
for the timing and wiring cost trade-off.

Since the optimization goal under process variations is to minimize the (µ+ 3σ) point
of the critical delay, the Timing Cost evaluations is performed at the (µ + 3σ) point as
shown in (4.21),

Timing Cost(i, j) = (µ+ α.σ)(i,j).Crit(i, j)
crit exp, (4.21)

where α is the factor for choosing the point on the delay PDF to be optimized. In this
work, α = 3, since the goal is to optimize the (µ + 3σ) point of the delay PDF. This is
a straightforward approach resulting in a direct optimization of the (µ + 3σ) point. The
value of α can be conveniently chosen to optimize the targeted point.

The routing in the FPGA is based upon the Pathfinder algorithm [1]. The Pathnder
repeatedly rips-up and re-routes each net in the circuit, until all the congestion is resolved.
One routing iteration involves ripping-up and re-routing each net in the circuit. The first
routing iteration routes for the minimum delay, even if the iteration leads to congestion,
or the routing resources are overused. To remove this overuse another routing iteration is
performed. The cost of overusing a routing resource increases for each iteration, thereby
improving the chance of resolving the congestion. At the end of each routing iteration all
the nets are routed, but with some congestion. Based on this routing, a timing analysis is
carried out to compute the critical path and also the slack of each source sink connection.
A net is routed by starting with a single node in the routing resource graph, corresponding
to the source of the net. A wave expansion algorithm is invoked k times to connect the
source to each of the net’s k sinks, in the order of the criticality of the sinks, the most
critical sink being the first. The cost for using node n during this expansion for connecting
the sink j of the net i is expressed as

cost(n) = crit(i, j).delay(n, topology) (4.22)

+ [1− crit(i, j)].b(n).h(n).p(n),

where crit(i, j) is the criticality of the connection, delay(n, topology) is the delay of the
connection after including node n in the path, and b(n), h(n), p(n) are the base cost, the
historical congestion, and the present congestion [1]. To incorporate the variability infor-
mation in the router, the routing cost function is modified and instead of the nominal value
of delay(n, topology), its mean and standard deviation are computed as follows:

delay(n, topology) = µdelay(n, topology) (4.23)

+ 3σdelay(n, topology)
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In the variability-aware router the 3σdelay(n, topology) is computed at each routing
iteration and used in the SSTA driven routing optimization engine.

4.4 Evaluation, Results and Discussions

4.4.1 Experimental Details

The 45nm Berkeley Predictive Model is chosen as the technology node for the simulations.
It is demonstrated in [24] that three levels in the quad-tree model for the process variations
lead to sufficiently accurate results for SSTA, and hence five levels are chosen in this work.
Since the FPGAs have a regular structure, in which a tile is replicated across the chip,
instead of using 4i grids at level i, a scheme in which the grid size at level 0 is the size of the
FPGA, the level 1 has the grid size of 8x8 FPGA tiles, the level 2 has the grid size of 4x4
FPGA tiles, and the level 2 has the grid size of 2x2 FPGA tiles, is selected. This essentially
means that for any level, all the tiles within the grid has perfect correlation, for example,
at level 2 all the 4 FPGA tiles in a grid will have a single random variable to represent the
variations in a process parameter. Such a scheme, as opposed to the one in which each level
is divided into 4i grids, avoids the FPGA tiles from being partitioned into more than one
grid. The last level represents the random independent variations. In case of availability
of the fabrication data and the spatial correlation information for process parameters, the
grid sizes and the number of levels can be accurately determined by using the methodology
described in [24]. In the absence of actual measurement data for process variations, the
channel length variations and the gate oxide thickness variations are modeled at levels
1, 2, and 3 which represent intra-die variations and models the spatial correlation in the
process parameters between the different parts of the chip. A 3σ variation of 20% in Leff
and a 3σ variation of 15% in Tox are assumed, and distributed equally over the levels
[23], in the absence of the actual fabrication data for the spatial correlation. The variation
in the threshold voltage, due to random dopant fluctuations is modeled at the last level,
representing an independent random variable. A set of MCNC benchmarks is selected in
this work for obtaining the results.

4.4.2 Results and Discussions

To evaluate the routing architecture, several different routing architectures are simulated.
The evaluation of different routing architectures are listed in Table 4.1. The idea behind
exploring the routing architectures is to determine the proportion of the different routing
segments required to reduce the (µ+ 3σ) point of the critical delay.
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Table 4.3: Benchmark sizes

Benchmarks # of CLBs Benchmarks # of CLBs
alu4 192 ex5p 139
apex2 240 frisc 446
apex4 165 misex3 178
bigkey 214 pdc 582
clma 1054 s298 243
des 200 s38417 802
diffeq 189 s38584.1 806
dsip 172 seq 221
elliptic 454 spla 469
ex1010 599 tseng 133

The baseline architecture is the architecture with 50% wire which spans four logic blocks
and 50% wire segments spanning eight logic blocks, which was explored in [1]. This baseline
architecture is used to measure the improvement in the (µ + 3σ) of the critical delay by
using the proposed design technique. The five routing architectures evaluated have different
percentages of the routing segments of lengths two, four and eight. The proportion of the
track segments spanning two logic blocks is increased and the remaining tracks are equally
divided between the segments spanning eight and four logic blocks respectively. The sizes
of different benchmarks are shown in Table 4.3 in terms of number of CLBs, where each
CLB has a size of 8 BLEs.

The routing architecture does not have the flexibility to be altered once the FPGA is
fabricated. Therefore, this evaluation should be performed by an FPGA designer before
the architectural parameters of the FPGA are fixed and the FPGA is fabricated. Based
on the simulation results, as discussed in Section 4.3.2, the best architecture determined
for reducing the variability, under the given technology and constraints, is the arch4. The
results shown in Table 4.4 use arch4 for the variability-aware design.

Table 4.4 offers a comparison of the (µ + 3σ) delays of the baseline and the variabil-
ity aware designs. Column 5 lists the improvements due to architecture enhancements
and column 6 lists the improvements after CAD optimization is applied to the FPGA
with enhanced architecture. It can be seen that with just the architecture enhancements,
improvement in (µ + 3σ) delay can be obtained. Further, it can be observed that the
(µ + 3σ) delay of the variability aware design improves by up to 28%, depending on the
benchmark, when variability-aware CAD optimization is applied to the enhanced FPGA
architecture. These improvements result from reduction in the mean and the variance of the
delays. Another observation that can be made from the table is that in some benchmarks
variability-aware place and route does not lead to any improvement or slightly degrades
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Table 4.4: Results of Variability-Aware Design for Timing Yield

Bench-
marks

Baseline
(µ +
3σ)

Variability-Aware Architecture Improvement (µ+ 3σ) Std. Dev. Improvement Yield
Improve-
ment

Determin-
istic CAD
(µ + 3σ)
(ns)

Variability-
Aware
CAD
(µ +
3σ)
(ns)

Arch.
Enhance-
ment

Arch.
and Vari-
ability
Aware
CAD

Arch.
En-
hance-
ment

Arch.
and
Variability-
Aware
CAD

alu4 8.77971 8.64609 8.32891 1.52% 5.13% 16.87% 21.75% 3.00%
apex2 10.2202 9.27657 9.03988 9.23% 11.54% 17.88% 18.61% 16.25%
apex4 8.48323 8.49214 8.02503 -0.1% 5.40% 15.71% 18.43% 3.91%
bigkey 5.73215 5.74827 6.19854 -0.3% -8.13% 7.19% 7.02% -0.44%
clma 19.4209 21.3906 21.1896 -10.1% -9.1% 11.7% 15.98% -2.17%
des 11.2742 9.97441 14.3802 11.5% -27.5% 13.65% 0.7% 16.12%
diffeq 7.86171 5.94118 5.65697 24.4% 28.04% 18.41% 26.4% 68.23%
dsip 6.11283 5.52062 5.43229 9.7% 11.13% 4.7% 5.25% 13.58%
elliptic 11.5893 10.2334 10.0177 11.7% 13.56% 13.91% 18.88% 17.78%
ex1010 15.2968 14.989 14.5394 2% 4.95% 15.88% 18.63% 2.94%
ex5p 9.46913 8.47661 8.00807 10.5% 15.42% 15.19% 18.96% 39.91%
frisc 14.4183 12.1726 12.3823 15.6% 14.12% 9.94% 16.83% 37.61%
misex3 8.51963 8.00565 8.0134 6% 5.94% 18.00% 21.65% 4.59%
pdc 14.4815 14.4253 14.1629 0.4% 2.2% 15.90% 17.30% 0.33%
s298 12.9248 10.7352 10.8236 16.9% 16.25% 13.18% 18.62% 58.01%
s38417 12.7315 13.22 11.8097 -3.8% 7.24% 13.88% 18.64% 2.95%
s38584.1 9.71621 9.38845 9.09571 3.37 6.38% 10.71% 15.18% 2.87%
seq 9.94624 8.61802 9.23896 13.3% 7.11% 18.83% 17.16% 24.50%
spla 13.1557 13.0828 12.9597 0.6% 1.48% 14.14% 20.06% -0.224%
tseng 6.57158 5.1804 5.42482 21.1% 17.45% 8.29% 10.80% 56.65%
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the (µ+3σ) delay, for example, in the cases of frisc and misex3. This is attributed to the
fact that the exact circuit delay and its variance is known only after the routing is complete
and during the placement stage only an estimation can be made with regards to the delay
and its variance. Further, the variance estimation is complicated by the spatial correlation
factor, and the topology of a path. So, even if two nets have same number of buffers and
wire lengths, the arrival time delay variance can be significantly different depending on the
spatial correlation of process parameters and their topology. However, it should be noted
that the delay variability CAD optimization approach is applicable during the mapping of
a benchmark to the FPGA, and it can be turned on only if it results in delay variability
improvement.

Columns 7 and 8 show the improvements in the standard deviations from architecture
enhancement and architecture enhancement with variability-aware CAD, respectively. It
can be observed that reduction in standard deviation of up to 22% can be achieved using the
proposed technique. The optimization approach (architecture and variability-aware CAD)
targets the reduction of the (µ+ 3σ) delay and this may result in an increase in the mean
of the delay delay in the optimized design, however, the (µ + 3σ) decreases, for example,
as in the case of the benchmark alu4 where the mean of the delay increases slightly in the
optimized design, but the standard deviation of the delay decreases by 21.75% leading to
an overall improvement in (µ+ 3σ) delay of 5.13%.

In the cases of the benchmarks bigkey and clma the standard deviation of the critical
delay decreases when the architecture is enhanced, but the mean delay increases such that
the (µ + 3σ) delay increases. In the case of the benchmark clma the standard deviation
of the delay decreases by 16%, but the mean delay increases by 19.5%, resulting in overall
degradation in the (µ+3σ) delay of 9.1%. In the case of benchmark des, it can be observed
that the architecture improvement leads to an improvement of 11.5% in the (µ+3σ) critical
delay, however, when variability-aware place and route is used for this benchmark, it leads
to degradation in the (µ + 3σ) critical delay. Such differences occur across benchmarks
because of the differences in topology of the benchmarks.

Fig. 4.6 shows the PDF of the delay distributions of the baseline and the variability
aware design for the benchmark apex4. It can be seen that the mean and the standard de-
viation of the critical delay reduces in the variability-aware design implementation leading
to reduction in (µ+ 3σ) critical delay by 5.4%. As another example, in case of the bench-
mark ex1010, the mean value of the critical delay remains same in both the baseline and
the variability optimized designs, however in the case of the variability optimized design
the variance of the critical delay reduces by 18.8%, resulting in an overall improvement in
the (µ+ 3σ) delay of 4.95%.

For a given design, process variations lead to variations in the timing of the fabricated
designs. There can be two approaches to look at the timing variability in fabricated chips.
The first approach is evaluating the (µ + nσ) critical delay point of the design, where, in
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this work n is 3. This would ensure that 99.9% of the fabricated designs would meet the
(µ+ 3σ) critical delay. For example, in the case of apex2 benchmark, from Table 4.4, with
variability-aware architecture and CAD, 99.9% of the apex2 designs on the FPGA will
meet the critical delay target of 9.04ns, whereas in the case of the baseline architecture
the critical delay target needs to be relaxed to 10.22ns, such that 99.9% of the apex2
designs on the FPGA can meet the critical delay requirement. This implies that with
the variability-aware architecture and CAD, the apex2 design can be operated at a higher
frequency.

The second approach works in the case when the design has to meet a specified target
delay. The timing variability implies that not all chips will be able to meet the target delay.
For example, in the case of the apex2 design, if the target delay is 8.53ns, only 87.4% of
the designs on the baseline FPGA will meet the target delay of 8.53ns. However, in the
case of the FPGA with variability-aware architecture and CAD, 98.9% of the designs will
meet the target delay of 8.53ns. The yield of a design depends on the minimum frequency
requirement and the maximum allowed leakage [61]. The upper cut-off limit for the critical
delay depends on the minimum frequency requirement, whereas the lower delay cut-off
depends on the maximum allowed leakage. The timing yield of a given design for a target
critical delay is then found by calculating the CDF of the critical delay distribution as
follows:

Y ieldTargetDelay =

∫ TargetDelay

LowerCutoffDelay

f(D)dD, (4.24)

where f(D) is the PDF of the design’s critical delay, Lower Cutoff Delay is the lower
cutoff delay, which is due to the constraint on leakage, and Target Delay is the critical
delay which must be met by the design. The target delay is intended for the minimum
frequency requirement, whereas the lower cut-off delay is intended for the maximum allowed
leakage. The lower cut-off selected in this work is (µ− 2σ) delay, which discards about 2%
of the chips in which variability can cause excessive leakage, thus rendering them unusable.
Though this work targets timing yield, such a lower cut-off limit is required and the (µ−2σ)
delay is selected for illustrative purposes, and any other value can be chosen depending on
the maximum allowed leakage for the design.

The last column in Table 4.4 shows the best case yield improvement over the baseline
implementation due to either from the architecture improvement or architecture improve-
ment with variability-aware place and route. For calculating the yield improvement, the
target and cutoff delays for the variability-aware design is selected as (µ+2σ) and (µ−2σ)
respectively, corresponding to the 95% confidence level, i.e., 95% of the chips for a design
will have their critical delay between these values. To compute the corresponding yield
for the baseline design the Target Delay is selected as the (µ + 2σ)V ariability Aware of the
variability-aware design, whereas the Lower Cutoff Delay is selected as the (µ−2σ)baseline
of the baseline design. The above selection of Target Delay and Lower Cutoff Delay
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are intended for computing the yield and any such delay values can be chosen based on
the design constraints to estimate the yield of a design.

Fig. 4.7 shows the CDF of the critical delay for the benchmark apex4 from which the
yield for a given delay can be computed. For the benchmark apex4 with the variability-
aware implementation, a 95.5% yield is obtained if the target delay is 7.4 ns and the lower
cut-off delay is 5.13 ns. For the same target delay, and the lower cutoff delay of 4.93 ns
the baseline design implementation has a 91.5% yield. In cases of the benchmarks bigkey,
clma, and spla, it can be seen that there is an yield loss. This occurs again because,
although the standard deviation of the critical delay decreases in all the cases, but the
mean value of the delay increases, such that there is an yield loss at the target delay.
For instance in case of spla, the standard deviation of the critical delay reduces by 20%,
however, the mean value of the critical delay increases by 5.8%. Again, this behavior is
due to differences in topology of the benchmarks. This shows that just one architecture
might not be suitable for all the applications. A possible solution to this can be providing
a few flavors of different FPGA architectures, similar to what is provided by a commercial
vendor. Though this work provides results for only one architecture, an FPGA designer
might choose to provide more than one FPGAs such that all the validation benchmarks
are satisfied. An an example, in the case of the benchmark spla, which has a small (µ+3σ)
delay improvement of 1.48% with an yield loss of 0.22% for the architecture arch4 with
varibility-aware CAD, the architecutre arch3 with the variability-aware CAD leads to an
improvement of 6% in (µ+ 3σ) delay, with an yield improvement of 3.8%.

Designing a routing architecture with shorter segment lengths requires more transis-
tors. The area trade-off for the proposed architecture is such that the architecture requires
10% more transistors than the baseline implementation. The average dynamic power con-
sumption (computed at mean frequency), for alu4, for the variability-aware implementation
increases by 1% compared to the baseline implementation.

The optimization approach proposed in this work is a two step process, in which the
first step is to determine the routing architecture and the second step is to optimize using
variability-aware placement. The routing architecture improvement leads to most of the
improvements in the (µ+ 3σ) critical delay, with the variability-aware place and route op-
timization leading to further improvements. The run-times of the variability-aware CAD
optimization and deterministic CAD optimization differ because of the statistical oper-
ations performed during the optimization steps. The runtimes of the benchmarks with
variability-aware CAD vary between 20 minutes and 492 minutes for different benchmarks.
The runtimes for deterministic place and route vary between 0.5 minutes and 7 minutes.
For example, in the case of alu4, the deterministic place and route takes 1 minute of run-
time, whereas the variability-aware place and route takes 31 minutes of run time. The
runtime of the variability-aware CAD tool, depends on the number of levels chosen in
the grid-model for SSTA, the number of grids on each level and the number of random
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Figure 4.6: The PDFs for the baseline and variability aware implementations for the
benchmark apex4

variables modeled. The higher these number, greater is the accuracy at the expense of
runtime. In the case of the benchmark alu4 if only channel length variations, which is the
dominant variation, is considered, the runtime for the variability-aware CAD reduces from
31 minutes to 15 minutes, however, the standard deviation of the delay is underestimated
by 5.9% . For the same benchmark, if variability-aware routing is turned off, the runtime
of the CAD tool with just the variability-aware placement is 12 minutes. However, this
comes at the expense of lesser improvement of 4.7% in (µ + 3σ) delay. If the number of
levels in the grid model for SSTA is reduced by one and only channel length variation is
modeled, the runtime of the variability-aware CAD reduces from 31 minutes to 9 minutes,
with the standard deviation of the delay being underestimated by 9%. It should however,
be noted that with architecture enhancements, even a deterministic place and route would
lead to improvement in the timing variability as listed in column 5 of Table 4.4, with the
runtime same as that of the deterministic place and route.

The technique proposed here for architecture and CAD enhancements is applicable
to most of the industrial FPGAs, such as Virtex series from Xilinx or the Stratix from
Altera. The technique is applicable because it follows the principle of incorporating shorter
segments in the routing fabric, with more buffers, which can be easily applied to many
FPGA architectures. The CAD enhancements are flexible and can be incorporated in any
CAD tool by using statistical delay models.

4.5 Conclusions

This chapter presents a variability aware design technique to reduce the impact of process
variations on the timing yield of FPGAs. The technique is twofold involving the co-design
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of the routing architecture and the variability-aware CAD optimizations. The routing
architecture evaluations indicate that an architecture which has a certain proportion of
shorter routing segments can provide a better trade-off for the timing variability. The
CAD tool for placement and routing is enhanced to incorporate the timing variability
to improve the timing yield of FPGAs. The results of the joint architecture and CAD
optimizations indicate that the (µ+ 3σ) delay improvement of up to 28% can be achieved
depending upon the benchmark.
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Chapter 5

Design for Power Yield

5.1 Introduction

This chapter discusses the design techniques for improving power yield in nanometer FP-
GAs. The techniques proposed in this chapter are CAD techniques. Every application
has a power budget because of constraints due to battery life, thermal issues, etc., which
should not be exceeded. All chips exceeding the power budget are discarded which leads
to yield loss. The chips which have total power consumption less than the power budget
contribute to the power yield of the design. For example, in mobile and low power biomed-
ical applications, an appropriate power budget is pivotal to a long battery life. For such
applications process variations can diminish the power yield of FPGAs resulting in signif-
icant financial loss. Several design techniques have been proposed for managing leakage
power in FPGAs [5], [7], [62], [63]. However, none of these techniques have included the
impact of process variations. Traditionally, process corners have been used for analyzing
designs to meet the targeted performance, power and other design considerations at the
best, nominal and worst case process corners. However, this may lead to pessimistic or
optimistic designs. Moreover, it is very difficult to determine whether a particular process
corner is indeed a best, nominal or worst case corner, because of the significant increase
in the number of varying process parameters and operating conditions with technology
scaling. Therefore, to design VLSI circuits under process variations, statistical techniques
need to be adopted. Yield improvements directly translate to profit and even small yield
improvements are desirable because of economic considerations [30]. These challenges in
designing low power FPGAs in nanometer technologies, and simultaneously accounting for
process variations, motivate the following, which are contributions of this work [64]. The
contributions of this work are as follows:

• Variability aware placement methodology for reducing the leakage varia-
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tion to increase the power yield: The leakage variation in FPGAs is significantly
affected by spatial correlations of the process parameters variations. In this work,
since the leakage is modeled as a random variable, it is shown that the leakage varia-
tion can be reduced if spatial correlations between leakage from the different spatial
regions are reduced. A placement technique is proposed to reduce these spatial corre-
lations and thus reduce the intra-die leakage variation. Such a technique is uniquely
applicable to FPGAs since there is flexibility of placing the logic blocks at different
CLBs by programming the FPGAs, and the un-utilized blocks can be power gated.
Since the placement is a spatial operation on a two dimensional space, and the spatial
correlation of process parameters is also on the same two dimensional space, man-
aging placement can effectively reduce the impact of spatial correlations. Inter-die
leakage variations for FPGAs and microprocessors are usually handled by binning
[43], and therefore this work is targeted towards reducing intra-die leakage variation,
resulting in improved power yield.

• Variability aware dual-Vdd assignment: A programmable dual-Vdd FPGA ar-
chitecture is used for implementing the proposed CAD methodology. A new dual-
Vdd assignment scheme is proposed for the programmable dual-Vdd FPGA which
reduces the spatial correlations of the leakage to reduce its variation. This dual-Vdd
assignment scheme is used after the placement and routing, to evaluate the total
improvement in power yield.

5.2 Targeted FPGA Architecture

The basic structure of the FPGA under consideration in this work is the same as that
described in Chapter 2. For high performance FPGAs, that need power efficient techniques,
an implementation that reduces power consumption is required. Designs which target
power yield should first implement a power reduction mechanism, and then a variability-
aware design approach should be adopted to reduce the variability in the power. This is
because enhancing power yield attempts the reduction of power variability such that the
target power is met for as many chips as possible, so that the yield loss is small. In case the
target power dissipation is achieved by applying a low power technique (considering power
variability), for a certain confidence level, power yield loss is not a concern in such a design.
However, if, after applying a low power technique, power variability causes a large number
of chips to exceed the power budget, leading to yield loss beyond the acceptable confidence
limit, variability-aware techniques need to be employed for enhancing power yield of the
design. Therefore, to consider a low power FPGA design, the targeted architecture in this
work is a dual-Vdd FPGA architecture, which is the first step. Such an architecture leads to
significant power reduction [7], [65], [66]. A dual-Vdd FPGA architecture reduces power by
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applying low-Vdd to FPGA elements on non-critical paths, thereby reducing the dynamic
power, and also by turning off the un-utilized parts of the FPGA, resulting in savings in
static power too. The granularity of power gating was investigated in [63]. The analysis
indicated the trade-offs associated with the area and power savings, for different power
gating granularity, with the finer power gating achieving higher power savings but also
consuming more area. The results show that even for fine grained power gating granularity,
at the level of each slice within a CLB, provides a good area trade-off. It argued that since
the similar logic blocks which are idle during the same period tend to lie closer, a coarse
power gating granularity can be employed for the logic elements in the FPGA. However, it
concludes that a best architecture for area and power trade-off should have a combination
of coarse and fine grained power gating flexibility, though no definite best architecture was
proposed. In this work the architecture proposed in [66] is chosen, which is in line with
industrial FPGAs. It has two types of power supply rails, a low voltage supply rail and a
high voltage supply rail. Each of the FPGA logic and routing resource can be connected to
either a low voltage supply rail or a high voltage supply rail by programming the transistors
connecting the logic/routing resource to either the high voltage or the low voltage supply
rail. Such an implementation for a logic block is shown in Fig. 5.1. The use of two supply
voltages requires a level converter when a signal crosses from a low voltage net/logic to a
high voltage net/logic and vice versa. The architecture which has the level converters at
the inputs of the CLBs is chosen [66]. All the nets that are driven by a CLB operate at the
same supply voltage as the CLB. The unused routing switches and the CLBs are power
gated by switching off both power supply transistors. Furthermore, the SRAM cells have
high-Vth transistors to reduce the leakage. This reduces leakage without any delay penalty
because the SRAMs need to be programmed only once and do not contribute to the run
time performance of the FPGA. The power gating granularity in this architecture can be
classified as coarse for the logic elements while it is fine for the routing resources, which
is along the lines of the argument presented in [63]. A baseline FPGA implementation,
against which the methodology proposed in this work is compared, consists of the dual-
Vdd FPGA with the placement and the routing of a netlist on the FPGA followed by a
dual-Vdd assignment.

Another architecture which is an extension of the above, is the use of a dynamic Vdd
architecture in which the supply voltage can be configured during runtime based on the
desired frequency of operation. The dynamic Vdd can be implemented using a dedicated
controller which can control the supply voltage to different parts of the chip. However, the
methodology proposed in this work would remain similar even with dynamic Vdd imple-
mentation. Statically configured voltage islands, as used in this work, are ideally suited
for the scenario where the chip is required to run at the constant frequency throughout it
duration of operation. Statically configured voltage islands have lesser complexity.
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Figure 5.1: Dual-Vdd logic block implementation for power reduction

5.2.1 Statistical Power Model

The total power of any VLSI circuit can be divided into dynamic power and leakage power.
Dynamic power is dissipated due to switching of the circuit nodes, whereas leakage power
in a transistor is consumed when it is not switching. During the active mode of a system,
some parts of the circuit consume dynamic power and the rest leakage power.

Dynamic power is not very sensitive to process parameter variations, and therefore
is modeled deterministically [67]. The dynamic power is not very sensitive to process
parameters because it is linearly dependent on the process parameter such as the gate
length, whereas the leakage power is exponentially dependent on process parameters, such
as gate length and threshold voltage. The power model proposed in [68] is adopted to
compute dynamic power. The power model computes the dynamic power of logic and
routing resources by taking into account the associated capacitances, switching activities
and voltage swings at various nodes of the circuit.

The leakage power has two main components, subthreshold leakage and gate leakage.
The subthreshold leakage current through a MOSFET is modeled as [57]

Isub = I0

[
1− exp

(
− Vds
VT

)]
.exp

(
Vgs − V th− Voff

n.VT

)
, (5.1)

where I0 is a constant dependent on the device parameters for a given technology, VT is
the thermal voltage, Voff is the offset voltage which determines the channel current at
Vgs = 0, V th is the threshold voltage, and n is the subthreshold swing parameter. It
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can be seen that the subthreshold leakage is exponentially dependent on the threshold
voltage of the MOSFET. This makes the subthreshold leakage very sensitive to variations
in the threshold voltage. Also, the subthreshold leakage depends on the channel length
of the MOSFET. It should be noted that the threshold voltage is also dependent on the
channel length of the transistors due to short channel effects. In particular, a roll-off in
the threshold voltage is observed as the channel length is reduced. Since the subthreshold
leakage is very sensitive to the threshold voltage, it is important to accurately model the
threshold voltage of a MOSFET. In this work, the threshold voltage model from BSIM4
[69] is used. The threshold voltage of a transistor is modeled as

V th = V th0 + V thbody − V thSCE − V thDIBL (5.2)

+ V thhalo − V thDITS,

where V thbody, is the body effect, V thSCE is the short channel effect, V thDIBL is the
drain induced barrier lowering effect, V thhalo is the threshold voltage shift due to the halo
pocket implants at the drain and source junctions, and V thDITS is drain induced threshold
shift due to the source and the drain pocket implants. The various components of the
threshold voltage are functions of Leff , gate oxide thickness and channel doping. The
BSIM4 analytical models for threshold voltage dependence on these process parameters
have been used.

The variation in threshold voltage due to random dopant fluctuations, σV thrdf , is mod-
eled as [58]:

σV thrdf =
Q.Tox
εox

√
Nch.Wdm

3.L.W
, (5.3)

where Wdm is the channel depletion width, Nch is the channel doping concentration, and
L, W are the channel length and width, respectively. For a function y = g(x), where x is
a random variable with variance σ2

x, the variance of y can be approximated by [59]:

σ2
y =

(
dg(x)

dx

)2

· σ2
x. (5.4)

The threshold voltage and hence leakage expressed as a function, f(Leff ), and the variance
in the leakage, σ2

subLeff
, is computed by (5.4). Similarly, the variance in leakage due to gate

oxide thickness variation, σ2
subTox

, is calculated. Since the channel length variations, random
dopant fluctuations and gate oxide thickness variations are independent the total variance
of the threshold voltage is calculated by

σ2
Isub

= σ2
subrdf

+ σ2
subLeff

+ σ2
subTox

. (5.5)
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To compute the variance and mean of the subthreshold leakage, it is modeled as a
function of Leff , Tox and V th. Using the statistical model, the mean and variance of
subthreshold leakage Isub for a logic element at location (j, k) for ith level, are computed
as follows

E{Isub} = Isub(Lnom, V thnom, T oxnom) (5.6)

+
1

2

n∑
i=0

(
∂2Isub

∂Leff 2 .σLeffi,(j ,k)
2

+
∂2Isub
∂V th2

.σ2
V th(rdf)i,(j,k)

+
1

2

n∑
i=0

(
∂2Isub
∂Tox2

.σ2
Toxi,(j,k)

)
,

σ2
Isub

=
n∑
i=0

(( ∂Isub
∂Leff

)2
.σ2

Leff i,(j,k)
(5.7)

+
( ∂Isub
∂V th

)2
.σ2
V th(rdf)i,(j,k)

+
( ∂Isub
∂Tox

)2
.σ2
Toxi,(j,k)

)
,

where all the partial derivatives, which represent the sensitivities of the leakage to the
process parameters, are computed at the nominal values of these process parameters, at the
ith level and location (j, k). Since the random variables, Leffi ,(j ,k), for the different values of
i, j, k are independent, the leakage variances are added to obtain the total leakage variance.
By extending this to the complete chip each of the sensitivities (i.e., for grid location i, j and
k) represents the total sensitivity due to all the logic elements lying in the location (j, k)
at level i. The total leakage current for a chip is the sum of the leakage currents for all the
logic elements. Consequently, this amounts to computing the sensitivities of the leakage
of each location at each level and using equations 5.6 and 5.7 to compute the variance
and mean at each location for all the levels. Since all these locations have independent
random variables across the various locations within the level and across the levels, the
total leakage variance can be obtained by adding these variances. If (x1, x2, x3, x4...) are
independent random variables, and y =

∑
i xi, then

σ2
y =

∑
i

σ2
xi

(5.8)

E{y} =
∑
i

E{xi}. (5.9)
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An analytical state dependent leakage power model for FPGAs is proposed in [70] and
is adopted for this work. The leakage power model takes into account the probability
of different states for a logic element for the leakage computation, because the leakage
current through a logic element depends on its inputs [71]. The work in [70] models the
total leakage for a logic element as

Ileak =
∑
i

Pi.Leaki, (5.10)

where Pi represents the probability for state i, and Leaki represents the leakage of the
logic element in state i. By extending this, the sensitivity to the process parameters of the
leakage is also dependent on the state of the logic element. Therefore, for computing the
total sensitivity of the leakage for a logic element at ith level and (j, k) location, following
equations are used. (The subscripts i, j, k are dropped to retain simplicity of the expressions
and convey the essential idea):

∂Isub
∂Leff

=
∑
n

Pn.

(
∂Isub
∂Leff

)
n

(5.11)

∂Isub
∂V th

=
∑
n

Pn.

(
∂Isub
∂V th

)
n

, (5.12)

∂Isub
∂Tox

=
∑
n

Pn.

(
∂Isub
∂Tox

)
n

(5.13)

where Pn represents the probability for state n, and

(
∂Isub
∂Leff

)
n

,

(
∂Isub
∂V th

)
n

, and

(
∂Isub
∂Tox

)
n

represent the sensitivities for state n of the logic element.

The gate leakage models are described in [70]. Although the gate leakage is orders of
magnitude smaller than subthreshold leakage, its variation is modeled in a similar way to
the methodology described for the subthreshold leakage. In the remainder of the chapter
the term, leakage, refers to total leakage including both the gate and subthreshold leakage.

5.3 Proposed Methodology

5.3.1 Preliminaries

In this section, the placement methodology for improving the leakage yield of FPGAs is
described. The methodology is used to minimize the impact of the systematic process
variations in FPGAs. Since the FPGAs have regular structure and therefore a significant
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amount of spatial correlation can be anticipated. Same structures with same layout and
orientations but separated by distance lead to similar variability, and hence high spatial
correlations. Traditionally, inter-die variations are handled by dividing the chips into
different bins for the FPGAs and microprocessors [43]. However, the binning technique
cannot manage intra-die variations. In this work the reduction of the impact of intra-die
process variations on the leakage is targeted.

Since in a dual-Vdd based FPGA architecture, all the CLBs are identical, the mean
leakage of FPGA for an application simply depends on the number of CLBs and routing
resources used by the application. The unused CLBs and routing resources do not con-
tribute to variation in leakage because these are turned OFF. The placement location of
the logic blocks on the CLBs and the location of the used routing resources do not impact
the mean leakage of the application. However, the variance of the leakage is impacted by
the placement of the logic blocks because of the spatial correlations in the variations of
process parameters. To illustrate this, consider the example in Fig. 5.2. It shows two logic
blocks placed on two CLBs, where the other CLBs are not used, and hence, are power
gated. The total leakage, its mean, and variance are expressed as

Ileak = Ileak1 + Ileak2, (5.14)

E{Ileak} = E{Ileak1}+ E{Ileak2}, (5.15)

σ2
Ileak

= σ2
Ileak1

+ 2.ri,j.σIleak1 .σIleak2 + σ2
Ileak2

, (5.16)

where ri,j represents the leakage correlation coefficient when logic blocks 1 and 2 are placed
on CLBi and CLBj, respectively. In Fig. 5.2 (a), the logic blocks are placed on CLB1

and CLB2, with the coefficient of correlation r1,2, whereas in Fig. 5.2 (b), the logic blocks
are placed on CLB1 and CLB9 with leakage correlation coefficient of r1,9. Since CLB1

and CLB2 are closer, compared to CLB1 and CLB9, the leakage correlation coefficient
r1,2 > r1,9 > 0, because of a stronger spatial correlation in the former case. This means
that σ2

Isuba
> σ2

Isubb
. Therefore, to reduce the variance in the leakage, the logic blocks should

be placed far apart to reduce the effect of the positive spatial correlation. It should also
be pointed out that placing the logic blocks far apart might also lead to an increase in the
critical path delay. However, in FPGAs, there are many logic blocks which do not lie on
the critical path and have a large amount of slack available with them. The placement of
these logic blocks can be adjusted to reduce the total leakage variance without incurring a
large delay penalty. It will be shown in the subsequent section how the trade-off between
the leakage variance and timing can be achieved.

5.3.2 Placement Methodology

The statistical leakage power model described in the previous section is implemented in
the framework of VPR tool [1]. The VPR implements a timing driven placement for a
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Figure 5.2: Example illustrating the impact of placement on leakage pdf. Spatial correla-
tion causes the variance of leakage to increase.
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netlist to map an application to FPGAs[16]. VPR uses the simulated annealing algorithm
for the placement of logic blocks on the CLBs. Simulated annealing is an algorithm which
mimics the annealing procedure to cool molten metal slowly for producing high quality
metal structures. The algorithm begins with a random placement, and repeatedly moves
the logic blocks to newer locations and evaluates whether the move can be accepted or
not. The acceptance or rejection of a move depends on the placement cost, computed by
the VPR. If the move results in a reduction of the placement cost, the move is accepted.
If the placement cost increases as a result of the move, there is still some probability that
the move is accepted. Accepting some bad moves allows the placement tool to avoid being
stuck at some local minimum.

The placement cost used by the VPR is the sum of the timing cost and the wiring cost.
The timing cost is computed on a source sink basis. The timing cost for a source sink pair
(i, j) is given as [16]

Timing Cost(i, j) = Delay(i, j).Crit(i, j)crit exp, (5.17)

Crit(i, j) = 1− Slack(i, j)

Dmax

, (5.18)

where Delay(i, j) is the delay between the source (i) and sink (j), Crit(i, j) is the criticality
of the connection between them, Slack(i, j) is the slack available with the source and sink
pair, Dmax is the critical path delay, and crit exp is for assigning large weights to critical
timing connections. The total timing cost is then computed as

Timing Cost =
∑
(i,j)

Timing Cost(i, j). (5.19)

The wiring cost is estimated by computing the bounding box of the placed logic blocks [16].
Essentially, the bounding box is the smallest rectangle within which all the logic blocks lie
for the current placement. The wiring cost is an estimate of the wire length used by the
netlist. The authors in [16] propose an auto-normalizing cost function for the placement.
The cost function, 4C, used for placement is defined as

4C = λ.
4Timing Cost

Previous T iming Cost
(5.20)

+ (1− λ).
4Wiring Cost

Previous Wiring Cost
,

where λ is factor for giving different weights to the timing cost and the wiring cost,
4Timing Cost is the change in the Timing Cost because of the current move, and
4Wiring Cost is the change in the Wiring Cost because of the current move. The timing
driven placement in the VPR optimizes both the wiring cost and the timing cost depending
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Figure 5.3: (a) Placement is fairly spread out throughout the FPGA, which leads to reduced
leakage variance. (b) Placement more concentrated, higher leakage variance.

on the value of λ. In [16], it is proposed that λ = 0.5 and crit exp = 8, are the best values
for the timing and wiring cost trade-offs.

The mean value of leakage depends only on the utilized logic and routing resources,
since the un-utilized resources are turned OFF. The variance of the leakage depends on
the utilized resources and their location because of the spatial correlations in the process
parameters. So the concern is only with the utilized CLBs and routing switches for the
power yield. For improving the power yield either the leakage variance should be reduced,
or the dynamic power and mean leakage power should be reduced, or all of these should be
reduced. Reducing the leakage variance can be achieved by reducing the spatial correlations
among the utilized CLBs. This is accomplished by placing the logic blocks further apart.
A placement in which the utilized CLBs are evenly spread in the FPGA would have lesser
leakage variance than that where the utilized CLBs are concentrated in some part of the
FPGA. Typically, a placement tool minimizes the wiring and delay of the circuit by using
the placement cost as in 5.20. In general this leads to a closely packed placement to reduce
net delays. However, all the logic blocks do not need to be placed close together since many
nets have timing slack available with them. In Fig. 5.3 two cases of the placement of the
logic blocks on an FPGA is depicted. Fig. 5.3 (a) has the placement which is more evenly
spread out than the one in Fig. 5.3 (b), such that the total leakage variance is more in the
case of Fig. 5.3 (b) because of increased spatial correlation of the process parameters in
Fig. 5.3 (b).

The proposed placement methodology is based on making the placement more uniform,
while the delays of the nets are taken into account. The proposed placement algorithm
is outlined in Algorithm 1. The parts which are highlighted in italics in the algorithm
represent the description of the proposed variability-aware placement technique. First
the algorithm is applied to divide the FPGA chip into smaller square grids as shown in
Fig. 5.3, and then the occupancy of each of the grids is computed. The occupancy cost is
the grid density, Grid Occ Factor, calculated as Grid Occupancy

Grid Area
. The occupancy cost, due
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Algorithm 1: Variability aware placement algorithm

Divide FPGA into smaller grids;
Curr Occ Cost = 0;
for each grid do

Grid Occupancy = no. of logic blocks in the grid;
Grid Occ Factor = Grid Occupancy

Grid Area
;

Curr Occ Cost = Curr Occ Cost + (Grid Occ Factor)α

end
4 Occ Cost = Prev Occ Cost - Curr Occ Cost;
4Placement Cost = 4Timing Cost+4Wiring Cost+4Occ Cost;
Proceed with placement based on Simulated Annealing;

to a grid, is then computed as (Grid Occ Factor)α, where α is a factor to control the
aggressiveness of the cost function. The occupancy cost is then summed for all the grids
to obtain the total occupancy cost. The value of α should be greater than 1, else, if it
is 1, the total occupancy cost always remains same for all the placement iterations, and
does not have any impact on the placement. If the value is less than 1, the cost function
would lead to more concentrated placement, because the Grid Occ Factor is always less
than 1, leading to higher occupancy costs, Curr Occ Cost, for lesser grid densities. The
total placement cost is then computed as the sum of the timing cost, the wiring cost and
the grid occupancy cost.

The new normalized placement cost function which takes into account leakage variance
is

4C = λ.
4Timing Cost

Previous T iming Cost
(5.21)

+ (1− λ− β).
4Wiring Cost

Previous Wiring Cost

+ (β).
4Occ Cost

Previous Occ Cost
,

where β is a factor to provide a weight to the leakage variation term of the cost function.
After the acceptance of a move, the occupancy cost, Curr Occ Cost, in the current con-
figuration is re-calculated. The Timing Cost and Wiring Cost, will tend to bring the
logic blocks closer together in order to reduce the delay and the wiring length, whereas
the Occ Cost tends to evenly spread out the placement in an FPGA. However, the timing
critical logic blocks have a higher Timing Cost as compared to non-critical logic blocks,
and thus will tend to be closer together.
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Figure 5.4: Variability-Aware Dual-Vdd assignment technique

5.3.3 Dual-Vdd Assignment

For a programmable dual-Vdd FPGA, once a circuit is placed and routed, a dual-Vdd
assignment algorithm assigns high/low Vdd to different CLBs and routing switches ac-
cording to the slacks available to them. The dual-Vdd assignment algorithms are widely
used and one such dual-Vdd assignment algorithm is used here for baseline implementation
[72]. The algorithm first creates a graph of the circuit and then arranges all the nodes in
the graph according to their level in the graph. Then it begins assigning dual-Vdd with
the nodes at the highest level (i.e. primary outputs) and moves backwards towards the
lowest level (i.e. primary input). At each level it assigns the low-Vdd to a selected node
and check for the timing violation. If the timing the of the circuit gets violated, the node
is re-assigned with high-Vdd. This baseline dual-Vdd implementation is then compared
with the implementation based on the proposed variability aware methodology to evaluate
the improvement in the power yield.

To further improve the power yield, a new variability aware dual-Vdd assignment is
proposed in this work as outlined in Algorithm 2. This dual-Vdd assignment algorithm is
applied after the variability aware placement and routing step is completed. The algorithm
divides the FPGA with all high-Vdd implementation into square grids (Fig. 5.3). Then
all the grids are arranged in a Priority Queue, PQ, such that the head of the priority
queue contains the grid with the maximum number of logic blocks. Then the dual-Vdd
assignment algorithm is applied with the assignment in the grid with maximum number of
logic blocks being chosen first. A grid with a high density of logic blocks leads to greater
leakage variability due to increased spatial correlation effect.

For example, consider the case with two grids i, j, such that each grid can contain
a maximum of four logic blocks, and the spatial correlation is restricted to only one grid
(ignore the grid boundary case for simplicity), i.e., there is no parameter spatial correlation
across the grids. Also, say, the occupancy of grid i is 1 CLB, a, and that grid j has two
CLBs, b and c. The critical path is such that either a or c can be assigned a low-Vdd as
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shown in Fig. 5.4. When all the utilized CLBs are high-Vdd, the total leakage variance is

σ2
leak = σ2

a(HV dd) + σ2
b (HV dd) (5.22)

+ 2rbc.σb(HV dd).σc(HV dd) + σ2
c (HV dd),

when CLB a is assigned low-Vdd, the leakage variance is expressed by

σ2
leak = σ2

a(LV dd) + σ2
b (HV dd) (5.23)

+ 2rbc.σb(HV dd).σc(HV dd) + σ2
c (HV dd),

when CLB c is assigned low-Vdd, the leakage variance is given by

σ2
leak = σ2

a(HV dd) + σ2
b (HV dd) (5.24)

+ 2rbc.σb(HV dd).σc(LV dd) + σ2
c (LV dd),

where rbc is the correlation coefficient between blocks b and c. Under the assumption that
all the low-Vdd CLBs have the same leakage and its variance, and all the high-Vdd logic
blocks have the same leakage and its variance, it can be seen from 5.22 - 5.24, that assigning
a low-Vdd to CLB c, leads to the least leakage variance. This rationale is followed in this
work by using Algorithm 2, because for larger circuits such a behavior is typically observed.
The parts in the algorithm highlighted in italics represent the description of the proposed
technique. Therefore, assigning low-Vdd to regions with a higher utilized CLBs density
results in a smaller leakage variance.

Algorithm 2: Variability aware dual-Vdd assignment algorithm

Assign high-Vdd to all blocks and routing resources;
Divide FPGA into smaller grids;

Perform placement as in Algorithm 1;
Perform routing;
Sort the grids in a priority queue, PQ, such that highest occupancy grid is at the

head;
while PQ not empty do

igrid = PQ(head);
for each logic block, iblk, in igrid do

Assign low-Vdd to iblk and associated routing resources;
if slack < 0 then

Reassign high-Vdd to iblk and associated routing resources;
end

end

end
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5.4 Evaluation, Results and Discussions

5.4.1 Experimental Details

In this work 45nm Berkeley Predictive Models is chosen as the technology node for the
simulations [69, 73]. It is demonstrated in [24] that three levels in the quad-tree model for
the process variations lead to sufficiently accurate results for the timing analysis. Instead
of using 4i grids at level i, a scheme in which the grid size at zeroth level is the size of the
FPGA, first level has a grid size of 12x12 FPGA tiles, second level has a grid size of 8x8
FPGA tiles, and the third level has the size of 4x4 FPGA tiles. The last level represents
the random independent variations. In the absence of actual measurement results, five
levels for in the quad-tree model is chosen for modeling process parameter variability. The
channel length variations have been modeled at levels 1, 2, and 3 which represent intra-die
variations and models the spatial correlation in process parameters between different parts
of a chip. A 3σ variation of 20% in Leff , and a 3σ variation of 15% in Tox, is assumed,
and this is distributed equally over these three levels, in absence of actual fabrication data
for spatial correlation, similar to the work in [23]. The variation in the threshold voltage
due to random dopant fluctuations is modeled at the last level representing an independent
random variable. The delay and the power of level converters at the input of the CLBs is
ignored. This is because the power of a level converter is negligible compared to that of
the logic block [6]. The delay of the interconnects dominate the delay of a path and the
delay of the level converter is only a fraction of the delay of a logic block [6]. The A set of
MCNC benchmarks has been selected in this work for obtaining the results.

5.4.2 Estimating leakage distribution and yield

The leakage distribution of a circuit element is close to lognormal [74]. Consequently, the
leakage distribution of the complete circuit is approximated by a lognormal distribution,
but the distribution tends to become a normal distribution as explained below. Given
the quad-tree model for modeling the variations in the process parameters, and thus, for
computing the leakage mean and variance, independent random variables are added for
computing the total leakage. This amounts to adding n random variables with lognormal
distribution as,

Isub = I1 + I2 + ...+ In = eg1 + eg2 + ...+ egn , (5.25)

where I1, I2, ...In have a lognormal distribution, and g1, g2, ...gn have a normal distribution.
The Wilkinson approximation [75] is used to approximate the sum of the lognormals as
another lognormal. Wilkinson’s approach approximates the mean and variance of the sum
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of lognormals by matching the first two moments of the distribution as follows:

E{Isub} = µ1 + µ2 + µ3 + ...+ µn, (5.26)

σ2
Isub

= σ2
1 + σ2

2 + σ2
3 + ...+ σ2

n, (5.27)

where µi and σi are the means and standard deviations associated with a grid (j,k) for a
layer, in the layered grid model. The probability distribution function of a lognormal is
given by

f(x) =

(
1

x
√

2πq

)
.exp

(
−(ln(x)− p)2

2q2

)
, (5.28)

where p, and q are the parameters of the lognormal distribution. The mean and variance
of a lognormal distribution are expressed as [74]

E(X) = exp

(
p+

q2

2

)
, (5.29)

σ2
X = exp

(
2.(p+ q2)

)
− exp(2.p+ q2). (5.30)

The lognormal random variableX is expressed asX = exp(Y ), where Y is a normal random
variable with the mean and standard deviation of (p, q). Since 5.26 and 5.27 compute the
mean and variance of the lognormal, the parameters p and q of the lognormal distribution
in 5.28 needs to be computed to calculate the PDF of the lognormal. The parameters can
be computed as follows to obtain the PDF of the distribution [74]

p =

(
1

2

)
.log

(
E4(X)

E2(X) + σ2
X

)
(5.31)

q = log

(
σ2
X + E2(X)

E2(X)

)
. (5.32)

For circuits with a large number of elements, the leakage current distribution approaches
a normal distribution, as predicted by the Central Limit Theorem [59]. Therefore, the shape
of the leakage distribution approaches a Gaussian distribution [74]. For the distribution of
total power, the dynamic power is added to the mean of the leakage power to get the mean
of the total power. The standard deviation of the total power is the standard deviation of
the leakage power, because the dynamic power does not vary.

Power yield estimation is carried out as follows. The Cumulative Distribution Function
(CDF) of the power distribution of the chip is obtained by calculating

CDF (P ) =

∫ ∞
−∞

f(P )dP (5.33)

The CDF of the power distribution directly gives the power yield for the FPGA.
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5.4.3 Results and Discussions

Table 5.1 lists the results of the leakage variability aware placement for FPGAs. Column 7
shows the reduction in leakage variability from the proposed methodology. The reduction in
leakage variability increases the probability of a design to meet a target power budget for a
design and thereby improve the power yield of the design. For comparing the improvement
in the power yield for a benchmark, the total power of the baseline implementation for
which the power yield is 90% is computed. Then the yield with variability aware placement
for the same value of total power is calculated as follows

CDFbaseline(P1) = 0.90, (5.34)

Y ield Improvement = (5.35)

CDFvariability aware(P1)− 0.90.

The last column in Table 5.1 shows that the power yield improvement due to the variability-
aware placement is between 3% and 9%. The improvements in yield translate directly into
savings in the number of chips being discarded and hence economic benefits. The results of
3%-9% yield improvements are important and previous works on statistical optimization
(timing and/or power) have reported similar improvements for ASICs [26].

To analyze the impact of the proposed technique on the speed of the circuit, a de-
terministic timing analysis is performed for both the baseline, and the variability aware
implementations. FPGAs have longer critical paths as compared to those of custom VLSI
designs and ASICs. For longer critical paths the variations in the delay is smaller be-
cause of the averaging effect. Furthermore, the delay is not as sensitive to the channel
length variations, gate oxide thickness variations and the random dopant fluctuations as
the leakage is, because leakage is exponentially dependent on threshold voltage which is
affected by these process parameters. As a result, deterministic delay computation gives
a reasonably accurate insight into the impact of variability aware placement methodology
on the performance of a circuit. Some delay penalty is associated with the variability
aware placement. This is the result of the reduced weight to the wire length cost in the
placement cost function due to some weight being attributed to occupancy cost term of
the placement cost function. An average delay penalty of 5% is observed for the proposed
leakage variability-aware CAD technique.

Also, the reduction in leakage variability depends on the logic utilization factor. The
second column in Table 5.1 indicates the logic utilization of the FPGA for the different
benchmarks. When the logic utilization factor is low, the variability aware placement tool
has more flexibility for optimization. The logic utilization for some benchmarks, such as
des, and bigkey are low because these benchmarks are I/O intensive. For example, des has
200 CLBs with 256 inputs and 245 outputs requiring a larger FPGA to fit the I/O pads
on the FPGA. Similarly bigkey has 214 CLBs with 229 inputs, 197 outputs.
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Table 5.1: Results of variability aware placement

Bench-
mark

Utilization Baseline Variability Aware Leakage
Vari-
ability
Reduc-
tion

Power
Yield
Improve-
ment

Mean
Total
Power
µW

3.σleak
µW

Mean
Total
Power
µW

3.σleak
µW

alu4 40% 5711 944.3 5404 805.5 14.7% 9.1%
apex2 50% 6702 1068 6654 962 9.9% 3.9%
apex4 34% 3717 881 3650 746.5 15.3% 5.8%
bigkey 24% 9236 718.5 9063 618.8 13.9% 8.5%
des 16% 8487 621 8427 610.5 1.7% 4.2%
dsip 19% 8400 585 8275 477.7 18.3% 8.6%
elliptic 50% 9781 1239 9049 1190 4% 9.4%
ex1010 67% 7175 1293 6416 1066 17.6% 9.6%
frisc 50% 8834 1948 6345 1151 41% 9.7%
misex3 37% 5752 1000 5472 890 11% 8.6%
s298 50% 5157 821.7 5054 750 8.7% 6.1%
seq 47% 6965 1141 6810 1040 8.9% 6.3%
spla 52% 8013 1478 7402 1323 10.5% 9.3%
tseng 27% 4385 892.1 3939 475.6 47% 9.7%
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Figure 5.5: Power distribution without and with variability aware placement for alu4

Fig. 5.5 shows the power distributions for the benchmark alu4, for baseline and vari-
ability aware implementations, where mean power and its variance decrease for the vari-
ability aware implementation. Similarly, Fig. 5.6 shows the power distributions for the
benchmark seq, where the mean power and its variance decrease for the variability aware
implementation.

The variability aware implementation spreads out the placement of CLBs leading to
increased usage of routing resources with a small delay penalty. However, the dynamic
power does not increase significantly, even though more routing resources are used in
variability-aware implementation, because more logic and routing resources are assigned
low-Vdd due to extra slacks available in different paths of the circuit. This, coupled with
reduced leakage variability lead to a total power yield (dynamic and leakage) improvement
between 3% and 9%. However, it is important to note that for low power applications
in which devices tend to remain in standby mode for most of the time followed by short
bursts of activity, the leakage power would be the dominant factor contributing to the
total energy consumption and hence the reducing leakage variability becomes even more
important for such low power applications.

The contribution of the random dopant fluctuations to the total leakage variance is
insignificant compared to the contribution of channel length variations and the gate oxide
thickness variations. For example, the benchmark alu4 has 3σ total leakage variation of
944µW , where only 27µW is due to random dopant fluctuations, because the channel
length variations and gate oxide thickness variations exhibit spatial correlation, whereas
the random dopant fluctuations are independent for each transistor. Spatially correlated
variations have a higher impact on the variance as compared to random variations because
the random variations have an averaging effect which reduces the variance. This causes the
variation in the leakage due to the random dopant fluctuations to be very small. However,
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Figure 5.6: Power distribution without and with variability aware placement for seq
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Figure 5.7: CDF of power distributions for alu4 for the baseline implementation and vari-
ability aware placement

these variations affect the mean value of the leakage and ignoring the random dopant
fluctuations leads to error in the mean leakage value estimation.

Fig. 5.7 shows the CDF of the power distributions for alu4, computed analytically, for
the baseline implementation and variability aware implementation. It can be seen from
the two curves that the power yield improves for the variability aware implementation.

The technique proposed in this thesis is applicable to such class of FPGAs which sup-
ports turning off of the un-utilized parts of the FPGA, or turning off of those parts of the
FPGA which are idle. Although, the analysis in this thesis does not include the active and
idle time of different parts of the FPGA, incorporating the idle durations (if known) for
different parts of the FPGA would yield even better results, because that would not only
increase the flexibility in placement but would also provide additional parts of the FPGA
which can be turned off during idle periods, resulting in lesser leakage and its variability.
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5.5 Conclusions

Leakage power has become a significant challenge in the design of FPGAs in nanometer
technologies, with process variations aggravating the problem. This chapter introduces a
leakage variability aware CAD for dual-Vdd FPGAs, to improve the power yield of FPGAs.
The chapter proposes a power variability aware placement for FPGAs, which is intended
for reducing the leakage variance due to the spatial correlation in the process parameters.
A new placement cost function is proposed for the variability aware placement. The re-
sults indicate that there is as much as 9% power yield improvement by using the proposed
CAD algorithms. Also, the power distributions are computed for the entire chip and it is
indicated that the variability aware implementation has less power variation compared to
an implementation with deterministic algorithms. The novel CAD methodology is flexi-
ble enough to incorporate any number of process parameters in the model. In addition,
environmental parameters such as the power supply and the temperature across the chip
vary. In future work the intention is to incorporate these environmental parameters in the
model for analyzing and improving the architecture and CAD tools for FPGAs.
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Chapter 6

Interconnect Design under Process
Variations

6.1 Introduction

Interconnects in FPGAs occupy most of the chip area and contribute a major portion to
the total chip delay and leakage power consumption. This is because the routing flexibility
needs to be high enough to allow complex circuits to be implemented on FPGAs, resulting
in longer interconnects with many switches and buffers. Motivated by the above challenges
in designing low power FPGAs in nanometer technologies this work develops and proposes a
variability-aware leakage power optimization technique under delay constraints for FPGA
interconnects. The routing architecture in an FPGA consists of evenly spaced buffers
connected by routing wires. Such an architecture is shown in Fig. 6.1. Here all the buffered
switches are identical and the distance between any two buffers is same throughout the
interconnect.

Each of the switches is composed of two inverters and a pass transistor as shown in Fig.
6.2. The pass transistor is controlled by an SRAM cell. If the SRAM cell is programmed to
output 1, the pass transistor is turned on, otherwise it is switched off. The aim of this work
is to estimate the optimum sizes and threshold voltages of the different transistors in the

Buffered Switch Wire

Figure 6.1: Interconnect in FPGAs having buffered switches evenly spaced.
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Figure 6.2: Schematic of a buffered switch. The SRAM cell controls the pass transistor.

switch, such that the target delay for the interconnect is achieved while the leakage power
and its variability is reduced under process variations [76]. SRAM cell is not considered
for optimization because an extensive published research exists on optimizing SRAMs for
leakage power, and it is assumed that the FPGA fabric uses such an optimized SRAM cell.
Further, the SRAM cells in FPGAs do not change state during run time and therefore can
be easily optimized for leakage.

6.2 Impact of Process Variations on Leakage and De-

lay

6.2.1 Process Parameters and Variations

The process variation under consideration in this work are channel length, and random
dopant fluctuations. This results in three model parameters having variability, Leff (ef-
fective channel length of transistor), V thnmos (threshold voltage of NMOS), and V thpmos
(threshold voltage of PMOS). This is because the gate oxide thickness is a well controlled
process. Therefore gate oxide thickness is not considered as a parameter having variations
in this work [77]. Due to process variations these parameters need to be modeled as ran-
dom variables. In this work the random variables for the process parameters are modeled
as Gaussian random variables. Each of the buffered switches consists of two inverters and
a pass transistor connected as shown in Fig. 6.2. In each inverter, NMOS and PMOS have
a fixed ratio of their widths, sized to provide equal rise and fall times.
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6.2.2 Leakage Modeling

The subthreshold leakage current through a MOSFET is modeled as (BSIM4):

Isub = I0
W

Leff

[
1− exp

(
− Vds
VT

)]
.exp

(
Vgs − V th− Voff

n.VT

)
(6.1)

where I0 is a constant dependent upon device parameters for a given technology, W is
the width of the transistor, Leff is the effective channel length of the transistor, VT is the
thermal voltage, Voff is the offset voltage which determines the channel current at Vgs = 0,
V th is the threshold voltage and n is the subthreshold swing parameter. It can be seen
that the subthreshold leakage is exponentially dependent on the threshold voltage of the
MOSFET. This makes the subthreshold leakage sensitive to variations in threshold voltage.
It should be noted that the threshold voltage is also dependent on the channel length of the
transistors because of short channel effects. In particular, a roll off in threshold voltage is
observed as the channel length is reduced. This makes subthreshold leakage also sensitive
to the channel length of the MOSFET. In this work analytical models from BSIM4 are
used. Gate leakage is orders of magnitude smaller than subthreshold leakage because of
use of high-K gate dielectric materials and hence it is not considered in this work.

6.2.3 Delay Modeling

A simplified expression for the delay of the complete interconnect can be written as:

Delay = n.
(
Tdelsw +Rswon.(lwire.Cwire (6.2)

+ 4.Cinsw)
)

where n is the number of switches in the interconnect, Tdelsw is the intrinsic delay of the
switch, Rswon is the on-resistance of the switch, lwire is the length of the wire between
two switches, Cwire is the total capacitance of the wire between two switches, and Cinsw
is the input capacitance of the switch. It is assumed that on an average each switch sees a
load equivalent to up to four switches in the routing fabric, apart from the wire load. This
means that each switch sees a total load capacitance of (lwire.Cwire+4.Cinsw)). Although a
more accurate modeling considering the resistances of the interconnects can be formulated,
the above expression provides a fairly good fidelity and since the main purpose of the work
is to improve the leakage power yield, the above expression is sufficiently accurate. The on
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resistance of the switch Rswon, Tdelsw, and Cinsw are

Cox =
eox
tox

(6.3)

k = µ.Cox (6.4)

V dsat = Leff .
V sat

µ
(6.5)

Idsat = k.
W

Leff
.
(
(V dd− V th).V dsat −

V d2sat
2

)
(6.6)

Req = (0.69)
3

4
.
V dd

Idsat
.
(
1− 7

9
λ.V dd

)
(6.7)

Roninv1 =
Reqn +Reqp

2.Sizeinv1
(6.8)

Roninv2 =
Reqn +Reqp

2.Sizeinv2
(6.9)

Rpass =
Reqn
Sizepass

(6.10)

Rswon = Rpass +Rinv2 (6.11)

Tdelsw = Rinv1(Cdnmos inv1 + Cdpmos inv1 + Coxinv2) (6.12)

Cinsw = Coxinv1 (6.13)

where eox is the permittivity of the gate oxide, tox is the thickness of the gate oxide layer,
µ is the mobility of charge carriers, V sat is the saturation velocity of the charge carriers,
λ is an empirical parameter, Sizeinv1 is the multiples of minimum width of transistors
for first inverter, Cdnmos is the diffusion capacitance of NMOS, Coxinv1 is the gate oxide
capacitance of the first inverter.

6.2.4 Variation Modeling

The leakage and delay of the switches in the interconnect are functions of threshold voltage
and channel length of the transistors. The standard deviation of threshold voltage is
modeled using (5.3). The variance of a function of a random variable can be calculated
using (5.4) The threshold voltage can be expressed as a function, f(Leff ), and the variance
in threshold voltage σ2

V thLeff
can be computed using (5.4). Since the channel length variance

and discrete dopant variations are independent the total variance of threshold voltage can
now be calculated as:

σ2
V th = σ2

V thrdf
+ σ2

V thLeff
(6.14)
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The process parameters have intra-die and inter-die variations. The inter-die variations
are such that the process parameters vary across dies, whereas in the case of inter-die
variations, there is within-die spatial variation of process parameters. The intra-die process
variations are handled by binning, and therefore is not considered in this work, and this
work is focused on inter-die spatial variation of process parameters. The random dopant
fluctuations and channel length variations are independent variations because their sources
are different. This means that for a single switch we need to calculate variation in delay and
leakage due to three independent random variations, δLeff , δV thnmos rdf , and δV thpmos rdf .
Spatial correlation of process parameters decrease quadratically with distance. Therefore,
in absence of empirical data, the correlation coefficient for Leff is modeled as follows:

r(i, j) =
1

1 + (di − dj)2
(6.15)

where, r(i, j) is the correlation coefficient for ith and jth switches, and di, dj are the lo-
cation coordinates of ith and jth switches. Once the correlation coefficient is known, the
corresponding covariance matrix can be calculated.

To compute the variance and mean of subthreshold leakage for a MOSFET, subthresh-
old leakage is modeled as a function of Leff and V th using the First Order Second Moment
(FOSM) technique as follows, similar to (5.6) and (5.7), and are shown here as a function
of Lnom and V thnom to make this section more readable and for quick reference:

E{Isub} = n.Isub(Lnom, V thnom) (6.16)

+
1

2

n∑
i=1

n∑
j=1

(
∂2Isub
∂L2

eff

.σLeffi .σLeffj

. Cov(Leffi ,Leffj )

)
+

1

2
.n.

∂2Isub
∂V th2nmos

.σ2
V thnmos

+
1

2
.n.

∂2Isub
∂V th2pmos

.σ2
V thpmos

,

78



σ2
Isub

=
n∑
i=1

n∑
j=1

(( ∂Isub
∂Leffi

)
(
∂Isub
∂Leffj

)
(6.17)

. Cov(Leffi ,Leffj )

)
+ n.

( ∂Isub

∂Vthnmos

)2
.σ2

Vthnmos

+ n.
( ∂Isub
∂V thnmos

)2
.σ2
V thnmos

,

where all the partial derivatives, which represent the sensitivities of leakage to the process
parameters, are computed at nominal values of these process parameters.

The above expressions were developed for leakage power, which is a function of threshold
voltage and Leff . Proceeding in a similar way, the expected value, E{Delay}, and variance,
σ2
Delay, of the total interconnect delay can be calculated.

6.3 Proposed Methodology

This section discusses the optimization methodology used in this work for minimizing
leakage and its variability under constraints. The objective is to minimize the leakage and
its standard deviation, under the constraints of the device sizes, threshold voltages and
interconnect delay. The design variables in this problem are as follows:

• s1 is the size of the first inverter in terms of its minimum size. s2 is the size of
the second inverter in terms of its minimum size. This means that the widths of
transistors of first and second inverters in the switch are multiplied by s1 and s2.

• s3 is the size of the pass transistor in terms of minimum width of the transistor.

• s4, s5 are the sizes of the channel lengths in terms of minimum channel length for the
first and the second inverters respectively. Gate length biasing is a technique which
is used to reduce leakage [78].

• s6 is the size of the channel length of the pass transistor in terms of minimum channel
length.

• s7, s8 are the scaling factors for the threshold voltages of the NMOS and PMOS. This
allows adjusting the threshold voltage of the devices.
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6.3.1 Deterministic Optimization

The deterministic optimization technique is implemented without accounting for variabil-
ity in process parameters. The deterministic optimization is implemented to show the
improvement that a variability-aware optimization technique would have over a determin-
istic optimization technique. Based on the results from deterministic optimization we
compute the improvement in leakage power yield that the variability aware optimization
would provide. Essentially, the deterministic optimization has the objective function as
f = Total Leakage, where Total Leakage is the leakage value computed without consid-
ering process variability. The constraints for the deterministic optimization are same as
for variability aware optimization and are given by (6.19)-(6.28), except for the constraint
on delay, where again the delay is computed without accounting for process variability.

6.3.2 FOSM Based Model: Accounting for Variability

In this section, the mathematical programming technique using the FOSM model for leak-
age and delay is described. The model is shown below.

Objective Function :

σIsub (6.18)

Subject to :

1 ≤s1 ≤ 4 (6.19)

1 ≤s2 ≤ 4 (6.20)

1 ≤s3 ≤ 4 (6.21)

1 ≤s4 ≤ 1.2 (6.22)

1 ≤s5 ≤ 1.2 (6.23)

1 ≤s6 ≤ 1.2 (6.24)

0.7 ≤s7 ≤ 1.4 (6.25)

0.7 ≤s8 ≤ 1.4 (6.26)

0 ≤ E{Delay}+3.σDelay ≤ Target Delay (6.27)

0 ≤ E{Leakage} ≤ Target Leakage (6.28)

The objective function is the standard deviation of leakage, which is a measure of leak-
age variability. Therefore the leakage variability is directly optimized in the proposed
variability-aware optimization. The constraints on s1, s2, s3, s4, s5, s6 are based on the
biggest size transistors that can be used without increasing significantly the total area of a

80



chip, and not significantly altering the layout of the chip. Therefore the maximum channel
length allowed is only 20% larger than the minimum channel length for this technology.
The constraints on s7 and s8 keep the threshold voltages of NMOS and PMOS within
bounds. Finally, the Target Delay value used in the variability-aware optimization is cho-
sen as the (µ+ 3σ) delay value from the deterministic optimization. Therefore this implies
that the circuit delay remains the same for both the deterministic and the variability aware
optimization techniques, which provides a fair basis for comparison. The Target Leakage
value is the expected value of leakage as obtained from deterministic optimization. This
is done to ensure that the mean leakage for the variability-aware leakage optimization is
bounded in the same way as that for the deterministic optimization.

6.4 Evaluation, Results and Discussions

The 65nm predictive model is chosen as the technology node for simulations [69], [73]. A 3σ
variation of 30% in Leff is assumed. For experimental purposes it is assumed that the num-
ber of switches is 16 and length of wire between switches is 200µm. The wires are assumed
to be on the intermediate metal layer. The minimum sized inverter consists of NMOS with
minimum channel length and minimum width, and PMOS with minimum channel length
and 1.8 times the minimum width. This is to ensure that the rise and fall times at the
output remain same. The (µ + 3σ) delay for both the deterministic and variability-aware
optimizations are kept the same. A standard non-linear constrained optimization package
from MATLAB is used for solving the optimization problems. The non-linear optimiza-
tion technique uses the Sequential Quadratic Programming (SQP) method to solve the
optimization problem. This method is based on the solution of the Kuhn-Tucker (KT)
equations [79]. Constrained quasi-Newton methods are employed to guarantee superlin-
ear convergence. The leakage distribution of a circuit element is close to lognormal [74].
Therefore, the leakage distribution of the complete circuit is approximated as a lognormal
[74].

Table 6.1 shows the results of variability aware optimization compared with the de-
terministic optimization. It can be seen that s2 and s3, which represent the sizes of the
second inverter and the pass transistor are obtained as the upper limit for these variables
for both variability-aware and deterministic optimizations. This is because the second in-
verter and the pass transistor drive the wire having large capacitance. The channel lengths
of the transistors in the first inverter, second inverter and pass transistor are 20%, 15%
and 15.0% larger than the minimum Leff , respectively, for the variability-aware optimiza-
tion. This is because leakage and its variability are reduced exponentially with increase
in channel length. In case of deterministic optimization, the channel length of only the
first inverter is non-minimum. Finally, it can be seen that the deterministic optimization
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Table 6.1: Results of variability aware and deterministic optimizations

Parameter Deterministic
Optimization

Variability-
Aware Opti-
mization

s1 1.39 1.31
s2 4.0 4.0
s3 4.0 4.0
s4 1.18 1.2
s5 1.0 1.15
s6 1.0 1.15
s7 1.05 0.97
s8 1.14 1.03
Delay (µ+ 3σ) 2.32ns 2.33ns
Mean Leakage,
σLeakage

28.1 nA, 10.6 nA 28.4 nA, 7.8 nA

actually increases the threshold voltage of the NMOS and PMOS transistors by 5% and
14% respectively, whereas in the case of the variability-aware optimization the threshold
voltages of the NMOS transistors decrease by 3% and that of PMOS transistors increase by
3%. Since leakage is exponentially dependent on the threshold voltage, even small changes
in the threshold voltage impacts the leakage current.

The leakage and delay results shown in the table are obtained from Monte Carlo sim-
ulations for accurate results. Monte-Carlo simulations were used by generating samples of
process parameters for normal distribution and then simulating the circuit for each sample
to generate the data for power and delay. Once the power and delay values for each sample
were determined, the mean and variance of delay and power can be computed. The results
for leakage indicate that although the mean leakage remains almost the same for both the
optimizations, the standard deviation of leakage reduces by 26.4% for the variability-aware
optimization. This leads to improvement in the leakage yield of the design. Even small
improvements of the order of few percents in yield result in significant savings in cost.
To estimate the improvement in leakage yield, the yield point is selected as 40 nA. Any
other target value can be chosen, and this value is selected just for illustration purposes.
The deterministic optimization leads to an yield of 87.5%, whereas the variability-aware
optimization leads to an yield of 92.04%. This results in an improvement of 4.54% in
leakage power yield. It should be noted that the (µ + 3σ) delay of the circuit remains
almost constant as can be seen from Table 6.1. This means that the 4.54% improvement
in leakage yield and 26.4% reduction in leakage variability is obtained without any delay
penalty, using the proposed variability-aware optimization technique.

82



C
D

F

Leakage (nA)

Yield − Deterministic Opt

Yield − Variability Aware Opt

Deterministic Variability−Aware

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

Figure 6.3: CDFs for the deterministic and the variability-aware optimizations.

Fig. 6.3 shows the Cumulative Distribution Function (CDF) plots for the deterministic
and variability-aware optimizations. It can be seen from the plots that at the given target
leakage value of 40 nA, the leakage yield is more in the case of variability-aware optimization
compared to the deterministic optimization.

6.5 Conclusion

This chapter presented a CAD technique for modeling and optimizing leakage under vari-
ability with delay constraints for an interconnect in FPGAs. The proposed CAD technique
is based on a mathematical programming methodology. The results indicate that leakage
variability is reduced by 26% and the leakage yield improves by 4.54% for the chosen target
leakage value. Since, the dominant power is consumed in the routing fabric of an FPGA,
the proposed technique can lead to significant savings in leakage power.
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Chapter 7

IR-Drop Aware Place and Route

7.1 Introduction

The state of the art CAD techniques for FPGAs do not manage IR drops or voltage profile,
and no such published work is known, apart from the work proposed in this thesis. Im-
proving the minimum Vdd is important from reliability perspective and power grid design
typically involves a constraint to be met for minimum Vdd [41, 36]. It is also important to
reduce the variation in the Vdd across the chip for clock skew management [80, 81, 82]. Fur-
ther, reducing the Vdd variation is also important because coupled with process variations,
this can lead failures in implementing the functionality of the chip at desired frequency
of operation. Motivated by the above this chapter proposes a novel CAD technique for
FPGAs to reduce the IR drop, such that the minimum supply voltage Vdd improves and the
spatial variation of Vdd reduces in the FPGA chip, while making the current distribution
more uniform. The main contributions of this work are as follows:

1. IR-drop aware placement technique

2. IR-drop aware routing technique

3. Complete CAD framework for the analysis

The proposed IR-drop aware placement and routing techniques do not require solving the
power grid network at every iteration and is therefore an efficient methodology. To the
best of our knowledge, this is the first work which propose place and route techniques for
improving the voltage distribution profile in the power grid of FPGAs [83, 84].
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Figure 7.1: Mesh style power grid model

7.2 Power Grid Model

The power grid model selected in this work is a mesh power grid with the horizontal and
vertical metal lines forming a mesh structure [41]. The structure is shown in Fig. 7.1. The
currents drawn by the devices are modeled by independent current sources in the power
grid. Such a power grid model has been widely used [85, 41, 86]. The current sources at
each node represent the average current drawn from the node. Some of the nodes, at a
regular spacing, are connected to clean Vdd supply as shown in Fig. 7.1. The power grid
can be modeled as a network of resistive elements with current and voltage sources. The
ground network has a similar mesh style grid.

The current sources are modeled by computing the current drawn by each tile and then
distributing the total current equally over the mesh nodes supplying current to the elements
in the tile. Thus, for a single FPGA tile, several current sources are modeled such that all
the current sources in the tile will have the same value, however, the value of the current
drawn by these current sources will be different across different tiles. Although this is an
approximation, but the model is good for this work because the clustering optimization is
carried out at the granularity of a logic cluster. Further, the area of a FPGA tile is small
compared to the FPGA, hence representing it as composed of several equal valued current
sources distributed uniformly over its area do not introduce inaccuracies in the model. For
computing the current in the independent current sources, the total power consumed by
the elements in the tile, i.e., logic and routing resources, is calculated. Then the steady
state current for the current sources of a tile is calculated as Isteady state = Ptotal

n.Vdd
, where n is

the number of current sources modeled in a tile, Ptotal is the total power consumed by the
tile. The total power is composed of two parts, the dynamic power and the leakage power
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as in (7.1). The dynamic power model proposed in [68], and the leakage power model
proposed in [70], have been adopted in this work. The detailed expressions for leakage
power are discussed in [70]. The total power is given by:

Ptotal = Pdynamic + Pleakage. (7.1)

The dynamic power at a node is given by

Pdynamic =
∑

all nodes

0.5CiV
2
ddD(i)fclk, (7.2)

where Ci is the node capacitance, Vdd is the supply voltage, D(i) is the transition density
at node i, and fclk is the clock frequency [68]. The transition density at a node gives the
expected number of toggles per clock cycle at the node. The dynamic power computation
model adopted in [68], and the software tool for FPGA power computation developed by
the authors of [68] has been selected for this work, which is based on transition density
model [87, 88]. This model takes signal probabilities and transition densities at its inputs
and propagates these values to the internal nodes in the circuit. Given, an output y, the
inputs xi, corresponding signal probabilities as P (xi), the transition density at the output
node y is calculated as:

∂y

∂xi
, y|xi=1 ⊕ y|xi=0 (7.3)

D(y) =
i=n∑
i=1

P
( ∂y
∂xi

)
D(xi) (7.4)

The term ∂y
∂xi

is called Boolean Difference and is used to compute the transition density.
The signal probabilities need to be propagated through the boolean network to compute the
transition densities at the nodes. However, this model assumes spatial independence while
propagating the signal probabilities, but takes temporal correlations into account. The
assumption of spatial independence makes the algorithm fast. The power model adopted
in this work assumes the signal probabilities for the inputs as 0.5 and transition densities
as 0.5 [68], which are propagated in the boolean network to obtain the transition densities
at all the internal nodes. The authors of the paper [68] verify the accuracy of the transition
density power model through HSPICE simulations by simulating different sizes of LUTs
and multiplexers with the inputs delayed by varying values.

However, it should be noted that the techniques proposed in this chapter for IR-drop
reduction does not rely on the power model. Rather, it relies on an indirect parameter
which can predict power consumption in different parts of the chip. Furthermore, the
proposed IR-drop aware clustering technique does not need an accurate model for power,
rather it requires some estimates which can provide the IR-drop aware clustering technique
with a relative measure of power in different parts of the chip. Hence, any other measure
for power would be equally applicable, and would not change the adopted methodology.
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Figure 7.2: Proposed IR-drop aware Place and Route CAD flow

7.3 Proposed Methodology

Any region in the chip which has a high local transition density will experience higher
IR-drops. Therefore, the techniques proposed in this work reduce the transition densities
in a region, which has high transition densities, to achieve a lower IR drop and also a
lower variation in the supply voltage across the chip. This work implements the proposed
methodologies in the framework of the academic tool called Versatile Place and Route
(VPR) [1].

The complete CAD flow for computing the minimum node voltage and the standard
deviation of the node voltages for both the baseline (using classical VPR algorithms) and
the proposed IR-drop aware design methodology is as follows.
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1. Place and Route: The first step is to place and route the design. For the baseline
implementation the classical place and route of VPR is employed. For the IR-drop
aware implementation, the enhanced place and route, as proposed in this work are
used.

2. Power Computation: The second step is to compute the total power consumed by
each of the FPGA tiles. The computation of power, for a benchmark, is done at a fixed
clock frequency, same for both the baseline and the IR-drop aware implementations
for comparison purposes.

3. Model Current Sources: The third step is to compute the current sources from
the power for each of the tiles.

4. Build Power Grid Network Model: The fourth step is to build the circuit model
for the power grid network with the current sources. The power grid model includes
both the supply voltage network and the ground network.

5. Solve the Circuit Model: The fifth step is to solve the circuit model to determine
the node voltages in the power grid. The voltage value of concern in this work is the
voltage difference across the current sources, i.e., the voltage across the points of a
current source connected to Vdd and Vss, (Vdd−Vss), because the Vss is not at perfect
zero voltage.

6. Minimum and Std. Dev. of Vdd: The final step is to find the minimum Vdd and
compute the standard deviation of Vdd across all the nodes in the power grid. The
minimum Vdd reported in this work is the minimum of the voltages across the current
sources in the power network model, i.e., it is minimum of Vdd − Vss across all the
current sources. For the sake of brevity the remainder of the chapter will refer to
this value as minimum Vdd denoting the voltage at which the devices connected to
the node are operating. The same notation holds for standard deviation of Vdd−Vss.

7.3.1 IR-Drop Aware Placement

The classical placement routine implemented in VPR is based on a simulated annealing
algorithm [16]. The authors in [16] develop an auto-normalizing cost function for the place-
ment consisting of timing cost, for optimizing circuit delay and wiring cost, for reducing
wire length. The cost function, 4C, used for the placement routine, is defined as

4C = λ.
4Timing Cost

Previous T iming Cost
(7.5)

+ (1− λ).
4Wiring Cost

Previous Wiring Cost
,
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where λ is a factor for giving different weights to the timing cost and the wiring cost,
4Timing Cost is the change in the Timing Cost because of the current move, and
4Wiring Cost is the change in the Wiring Cost because of the current move.

There are four main steps involved in the IR-drop aware placement proposed in this
work. 1) Divide the chip using grid based model, 2) compute the transition density cost
for each grid, 3) formulate the placement cost function and, 4) perform the placement
with the augmented cost function. The flow of the proposed IR-drop aware placement
routine is shown in Algorithm 3. The grid model for the FPGA chip is developed by

Algorithm 3: IR-Drop Aware Placement Algorithm
Partition FPGA into small regions ;
Begin Placement;
repeat

for each CLB do
Determine grid location (j,k);
Compute transition density cost (eqn (7.7), (7.7));
Update the total transition density cost (eqn (7.8)-(7.10));

end
Compute Normalized Placement Cost;

until Placement Exit Criterion ;

dividing the chip into several regions of square grids. Each of the square grids represents
the corresponding area on the chip, with a coordinate (j, k) associated with the grid. The
transition density cost for a grid at location (j, k) is given by,

D(j,k) =
∑
n,i

dn,i, n ∈ S ′V dd (7.6)

dn,i = 0, n ∈ SV dd (7.7)

where D(j,k) represents the total transition density for the grid, dn,i is the transition density
of the ith net connected to nth logic element located in the grid (j, k). SV dd represents the
set of tiles which have a clean Vdd supply node, whereas S ′V dd represents the set of remaining
tiles, i.e., those tiles which do not have a clean Vdd supply. This is because those tiles which
have a clean Vdd supply node will have a much less IR drop due to proximity to the clean
Vdd node. Therefore such tiles need not contribute to the transition density cost. This
helps the placement tool to better optimize the critical delay of the circuit. The reduction
of total transition density in a region is performed by moving some of the blocks with high
transition density nets from the region of high total transition density to a region where
the total transition density is low. This is achieved by augmenting the placement cost
function in (7.5) with the transition density cost, D Cost in (7.10), which is computed as
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follows,

Avg D =
Total D

Num Grids
, (7.8)

D Costj,k = |(D(j,k) − Avg D)|β, (7.9)

D Cost =
∑
j,k

D Costj,k,

where Avg D is the average transition density cost for each grid, obtained by computing
the total transition density for the chip and dividing it by the total number of grids in the
model. D Cost(j,k) is the transition density cost at the grid location (j, k), and D Cost
is the total cost obtained by adding all the individual transition density costs for each
grid. The cost function formulated in (7.9) penalizes those grids which have a transition
density deviating from the Avg D value. A strategy is adopted to give a higher value to
the cost for a higher deviation from the average value, i.e., instead of adding a linearly
increasing penalty, an exponentially increasing penalty is employed for deviations from the
average transition density per grid. The factor β in (7.9) is employed for this purpose
and its value is experimentally chosen as 1.3. Another technique adopted in this work to
reduce the IR drops is a strategy to reduce the wire length of the nets with high transition
densities. The Wiring Cost in (7.5) is composed of the net cost for each net as explained
in [16]. The net cost for each net is modified to incorporate the transition density factor as
follows, new net cost(i) = net cost(i)∗ transition density(i), where new net cost(i) is the
modified net cost for net i, net cost(i) is the classical net cost as proposed in [16] for net
i, and transition density(i) is the transition density of net i. Therefore, the final IR-drop
aware placement cost function proposed and implemented in this work is given by

4C = λ.
4Timing Cost

Previous T iming Cost
(7.10)

+ (1− λ− γ).
4Wiring Costtran density

Previous Wiring Costtran density

+ (γ).
4D Cost

Previous D Cost
,

where Wiring Costtran density is computed using the new net cost, 4D Cost is the change
in transition density cost due to current move, and Previous D Cost is the previous tran-
sition density cost. The factor, γ, is the IR-drop trade-off for the cost function and the
experimentally obtained value of the trade-off factor in this work is 0.2.

It can be seen from the placement algorithm described above that it relies on re-
distributing the placement of the high transition density CLBs such that the local transition
density of a region reduces. Similar techniques have been employed in thermal-aware
placement to reduce the hot spots in the circuit, though the formulations and placement
techniques have been different [89, 90].
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7.3.2 IR-Drop Aware Routing

The routing in the FPGA is based upon the Pathfinder algorithm [1]. The cost for using
node n during routing expansion for connecting the sink j of the net i is expressed as

cost(n) = crit(i, j).delay(n, topology) (7.11)

+ [1− crit(i, j)].b(n).h(n).p(n),

where crit(i, j) is the criticality of the connection, delay(n, topology) is the delay of the
connection after including node n in the path, and b(n), h(n), p(n) are the base cost, the
historical congestion, and the present congestion [1]. The IR-drop aware routing method-
ology proposed in this work relies on avoiding routing high transition density nets through
the same region or spatially close regions. This is because the routing buffers draw current
from the power supply grid and if there are many nets with high transition densities in
close proximity, then that part of the chip will tend to draw more current leading to larger
IR drop in the region. The main steps involved in IR-drop aware routing flow are: 1)Build
the grid based model and start route of a net, 2)determine the location of the current node,
during wave expansion, in the grids, 3)compute the cost due to transition density of this
node and, 4)augment the cost function with the transition density cost function and re-
peat until the net is routed. The algorithm flow for the proposed IR-drop aware routing is
shown in Algorithm 4. For developing the new cost function, at each wave expansion in the
routing algorithm, in which a node is given a cost, the location of the routing switches to
be used is determined, and thus the corresponding grid in the grid based model is located.
Each grid in the IR-drop aware routing keeps a historical record of the total transition
density, for the previously routed nets as well as the current net. In the wave expansion
during the routing this historical record is augmented with the transition density cost of
the current net to determine the cost of using this node in the routing of the net.

The switch boxes are distributed evenly throughout the routing fabric and the number
of switch boxes used is directly dependent on the length of the routed net. The proposed
IR-drop aware routing algorithm takes into account the transition densities of the nets.
The transition densities at the switch boxes are the same as the transition densities of the
nets that are being routed through them. Therefore the wire length cost and the transition
density cost of the nets, together account for the power consumption in the switch boxes.
Also, while calculating power, all the nodes are accounted for, including that of the switch
boxes and hence power calculation and consequently IR-drop calculations are realistic.

The cost function of a node n, for the IR-drop aware routing is computed as follows,

D(j,k) = D(j,k)(prev) +Dnet (7.12)

costIR−drop(n) = crit(i, j).delay(n, topology) (7.13)

+[1− crit(i, j) ].

(
b(n).h(n).p(n) + b(n).D(j,k)

)
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Algorithm 4: IR-Drop Aware Routing Algorithm
Partition FPGA into small regions ;
Begin Routing Nets;
foreach net i do

while net i not routed do
Expand to node n ;
Find grid location (j,k) for node n;
Determine IR-Drop Cost (eqn (7.13));
Update the historical IR-Drop Aware Cost;
Augment classical VPR route cost;

end

end

where D(j,k) is the total transition density for the grid (j, k), Dnet is the transition density
for the current net being routed.

The cost in (7.12) is incorporated in that part of the routing cost function which
governs the congestion cost for the routing of a net. The congestion cost for a net signifies
the congestion in the routing channels due to many nets being routed through the same
region. Now, the transition density cost similarly represents a form of congestion which can
be termed as the transition density congestion, which occurs due to many high transition
density nets being routed through the same region. Therefore, the form of the cost function
in (7.13) not only reduces the physical congestion, but also the congestion due to high
transition density nets being routed through a local region.

7.4 Experimental Details, Results and Discussions

7.4.1 Experimental Details

The 45nm Predictive Model is chosen as the technology node for simulations [69, 73].
The intermediate metal layers are used for the power grid mesh. The pitch of the power
grid network is taken as 20µm [91, 92]. The clean V dd nodes are available at a pitch of
300µm. The length of the FPGA tile is assumed to be 100µm which was obtained by
the scaling of an FPGA tile as proposed in [1]. The Vdd for this technology node is 1V.
The software package used to compute the voltages at the circuit nodes is GNU Circuit
Analysis Package [93]. The power for the baseline and the IR-drop aware implementations
for a benchmark are computed at the same clock frequency which is chosen such that
the critical circuit delays of both the implementations can meet the clock frequency. The
routing has been done with the same channel widths for both the implementations. The
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Table 7.1: Results of IR-Drop Aware Design

Bench-
marks

Baseline IR-Drop Aware Improvement Maximum
Current
Reduc-
tion

Min
Vdd

Std.
Dev. Vdd

Min
Vdd

Std.
Dev. Vdd

IR-Drop
Reduc-
tion

Std.
Dev. Vdd

alu4 0.86412 0.031810 0.93668 0.014052 53.40% 55.83% 43.90%
apex2 0.88656 0.028923 0.92431 0.009666 33.27% 66.58% 27.04%
apex4 0.92163 0.020254 0.94525 0.011911 30.14% 41.19% 25.40%
bigkey 0.88334 0.028303 0.91958 0.020652 31.07% 27.03% 23.95%
des 0.88610 0.021701 0.93377 0.009311 41.85% 57.09% 16.82%
diffeq 0.93277 0.018474 0.95927 0.006765 39.42% 63.38% 18.64%
dsip 0.89061 0.026784 0.93130 0.017201 37.20% 35.78% 22.39%
elliptic 0.90965 0.023156 0.92859 0.011971 20.96% 48.30% -4.21%
ex1010 0.93001 0.015642 0.95133 0.006571 30.46% 57.99% 32.31%
ex5p 0.90682 0.024753 0.92918 0.019379 24% 21.71% 31.35%
frisc 0.94018 0.016708 0.95626 0.007870 26.88% 52.90% 3.597%
misex3 0.89436 0.028901 0.89770 0.017819 3.16% 38.35% 7.951%
pdc 0.91467 0.021078 0.93726 0.009569 26.47% 54.60% 37.11%
s298 0.92973 0.020038 0.94601 0.009006 23.17% 55.06% 27.02%
s38417 0.89757 0.018936 0.90697 0.009888 9.18% 47.78% -25.7%
seq 0.86230 0.034070 0.90686 0.014250 32.36% 58.17% 23.18%
spla 0.91176 0.020004 0.94308 0.009303 35.49% 53.49% 16.48%
tseng 0.91943 0.022891 0.93667 0.015020 21.40% 34.39% 30.93%

grid based model has each grid of size 2x2 tiles which is selected experimentally. Changing
the size may affect the result and speed of the algorithm. A very large grid size may not
lead to any improvement in the IR-drops whereas too small a size would also not lead
to any improvement as the placement granularity is an FPGA tile. However, an FPGA
designer is free to experimentally select a grid size which would give best results for the
specific FPGA architecture.

7.4.2 Results and Discussions

The results for the baseline and the IR-drop aware placement and routing for the minimum
Vdd and standard deviation of Vdd are shown in Table 7.1. Columns 2 and 3 list the minimum
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Vdd and the standard deviation of Vdd for all the nodes in the power grid for the baseline
implementation. Columns 4 and 5 show the minimum Vdd and standard deviations of
Vdd, respectively, for different benchmarks with IR-drop aware implementation. Columns
6 and 7 show the reduction in maximum IR-drop and standard deviation of Vdd. It can
be seen from the table that a reduction of up to 53.4% in the IR-drop can be obtained.
The standard deviation of Vdd reduces by up to 66.85%. The last column shows the
reduction in maximum average current at any FPGA tile. It can be seen that up to 43.9%
reduction in maximum average current can be obtained from the proposed technique.
Reducing maximum average current is important from the perspective of electromigration
effects. Although, this work does not attempt to quantify the electromigration effects, the
reduction in maximum current reduces the impact of electromigration.
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Figure 7.3: Current distribution for baseline implementation: des

Figures 7.3 and 7.4 show the current and voltage distributions for the benchmark des,
which has been placed and routed using classical VPR placement and routing (baseline
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Figure 7.4: Voltage distribution for baseline implementation: des
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Figure 7.7: Current distribution for baseline implementation: s38417
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Figure 7.8: Current distribution for IR-drop aware implementation: s38417

implementation). It can be seen from Fig. 7.3, that there are regions in the FPGA chip
which draw larger current than other parts, resulting in large current peaks in parts of the
FPGA chip. Consequently, those parts have a larger IR drop leading to lower Vdd values
in the regions as shown in Fig. 7.4. However, there are some regions in the FPGA chip
which draw small currents and therefore those parts show small IR-drops. Further, the
current distribution shows a large variation across the chip. Figures 7.5 and 7.6 show the
current and voltage distributions for the benchmark des, with the IR-drop aware design
implementation as proposed in this chapter. It can be seen from Fig. 7.5 that the current
is now more uniformly distributed across the chip compared to that in Fig. 7.3. Further,
there are no large current peaks in the IR-drop aware implementation as there are in the
baseline implementation. Consequently, the Vdd distribution profile is smoother in this
case, as shown in Fig. 7.6, compared to the baseline implementation. This results in
improved minimum Vdd by 5.4%, and a consequent reduction in IR-drop by 41.85% along
with improved standard deviation of the Vdd distribution by 57.09%.
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In some cases, such as s38417 and misex3, it can be seen that the improvement in
the minimum Vdd is smaller compared to other benchmarks, or there is no improvement.
This is attributed to the fact that the baseline implementation already has a uniform
current distribution throughout the FPGA. This can be seen in figures 7.7 and 7.8 which
depict the current distributions for the baseline and IR-drop aware implementations for
the benchmark s38417. It can be seen that the baseline implementation in Fig. 7.7 has a
good uniform current distribution throughout the chip. Also, the difference between the
current peaks across the chip is small which implies that there is a small scope of improving
the minimum Vdd in the FPGA chip by reducing the current peaks. This is because the
IR-drop aware design re-distributes the current profile in such a way that, while the larger
current peaks are reduced, the smaller current peaks provide the space for accommodating
the current profile re-distribution. The IR-drop aware implementation smooths the current
distribution profile, shown in Fig. 7.8 but has similar values of current for the different
parts of the FPGA compared to the baseline implementation in Fig. 7.7. This results
in small reduction in IR-drop for the benchmark s38417 by 9.18%. The trade-off of the
IR-drop aware design methodology, proposed in this work, with the circuit delay is shown
in Fig. 7.9. The figure shows the ratio of the circuit delay between the proposed IR-drop
aware implementation and the baseline implementation. It can be seen from the figure
that IR-drop aware implementations are slower compared to baseline implementations, on
an average by about 3%.

It can be seen from the results table that the maximum average current for the bench-
marks elliptic and s38417 increase for the IR-drop aware implementation. This is because
the proposed technique does not directly attempt to reduce the peak current at a node, but
rather redistribute the current profile to make it more uniform across the chip for reducing
the voltage variations. Therefore, it is possible, that this redistribution would lead to a
scenario, in which although the overall current profile for the chip becomes more uniform,
the peak current might show an increase. Further, the Vdd at a node does not depend
only on the current at a node but also on currents being drawn by the surrounding nodes.
Hence, in this case it is observed that although the peak current increases, still the IR-drop
reduces.

The reduction in maximum IR-drop can directly translate into metal area savings. So,
for instance, in the case of frisc in which the minimum Vdd is improved by 1.7% using
the proposed CAD techniques, if instead only power grid metal widening was employed to
improve the minimum Vdd, then the power grid metal line width needs to be increased by
26.88% to achieve 1.7% improvement in minimum Vdd, i.e., to achieve a 26.88% reduction
in maximum IR-drop.

The proposed IR-drop aware place and route generates a new placement and routing
solution in which the net lengths might increase, leading to increased number of switching
routing resources. This results in some increase in total FPGA power because of increase
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Figure 7.9: Ratio of the circuit delay for the IR-drop aware and baseline implementation

in the dynamic power. On an average there is a 6.7% increase in the total FPGA power.
The IR-drop in the power grid computed for the IR-drop aware implementation takes this
increase in power into account.

The IR-drop aware place and route requires 3.95X runtime, on an average, as compared
to the VPR place and route. This is justifiable because power grid optimization techniques
which generally employ iterative techniques, need to solve the power grid at each iteration
which would be computationally much more expensive. The proposed CAD techniques
can be used in conjunction with other power grid design techniques, such as wire sizing,
in case the CAD techniques do not alone suffice to improve the reliability of the power
grid. In such a case, the proposed technique can provide savings in the metal area for the
power grid by reducing the amount by which the widths of the power metal lines need to
be increased.
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7.5 Conclusions

The chapter proposes IR-drop aware placement and routing techniques which re-distributes
the current drawn by different parts of the FPGA chip such that there is a more uniform
current distribution for the entire chip. The IR-drop aware placement technique redis-
tributes the placement of the logic blocks in such a way so that the blocks having high
switching activities are not placed close together. The IR-drop aware routing technique
avoids routing high switching activity nets close to each other. The results from the
benchmarks indicate up to 53% reduction in maximum IR-drop and up to 66% reduction
in standard deviation of the Vdd distribution. As an additional remark, it should be noted
that all the work in this chapter and previous chapters, except Chapter 6, used VPR as
a place and route tool and modified the placement and routing in VPR to achieve the
desired results. However, any other place and route tool can be used and modifications
can be made in the tool to achieve the desired results. The main ideas would remain
the same, however, the implementation would change. For example, VPR uses simulated
annealing with a global cost function to optimize the placement. In this work this global
cost function was augmented to optimize the performance. If a force-directed placement
tool is employed the appropriate cost functions would need to be enhanced in that case.
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Chapter 8

IR-Drop Aware Clustering

8.1 Introduction

Chapter 7 investigated and proposed novel place and route techniques to mitigate IR-
drops in the power grid of FPGAs. It explained the proposed approach to show how
the supply voltage profile can be improved by reducing the maximum IR-drops and the
spatial variation of supply voltage in the power grid. This chapter proposes techniques at
the clustering stage of the CAD flow to reduce IR-drops in the power grid network. The
proposed IR-drop aware clustering technique is a faster technique compared to place and
route, however, the IR-drop aware place and route produces better results. To the best of
our knowledge, this is the first work which proposes a clustering technique for improving
the voltage profile in the power grid of an FPGA [94].

8.2 Proposed CAD Flow

The IR-drops in the power grid network stems from the current drawn by the transistors
consuming dynamic and leakage power and the resistance of the metal lines of the power
grid. Therefore, that part of the chip which draws larger currents will experience larger IR
drops. It can be seen from (7.2) that the dynamic power consumed by a chip is directly
proportional to the transition densities, D(i), of nodes in the circuit. Therefore, the part
of the chip which has nodes with higher transition densities experiences larger IR-drops.
The CAD flow proposed in this work, shown in Fig. 8.1, and outlined below, redistributes
these nodes in such a way that the local transition density of a region of the chip reduces
resulting in improved voltage profile.
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Figure 8.1: Proposed IR-drop aware CAD flow
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1. Clustering: The second step, which is after technology mapping, is to cluster the
Look-up Tables (LUTs) and Flip Flops (FFs) into logic clusters, where a logic cluster
consists of N LUTs and FFs. Here, for baseline implementation the classical T-VPack
is employed, whereas for the IR-drop aware implementation the clustering technique
as proposed in this work is used.

2. Place and Route: The third step is to place and route the netlist consisting of
logic clusters which is the output of the previous step. Once the netlist is placed and
routed the critical delay of the circuit is computed.

3. Power Computation: The fourth step is to compute the total power consumed by
each of the FPGA tiles. The computation of power, for a benchmark, is done at a fixed
clock frequency, same for both the baseline and the IR-drop aware implementations
for comparison purposes.

4. Determine Current Sources: The fifth step is to compute the current sources
from the power for each of the tiles.

5. Build Network Model:The sixth step is to build the circuit model for the power
grid network with the current sources. The power grid model includes both the
supply voltage network and the ground network.

6. Solve the Circuit Model: The seventh step is to solve the circuit model to deter-
mine the node voltages in the power grid. The voltage value of concern in this work
is the voltage difference across the current sources, i.e., the voltage across the points
of a current source connected to Vdd and Vss, (Vdd − Vss), because the Vss is not at
perfect zero voltage.

7. Minimum and Std. Dev. of Vdd: The final step is to find the minimum Vdd
and compute the standard deviation of Vdd across all the nodes in the power grid.
The minimum Vdd reported in this chapter is the minimum of the voltages across the
current sources in the power network model, i.e., it is minimum of Vdd−Vss across all
the current sources. For the sake of brevity the remainder of the chapter will refer
to this value as minimum Vdd denoting the voltage at which the devices connected to
the node are operating. The same notation holds for standard deviation of Vdd−Vss.

8.3 Proposed Clustering Technique

Fig. 8.2 shows a logic cluster with input and output nets and few routing switches for the
nets depicting an example of the connectivity of a netlist. The logic cluster has some input
nets and some output nets. It can be seen that a net can fan out in such a way that it can
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Figure 8.2: Logic cluster with input and output nets.

drive multiple BLE inputs. Now, if many of the nets connected to this cluster have high
transition densities, then the current drawn by the cluster and the neighboring switches,
which route the nets to the logic cluster, will be high, resulting in a large IR-drop in the
local region. This means that if crowding of high transition density nets are avoided in a
cluster then the IR-drops can be reduced.

The framework used in this work for clustering of BLEs is based on the academic tool
T-VPack [3]. Cluster size of an FPGA refers to the maximum number of BLEs that can be
accommodated in a cluster. This is determined by the physical structure of the CLBs in
the FPGA. The packing algorithm outputs a netlist of clusters in which each cluster can
contain up to a maximum of N BLEs, where N is the cluster size. Some of the clusters
might have less than N BLEs, which is also a feasible clustering. The T-Vpack algorithm
attempts to create clusters of BLEs based on the constraints of keeping the number of
BLEs less than or equal to N , the cluster size, and also keeping the total number of unique
external inputs to the cluster less than or equal to I, which is the maximum number of
inputs allowed due to the physical structure of the FPGA as shown in Fig. 2.5. The T-
Vpack algorithm tries to pack a cluster to its maximum capacity possible under the above
constraints. The T-Vpack is a timing driven clustering algorithm such that it attempts to
minimize the critical path delay of the netlist. The inter-cluster delay, which is the delay
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of a net connecting two different clusters is larger than the intra-cluster delay, which is
the delay within a cluster. The T-VPack algorithm essentially tries to reduce the number
of inter-cluster connections on the critical path of the netlist. This is because the inter-
cluster connections have larger delay than the intra-cluster connections. The T-VPack
algorithm proceeds by computing the connection criticalities of the input pins of the BLEs
and selecting the most critical BLE as the seed cluster. The connection criticality of the
connection driving input i of a BLE is computed as follows,

Connection Criticality(i) = 1− slack(i)

MaxSlack
, (8.1)

where MaxSlack is the maximum slack available, slack(i) is the slack of the ith connection,
and the delays are computed by assuming the inter cluster delay of 1 unit and intra cluster
delay of 0.1 units. This is because the actual delays are not available until the circuit has
been placed and routed. Also, the inter cluster delays are significantly larger than the intra
cluster delays, therefore such values of these delays are selected. The seed BLE, which is
the first BLE for a cluster is the one which has most critical connection among the unclus-
tered BLEs. Consider a cluster which has some BLEs and to which more BLEs are being
added until it reaches its capacity or it becomes infeasible to add any more BLE to the
cluster. The candidate BLEs for the current cluster are those BLEs which share a connec-
tion with the BLEs in the current cluster. The Base BLE Criticality(B), of a candidate
BLE B, is defined as the maximum of the Connection Criticality values of all connections
joining B to BLEs in the current cluster [3]. However, there are chances that some can-
didate BLEs might have same Base BLE Criticality value, so a tie-breaker mechanism
is adopted. The tie-breaker mechanism essentially computes the number of paths that are
affected if a BLE is selected for addition to the current cluster [3]. Consider the example
shown in Fig. 8.3, which shows nets and BLEs on critical paths in bold such that the
Base BLE Criticality of BLEs (A, . . . I) are the same, and they are candidate BLEs for
the current cluster. It can be seen that if BLEs G or H or I is added to the current cluster
then it reduces the delays of more critical paths than if either of (A,B, C, D, E or F) is
added to the current cluster. Therefore to handle this situation two parameters are defined,
input paths affected, and output paths affected for each candidate BLE. The parameter
input paths affected define the number of critical paths between the sources and the cur-
rent BLE, and output paths affected define the number of critical paths between the sinks
and the current BLE. The parameter total paths affected is then computed as the sum
of the parameters input paths affected and output paths affected. So in the example
shown in Fig. 8.3, the parameter total paths affected for the BLEs, G, H, and I is same
and is equal to 3 (2 for input paths affected and 1 for output paths affected), whereas
for the other BLEs the parameter total paths affected is 2 (1 for input paths affected
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Figure 8.3: Criticality tie breaking technique [3]

and 1 for output paths affected). The final criticality of a BLE B, is then calculated as:

Criticality(B) = Base BLE Criticality(B) + (8.2)

ε.total paths affected

The attraction function which finally determines the BLE B to be added to the current
cluster C is defined as follows,

Attraction(B) = α.Criticality(B) + (8.3)

(1− α).
Nets(B) ∩Nets(C)

G
,

where Nets(B) ∩Nets(C) determines the shared nets between BLE B and the cluster C,
and G is the maximum number of unique nets to which a BLE can connect, and is given
by G = #BLE Inputs+#BLE Outputs+#BLE Clocks. The default value of α is 0.75.

This work develops the following clustering technique to account for high transition
densities in local regions of FPGA, which lead to larger IR-drops. The methodology effi-
ciently reduces transition densities in local regions which cause the current distribution in
the power grid to be more uniform, resulting in improved minimum voltage and reduced
spatial variation in Vdd in the supply network. Consider the cluster being built up by
adding BLEs to the partially full cluster as shown in Fig. 8.4. It can be seen that at
the current stage there are two BLEs in the cluster and three candidate BLEs which are
under consideration for addition to the cluster. There are a total of nine nets under con-
sideration, n1, n2, . . . , n9, with the transition densities of the nets as td1, td2, . . . , td9. The
BLEs BLE1, BLE2, BLE5 are the potential candidates for the current cluster, whereas
BLE3, BLE4 are already present in the cluster. A transition density cost associated with
each of the potential BLE candidates for the current cluster is computed. The following
procedure is adopted for computing the new attraction function of a candidate BLE to the
current cluster.
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Figure 8.4: Computing the transition density cost during clustering.

1. Identify the set of potential candidate BLEs, SPBLE, for addition to the current
cluster, and let SBLE denote the set of BLEs in the current cluster. So, for the case
shown in Fig. 8.4, SPBLE = {BLE1, BLE2, BLE5}, SBLE = {BLE3, BLE4}.

2. Let NC denote the set of unique nets connected to the set of BLEs, SBLE, in the
current cluster, and NBLEi denote the set of unique nets connected to the ith BLE
which is a potential candidate for addition to the current cluster. For the case shown
in Fig. 8.4, NC = {n2, n3, n6, n7, n8}, and for example, NBLE1 = {n1, n2, n3}.
Compute the set NTDi as:

NTDi = NBLEi − (NBLEi ∩NC), i ∈ SPBLE (8.4)

So for the case shown in Fig. 8.4, NTD1 = {n1, n2, n3}−{n2, n3} = {n1}. Similarly,
NTD2 = {n4, n5}, and NTD5 = {n9}.

3. Define the transition density of the current cluster as

TDC =
∑

netk∈NC

TDnetk , (8.5)

which is the sum of transition densities of all the nets (netk) in the set NC. The
IR-drop aware clustering aims at reducing the local power consumption in the areas
which have a high power dissipation. It should be noted that a local region consists
of not only one cluster but several other clusters surrounding that cluster. During
the clustering phase, there is no information about the buffers and routing switches
that will be encountered by the net once the design is placed and routed. After final
placement and routing the buffers and the routing switches that lie on a net will be
determined by the wire segments that compose the routing of the net. Also, a single
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net uses several routing buffers and switches and therefore the current drawn due to
switching of the net is distributed throughout the net rather than only the first gate
that drives the net. Therefore if a BLE is being added to a cluster it causes all the
nets connected to its input to get routed to the cluster it is being added to. This
means that once the netlist is placed and routed then both the input and outputs
nets of the BLE would have to get routed through the neighboring regions of the
cluster which would involve usage of switches and buffers in the local region and hence
power consumption in the local region, which would lead to IR-drops. Therefore the
proposed technique considers both the input and the output nets while computing
the transition density cost.

Define the target cluster transition density as TargetTDC. This is the upper limit
value that the clustering technique should target for TDC. Selecting an appropriate
value for TargetTDC is important for the performance of the proposed technique
and is explained later in this section.

4. For each ith candidate BLE for addition to the current cluster, compute

TDi =
∑

netk∈NTDi

TDnetk , (8.6)

which represents the additional transition density that would be added to the current
cluster if BLEi is added to the current cluster. It should be noted here that transition
densities of only those nets, connected to BLEi, are added to compute TDi which are
not present in the current cluster. The set of such nets is denoted byNTDi, computed
as in (8.4). This is because the nets which are already present in the current cluster,
and which are also connected to BLEi under consideration for addition to the cluster,
have already been accounted for in the term TDC. Further, such nets would in any
case be routed to the current cluster whether BLEi is finally added or not, and would
draw current from the power grid in the local region of the cluster.

5. Calculate the value of the available transition density, ATDC, per BLE, for the
current cluster, such that the TargetTDC is not exceeded, as follows,

ATDC =
TargetTDC − TDC

ClusterSize−NumBLEs
, (8.7)

where ClusterSize is the maximum number of BLEs that can be present in any logic
cluster, and NumBLEs is the number of BLEs present in the current cluster. This
represents an average transition density that can be added per BLE, until the limit
TargetTDC is reached, for the remaining space in the logic cluster.

6. The gain function for the BLEi, due to transition density is calculated as,

TDGaini = 1− TDi

ATDC
(8.8)
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It can be seen that if TDi is greater than ATDC, then the gain would be negative
which would discourage BLEi from being added to current cluster. On the other
hand if TDi is much less than ATDC the gain function would provide a strong
attraction for BLEi to be added to current cluster. TDi can be small if the new nets
connected to BLEi have small transition density values.

7. Determine the new attraction function for BLEi by modifying the cost function in
(8.3) as follows,

Attraction(i) = (α− β).Criticality(i) + (8.9)

(1− α).
Nets(B) ∩Nets(C)

G
+ β.TDGaini,

where β is the transition density trade-off factor. The value of β is empirically
determined to be 0.6 for best trade-offs.

8. Select the BLE based on the best Attraction(i).

9. Repeat the above steps until all the blocks have been clustered.

10. Calculating TargetTDC: TargetTDC is calculated by first performing the clus-
tering with the classical T-VPack clustering cost function in (8.3), and computing
TDCn, n ∈ C, where C is the set of all logic clusters.

µTDC =
∑
n∈C

TDCn
|C|

(8.10)

σTDC =
∑
n∈C

√
(TDCn − µTDC)2

|C|
(8.11)

TargetTDC = µTDC + σTDC (8.12)

It can be seen from (8.12) that the TargetTDC is based on the T-VPack clustering and
provides an estimate of the target value of transition density for each cluster. Such a value is
selected because it provides only a small deviation in the maximum targeted value of TDC
for any cluster from the average TDC value. Further, the value of TargetTDC computed
in (8.12), gives a reasonable target value for the clustering of the netlist such that it tends
to discourage building of clusters which have TDC much larger than the average value.
When the clustering based on T-Vpack algorithm is carried out, which tries to reduce the
circuit delay, the transition densities, TDCi, are distributed in such a way so that the
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some of the clusters have nets with many high transition density nets connected to it, such
that the total transition density cost is high, whereas some of the clusters have low total
transition density because the nets connected to it have smaller transition densities. From
the perspective of transition density distribution, in the ideal case the transition densities
would be equal for all the clusters and would have the value µTDC . Based on the value
of TargetTDC, the IR-drop aware clustering algorithm computes the penalty associated
with increase in transition density of a cluster beyond the value of TargetTDC. This
essentially means that as the TDC of a cluster increases, the algorithm prefers adding
low transition density BLEs to the cluster. If TargetTDC is selected as µTDC , then it
would be too restrictive and would have an adverse impact on the circuit delay. Since
the TDCi is distributed across the clusters, to take into account the variation of TDC
distribution, TargetTDC is computed as TargetTDC = µTDC + σTDC . This ensures that
a small deviation from the µTDC is allowed for TargetTDC for good performance of the
algorithm, and the value of the small deviation is computed based on the distribution of
TDC. The form of (8.7) and (8.8), makes it harder for BLEs with new high transition
density nets to get added to the current cluster if the ATDC is small. This means if few
BLEs with high transition density nets have already been added to the current cluster, then
the proposed clustering routine would tend to select such BLEs which have lesser number
of new high transition density nets. This avoids crowding of high transition density nets at
a cluster and its neighboring switches, effectively reducing the IR-drops, while accounting
for the critical delay. Also, the value of TargetTDC in (8.12) is an estimate and a starting
value, and it can be increased if it is found that choosing such a value leads to larger delays
after the circuit is placed and routed, or if it leads to significant increase in the number of
BLEs over the classical T-VPack clustering.

Apart from the above steps a final transition density cutoff value called LimitTDC
is employed which prevents more BLEs from being added to the current cluster. So if
TDC > LimitTDC, addition of more BLEs to the current cluster is stopped, and the
clustering procedure starts building a new cluster. The value of LimitTDC is selected
in the same way as the value for TargetTDC is selected. It should be noted that if
TargetTDC and LimitTDC is selected as a low value, then the total number of clusters
would increase which can also lead to usage of more routing resources for high transition
density nets, thereby causing the routing switches to draw more current from the power
supply network. This leads to no reduction in IR-drops. However, LimitTDC need not
be employed always, as is the case in this work, where it is not used for some benchmarks
for which it does not lead to any reduction in IR-drops. A brief outline of the proposed
algorithm is given in Algorithm 5.
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Algorithm 5: IR-Drop Aware Clustering Algorithm

repeat
while Current Cluster Size < Cluster Capacity & TDC < LimitTDC do

Identify SBLE and SPBLE ;
for i ∈ SPBLE do

Calculate TDi, (8.6);
Calculate ATDC, (8.7);
Find the gain value TDGaini, (8.8);
Compute the new attraction function Attraction(i), (8.9);

end
Select the best BLE based on Attraction;

end
until Until all BLEs clustered ;

8.4 Results and Discussions

The 45nm Predictive Model is chosen as the technology node for the simulations [69, 73].
The intermediate metal layers are used for the power grid mesh for delivering the current
to the logic and routing cells. The pitch of the power grid network is taken as 20µm. The
clean Vdd nodes are available at a pitch of 300µm. The Vdd for this technology node is 1V.
The software package used to compute the voltages at the circuit nodes is GNU Circuit
Analysis Package [93]. The netlist is clustered using the proposed technique, and it is then
placed and routed to determine the actual circuit delay and IR-drops. The clock frequency
at which a circuit can operate depends upon the critical delay of the circuit. The maximum
clock frequency that a circuit can operate at is given by fmax = 1

Tcrit
, where Tcrit is the

critical delay of the circuit. However, during actual operation the clock frequency can be
kept smaller than fmax. The power for the baseline and the IR-drop aware implementations
for a benchmark are computed at the same clock frequency which is chosen such that the
critical circuit delays of both the implementations can meet the target clock frequency.
For most of the benchmarks the clock frequency is selected as 100 MHz, except for those
benchmarks which have critical delays larger than 10ns. For such benchmarks a slower
clock speed is selected. Choosing such values of clock frequency provides the correct basis
for comparison as both the baseline and IR-drop aware implementations run at the same
clock frequency. Further, such clock speeds are normal for FPGAs [95, 96]. The cluster
size in this work is selected as 8 because such a cluster size provides good speed and area
trade-offs [1].

The results for the baseline implementation, using classical T-VPack clustering, and
the IR-drop aware implementation employing the IR-drop aware clustering technique pro-
posed in this work are shown in Table 8.1. The table lists the minimum Vdd at any node
in the FPGA, and standard deviation of Vdd for both the baseline and IR-drop aware im-
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Table 8.1: Results of IR-Drop Aware Clustering

Bench-
marks

Baseline IR-Drop Aware Improvement

Min Vdd Std. Dev.
Vdd

Min Vdd Std. Dev.
Vdd

IR-
Drop
(Re-
duc-
tion)

Std. Dev.
Vdd

alu4 0.88533 0.027115 0.92258 0.024365 32.49% 10.14%
apex2 0.89635 0.026444 0.92042 0.021812 23.22% 17.52%
apex4 0.93317 0.017511 0.94534 0.015924 18.21% 9.06%
des 0.89611 0.019823 0.92375 0.017908 26.60% 9.66%
elliptic 0.91744 0.021169 0.93548 0.019267 21.85% 8.98%
ex1010 0.93380 0.014728 0.93981 0.013444 9.1% 8.72%
ex5p 0.92056 0.021204 0.93627 0.018312 19.77% 13.64%
frisc 0.94571 0.015190 0.95239 0.013242 12.30% 12.82%
misex3 0.91054 0.024679 0.92451 0.022697 15.62% 8.03%
pdc 0.94134 0.011542 0.94961 0.008921 14.10% 22.71%
s298 0.93035 0.019720 0.94402 0.015933 19.63% 19.2%
seq 0.88365 0.029062 0.92581 0.021004 36.23% 27.73%
spla 0.91792 0.018579 0.93862 0.016594 25.22% 10.68%
tseng 0.93824 0.017621 0.94424 0.015759 9.72% 10.57%

plementations. It can be seen from the table that a reduction of up to 36% in IR drop can
be achieved using the proposed clustering technique. Further, a reduction in variance of
up to 27% is also observed.

Fig. 8.5 shows the current and voltage distributions for the benchmark alu4, imple-
mented using the T-VPack clustering technique. It can be seen that the maximum voltage
drop is observed near the region having a large peak current. Fig. 8.6 shows the current
and voltage distributions for the IR-drop aware implementation. In Fig. 8.6, the current
peak is reduced resulting in improved minimum voltage. Additionally, since the proposed
clustering technique reduces crowding of high transition density nets in a local region,
the current distribution in the power grid in Fig. 8.6a is more uniform than the current
distribution in Fig. 8.5a. This results in reduced IR-drop variance for the IR-drop aware
clustering based implementation.

For some benchmarks such as ex1010, it can be seen that the reduction in IR-drop is
small. This is because the baseline implementation has a good current distribution profile,
which is relatively uniform across the different regions of the chip. This provides a limited
scope for improvement. Fig. 8.7 shows the current distributions for the benchmark ex1010
for the baseline and the IR-drop aware implementations. It can be seen that the current
distribution is relatively uniform in the baseline implementation also. However, a reduction
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Figure 8.5: Current and voltage distribution for the baseline implementation: alu4
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Figure 8.6: Current and voltage distribution for the IR-drop aware implementation: alu4

of 9.1% in IR-drop is still observed. Typically, a highly skewed current distribution profile
would mean a larger IR-drop and somewhat larger variance in IR-drops across the chip.
Therefore, the scope of improvement in minimum Vdd is more for such benchmarks which
exhibit larger IR-drops with large current peaks. For example in the case of the benchmark
alu4, the maximum average current at an FPGA tile is 121.7µA, with an average value of
29.5µA for the complete chip, whereas in the case of the benchmark ex1010, the maximum
average current at an FPGA tile is 54.6µA, with an average value of 15.5µA for the
complete chip. This means that the benchmark alu4 has tiles with current values having a
large deviation from the average value and hence reducing those peak current values would
result in improved voltage profile.

8.4.1 Trade-offs and Advantages

Delay and Number of Clusters

The IR-drop aware clustering technique proposed in this work alters the clustering with
a trade-off associated with the critical delay of the final placed and routed circuit. The
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Figure 8.7: Current distributions for the baseline and IR-drop aware implementations:
ex1010

delay of the IR-drop aware implementation is different from that of the classical T-VPack
clustering because the composition of the clusters are different in the two cases. In Fig.
8.8, it can be seen that the average delay ratio of IR-drop aware clustering compared with
the classical T-VPack based clustering is close to 1.12, if one of the benchmarks, tseng
is excluded. The benchmark tseng is excluded because its critical delay is 40% larger
for IR-drop aware clustering technique, and is not representative of the typical behavior.
This can be attributed to the fact that the benchmark tseng has 131 logic blocks, with 52
inputs and 122 outputs, i.e., it has a high ratio of inputs/outputs to logic blocks. Since
the IR-drop aware clustering technique uses a different cost function to build clusters, the
number of logic clusters built in IR-drop aware implementation is different from that of
the classical T-VPack implementation. The maximum size of a cluster is determined by
the physical structure of the FPGA on which the netlist is to be mapped. So, for example,
in this work the FPGA has been assumed to have a structure which can accommodate
up to 8 BLEs per CLB. In the packing of the BLEs if some clusters have less than the
maximum permissible BLEs, then also it is a feasible packing. T-Vpack packs the BLEs
in such a way so that the circuit delay is minimized. This is primarily done by packing
BLEs together which share connections. However, the IR-drop aware clustering attempts
to pack clusters in such a way so that the transition density of a local region is reduced.
Therefore it is somewhat likely that the addition of BLEs to clusters might not be as dense
as the T-Vpack clustering. Even, in that case there is only a slight increase in the total
number of clusters finally packed by the IR-drop aware clustering. On an average IR-drop
aware implementation has 1.5% more clusters than the classical T-VPack implementation,
with the maximum of 5.8% extra clusters for the benchmark ex5p.
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Figure 8.8: Ratio of the circuit delay for the IR-drop aware and baseline implementations.

Power Consumption

The impact of the proposed clustering technique on power is also evaluated, the results
of which are shown in Table 8.2. The power for both the baseline and the IR-drop aware
implementations were estimated at the same clock frequency. It is interesting to note
that the IR-drop aware clustering technique reduces the power for all the benchmarks,
except tseng and des for which the power remains almost the same for both the baseline
and the IR-drop aware implementations. On an average IR-drop aware implementation
reduces the power consumption by 12%. The power savings is obtained from the savings
in the dynamic power, while the leakage power remains almost same for both the baseline
and IR-drop aware implementations. The dynamic power reduces because the proposed
clustering technique favors adding those blocks to the current cluster which share high
transition density nets with the cluster being built up as explained in detail in section 8.3.
This reduces the length of the high transition density nets resulting in reduced capacitance
of those nets when they are finally routed. Therefore, this leads to reduction in dynamic
power which is an additional advantage of the proposed clustering technique.

Algorithm Performance and Savings in Metal Area

The proposed CAD technique is fast because it does not rely on solving the power grid
model during clustering stage, and therefore, do not lead to large penalties in run-time.
Rather, an indirect methodology based on transition densities is employed. The time
complexity of T-Vpack clustering is O(n2) [3], where n is the number of BLEs, and the
proposed IR-drop aware clustering is also O(n2) since the proposed technique only com-
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Table 8.2: Power savings and runtime for IR-drop aware clustering

Benchmarks Power Results Clustering Runtime (ms)
T-Vpack IR-drop

Aware
Reduction T-Vpack IR-drop

Aware
alu4 7.1 6.74 5.1% 136 416
apex2 8.8 7.5 14.8% 159 271
apex4 4.2 3.6 14.3% 120 205
des 13.1 13.1 0% 147 296
elliptic 15.3 13.7 10.5% 410 1734
ex1010 13.8 11.6 14.4% 501 1097
ex5p 4.1 3.6 12.2% 107 207
frisc 10.4 8.5 18.3% 358 1067
misex3 6.4 5.7 10.9% 117 230
pdc 14.8 12.9 12.8% 505 1053
s298 8.8 6.5 26.1% 184 695
seq 8.22 6.6 19.7% 145 281
spla 11.8 10.8 8.5% 386 753
tseng 4.0 4.0 0% 101 265

putes and modifies the cost function. However, because of additional computations the
IR-drop aware technique requires more runtime as compared to T-Vpack clustering. The
runtime for the T-Vpack and the IR-drop aware techniques are shown in Table 8.2. The
clustering algorithms were run on a linux machine with 3.06GHz Intel Xenon processor.
On an average the IR-drop aware clustering is 2.5X slower than the T-Vpack clustering.
The number of BLEs, i.e., n, varies from 1047 for tseng to 4598 for ex1010. However,
it should be noted that the most time consuming part in an FPGA synthesis flow is the
placement and routing which requires orders of magnitude time compared to the packing.
Therefore the overall impact of the IR-drop aware clustering algorithm is very small on
the FPGA synthesis flow.

Another advantage of the proposed CAD techniques, is that the they do not impose any
restriction on other power grid design and optimization techniques that can be applied on
the FPGAs. The proposed CAD techniques can be used in conjunction with other power
grid design techniques, such as wire sizing, in case the CAD techniques do not alone suffice
to improve the reliability of the power grid. In such a case, the proposed technique can
provide savings in the metal area for the power grid by reducing the amount by which the
widths of the power metal lines need to be increased. For example, consider the case of the
benchmark apex2, where the minimum voltage at any node in the FPGA using classical
T-VPack clustering is 0.89635, and with IR-drop aware clustering technique the minimum
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voltage at any node improves to 0.92042. To provide the same amount of improvement by
widening the power grid metal lines instead of using the proposed IR-drop aware clustering
technique, the metal lines need to be widened by approximately 33%. Since in an FPGA
the end application is unknown the power grid metal lines need to be widened throughout
the chip, unlike the case of ASICs, where selective widening can be carried out [41]. This
will require a large increase in the metal area. Therefore, the proposed CAD techniques
can provide a significant savings in metal area.

8.5 Conclusions

This chapter discussed a novel IR-drop aware clustering technique to improve the power
grid reliability in FPGAs. The clustering technique reduces maximum IR-drops and re-
duces its variance. The technique relies on avoiding the crowding of high transition density
nets near a cluster. It is observed that a reduction of up to 36% in IR-drop and 27% in
standard deviation of Vdd can be achieved. The proposed technique has an additional ad-
vantage that an average reduction of 13% in total power is obtained due to dynamic power
reduction.
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Chapter 9

Conclusions and Future Work

9.1 Conclusions

This thesis proposed novel CAD, architecture and circuit techniques for design of FPGAs
under process variations for improving the timing yield and power yield of the FPGA.
Subsequently, the power grid reliability improvement techniques were also proposed to
reduce the IR-drops and improve the supply voltage profile in the power grid of the FPGAs.
One of the key ideas in this work is to keep the proposed modifications in the architecture
and circuit to minimum and propose most of the enhancements at the CAD level.

The design techniques for timing yield improvement are proposed at both architecture
and CAD levels for reducing the impact of process variations on timing variability in FPGA
designs. Results indicate that up to 28% improvement in (µ+3σ) of the critical delay can be
obtained from the proposed methodology. CAD techniques for power yield improvement
are proposed for dual-Vdd FPGA architecture. A variability aware placement technique
is proposed which reduces the correlation between leaking blocks to reduce the leakage
variability. Additionally, a variability aware dual-Vdd assignment technique is proposed
to reduce the leakage variability. Results indicate that an average reduction of 15% in
leakage variability can be obtained from the proposed methodology, with an average of 7.8%
power yield improvement. A variability-aware transistor sizing and parameter optimization
technique based on mathematical programming is proposed for FPGA interconnects to
reduce leakage variability under timing constraints. Results show a reduction of 26% in
leakage variability without any delay penalty.

Two CAD techniques have been proposed to improve the power grid reliability and the
supply voltage profile of the FPGAs by reducing IR-drops and its spatial variability in the
power grid of FPGAs. The first technique is an IR-drop aware place and route technique
which reduces currents drawn in the local regions of the FPGA to reduce IR-drop and also
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Table 9.1: Summary of Proposed Techniques

Proposed Tech-
nique

Enhancements Comments

Timing yield improve-
ment

Architecture, Placement
and Routing

Routing architecture with
different segment lengths
explored

Power yield improve-
ment

Placement, Dual-Vdd as-
signment

A dual-Vdd FPGA archi-
tecture selected for this
work

Interconnect buffer
optimization

Circuit Optimization of differ-
ent transistor parameters
through mathematical
programming

IR-drop aware place
and route

Placement, Routing Placement and routing ac-
counts for transition densi-
ties in the nets to improve
supply voltage profile

IR-drop aware cluster-
ing

Clustering Clustering of LUTs ac-
counts for transition densi-
ties in the nets to improve
supply voltage profile

its spatial variation. The IR-drop aware place and route result in a maximum IR-drop
reduction of up to 53% and a reduction in standard deviation of spatial supply voltage
distribution by up to 66%. Another technique based on clustering is proposed which packs
the LUTs in such a way so as to reduce the density of high activity nets in a logic block.
This reduces the current drawn in a local region and hence reduces IR-drops in the power
grid. Table 9.1 summarizes the list of techniques proposed in this thesis.

9.2 Future Work

The future work which can be explored for FPGA design under variability are as follows:

• Timing-aware IR-drop improvement: IR-drops in the power grid degrade the
performance of the circuit which can lead to timing failures. Under such circum-
stances, the CAD tools should be designed to incorporate timing optimization under
IR-drops to improve the performance of the circuit.
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• Architecture exploration for better optimization of the FPGA design un-
der variability: Architecture optimization can have a major impact on the ro-
bustness of FPGAs against variations. Understanding the impact of architectural
parameters on the sensitivity of the FPGA to variations is the first step. The next
step is finding if the architectural parameters can be altered to improve its robust-
ness. It is also necessary to investigate if existing architectures need to modified in a
fundamental way for the scaled nanometer technologies. Here, both the interconnect
and the logic architectures need to be explored.

• Incorporating temperature variability: Temperature variations affect leakage
power and can lead to high leakage variability. Temperature varies across the chip
and would therefore lead to different leakage currents in different parts of the chip.
However, this work considered a constant temperature across the chip. Assuming
a constant worst case temperature across the chip can lead to pessimistic design
resulting in increased cost. Incorporating temperature variability will lead to better
designs with less cost.
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