
Asynchronous Techniques for New 

Generation Variation-Tolerant FPGA 

 

Hock Soon Low 

A Thesis Submitted for the Degree of Doctor of Philosophy  

at Newcastle University 

 

     

School of Electrical and Electronic Engineering 

Faculty of Science, Agriculture & Engineering 

October 2015 



ii 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Asynchronous Techniques for New Generation Variation-Tolerant FPGA ©  

Hock Soon Low, Newcastle, October, 2015 

  



iii 
 

Abstract 

This thesis presents a practical scenario for asynchronous logic 

implementation that would benefit the modern Field-Programmable Gate 

Arrays (FPGAs) technology in improving reliability. A method based on 

Asynchronously-Assisted Logic (AAL) blocks is proposed here in order to 

provide the right degree of variation tolerance, preserve as much of the 

traditional FPGAs structure as possible, and make use of asynchrony only 

when necessary or beneficial for functionality. The newly proposed AAL 

introduces extra underlying hard-blocks that support asynchronous 

interaction only when needed and at minimum overhead. This has the 

potential to avoid the obstacles to the progress of asynchronous designs, 

particularly in terms of area and power overheads. The proposed approach 

provides a solution that is complementary to existing variation tolerance 

techniques such as the late-binding technique, but improves the reliability of 

the system as well as reducing the design’s margin headroom when 

implemented on programmable logic devices (PLDs) or FPGAs. The proposed 

method suggests the deployment of configurable AAL blocks to reinforce only 

the variation-critical paths (VCPs) with the help of variation maps, rather than 

re-mapping and re-routing. The layout level results for this method's worst 

case increase in the CLB’s overall size only of 6.3%. The proposed strategy 

retains the structure of the global interconnect resources that occupy the lion’s 

share of the modern FPGA’s soft fabric, and yet permits the dual-rail 
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completion-detection (DR-CD) protocol without the need to globally double the 

interconnect resources. Simulation results of global and interconnect voltage 

variations demonstrate the robustness of the method. 
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1 Introduction 

1.1 Motivation and Objective 

The effects of variability have become increasingly significant as a result of the 

scaling of technology. Static and dynamic variations affect the reliability of 

integrated circuits. Conservative approaches to increases the timing-

margin/guard-band across the whole chip is imprudent and degrades 

performance. Figure 1 shows that excessive design margins to guarantee 

correct circuit operation over fix periods for both spatial and temporal 

variations are wasteful and reduced the circuit’s efficiency in a synchronous 

system [1, 2]. (Note: the scale of the margins in Figure 1 and Figure 2 are for 

illustration only and may not scale accordingly). 

 

Figure 1: Design margin barriers to efficiency.  

FPGAs may be more affected compared to Application-specific integrated 

circuit (ASIC) because the circuit mapping and critical path vary depending on 
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user design in post-fabrication [3]. Therefore various traditional variation 

tolerance techniques proposed for ASICs may not be directly applicable. Yet, 

due to its configurability, the FPGA presents a unique opportunity to address 

variability and reliability challenges [4, 5]. 

Asynchronous designs are highly tolerant to voltage and delay changes, and 

have been shown to be very robust in the present of variations [6, 7]. This also 

gives the potential for efficiency improvements in the margin headroom as 

shown in Figure 2. Therefore, applying asynchronous logic to FPGAs is an 

attractive idea. 

 

Figure 2: Asynchronous handshaking overhead and elastic margin’s 

headroom. 

However, there are three major challenges in applying asynchrony in 

balancing between the handshaking overhead and level of tolerances, as 

illustrated in Figure 2 . These challenges are as follows: 

i. Asynchronous circuits are more difficult to design and test compare to 

synchronous ones because of the wide variety of possible signalling 
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protocols and a broad spectrum of the degree of delay insensitivity from 

bounded-delay to fully delay insensitive (DI). Partly because of this, 

asynchronous designs suffer from a lack of automatic design tools, 

especially those combining all possible techniques in a single suite. 

These issues have impeded the progress of asynchronous techniques in 

the FPGA, because the latter is intrinsically less customizable. 

ii. Asynchronous circuit is normally higher in area and power overheads 

due to the extra circuitry needed for handshaking. This depends on the 

delay assumption made or the protocols used. For example, converting 

all of the communication to dual-rail will double the interconnect 

resources. This is not acceptable, since interconnects occupy the lion’s 

share of the fabric. 

iii. Depending on the timing assumptions made or handshaking protocols 

used, asynchronous logic can provide a range of improvements in power 

and speed/throughput efficiency in addition to its robustness toward 

variability. For instance, a single-rail delay-matching (SR-DM) protocol 

is more efficient in terms of power and area but more susceptible to 

variation compared to the 4-phase dual-rail (4P-DR) scheme which is 

more robust to variation but may require higher power and area as 

shown in theoretical graph in Figure 3 – relative cost of elasticity and 

handshaking protocols. Similar project of cost of elasticity using 

different asynchronous tools also presented in [8]. 
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Figure 3: Theoretical graph of relative cost of elasticity and 

handshaking protocols. 

Therefore the objective of this thesis is centred on strategies which can 

maximise the variation tolerance benefit and keep the overhead at a balance. 

The challenges mentioned above are addressed using the following approaches: 

i. A wrapper-based asynchronous logic approach to communication and 

the preservation of the LUT-based computation block of modern FPGA 

architecture. This allows the re-use of the major part of the design tool 

flow, particularly the logic packing and mapping. It seeks to achieve 

delay insensitive (DI) in the large for long inter-cluster wires and speed 

independence (SI) in the small within clusters.  

ii. Characterising the performance of the most popularly used 

handshaking protocols that are tailored for reconfigurable logics. The 

power, throughput, area and robustness are determined of protocols 



Chapter 1: Introduction 
 

5 
 

such as 4-phase dual-rail (4P-DR), 2-phase dual-rail (2P-DR), and 

bundled-data (BD).  

iii. A strategy to balance the use of asynchrony to tolerate the effects of 

variations and the minimization of the area and power overheads.  

1.2 Overview of Chapters 

Chapter 2 gives an introduction to the development of programmable logic 

devices (PLDs) and their evolution into today’s modern FPGA architectures.  

The continued scaling of CMOS technology enables the development of many 

advanced technologies. However the associated challenges include increasing 

variability problems in the manufacturing process as well as the effects of 

degradation effects over time. The second part of the chapter classifies the 

sources of variability and reviews its impact on FPGA structure as well 

existing techniques which attempt to reduce the impact.  

Chapter 3 presents a literature review of the use of asynchronous approaches. 

The fundamental theory and terminology of asynchronous design are also 

briefly introduced here to serve as a basis for further understanding of the 

following chapters.  

Chapter 4 describes the distributed control architecture which retains the 

computational block of the traditional FPGA un-touched (single-rail) and 

proposes the asynchronous wrapper and David’s cell control around it. The 
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result achieves a balance between the desire to use asynchrony for tolerate the 

effects of variations and retention of the major part of the current design flow. 

Chapter 5 presents new concepts for addressing the overhead challenges with 

an on-demand strategy. This approach suggests the deployment of 

asynchronous logic only on variation-critical paths (VCPs) by leveraging the 

mature techniques in obtaining variation maps. The proposed integration of 

asynchronously assisted logic (AAL) with state of the art FPGA architecture 

involves a minimal increase in overhead. Furthermore, the AAL supports the 

use of multi-style asynchronous logic implementation to allow the exploration 

of asynchrony at different levels of variation. 

Chapter 6 summarises the techniques presented and describes the outlook for 

future developments.  

1.3 Contributions 

 Classification of sources of the variability and its impact on FPGA 

architecture (chapter 2) 

 Survey of asynchronous reconfiguration architectures based on the 

protocols and delay assumption used (Chapter 3) 

 A detailed circuit realization at components level for the asynchronous 

wrapper using the distributed control approach for asynchronous 

components (Chapter 4) 
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 The proposal of a novel AAL architecture that applied Asynchrony only 

on the VCPs for the balancing of resource overhead and variation 

tolerance (Chapter 5) 

 Summaries the work and proposed techniques for advancement. 

(Chapter 6) 

1.4 Publications 

The following papers have been published during the course of this work: 

H. S. Low, D. Shang, F. Xia, and A. Yakovlev, "Variation tolerant asynchronous 

FPGA", poster presented at the 19th ACM/SIGDA International Symposium 

on Field-Programmable Gate Arrays (FPGA 2011) conference, Monterey, 

California, pp 282, 2011. 

H. S. Low, D. Shang, F. Xia, and A. Yakovlev, "Variation tolerant AFPGA 

architecture", presented at the 17th IEEE International Symposium 

Asynchronous Circuits and Systems (ASYNC 2011), Ithaca, NY, pp 77–86, 2011. 

X. Zhang, D. Shang, F. Xia, H. S. Low, and A. Yakovlev, "A hybrid power 

delivery method for asynchronous loads in energy harvesting systems", in 

IEEE 10th International New Circuits and Systems (NEWCAS 2012) 

conference, Montreal, Canada, pp 413-416, 2012. 
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H. S. Low, D. Shang, F. Xia, and A. Yakovlev, "Asynchronously Assisted FPGA 

for Variability", poster presented at the Field Programmable Logic and 

Applications (FPL 2014) conference, Munich, Germany, 2014. 
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Chapter 2. Background 

2.1 Introduction 

Field-programmable Gate Arrays (FPGAs) have become a popular technology 

for implementing digital electronic systems today due to their re-

configurability nature and short design cycle. Continued technology scaling 

enables more and more features to be implemented in a same size form-factor. 

However, similar to other VLSI design, many new challenges emerged due to 

the continued scaling of CMOS process technology. Variability and reliability 

have become growing issues in the nanometre scale region. 

In order to understand the impact of variation on FPGA architecture, this 

chapter first provides an overview of FPGA technology and its development in 

recent years. Variation can be from many sources due to imperfection of 

manufacturing process, environmental changes or ageing effect resulting in 

correlated and random behaviour. This chapter also serves to clarify the terms 

by classification of the variability sources and technique commonly used to 

characterise them. On-chip, off-chip and soft-sensing classification techniques 

will be reviewed. 

With the understanding of the variability through the characterisation 

techniques available from industry as well as academic research, 

improvements of performance and yield can be achieved through variation 

aware techniques that are unique for reconfigurable architectures such as 
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FPGA. The remainder of the chapter is structured into the following 

subsections: 

i. Introduction to FPGA Technology 

ii. Classification of Variability Sources 

iii. Sensing and Characterisation Techniques 

iv. Variation-tolerant and Yield Improvement Techniques 

2.2 Introduction to FPGA Technology 

The FPGA is a hardware programmable device whose function can be defined 

after fabrication. The concept of the reconfigurable logic device was introduced 

in the electronic system design market in 1980s. The reason for the initial 

development of reconfigurable devices was mainly to ease the challenges faced 

by the traditional board-level design with standard components that increased 

in number with circuit complexity and size. The amount of components and 

layers of printed circuit boards (PCBs) grew drastically and thus the chance 

interconnection errors occurring increased together with the pressure on 

create a small form factor to fit the components into the enclosure.  

Fuelled by the fast-moving market and evolving standards and rising of mask 

development costs in the manufacturing applications-specific integrated 

circuits (ASIC),  the concept of the programmable logic device (PLD) that would 
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allow its functionality to be restructured was born and has served the basis for 

more advance in PLDs.  

The programmable logic array (PLA) was one of the earliest types of PLD. 

Figure 4 (a) shows a typical structure of a PLA consisting of a matrix of 

programmable AND-gates and OR-gates in a plane used to implement the 

minimised standard forms of Boolean expressions, which are sum-of-products 

functions.  

 

Figure 4: (a) PLA with programmable OR plane; (b) PAL with fixed 

OR plane [9]. 

  



Chapter 2 Background: FPGA Technology and Variation Sources 

12 
 

With the realization that even with a fixed OR plane, the system would still be 

sufficient for logic implementation as a PLA, interconnect optimised 

programmable array logic (PAL) structures were introduced in 1978 [10], 

trademarked by Monolithic Memories, Inc. (MMI). As illustrated in Figure 4 

(b), the architecture was evolved with the removal of the programmable OR-

plane and the introduction of new macro-cells that contained registers and 

multiplier for optional combinational or sequential logic implementation. The 

concept of the PAL was then extended to offer more complex logic functionality, 

and was later succeeded in the market by a new family called complex PLDs 

(CPLDs).  

Although the level of logic complexity has increased, yet the main market for 

CPLDs was still not able to go far beyond a glue-logic within large systems. 

FPGA architecture based on the Look-Up Table (LUT) then emerged, which 

offered more features rich solutions.  
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2.2.1 Moore’s Law and Configuration Cells 

 

Figure 5: (a) Look-Up Table (LUT) Structure, (b) 6-Transistors SRAM 

Cell. 

Gordon Moore, co-founder of Intel, forecast in his 1965 paper, “Cramming more 

components onto integrated circuits” [11] that the cost of transistors in a silicon 

chip would continue to fall with every advance of technology every two years 

or so, and later the prediction turned into a self-fulfilling prophecy. The 

doubling of numbers of transistors every 18 months following Moore’s Law has 

stimulated drastic growth in the electronics industry. The doubling of 

transistor number at a rapid rate has also meant reductions in the cost per 

transistor with every new generation of smaller transistors. This benefited the 

advances in FPGA technology in the market in the mid-1980s. This is because 

the LUT-based FPGA, as in Figure 5 (a), used static-random-access-memory 

(SRAM) as the basis of the architecture and the typical SRAM circuit requires 

six transistors, as shown in Figure 5 (b), which means the configuration 

memory cell comes with a high overhead. However, with the growth indicated 

by Moore’s Law, up to this point this has led the industry to exploit transistors 
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which are almost free, especially in programmable hardware devices. This 

validated the area and cost overhead issue on SRAM-based FPGA. 

2.2.2 Programmable Memory 

Programmable memory or the configuration cells are the underlying 

technology for hardware configurability. Earlier PLD devices used 

programmable read-only memory (PROM) where the programming could only 

be done once and was irreversible; namely the on-time-programmable (OTP) 

memory. Anti-fuse memory type, which is one, is more beneficial in terms of 

lower area, resistance and capacitance compared to others. Because it is a non-

volatile memory, this means that the system can work instantly at power-up 

in contrast to SRAM. In addition, the prime advantage of the anti-fuse PLD 

and the FPGA are their susceptibility to faults in environment with heightened 

radiation. In particular, the Actel/Microsemi [12] PLDs dominated the military 

and aerospace markets for over fifteen years [13]. However, the main 

disadvantage of anti-fuse FPGAs is that it requires specialised manufacturing 

and programming mechanism. This make it not in-system programmable as 

opposed to SRAM, which can fit well within the standard CMOS 

manufacturing process, the anti-fuse technology cannot scale and advance at 

the same rate as CMOS devices, making it far behind the process geometry in 

many generation in comparison. 
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An alternative Non-volatile memory that supports multiple re-write cycles and 

is convenient for in-system programming is the EEPROM (electrically erasable 

programmable read-only-memory) or flash memory. Technically this is a type 

of EEPROM but offers higher speed when writing large amounts of data 

compared to non-flash EEPROM memory. In addition, flash memory also offers 

fast read access times similar to DRAM (dynamic RAM) but slower than SRAM.  

The key advantages of flash based FPGA over SRAM are its low power 

requirement, non-volatility and it is also more secure and reliable for IP 

(intellectual property) protection purposes from a security standpoint as no 

extra external configuration memory required upon start since SRAM is 

volatile and cannot hold the data at power lost. However, the disadvantages of 

flash memory are its limited write cycle and the fact that specific 

manufacturing processes are used which differ from standard CMOS 

technology. 

SRAM is the most popular type of memory used in today’s FPGAs for two 

primary reasons. First, it offers the unlimited in-system programming and 

second the standard CMOS process technology is used and therefore, it benefits 

from the advances of the latest scaling of CMOS technology. However, 

continuous technology scaling may also have adverse impacts, which are 

discuss later in this chapter. 

Unlike flash-based non-volatile devices, the volatile SRAM-based FPGA 

cannot hold its configuration without power source. Therefore, a dedicated 
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programming circuity and sequence is needed to load the configuration bits at 

every system power-up. This also means that SRAM-based FPGA has a lead-

time at power-up before live operation and requires extra board-level non-

volatile components, which increase the overall cost. Since the configuration 

data are stored externally, this also opens up the potential for IP protection 

issues, although alternative encryption solutions may eliminate this. A 

summary and comparison of these three main types of memory are show in 

Table 1. 

Table 1: Key configurable cells technology comparison[9]. 

Memory Type Anti-fuse Flash SRAM 

Features 

Non-Volatile Yes Yes  No 

Reconfigurable Cycle one-time Limited Unlimited 

Area (element size) Low  Moderate High 

In-System programing No Yes  Yes 

Manufacturing Process Anti-fuse custom Flash process Standard CMOS 

Speed Fast read, slow write Fast read, slow rewrite Fast 

2.2.3 Modern FPGA Fabric 

The tradition basic FPGA architecture consisting only of reconfigurable logic, 

an interconnect block and the input/output (I/O) pad is call soft fabric. Today’s 

state-of-the-art PFGAs are packed with over a million LUTs. Also more and 
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more hard blocks have been included in the package to improve computation 

performance, including the digital-signal-processing (DSP) block, distributed 

memory, high-speed communication links, and an advanced clock management 

system together with mixed signal analogue functionality. This has made the 

architecture increasingly heterogeneous as illustrated in Figure 6. In hybrid 

structures, combinations of hard and soft microprocessor cores are also 

included. With the advances in FPGA technology, the use of mature 

intellectual property (IP) and computer-added-design tools (CAD) have also 

facilitated the emergence of user customisable system-on-chip (SoC) FPGAs 

that provide significant benefits for embedded system implementation. 
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Figure 6: Modern FPGA fabric with Hard-block 

2.2.4 Software and Hardware Programmable Devices:  

Compared to general-purpose microcontrollers and microprocessors (µPs), 

FPGA-based circuit implementation is typically much faster. This is because 

in the FPGA, It is not necessary for the controller to move the data around 

between the data memory and working register in order to perform logic 

operations or in the context terms, the sequential fetch-decode-execute loop of 

soft-computation. The classic examples of software-programmable 

architectures are Von Neumann and Harvard processors. Instead, the 

underlying computation in FPGA is hardware-based. All of the possible 

combinations of output from a set of inputs is pre-calculated with Boolean 

algebra expression in a truth table and Karnaugh map and stored in the LUTs. 

The arrival of inputs will essentially become the address pointer to the specific 
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memory location of the LUT; therefore, complex and multiple iteration 

computations can be avoided and results can be obtained almost instantly. 

Similar techniques have also been used in microcontrollers to achieve the fast 

computation of complex calculations by using the “not-to-compute-all” 

technique or, in other words prefetching or pre-calculating and storing all 

possible results on LUTs[14]. This technique is very effective and commonly 

used in embedded system design to decrease computation time. In the FPGA, 

LUT techniques are exploited intensively across the whole architecture.  

2.2.5  Difference between the FPGA and ASIC 

The application-specific integrated circuit (ASIC) is a general term for fully 

customised designs. The main benefit of a device that is fully custom-designed 

is its smaller form factor from its manufacturing specifications and lower cost 

for high volume production. Whereas the FPGA is a hardware programmable 

device that its functionality can be configure by the end user after fabrication, 

which explains the term “field-programmable”. The key advantages of the 

FPGA over ASIC are the low non-recurring engineering cost, which support 

rapid prototyping and fast-time-to-market. However, the disadvantage is that 

the FPGA may not be suitable for most electronic system design specifications 

because FPGAs are used for general purposes and therefore the logic density 

of the chip is multiple folds below that of the ASIC design. This translates into 

higher power consumption, higher cost and slower speed performance 

compared to equivalent systems implemented with ASIC. However, due to the 
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advancement of CMOS processes and the introduction of more “hardened” 

blocks such as multipliers and accumulators, the performance gap between 

FPGAs and ASICs is gradually becoming smaller [15, 16]. 

 

Figure 7: Basic FPGA and ASIC design flow[17]. 

The design of ASICs and FPGAs, however, shares a very similar tools flow. 

This is especially true for the upper part of the design flow, from functional 

specification normally in HDL (hardware description language) to logic 

synthesis and optimisation and later placement and routing. The difference in 

placing and routing at this point between the two flows is that the logic has to 

be packed and clustered into a fixed prefabricated structure on the FPGA and 
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the routing resources to join them together, whereas the placement and routing 

on the ASIC are free. These similarities between the two flows are shown in 

Figure 7. Thus, historically, a main application of the FPGA was primarily 

used for ASIC prototyping or function verification before committing costly 

manufacturing processes. Due to the levelling of performance, competitive cost 

and ‘harden core’ enhancement, FPGAs now move beyond their historical use 

and are becoming the core technology platform for applications such as high 

speed signal processing, industrial control, communication network data 

network switching and high frequency financial trading and computation 

accelerators. 
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2.2.6 Summary of Evolution 

 

Figure 8: Key technology comparison vectors. 

This section summaries the different between FPGA and two other key 

technologies for electronic system design, the microprocessor (µP) and ASIC. 

In Figure 8 (a), the main drives for the ASIC approach are mainly toward 

ultimate higher speed and lower power performance. However, the NRE costs 

for custom design, layout, fabrication and packaging are high. The mask for 

the silicon process is itself extremely expensive with a limited lifespan. 

However, in mass production runs this is still more cost-effective. From the 

reconfigurable software perspective, the standard processor architecture is 

more flexible in term of hardware configuration (such as I/O pin configuration), 

low non-recursive engineering costs and firmware programmability. However, 

http://en.wikipedia.org/wiki/Mu_(letter)
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the downsides are that it is high in operating system overheads and compiler 

inefficiency, and there may also be a performance reduction due to the indirect 

relationship between the hardware and the software on the processor [18], as 

shown in Figure 8 (b).  

Programmable devices or the FPGA architecture fit in between the other two 

design approaches and offer the greatest hardware configuration flexibility 

and higher performance compared to general processor approaches as well as 

lower NRE costs compared to the ASIC.  In recent and past decade, advances 

in research and on the FPGA has been largely focused on improving the speed 

performance and optimising power consumption, as illustrated in the green 

line in Figure 8 (c). Given the benefit for both application-specificity and 

flexibility in a larger system, modern FPGAs are now also blending more and 

more application-specific hard-blocks with their traditional soft-fabric forming 

new hybrid architectures. The motivation for and benefit from the hybrid 

structures are also illustrated in the green line in the yellow pentagon at the 

bottom left of Figure 8 (d). 

2.2.7 Fundamental Structure of the FPGA 

This section explains the underlying building block of the FPGA soft-fabric 

architecture and the terms associates with it from the most basic primary 

elements to the hierarchy which is build up. 
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2.2.8 Logic Block 

The basic building block in a FPGA comprises a lookup-table (LUT), a register 

(DFF) and a multiplexer (MUX), as shown in Figure 10(c). It is normally called 

a logic cell (LC) in Xilinx, while the equivalent from Altera is called the logic 

element (LE). For ease of explanation, Xilinx’s terms will mainly be used in 

this thesis. Figure 9 demonstrates the primary concept of a simple logic 

implementation on a FPGA. This example demonstrates the implementation 

of basic logic circuit of a single bit adder in Figure 9 (a). The truth-table is first 

derived (Figure 9 (b)), this process is normally supported using a synthesis 

CAD tools. The synthesis processes basically computes each value of the logical 

expression of the circuit according to their functional arguments. In this 

example, the expression of sum = A + B+ C = 0x69 is stored in the k-input size 

lookup-table or K-LUT as shown in Figure 9 (c). The memory size of the LUT 

is defined as 2𝑘 bits or 8 in this case for K = 3. Although the 4-LUT was once 

the more common structure, traditionally introduced because of area efficiency, 

it should be noted that modern FPGA structures are already built-in with 5 to 

7 LUTs for better speed performance.  
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Figure 9: Basic logic implementation on the primary logic cell: (a) 

logic diagram of a 1-bit adder; (b) truth-table for SUM; (c) logic 

mapping on a lookup-table (LUT).  

Figure 10 (a) shows a basic view of island-style FGA architecture. The cluster 

is the next level in the hierarchy of this architecture, consisting of a group of 

primary logic cells (LCs).  In Altera, the terminology used is the logic array 

block (LAB); whereas deviating from Altera, Xilinx has another layer of 

hierarchy, a group of LCs called the SLICE and the two SLICEs constitute a 

Configurable Logic Block (CLB). The main idea for grouping LCs within a CLB 

is to avoid long global interconnects.   
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Figure 10: Hierarchy view of FPGA structure: (a) Island style 

structure, (b) Two slices in a CLB, (c) Basic LC structure. 

2.2.9 Routing Structure 

Surrounding the CLBs in the island style structure are the routing resources. 

The connection block (CB) links the inputs and outputs of CLBs with 

programmable switches. The interconnect grids are made of prefabricated 

wiring segments, and at each vertical and horizontal interaction of the wiring 

segments is a switching block (SB). The SB also consists of a set of switches 

that allows the possible routing of signals to the next intended CLB destination. 

For clarity of explanation, a simplified CB and SB block connected with only a 

few switches are shown in Figure 11. 



Chapter 2 Background: FPGA Technology and Variation Sources 

27 
 

 

Figure 11: Routing resources structure. 

2.3 Introduction to Variation 

Variations have become more dominant with the continued scaling of the 

CMOS process. The complexity has increased, resulting in higher fabrication 

costs to achieve uniformity in die production.  This limitation can result in 

random and spatially varying deviations from intended design parameters, 

and affecting speed, power and reliability. Conservative approaches to increase 

the operating timing margin across the whole chip to reduce the impact of 

parametric yield are imprudent and reduce performance, especially when the 

consideration is based on worst-case scenarios.  

In addition to the physical parameter variation, dynamic environmental 

sources of variation such as temperature, or supply voltage changes during 

operation require engineers to employ more aggressive techniques. Similar to 
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all other CMOS devices, FPGAs are no exception. In fact, the impact of 

variation could be more severe compared to ASICs, because the circuit 

mapping and critical path routing processes may result in any combination of 

worst and best case variability path or regions. This section provides a general 

description of sources of variation and discusses its impact on FPGA technology. 

Finally published variation tolerance techniques are reviewed.  

2.4 Classification of Variability 

Sources of variation can be classified into two main categories. First, the 

imperfection during manufacturing and second operational environmental 

changes, degradation over time due to ageing and wear-out can all be broadly 

categorised as either spatial or temporal variations [19]. Figure 12 clarifies the 

classification of variation based mainly on timeline since the devices was 

manufactured. For spatial variation, the time assumption is constant (t=0s), 

and the changes of devices in the characteristics over time are therefore 

considered temporal (t = t’).  
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Figure 12: Spatial and temporal variation classification. 

a) Process variation or the spatial variation mainly involves imperfection 

during the manufacturing process resulting in parametric deviation of 

transistor value between different die (inter-die) as well as variation 

within a same die (within-die/ Intra-die).  Inter-die variation is a 

systematic type of variation which generally shows spatial correlation 

behaviour and normally results from varying MOS transistor 

dimensions in length or width (L/W), oxide thickness (TOX), and flat-

band condition [20] whereas line-edge-roughness (LER) or random-

dopant fluctuations (RDFs) cause within-die variation with stochastic 

characteristic [21].  

b) Temporal variation, on another hand is due to changes in the 

characteristics of a device over its lifetime. Temporal variations can also 

be divided into two main branches, which are environmental and ageing, 
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where voltage and temperature variations can be classified as 

environmental.  

c) Negative and positive bias-temperature instability (NBTI & PBTI), hot-

carried-injection (HCI), time dependent dielectric breakdown (TDDB), 

and electromigration all fall into the Ageing category [22, 23].  

2.5 Process Variation Sources 

Figure 13 gives a summary of the key factors in process variations, which can 

be either systematic or statistical. Systematic variations are caused by 

imperfection in the mask and optical tooling mechanism and result in 

repetitive offset from chip-to-chip. Systematic variability is deterministic, and 

therefore can be estimated and improved using specific design techniques; 

however intrinsic variations are statistical and thus the impact cannot be 

reduced through improvements in the manufacturing process [24]. The 

following briefly explains and classifies them into two main categories of 

tooling-related and intrinsic variation. 
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Figure 13: Subdivisions of process variation. 

2.5.1 Tool-Related Variation 

Optical lithography has been effectively used in fabrication for over thirty 

years. Due to technology scaling, optical lithographic are now in the 

subwavelength region where the feature sizes of the devices or transistors are 

now below the wavelength (λ) of light. For example, the value of λ has remained 

at 193nm from 130nm to more recent 65-nm transistors [25]. Therefore, it has 

become extremely difficult to print the wafer exactly as intended on the layout 

[22]. Chemical mechanical polishing (CMP) is used for planarizing the metal 

interconnect layer between adjacent metal layers due to copper damascene 

process. Variations in interconnect thickness at post-CMP affect resistance 

and capacitance and result in variations in the delay in interconnects that may 

cause non-deterministic circuit behaviour both chip-to-chip and within a chip. 

In addition to CMP,  rapid thermal annealing (RTA) and the stress liner effect 

from the fabrication process also induce variations in length and width 

parameters on the device [26]. 
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2.5.2 Intrinsic Variation 

Beyond variations due to imperfect fabrication tools, some sources of variation 

are intrinsic to the technology involved. Two key sources of variation that are 

truly random in nature are random dopant fluctuation (RDF) and line-edge 

roughness (LER). RDF is variation resulting from variability in the 

concentration of the implanted impurity. RDF affects the transistor’s channel 

region and alters its properties, particularly the device’s voltage threshold. The 

impurity of atoms in modern process technology has a significant affect since 

the total number of dopants is decreasing drastically.  Because of the 

limitations of lithography and etching tools, the resulting effect is line-edge 

roughness (LER). The impact of LER is less prominent for technology nodes 

above 90nm. However, in sub-50nm node, LER can critically affect the voltage 

threshold, since the ratio of roughness of the edges is becomes closer to the 

width of the transistor at the range of 5-10nm as illustrated in Figure 14. 
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Figure 14: Line edge roughness at 90nm and 22nm technology [23]. 

2.6 Environmental Variation  

Temperature and supply voltage variations are categorised as environmental. 

The performance of devices is strongly dictated by these conditions.  

 

Figure 15: Classification of sources of environmental variation. 

2.6.1 Temperature Variation 

Several factors in addition to the ambient temperature affect the rise and 

dissipation of temperature within a chip. Regions of the chip with high activity 

and power consumption are normally associated with rises in temperature, or 
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so called hot spots. This increase of heat in a localised area creates temperature 

variation across a chip. Time constants for temperature variation are normally 

in the range of milliseconds to seconds. Circuit normally decrease in speed with 

a rise of temperature due to reduced carrier mobility and increased 

interconnect resistance. Therefore keeping the temperature within a chip well 

regulated is necessary to maintain the performance of the circuits. Delays 

normally increase with increases in temperature. Towards lower geometries 

below 65nm and beyond at lower threshold voltage, the temperature variation 

has shown contrarian effects on cell delay [27]. Figure 16 show the 

characteristic of a typical circuit at nominal voltage, Vdd = 1.2V where the 

circuit gradually slows down with increasing temperature. However, at a level 

of Vdd below the nominal value, from 0.9V and 0.8V, the circuit exhibits the 

reverse characteristic [28]. Therefore, extra-care has to be taken, especially in 

the extent of sub-threshold to reduce operation power and strategy for energy 

efficiency improvement with DVFS.  
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Figure 16: Inverse path delay characteristics at lower voltage level 

with increase in temperature [29]. 

Several factors that affect the temperature variation are listed as follow[23]: 

o Neighbouring blocks power characteristic of the circuit switching 

activities and capacitive load around the location or within the 

same region will affect power consumption and heat generation.  

o The thermal conductivity of material is closely related to power 

density. Heat generated in bulk CMOS device is dissipated 

through both the silicon substrate and the interconnecting wires. 

In SOIC (silicon-insulator) technology, however, heat dissipation 

occurs mainly along the wires and results in rapid heat increases 

in regions that consume a lot of energy. This disparity results in 

greater temperature gradients between hot and cold regions 

within a chip. 
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o Cooling efficiency of the packing or heat sink helps to improve 

the thermal profile. However, this issue exacerbated in the 3D 

(three-dimensional) stacking technology where circuits are 

sandwiched together. This means that it becomes more 

challenging to dissipate heat. 

o Switching activity or the workload running on the system in a 

location or core can drastically increase the temperature in a 

specific region especially over a long period. In modern multi-core 

processor system or reconfigurable systems such as the FPGA, 

the workload may be distributed or inter-swap over time. This is 

however largely depending on the ability of the underlying 

support resources of the architecture for dynamic or partially 

dynamic reconfiguration. The strategy of periodically relocating 

the workload to different regions or cores will vary the thermal 

profile over time.  

2.6.2  Supply Voltage Variation 

Supply voltage variations mainly result from voltage drop across resistive 

interconnect (IR-drop) and inductive (or di/dt) noise. The power distribution 

grid within a chip come with its inheriting parasitic resistance, and when a 

steady state current flows through, this cause IR-drop which can be derived 

from the basic Ohm’s Law as ∆𝑉𝐼𝑅 = 𝑅𝑔𝑟𝑖𝑑 ∗ 𝑖(𝑡) . Meanwhile, fluctuations of 
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voltage due to the parasitic inductance, commonly referred to as the di/dt noise, 

(∆𝑉𝑑𝑖

𝑑𝑡

= 𝐿𝑝𝑎𝑟𝑎𝑠𝑖𝑡𝑖𝑐 ∗
𝑑𝑖

𝑑𝑡
). These rapidly changing power noise effects normally 

have time constants in the range from nanoseconds to microseconds [29]. In 

summary, the characteristics of the circuit depend significantly on the 

operating voltage level. A drop of supply voltage affects both the grain and gate 

bias and the impact is reduced in a flow of current. One profound impact of this 

on circuit operation is that it does not just increase the delay in the critical 

path, but may make those near-critical paths that have not been optimised 

become critical. 

Energy harvesting system that tends to provide variable power levels can also 

be considered as environmental variation. With the expansion of wireless 

sensor networks and looking toward to the wider scope of the Internet-of-

Things (IoT), it is becoming more important to prolong and support existing 

battery-powered system [7, 30]. In certain applications, energy harvesters have 

completely replaced traditional batteries. Examples of commercial applications 

are the battery-less (infrared remote control) and (wireless wall switch) [31]. 

Energy harvester devices tend to provide dynamic power, and voltage levels 

may vary at run-time. The strategy to allow circuit working in wider operating 

range is therefore intentional [32-34]. The rationale for this kind of circuit is 

that energy should be used while it is abundant, which means that circuit can 

run at their optimum speeds. This is because the process of energy conversion 

and storing incurs extra circuit complexity that reduces its efficiency. The 
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benefits of this kind of system able to operate under a wide range of operational 

voltage levels is maintaining circuit functional or at least part of the core 

features at a reduces rate while energy is scare and low [35-38]. 

2.7 Temporal Variation – Ageing Related 

While environmental temporal variation such as changes in temperature and 

voltage add to the circuit marginalities, ageing-related temporal variation 

affects circuit performance gradually over a period. Key mechanisms 

contributing to such effects are TBBD, HCI and BTI [23], as shown in Figure 

17. 

 

Figure 17: Ageing related temporal variation. 

 Time-dependent dielectric breakdown (TDDB): The creation and joining 

of defects in the gate dielectric, causing gate dielectric breakdown. 

 Hot carrier injection (HCI): Defects in the gate stack caused by highly 

energized carriers under large lateral (drain-to-source) electric fields 

cause shifts in the threshold voltage. 
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 Bias-temperature instability (BTI): The Capturing of holes (electrons) 

from the inverted channel in PFETs and NFETs by broken Si–H bonds, 

such as charge-trapping sites in high-K gate dielectrics (HfO2). 

 Electromigration: is the transport of material caused by the gradual 

movement of the ions in a conductor due to the momentum transfer 

between conducting electrons and diffusing metal atoms. 

2.8 Sensing and Characterisation 

Sensing circuits play an important role in understanding and characterising 

the variability profiles of a particular batch or individual chip. The primary 

function of sensing circuits is twofold. First, to quantify between the deviated 

characteristic of a device and its ideal intended behaviour. Secondly, the on-

chip sensing circuits can be used for continued health monitoring to help 

provide adaptive refitting for environmental changes and temporal 

degradation. Less conservative guard banding can be achieved with the 

availability of characterisation information, which can mean timing yield 

improvements. Furthermore, with accurate sensing and characterisation, a 

detailed variation map can be generated. Utilising such information a 

controller can supplement the power of   weakening regions and critical paths 

can be diverted. Therefore potential run-time malfunctions can be avoided. 

This section looks at several frequently used sensing and characterisation 

techniques that can be applied to ASIC and FPGA design. 
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2.8.1 Off-chip Sensing 

Off-line sensing is a non-intrusive approach of characterisation without built-

in sensors; external measurements equipment is used instead. The most 

straightforward characterisation technique traditionally used is to incorporate 

extra test pads for direct access of test probes that are able to inject stimulus 

signals containing multiple electrical parameters to the sections of the circuits 

[39]. Accurate current and voltage characteristics of the device can be obtained 

with this measure. However, such an approach is expensive with the number 

of test pads required especially with large circuit, the area overhead makes 

this not viable. Although, area optimisation techniques such as multiplexing 

the circuit in the array matrix format is possible [40], yet precision and complex 

analogue voltage-current measurement setup may still be needed. For modern 

multi millions gates FPGAs, this characterisation technique is almost 

impossible. 

Optical imaging is another attractive non-invasive approach for chip 

variability characterisation without the need of embedded hard sensors. This 

technique is based on measurements of the deflective of the electromagnetic 

wave from the emitting source such as infrared to provide visual 

representation of the study. In [41], the optical imaging technique was 

successfully demonstrated to map systematic and random variability effect of 

microprocessor chip in 65nm technology. Static imaging camera was utilised 

in this approach to capture the light emission from off-state leakage current 
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(LEOSLC). The authors suggest the recorded data that can be easily correlated 

to produce variation map and be successfully adapted for the evaluation and 

enhancement of the fabrication process as well as to develop countermeasure 

for the possible reliability issues. 

Thermal and power characterisation using infrared imaging technique applied 

on FPGA is recently presented in [42]. In this work, run-time thermal 

characterisation is performed by capturing the emissions from the back of the 

chip. The result is the visualisation of operational thermal gradient and hot 

spot for the particular application mapped on FPGAs. Again, these off-chip 

techniques are attractive but require complex measurement equipment and 

procedures. In addition, due to the data being gathered externally, this makes 

the variation map correlation process less straightforward. 

2.8.2 On-chip Sensing 

An alternative to the off-chip sensing are built-in hard sensors. The state of 

the art of multicore processors is normally equipped with multiple thermal 

sensors. Accurate sensing requires fine granularity of build-in sensors that is 

scattered across the chip and the question for the research has always been at 

what cost or overhead. 

Sensing and characterisation based on Ring oscillator (RO) was presented in 

the past and recent years due to its simplicity in implementation either on-line 

or off-line [3, 43-49] . In [43], authors utilised the method to measure random 



Chapter 2 Background: FPGA Technology and Variation Sources 

42 
 

variations in MOSFET threshold voltages. Die-to-die variability 

measurements with ROs that is sensitive to parameter was proposed in [44]. 

In [46], authors proposed to create Path-based RO to measure and monitor the 

targeted critical path under process variation. RO was also presented as a 

temperature sensor as an alternative to analog sensing circuits. RO circuits 

may be convenient to deploy, yet this approach may increase the overall area 

of the circuit. In addition, the circuit itself is reactive to temperature and 

voltage fluctuation.  The RO method unfortunately has also been remarked as 

a bad instrumentation technique for FPGA variability as it does not accurately 

represent the circuit path in FPGA designs. At high frequency oscillation, RO 

circuit itself generates heat, this consequently adds extra complexity and 

variability to the situation [50]. 

Increasing technology scaling in nanometer regions results in local random 

transistor parameter variations. The effects of such phenomena as random 

dopant fluctuations (RDF) and line edge roughness (LER) can dominate 

mismatch in neighbouring devices. Particularly in SRAM cells with high 

circuit density, mismatch can deteriorate the circuit functionality greatly. 

Current latch sense-amplifier (CLSA) for example in [51] is proposed to 

measure mismatch between two transistors. Since only a pair of transistors 

can be measured at any one time, this limits its usefulness. Extension from the 

basic mismatch sensor, array based characterisation is also presented in [52, 

53]. Yet, the limitation of this method has been the low sensitivity due to device 
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properties changing linearly with voltage threshold variation when the device-

under-test (DUT) is biased in the saturation region. 

2.8.3 Soft Sensing in FPGA 

Reconfigurable architectures such as FPGA give a unique opportunity for 

sensing and mitigating the effects of the variability using the generic built-in 

flexible resources rather the dedicated embedded sensing circuits. This is 

called “soft sensing” in this thesis. Modern FPGA architecture such as Altera’s 

Stratix family and Xilinx’s Virtex series are all equipped with a thermal sensor. 

However, a single sensor cannot sufficiently provide the temperature gradient 

of the chip. Never mind the ability to identify the maximum value or hot spots 

of the chip. 

Ring oscillator (RO) is a commonly used technique due to its simplicity in 

implementation either on-line or off-line. Off-line RO is normally used for 

characterisation purposes such as variability of delay with the changes of 

temperatures [54]. Authors of [47, 54] proposed one of the earliest thermal soft 

sensing approach on reconfigurable computing architecture. Flexible RO-based 

thermal sensing replaced conventionally used analog sensor and its complex 

control circuit. Example of works in [3, 55] also used RO, instead of thermal, 

authors perform characterisation of FPGA process variation effect by 

measuring its component delay.  
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On the other hand, to continuously monitor the health and provide adaptations 

to temporal effects [45, 46, 56], on-line soft sensing techniques can be beneficial. 

In [57], thermal soft sensing technique is proposed. This approach utilise an 

adder-accumulator multiplier to make the computation without the need of RO. 

Wong et al. [58-60] proposed novel characterisation techniques that enables 

accurate combinatorial delay measurement. This differs from the previous 

mentioned methods that used RO for latency measurement [3]. This work 

performs characterisation by stepping the system frequency gradually for error 

detection. 

Leveraging the unique reconfigure structure of FPGA, extra-embedded 

analogue sensors can be avoided for PVT (process, voltage and temperature) 

characterisation. And this forms sound of the foundations for the work 

presented in this thesis. Furthermore, due the final application to be 

implemented on the FPGA is not known until it is fabricated, it is hard to 

predict where and how sensors should be distributed across the chip evenly. 

Therefore, soft sensing grants additional advantages for monitoring circuits, 

particularly in the use of on-chip hot spot tracking. 

2.9 Conventional Variation Tolerance in FPGAs 

2.9.1 STA and SSTA 

In Static Timing Analysis (STA), timing analysis is carried out in input 

independent manner, and purpose to determine the worst-case delay or critical 
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path of the circuit over all possible input combinations. Therefore, STA 

approach often gives pessimistic timing estimation. Hence, this reduces the 

speed performance that could otherwise be much faster. Extensions of the STA 

are corner analysis, where worst-case and best-case scenarios for PVT 

variation can be presented. The best cases are defined as fastest processes at 

highest voltage level operating at the lowest temperature, and the worst case 

will be the opposite with a slow process at the lowest voltage and highest 

temperature. Examples of the effect of PVT on path delay are shown in Figure 

18  

 

Figure 18: Corner analysis with STA tools 

Despite the conservative timing estimation on the critical paths, STA is not 

able to accurately model intrinsic variability that is random and stochastic. 

Under random parametric fluctuations, the shorter paths or near-critical paths 

that have not been optimised have the tendency to become critical. 

Statistical static timing analysis (SSTA) tools aim to identify these statistically 

critical paths and minimize the chances of these paths becoming critical. 

However, the drawbacks of SSTA tools include the uniform strategies used 
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across the whole chip and between different dies. Therefore, accurately 

modelling statistical variation from one die to another requires an accurate 

variation model value of mean (µ) and standard deviation (σ). Also it is 

becoming difficult to produce statistical models for the larger systems with 

high random variation that are expected in future node technology, making the 

characterisation cost un-scalable to deal with the complexity of a system with 

increasing numbers of statistically critical paths [61]. 

2.9.2 Optimisation of Structural Parameters 

Structural parameter optimization is another proposed approach for 

mitigating FPGA variation, which focuses on traditional architectural 

parameters such as varying the value of N, the number of LUTs per CLB, and 

K, the number of inputs to a LUT [62]. However, study in [63] shows that 

varying the value of N and K value does not provide significant improvements 

over the variation concern [23]. 

2.9.3 Transistor Sizing 

Transistor sizing can be used in ASICs to optimize path delay and power 

performance. However, the process of transistor sizing for its width and length 

(W/L) at layout level for FPGAs requires a huge effort and will consumes 

significant amount of engineering time. Research into automated transistor 

sizing on FPGAs for area and speed trade-off [64] is also promising in exploring 

the use transistor sizing to mitigate the effect of variability on FPGA 
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architecture. Yet, this technique is computational expansive and the 

variability-critical paths (VCPs) cannot easily predefined. 

A recent project named the Programmable Analogue and Digital Array 

(PAnDA) architecture [24] represents a new approach to intrinsic variability, 

introducing reconfigurable transistor arrays at the analogue level. This 

approach allows low-level optimization during the post-fabrication stage and 

results in the recovery of the loss of performance yield introduced by stochastic 

variability. However, the extra configurability of the architecture also comes 

with a high area overhead. 

2.9.4 Asynchronous Techniques 

Asynchronous designs are highly adaptive to changes in voltage and delay, 

providing robustness depending on the delay assumptions that are made [65]. 

The most robust class is delay-insensitive (DI), where circuits will operate 

correctly without any assumption of delay in either gates or wires. Circuits 

with carefully identified delay assumptions on isochronic wire are called quasi-

delay-insensitive (QDI) [66] or speed independent (SI) [67]. These circuits 

consider only the gate delay and neglect wire delay when ensuring circuit 

correctness.  

There are many approaches or protocols for implementing asynchronous 

circuits. A taxonomy of potential protocol implementations is summarized in 

[65]. The choice of an asynchronous communication protocol affects the 
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characteristics of circuit in term of implementation power, area, throughput 

and robustness.  

In the past decade, different asynchronous FPGA architectures have been 

presented motivated mainly by the pursuit of low power and/or high-speed 

performance. These architectures can be classified into two main styles. The 

first relies heavily on timing assumptions to guarantee the correctness of the 

logic, and the second alters the traditional architecture at fine-grained level 

with the intensive use of state-holding memory components (such as C-

elements), which implies significant overheads in size and power [68, 69]. 

Details of asynchronous FPGA (AFPGA) designs are reviewed in Chapter 3.  

2.10 Variation Aware and Late Binding Techniques 

Process variation has become a hot issue with the continue technology scaling. 

The major challenges are to resolve reliability issues while maintaining yields. 

Unique functional configurability of FPGA provide extra-flexibility to mitigate 

problems such as variation aware techniques that leverage the knowledge of 

how each chip are affected by the variation. With the assumption of mature 

off-line and online sensing techniques, each chip can be characterised and treat 

differently using late binding techniques such as multiple-reconfiguration, 

region relocation, and path reconfiguration. Compare to conservative worst-

case timing assumption approach the variation-aware approach are promising 

for better circuit performance. 
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2.10.1 Yield Improvement through Multiple-Configuration 

 

Figure 19: Multiple reconfiguration strategy flow. 

Figure 19 shows technique for timing yield improvement through multiple 

reconfigurations. The placement and routing (P&R) of FPGA are flexible, 

therefore multiple configuration options for same functional results is possible. 

Supposed due to variability in delay, each bitstream generated from the P&R 

processes that have identical functional behaviour would have deviation in 

timing performance. Therefore, numbers of pre-generated bitstream can be 

exploited and test run at the configuration process for each chip until the best 

performance configured bitstream has been identified. Although this strategy 

may theoretically improve the speed and timing yield performance compare to 

the SSTA alone, yet it requires at-speed test for each configuration, which is a 

very timing consuming. Furthermore, the large number of configuration 

options means huge storage memory needed. This makes it not suitable for 

memory resources limited embedded platform. Detail descriptions of multiple 

reconfiguration strategy can be found in the work proposed by Sedcode et al. 

[70] and Matsumoto et al. [71]. 
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2.10.2 Variation Aware Modelling 

There have been several attempts at improving FPGA timing yield by 

providing  statistical analysis and process variation modelling for variation 

aware placement and routing [70, 72-77] . Another example in [73] provides 

variation aware timing-driven algorithm to optimise timing statistically and 

maximize timing yield. Simulation result based on statistical enhance versatile 

place and route (VPR) tools [78] show 3.4x increase in yield with guard-banding 

and 25x with speed-binning using the variation aware placement techniques. 

However, the guard-banding and speed-binning techniques may not be 

sufficient with the presence of within-die variation. This is because the chip 

performance will be greatly degraded with the wide banding, removing the part 

of the incentive for technology scaling in the first place. 
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Figure 20: Variation aware chipwise placement design flow [72]. 

One of the earliest variation aware placement for FPGA is proposed by authors 

in [72], the design flow is shows as in Figure 20. The authors suggest with the 

help of the software model that have been developed within the VPR 

framework [78]. Worthwhileness of variation ware placement is first evaluated 

for performance gain can be expected. Simulation result shows up to 19.3% 

performance improvement can be achieved with chipwise placement. Part of 

this thesis is also based on the assumption that a variation map is obtainable.  

In nanometer process technology, variation in FPGA has shown both 

correlated and random effects. Authors in [75] proposed an improvement model 

that consider both inter-die and intra-die variability including the delay 

variability in routing resources. The purposed model also enhanced with 

statistical timing analysis, supported by variability aware P&R based on VPR 

framework. 
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2.10.3 Relocation, Remapping and Rerouting 

 

Figure 21: (a) Region relocation, (b) Path reconfiguration. 

The idea of region relocation is similar to the strategy used in wear levelling 

for managing and prolonging the lifespan of traditional flash memory that 

have limited write cycles due to wear out. The wear levelling technique uses 

algorithms that track the frequency each location has been written and works 

to distribute data evenly across each memory block of the entire flash drive. 

This process decreases the total wear on the drive, thereby increasing the 

lifespan of the drive. A similar concept applies to the region relocation where 

the FPGA are partitioned into regions and circuit can be configured into the 

allocated regions. As a region with configuration ages, the circuits can be 

swapped to a region that has not been assigned before. This wear-levelling 

technique is particularly useful for the extending lifetime of the FPGA as well 

as improving its reliability [79].  
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Srinivasan et al. [80] suggest the relocation of circuit over time with the unused 

region of the FPGA to reduce the effect of HCI. Figure 21 (a) illustrates the 

regions swapping strategy between high switching activities and the less active 

region to minimised the age acceleration effect of HCI. Also with the 

assumption of enough modular level of the available regions, partial dynamic-

reconfiguration can also be supported. Contrast with the multiple 

reconfiguration techniques, there is no need for generation of multiple 

bitstream/netlist, therefore huge storage space requirement can be avoided 

[70]. Yet, the challenges with this approach are strategically circuit 

partitioning into sub modules and then the support for reassembling them. 

Figure 21 (b) shows the path reconfiguration strategy to improve timing yield 

in FPGAs compensating for variability by re-mapping and re-placement 

[81].This work exploit the flexibility of LUTs mapping and presented a 

software tool that can systematically compute all the possible way for a given 

logic network. The experiment results show mean and variance of a critical 

path delay can be reduced similar to using the statistical Monte Carlo 

simulation techniques.  

2.11 Summary  

Variability issues in sub-nanometer CMOS technology have appeared as a 

critical challenge to the ability to deliver a design that meet all the timing, 

power and reliability specification. With the continuous scaling of the 
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technologies and increasing power density, the pressure to deliver the design 

within the time frame while dealing with the variability issues is going to get 

worse. The two main variability challenges are, first the static variability due 

to process scaling and limitation of lithography and etching tools. The 

imperfection during of manufacturing process results in parametric or spatial 

variability for inter-die and intra-die.  Secondly the environmental changes 

and temporal ageing variability is dynamic changes after deployment. 

Tackling the dynamic variability such voltage changes due to increasing 

workload and temperature during operation is relatively more challenging. 

Traditional techniques that apply excessive operating margin across the whole 

chip based on worst-case scenario reduced system efficiency. This thesis aims 

to explore the practical variation tolerance strategies without scarifying the 

system efficient that relies on worst-case guard-banding. 

In advanced technology nodes, a design with multiple billion atomic-scale 

transistors; the assumption that not all of the transistor will work or some will 

fail at the later life of the device may not be unfair. FPGA architecture has 

been the centre of this work because its inherit reconfigurability nature that 

provides unique opportunities to cope with these static and dynamic variability 

challenges. For example, rerouting and remapping to achieved thermal and 

wear-out balance. 

The cornerstone for adaptively to changes is the ability to measure and 

quantified the variability profile of a specific chip as well as to track the 
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changes during operation. The characterization can be performed either with 

off-chip or on-chip sensing. The result is chip variability profiles or variation 

maps. 

Off-chip sensing offers a non-intrusive characterization – for example, optical 

and infrared imaging techniques. However, the downside being costly and 

complex equipment needed. Also, it’s less intuitive to correlate data collected 

externally with the operation activities. On the other hand, the on-chip sensor 

allows continue monitoring the health of the chip. Yet, the major challenges 

for on-chip sensing are the distribution of the sensors and reduced chip density 

due to the area occupied by the sensors. The alternative to the on-chip and off-

chip sensor is soft-sensing. This technique is unique only to FPGA. Soft-

sensing in this thesis context exploits the generic built-in resources of the 

FPGA replacing the conventional analogue sensor. For example, the ring 

oscillator can be temporally configured across the FPGA fabric evenly and 

characterise its thermal profile for “pre” and “post” system implementation. 

The “pre” implementation thermal profile gives the static variability map of 

the chip while the “post” for dynamic thermal gradient results after a fixed 

period of operation.  In addition, the soft-sensing technique also provides extra 

gratification to implement and track variability on targeted area rather, to 

widely distribute them across the whole chip. This reduces area overhead. 
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Various variation tolerant techniques have been proposed, some are unique 

only for FPGA and some are common between the FPGA and ASIC. The 

summary of the techniques is shown Table 2. 

Table 2: Summary of Existing Variation Tolerance Techniques in FPGA  

  

Techniques Remarks 

STA 
Pessimistic timing variation analysis based on worst-
case. Reduce performance.  

SSTA 
Less conservative than STA for intra-die variation but 
still a “One-size-fits-all” approach. 

Transistor sizing 
Time-consuming engineering efforts for over million 
transistor circuit. 

Structural Parameters Optimisation:  
Do not provide significant improvement for variation 
concern. 

Multiple-configuration 
Expansive computation at speed test and required huge 
memory for all possible configurations storage. 

Variation-aware Modelling 
Improve yield over STA and SSTA, however accurate 
variation map generation is required for inter-die and 
intra-die variability. 

Relocation, Remapping and 
Rerouting 

Improve large storage problem compare to multiple 
configuration techniques, however, the challenges are 
system partitioning and regions allocation.  

Asynchronous Techniques 

Highly adaptive to changes in voltage and timing 
variability. However, asynchronous circuits are more 
complex to design and normally incur high 
handshaking's circuit overhead. Also, traditional FPGA 
architecture only has limited resources to support 
Asynchronous implementation. 

STA guaranteed correct operation based on worst-case estimation and, 

therefore, reduced in possible performance.  Whereas, SSTA is less 

conservative compared to STA for intra-die variation and the accuracy of the 

model relies heavily on the statistical mean and standard deviation values. 

The drawback of these approaches is uniform parameter applied across a whole 

batch of dies. Yet, this has been a preference strategy for industry thus far 
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because it is the only practical approach for mass production solution.  In 

reality, most of the chip in the market can perform much better than the 

manufacturer’s conservative specification. The late-binding and variation-

aware techniques for example proven to achieve higher efficiency above 

conservative timing specification recommend by the manufacturer.  

Above all, the asynchronous technique that is known to be robust to timing 

variation and possibility provide an attractive solution. Despite the potential 

benefits, asynchronous FPGAs presented in past have not centred on 

improving the reliability aspects – rather mainly focus on low power and 

throughput performance. Also, to implement asynchronous logic in 

synchronous FPGA is proven to be difficult because it’s required manually 

manipulate the existing FPGA resources that are designed for the synchronous 

system. Introducing asynchronous friendly logic block to traditional FPGA 

architecture, therefore, has been the motivations for this work. 
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Chapter 3. Existing Asynchronous Techniques in 
FPGA 

3.1 Introduction  

This chapter discusses the context of incorporating asynchronous logic into the 

programmable logic to tolerate and reduce the negative impact of variability. 

The focus of this chapter is divided in two main parts as follow: 

Firstly, the principle of asynchronous logic and its potential trade-off is 

introduced. Popular delay-insensitive encoding strategies such as 4-phase 

dual-rail (4P-DR) and 2-phase dual-rail (2P-DR) are reviewed. Circuit 

robustness based on timing assumption made is also classified including speed-

independent (SI) and delay-insensitive (DI) circuits. This section serves as a 

basis for further understanding and ease of explanation is the following 

chapters. 

Second part of the chapter reviews different styles of asynchronous FPGA 

architectures presented from the past decade motivated mainly by the pursuit 

of either low power and/or high speed performance. These architectures are 

classified into four main types for ease of explanation in overview as follow. 

Type-1, the architecture that is heavily relies on the timing assumption using 

bundle data. Type-2, the architectures that target on high throughput 

performance by adopting fine-grain pipelined structures. Type-3, handshaking 

based optimisation architecture to improve the coding efficiency in dual-rail 
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communication for dynamic power reduction in the communication, and Type-

4, the architecture that combine the benefit of both synchronous and 

asynchronous circuit that fit the global asynchronous and locally synchronous 

(GALS) paradigm. Other type of asynchronous implementation motivated 

different benefits such security advantage also reviews, however this is not the 

main focus of this work. 

The final section summarise the trade-off of each type of these asynchronous 

reconfigurable architectures in the context of its benefits and trade-offs to be 

used on a FPGA to mitigate the negative effect of the variability. 

3.2 Principles of Asynchronous Design 

Digital electronic system designs are predominantly synchronous and 

sequential. A sequential circuit is specified by a time sequence of inputs, 

outputs and internal states. In synchronous sequential circuits, a change of 

internal state occurs in response to synchronous clock pulses [3]. Figure 22 

shows a high-level representation of a typical synchronous circuit where the 

communication of data is governed by the global clock.  
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Figure 22: Synchronous clocking system. 

In asynchronous designs, no global timing clock is used and communication is 

achieved through some sort of handshaking protocols. Typical communication 

involves a data request (req) and acknowledgement (ack) to initiate 

communication and indicating the response to the request. Often the req/ack 

signals are referred to as the control signal or the control path (CTL) and the 

data line as the data path (Data). Figure 23 illustrates an abstract view of an 

asynchronous circuit with handshaking control. Although the pipeline 

structure is shown, this is just for ease of explanation and in reality both 

synchronous and asynchronous designs can have different topologies.   

 

Figure 23: Abstract view of Asynchronous Circuit. 

3.3 Bundle Data Design 

The solution space can be expressed as the cross-product of a number of options, 

including: 

(2-Phase, 4-Phase) x (Bundle-data, Dual-rail, 1-of-n,…) x (push, pull) 
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The choice of protocol affects the characteristics of the circuit implementation, 

such as power, area, speed and robustness. This section explains the 

terminology commonly uses in asynchronous circuit design. The most popular 

handshaking protocols are discussed, including 2-phase and 4-phase 

communication together with dual-rail or bundle-data. 

3.3.1 Single-Rail Bundle-Data (SR-BD)  

 

Figure 24: (a) Abstract view of delay matching bundle-data approach; 

(b) example of programmable delays bank. (c) AND gate and muxes 

fine tune programmable delay [82]. 

The simplest and most widely used asynchronous protocol is single-rail bundle-

data (SR-BD). The advantages of the SR-BD are its simplicity in design, small 

size and ease of validation. An abstract view of the SR-BD approach is shown 

in Figure 24 (a). The functional block in this scheme is maintains similar to 

the synchronous design and replace the clock line with matched-timing delay 

line to indicate the completion of computation or valid data have been received 
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using the “done” signal. Hence in many ways the design can easily be migrated 

between the synchronous and asynchronous domains by interchanging the 

clock line with match delays. Match delay lines are normally fixed and realised 

by an inverter chain. However, to deal with the variability, tuneable delay line 

has also been proposed. Figure 24 (b) shows an example of a programmable 

delay (PD) with a control code for the selectable delay bank. The matching 

delay can be either fixed or tuneable. Usually, this type of design cannot be 

fine-tuned. The headroom in the non-fine-tuned matching delay means that 

the circuit may not operate at its optimum speed.  Another example of PD 

implementation shown in Figure 24 (c) allows more accurate tuning.  The 

trade-off for the accurate or fine-tuneable PD is increased complexity in control 

and need for more configuration logic.  

3.3.2 4-Phase and 2-Phase Bundle-Data Handshaking  

 

Figure 25: Send and receive handshaking. 

In the bundle-data handshaking scheme, data lines are bundled together with 

the request and acknowledge line operating independently. The most common 

handshake protocols are 4-phase and 2-phase bundle data. This 

communication scheme is easier to elaborate with the concept of data exchange 

between sender and receiver units or two subsystems as shown in Figure 25. 
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Figure 26: (a) 4-phase bundled-data protocol; (b) 2-phase bundled-

data protocol [83]. 

The 4-phase bundle-data (4P-BD) communication cycle involves four signal 

transitions and this illustrated in Figure 26 (a). The sequence of actions is as 

follows:  

(1) The sender prepares the data and set the request signal to high, 

(2) The receiver accepts the data and responds by setting the “Ack” signal 

to high,  

(3) The sender then notifies the completion of the transmission by resetting 

the “Req” signal back to low,  

(4) Finally, the receiver reverts itself to the “ready to receive” state by 

setting the “Ack” signal to low to complete the handshaking cycle. Hence a new 

cycle is ready to start with both “Req” and “Ack” returned to the low state.  

The advantage of the 4P-BD method is that it is relatively simple in term of 

circuit implementation. However, the logic has to always be returned to the 

zero state to be ready for the next communication cycle (also known as return-
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to-zero (RTZ)). Thus 4-phase communication loses its attractiveness for design 

specifications concerned with power and speed performance. 

2-phase bundle-data (2P-BD), on the other hand, is a non-return-to-zero 

(NRZ) protocol. As illustrated in Figure 26 (b), only two signal transitions are 

needed to complete a data transfer operation in reverting to the “ready-for-

next-transition” cycle. The 2-phase protocol is based on signal encoding built 

into the “Req” and “Ack” signals, where the transitions between 0 -> 1 and 1->0 

both represent a valid “signal event”. As for example illustrated in Figure 26 

(b), at (1) when data is ready (at the odd-phase where the “Ack” signal is at the 

high level) in first transition cycle, the transition from 0->1 is indicated “Req” 

and transition from 1 -> 0 to indicated “Ack” event. In the second cycle (data 

ready at even-phase with the “Ack” signal remaining low), the opposite signal 

transitions are valid compared to the odd-phase. 

Based on the above signal transition graphs, 2-phase communication might be 

expected to provide higher communication efficiency and faster throughput 

compared to a system using 4-phase communication. However the 2-phase 

system requires extra logics for phase differentiation (odd or even), and this 

will introduces extra complexity in to the circuit’s design and hence result in 

increased silicon area on the controlling circuits. Because of this, there is no 

clear criterion to decide which protocol is better. Rather, the best strategy is to 

carefully choose the appropriate schemes tailored to the optimisation 

objectives for the overall circuit. 
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Push and Pull protocol, The Previous example was based on the assumption 

that the sender is in the initiating position to start the communication. 

Therefore the data was “pushed” from the sender side, or the so-call push 

channel. Conversely, the receiver can also request data to be transferred. This 

case is classified as the pull channel and the “Req” and “Ack” signals will 

operates in reverse. 

3.4 Delay-Insensitive Encoding 

Bundle-data protocols rely heavily on matching the delay with the data paths. 

However, this may incur hefty safety margins in the presence of variation. 

Hence the alternative is to use more sophisticated and robust techniques that 

are less susceptible to variation in delay. The following section introduces more 

robust protocols that can tolerate disparities in delay resulting from for 

example, PVT variation. These techniques have data validity built-in within 

the coding, and this kind of circuit is classified as delay-insensitive (DI). 
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3.4.1 4-Phase Dual-Rail Handshaking 

 

Figure 27: (a) Request sign embedded in dual-rail coding; (b) the 

codewords; (c) signal transition waveform; (d) code with Hamming 

distance = 1. 

4-phase dual-rail (4P-DR) is one of the most popular forms of DI encoding. 

In this encoding, the request signal is embedded directly into the data-path.  

Figure 27 (a) shows a similar “sender and receiver” scheme as in bundle-data 

but with a dual-rail data line and without a dedicated “Req” signal. Instead the 

request signal is encoded within the data lines with 2-bits of binary coding. 

Combined with the 4-phase protocol, the validity of data can be discriminated 

with a “spacer” or “NULL”.   

The 4P-DR codeword is shown in Figure 27 (b). (d.1,d.0) are the dual-rail wire 

pair, with the combination showing a valid value only when they are either 

“0,1” or “1,0” (as shown in the table, logic 0 and logic 1 respectively for the 
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codes). The codeword “0, 0” is equivalent to of reset position with Humming 

distance equal to 1 from both valid data, as shown in Figure 27 (d), and 

therefore this serves as a spacer to indicate that data has been cleared and the 

next cycle of transition can take place. 

The sequence of 4P-DR handshaking shows in Figure 27 (a) & (c) at the 

abstract level as follow: 

(1) The receiver indicates that data is ready to be accepted, with “Ack” at 

the low state. 

(2) The sender then issues the data. At the receiver side, when valid  is data 

detected,  “Ack” is set to high. 

(3) The return of “Ack” to the the low state tells the sender that the data 

has been completely absorbed and thereby the data can be cleared.  

(4) Consequence from the retreat of valid data, “Ack” returns to its initial 

low state and a new cycle is ready to start. 

It should be noted that the commonly used dual-rail (DR) term is also the case 

of m-of-n coding (‘m’ is the number of ones out of the total ‘n’ number of wires) 

[84]. For example the dual-rail code in the m-of-n term is 1-of-2. Another 

example of commonly use encoding is 1-of-4, which also fit in the n-of-m 

paradigm. This encoding is more balanced in power consumption because 

computations are always performed at a balanced Hamming weight. Therefore 
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it is less vulnerable to side-channel attack. This technique has been exploited 

and proposed for implementation on programmable logic for security 

applications [85]. 

3.4.2 Completion Detection (CD) Circuit 

The derivation of valid data in the absence of a timing clock is using circuitry 

that can determine the completion of transient within a logic block. As 

demonstrated in the bundle data scheme, this can be done with the matched 

delay. For dual-rail signalling, request signals are embedded together with the 

data. The common completion detection circuit for dual-rail communication is 

shown in Figure 28 (a) which consists of OR gates and a multiple inputs C-

element. The OR gates are used to detect valid data or mutual-exclusive dual-

rail inputs bits and the result is merged with a Müller “C-element”. The C-

element truth table is shown in Figure 28 (b), where “Done” will output the 

logic ‘0’ only if all of the inputs are ‘0’, and likewise for logic ‘1’. If not, the output 

value maintains its value. 
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Figure 28: (a) Example of dual-rail completion detection circuit; (b) 

truth table for the C-element. 

3.4.3 2-Phase Dual-Rail Protocol 

The 2-phase dual-rail (2P-DR) or level-encoded dual-rail (LEDR) protocol also 

uses two wires to encode one bit of data, but information is encoded differently 

with level/phase detection. The 2-phase handshake neither requires an empty 

“spacer” value nor uses an elegant non-return-to-zero (NRZ) scheme. Figure 8 

(a) shows the signal waveform of LEDR signalling where the parity-rail 

alternates the phase at each data item and the data-rail carries the valid value 

at each phase. Therefore there is only one signal transition per each new data 

item. LEDR uses level encoding where the data-rail will hold actual data value 

and the parity-rail holds a parity value. The encoding of parity alternates 

between odd and even phases. Figure 8 (b) shows the truth table for LEDR 

encoding.  
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Figure 8: (a) LEDR Signalling; (b) LEDR encoding. 

In summary, the 2-phase dual-rail (2P-DR) protocol should have better power 

dissipation performance than 4-phase dual-rail (4P-DR) because of its efficient 

coding with fewer transitions per data bit and no spacer required. However, its 

complexity in circuit implementation makes it an impractical choice, especially 

at the fine-grain level. Therefore none of the above protocols are ideal for 

replacing the traditional timing clock scheme. Yet, to tackle the global 

variability concern the DI circuits can still be valuable when applied 

strategically by mixing SR and DR in a architecture. For example, circuits at 

the coarse granularity level, such as the GALS paradigm can be used, or the 

protocols may be combined. Such system has been proposed in [7, 8] in which 

the 4P-DR was applied in the local functional blocks and LEDR for global 

communication. 

3.5 Asynchronous Circuit Classification: 

Asynchronous circuits are classified based on the delay assumption made. At 

the circuit level, asynchronous circuits can be classified as being either self-

time, speed-independent (SI) [67] or delay-insensitive (DI) [66]. This section 
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provides an overview of the theoretical understanding of these circuit 

classifications. Jens and Furber [86-89] summarised the principles and 

techniques for asynchronous design in [83]. The concepts of delay models are 

easier to illustrate with a classical case study example with three logic gates 

(A, B and C) connected together with wires as shown in Figure 29.  

 

Figure 29: Case study of delay model circuit classification. 

3.5.1 Speed–Independent (SI)  

The speed–independent circuit consider only gates delay and assume wires are 

ideal without delay. This assumption may be valid on board-level small circuits 

where the wire delay is significantly low or negligible. However, in modern 

silicon technology, at very large scale and with long interconnects, this 

assumption can no longer be valid. Referring to Figure 29, in the SI 

classification the wire delays wd1, wd2 and wd3 are all equal to 0. Note that, 

from another theoretical point of view, if wd2 and wd3 are equal the wire 

delays can actually be lumped together with the delays of their associated 

gates. In this case considering the wires delays the circuit can be still SI.  



Chapter 3: Existing Asynchronous Techniques in FPGA 

72 

 

3.5.2 Delay-Insensitive (DI) 

In delay-insensitive circuits no delay assumptions are made for either wires or 

gates. Referring to Figure 29, the wire delays wd1, wd2 and wd3 cannot be 

ignored and must be considered alongside gate delay. Therefore this model is 

the most robust of all asynchronous classes. However, due to its strict 

restrictions only a very limited number of circuits can be classified as DI. One 

view [87] concluded that almost no useful DI circuits can be built due to these 

heavy restrictions. In order to build a practical circuit, relaxation of the DI 

requirement is needed.  

Instead, the concept of isochronic forks was introduced by Martin [87] where 

an isochronic fork allow signals to reach two destinations with negligible 

different in delay or with the assumption that the delay in forks wires wd2 and 

wd3 as in Figure 29  can be equal. I this example, if transition observed in Gate 

B then transition can also assumed to have happened on Gate C.   

 

3.5.3 Quasi-Delay-Insensitive (QDI) 

Quasi-delay-insensitive (QDI) circuits are those using the isochronic fork 

assumption. In some senses, this is the best compromise towards a fully DI 

circuit. Technically, the QDI circuits are the same class of circuit as SI with 

the difference that QDI circuits involve acknowledgements of each transition, 
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whereas in SI no such assumption is made between circuit nodes with and 

without isochronic forks.  

3.6 Reconfigurable Asynchronous Architectures 

Different styles of asynchronous FPGA architectures have been presented 

since 1992 [5, 18-24] motivated mainly by the pursuit of either low power 

and/or high speed performance. From the point of view of implementation 

techniques, these architectures can be classified into four main types. Type-1 

includes the bundle data and timing assumption architectures, whereas type-

2 architectures focus mainly on high performance using highly pipelined and 

fine-grain structures. Type-3 uses 2-phase instead of 4-Phase or so-called non-

return-zero (NRZ) protocols to improve the coding efficiency in order to give 

potential power savings in communication, and type-4 includes hierarchical 

coarse-grain structures that can fit the GALS paradigm. A summary of 

reconfigurable asynchronous logic architectures is shown in Table 3. 

Table 3: Summary of asynchronous FPGAs 

Year Architectures Unique Style Handshaking References 

1994 Montage TRIPTYCH Timing assumption  [90] 

1995 PGA-STC Delay Matching bundle data  4-Phase Bundle-data  [91] 

1996 STACC Delay matching bundle data 4-Phase Bundle-data  [92] 

2001 Phase Logic Phase logic, fine grain 2-Phase Micropipeline  [93] 

2003 PAPA Highly pipeline, Fine grain 4-Phase Dual-rail  [6, 94-98] 

2003 GALS Homogeneous GALS 4-Phase Bundle-data  [99] 
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2003 CalTech Cluster, e1of2 e1of2  [100] 

2005 GAPLA Heterogeneous GALS 2-Phase Bundle-data   [101, 102] 

2007 NCL NULL Convention Logic NCL /QDI  [103] 

2007 TARTAN 
NoC (Hierarchical RF 
architecture) 4-Phase Bundle-bundle  [104, 105] 

2007 Achronix  Pipeline, Fine grain 4-Phase Dual-rail   [106] 

2008 e-FPGA 1-of-n QDI  (security) 1-of-n QDI   [85] 

2010 
Distributed 
AFPGA David Cell control 

Hybrid 4P-DR and 
Bundle-data  [68] 

 

3.6.1 Type-1: Bundle Data and Timing Assumption Architectures 

Asynchronous FPGA solutions have been presented in the literature since 1992 

[3-14]. Payne [92] provided a summary of the MONTAGE [90], PGA-STC [91], 

and STACC [107] . 

MONTAGE from the University of Washington proposed in 1994, was the first 

asynchronous FPGA, though it includes a clock signal for implementing 

synchronous circuits as well. It was extended from their own synchronous 

FPGA architecture by adding special arbitration cells and modifying the 

function unit. The MONTAGE architecture relies heavily on the regular 

routing structure and fast feedback path to achieve state holding on the 

functional unit (LUT), as shown in Figure 30. Under variation, the wire delay 

of large and long interconnects cannot be guaranteed, and therefore the chance 

of glitches occurring is high. 
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Figure 30: MONTAGE functional unit (configured as C-Muller gate). 

The PGA-STC was developed at U.C. Davis in 1995. The author basically 

proposed that the Xilinx XC4000 series structure should be modified [91] by 

replacing the clock with programmable delay elements, as shown in Figure 31. 

The idea of the delay-matching bundle-data structure is very similar to clock 

design but distributed across the whole fabric by matching the timing of each 

individual functional-unit computation time. This bundle data technique could 

be highly-efficient in terms of minimizing the area and power overhead. Yet 

under variation and at below nominal voltage level, the delay element might 

suffer more than the function unit itself. The walk-around strategy could be 

used to increase the matching delay line with an extra-long margin for 

variability, but this will then defeat the objective of self-time implementation 

since a similar result in dealing with variation can be achieved in an 

asynchronous architecture by lowering the clock speed or by providing an extra 

timing margin or guard-band. 
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Figure 31: PGA-STC functional block with programmable delay 

element. 

The STACC is an architecture developed at the University of Edinburgh by 

Payne [92]. It is a dedicated architecture for the implementation of four-phase 

bundled-data systems. Its architecture is based on that of fine-grain FPGA 

architectures where the global clock is replaced by an array of timing-cells that 

generate local register control signals. All of the above asynchronous FPGAs 

amend the function units to avoid hazards in signals, and use timing 

assumptions to guarantee the correctness of the asynchronous circuits. This 

structure has been proposed to replace the clock resources with a structure 

similar to a micropipeline [108] together with programmable delay (PD) 

elements . This could be a promising strategy to deal with variation. However, 

the original paper presented a very conceptual design without a detailed 

description of implementation and only simulation data. 
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3.6.2 Type-2: High Performance Architecture 

Teifel and Manohar presented a fine-grain and highly pipelined asynchronous 

structure as a basis for their high performance asynchronous FPGA 

architecture [96]. The proposed programmable-asynchronous-pipeline-array, 

or so-called PAPA [94, 98] architecture comprises a completely new logic 

element compared to the traditional FPGAs in which there are special design 

functional units and merge, split, source, sink, copy, token units are used to 

support dataflow control, as shown in Figure 32. The handshake protocol used 

is 4-phase dual-rail (4P-DR) where each functional unit can be closely pipelined 

from one to another with the supported routing structure.  

 

Figure 32: PAPA architecture logic block [98]. 

The LUT of the PAPA architecture LUT uses pre-charge half-buffer (PCHB) 

circuit, which is similar to the architecture presented by Wong, et al. [100], so 

that the PCHB circuit performs computations using a network of pull-down n-
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type transistors. Both architectures use the similar general PCHB template as 

the building block, but architecture presented by Wong, et al. [100] is 

fundamentally  different in that the granularity is coarser with a cluster or 

CLB-equivalent structure. Both of these architectures are not only great for 

high throughput performance thanks to their inherent pipeline structure, but 

also robust to PVT variation as in a QDI circuit. Measurement results [6] 

demonstrated that these asynchronous architectures can work at wide ranges 

of voltage and temperature. This further proved that this class of asynchronous 

circuit designs might be a promising avenue addressing the concerns about 

variability.  

Several patents have also been successfully filed resulting from collaborative 

work on PAPA’s architecture as follows: 

 Reconfigurable logic fabrics for integrated circuits and systems and 

methods for configuring reconfigurable logic fabrics, US 8575959 B2  

[109]. 

 Programmable crossbar structures in asynchronous systems, US 

8300635 B2 [110]. 

 Synchronous to asynchronous logic conversion, US 8291358 B2 [111]. 

 Programmable asynchronous pipeline arrays, US 7157934 B2 [98]. 
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The Achronix  Semiconductor Corporation [106] used the PAPA 

architecture as the basis for the launch of the first commercially available 

asynchronous FPGA. Their product family targeted high performance markets 

such as the military, networking and telecommunications sectors. Fabricated 

at TSMC 65nm technology with a density of 164K LUTs with all the additional 

memory, multipliers, SerDes, PLLs and memory controller hard blocks, the 

company’s products were claimed to be the fastest FPGAs in the market in 

2008 with a maximum frequency of 1.5GHZ [112].   

3.6.3 Type-3: Communication Efficiency (2-Phase Dual-Rail or LEDR) 

Phase logic (PL) [93] and level-encoded dual-rail (LEDR) [113] both use  2-

phase dual-rail (2P-DR) delay insensitive (DI) data encoding schemes. In this 

communication scheme, two wires/rails are used. Similar to the 4-phase dual-

rail (4P-DR), both data and control information are encoded in the dual-rail 

package. In 4P-DR, the (0,0) codeword is used as a spacer and (1,1) is unused 

or invalid, as shown in Figure 33 (a). In this type of communication, the 

codeword always has to return to (0,0) as the “spacer” between valid data. 

Whereas, in 2-phase communication the efficient is higher, this is because all 

the codewords are set to indicate a valid data. As such, the upper wire/rail of 

the code holds the standard single rail data value and the lower one is the 

parity bit indicating the phase; see Figure 33(b). Since no return-to-zero phase 

is required, the 2-phase or LEDR is also classified as a non-return-to-zero (NRZ) 

protocol. 
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Figure 33: 4P-DR and LEDR communication. 

The uniqueness of this encoding technique lies in the fact that the phase 

always alternates with every new data arrived, between phase 0 and phase 1 

(or “even” and “odd” phases). For example, in the even phase the code word for 

0 = (0,0) and for 1 = (1,1). In the odd phase 0 = (0,1) and 1 = (1,0).  

Investigation of the programmable phase logic (PL) with this protocol started 

in 2001 by Traver et al. [114-116]. The authors proposed the design of the 

LUT4-based phase logic cell to form their basic FPGA logic elements (LEs) as 

shown in Figure 34. This was achieved by wrapping the phase control logic 

around the 4-input lookup table (LUT4). The idea of keeping the original LUT 

structure intact has the potential benefit of minimising the need to completely 

redesign or reuse the existing FPGA design tool flow. This bears some 

similarity to the work presented in chapter 4, but at a different level of 

granularity. The problem with the fine-grain PL structure is that it massively 

increases the area overhead with the consequence of higher power leakage 

compared to its synchronous counterpart because of the complex coding. 

Furthermore, similar to the earlier asynchronous FPGA structures presented 

above, the interconnection and communication block that occupied the lion’s 
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share of the soft fabric has not been realised and therefore it is difficult to 

evaluate their potential power and throughput performance. 

 

Figure 34: LUT4-based phased logic gate [115]. 

In summary, theoretically, due to the NRZ scheme, the LEDR protocol has 

potential advantages compared to the 4-Phase return-to-zero (RZ) protocol in 

terms of power and throughput. The potential power improvement is based on 

the efficiency of the coding that reduces the number of transitions on the global 

interconnect. Also, because the NRZ protocol means that no ‘spacer’ is required, 

hence a higher throughput yield may be expected. However, in the hardware 

implementation and due to the complex phase detection logic, data encoding 

and decoding required, the circuit’s size and power increases significantly 

compared to synchronous circuits, for example in the LEDR protocol converter 

shown in Figure 35. This overhead makes it impractical to be implemented, 

especially at the fine-grain level.   
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Figure 35: More complex LEDR protocol converter [117]. 

Nevertheless, as the subsequent work demonstrated [117-120], the LEDR 

protocol can still be beneficial when exploited appropriately. The results 

suggest that the strategy should be to employ the LEDR protocol for global 

data transfer, leaving the local functional and computational units with the RZ 

protocol. Examples of this kind of coarser grain structures are the GALS, 

MPSoC and NoC. 

3.6.4 Type-4: Hierarchical and Coarse Grain Reconfigurable Architecture 

The previous sections have demonstrated that the fine granularity 

asynchronous FPGA may have high flexibility and throughput performance, 

yet it comes with a silicon size penalty. The robust QDI circuit normally 

requires dual-rail interconnects and this may massively increase interconnect 

and routing resources composed of switches and configuration bits that 

constitute a large proportion of the PPGA soft fabric. The idea of increasing 
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granularity by packing together several LUTs to reduce global interconnects is 

not new, and may be called the CLB or cluster. However, for certain 

applications, increasing the granularity to a higher level such as by grouping 

multiple CLBs or functional-units (FUs) together into the same timing domain 

may result in better area and power performance. Each group of FUs can work 

at their individual local clock domain and the interface between island FUs 

will use the asynchronous principle. With the combined benefits of both 

synchronous and asynchronous elements, this has given rise to new approach 

as such as globally asynchronous and locally synchronous (GALS) and 

network-on-chip (NoC) designs.  

 

Figure 36: GALS in FPGA: (a) Homogeneous; (b) Heterogeneous. 

Homogeneous GALS  

The GALS scheme was introduced in ASICs level as early as 1984 [121], and 

Royal and Cheung [99] then proposed to apply the technique to FPGAs. The 
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proposed structure uses a 4-phase bundle-data handshake protocol to ease the 

synchronization problem for systems with multiple modules working at 

different clock domains. The architecture also features micropipelines in the 

routing. The unique aspect of the implementation of this architecture 

concerned their proposal to convert the conventional synchronous FPGA into 

GALS by introducing an asynchronous interface around the regular packed 

synchronous block, known as the asynchronous wrapper. This GALS paradigm 

introducing an asynchronous circuit at a coarse regular size synchronous block 

could reduce the overhead that otherwise may be incur by the fine grain 

AFPGA; however the tradeoff would be reduced flexibility. Also, because of the 

shapes and sizes of the wrappers for computation blocks across the whole fabric 

are the same, as shown in Figure 36 (a), this may reduce the logic utilization 

within each island. The authors also recommended using accurately tunable 

delay lines, which would have the potential benefit of reducing the effect of 

PVT variation [122]. However, this proposed idea required further 

development from it conceptual state. 

Heterogeneous GALS 

Jia and Vemuri [101] proposed a globally asynchronous-locally synchronous 

programmable logic array (GALSPLA) architecture together with a CAD tools 

design flow [102]. Compared to in [99], their proposed architecture is distinct 

in two respects. Firstly, the size and shape of their synchronous logic blocks 

are not fixed or can be in heterogeneous shape, which therefore may help in 
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improving the logic utilization. Secondly, their asynchronous wrapper uses a 

2-phase instead of 4-phase bundle-data communication. Similar to the LEDR, 

the tradeoff of this handshaking protocol is better energy and throughput 

performance, but the phase conversion circuit may be more complex. The 

estimated size overhead for GAPLA architecture adaptation is small (at about 

7%), and experimental results showed a performance improvement of 55% can 

be expected.  

The results show that the concept of using heterogeneous GALS could be 

promising. However, from the point of view of variation tolerance, this 

proposed architecture may have some limitations due to the fact that bundle-

data handshaking protocols rely heavily on timing assumptions. Furthermore, 

at a technology scale beyond 90nm, extrinsic and intrinsic variations become 

more prominent. Research has shown that circuits demonstrating the 

characteristics of both correlated as well as stochastic variability can be 

observed already in commercial off-the-shelf FPGAs [3]. This means that 

within the large locally synchronous block, the variability issue still remains.  

Networks-on-Chip (NoC) 

Networks-on-chip (NoC) represent the next higher level of coarse-grain 

architecture that fit well into the GALS paradigm. Instead of the traditional 

direct wire-to-wire bus connection, the NoC uses a networking strategy where 

data are grouped and transferred in packets. Similar to the pack switching 
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network system, routers are needed at each node to communicate data across 

the chip. Several asynchronous NoC have been proposed in the literatures that 

are composed of asynchronous routers. These include the ASPIN [123] 

architecture that uses bundle-data within the router and QDI circuits for long 

interlinks, MANGO and QNOC[124] which use standard 4-phase bundle-data 

and later use 2-phase mousetrap protocols [125], and the TARTAN [104, 105] 

architecture that uses a 4-phase pipelined protocol interfaced with complex 

memory support.  

3.6.5 Other Asynchronous Style FPGAs 

NCL Logic FPGA: 

The NULL Convention Logic™ (NCL) [103] was patented and trademarked by 

Theseus Logic, Inc. [126] in 1994. It was derived from a mathematical 

expression of process completeness and provided inherently convenient in 

expressing asynchronous digital circuits. 

The NCL is built in a design of 27 fundamental gates with a hysteresis state-

holding capability to retain the output state until all of the input has been de-

asserted again. Each NCL gate is custom-designed at transistor level to exhibit 

state holding behaviours similar to those of the C-element.  



Chapter 3: Existing Asynchronous Techniques in FPGA 

87 

 

 

Figure 37: (a) Basic reconfigurable NCL LE; (b) 27 fundamental NCL 

gates [127]. 

Smith [127] has proposed two versions of an FPGA logic element (LE) designs 

that can realize all the 27 NLC fundamental gates, as shown in Figure 37. The 

design wraps the modified LUT with threshold logic at the fine-grain level. The 

NCL gates could also be delay insensitive, but the author only cited 

comparative simulation results for only the area efficiency, without any 

attention given to speed performance and strategy toward PVT variation. Even 

with the significant saving of logic gates presented in the optimized version of 

the LE, its fine granularity structure means that massive area overheads 

might be expected on area compared to the synchronous counterpart. Also the 

structure presented was incomplete, lacking interconnect strategy and 

potential flow control between the proposed LEs. Even though the proposal 
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was later elaborated [128] with grouped LEs or CLB for hierarchical approach, 

the work is still very immature in terms of what be required to form a basic 

FPGA architecture. 

Multi-Style and SAFE – eFPGA  

The TIMA Lab in France has presented a unique fully-customized 

asynchronous FPGA that has been prototyped in 65nm CMOS technology [85, 

129, 130]. The architecture supports multiple style asynchronous logic, 

including 2-phase, 4-phase communication protocols and 1-of-n encoding. The 

main motivation for using asynchronous logic in this work was to present an 

electrically balanced circuit that is robust against side channel attacks (SCAs) 

dedicated for security applications.  

The lack of a global clock in asynchronous logic mean that the system is more 

immune to simple-power-attack (SPA) and differential-power-analysis (DPA) 

attacks, and the QDI circuits or the general 1-of-n coding lead to data 

computation and communication at a stable Hamming weight. This reduces 

the power consumption dependency that can be exploited by SPA, DPA and 

electromagnetic-analysis (EMA) attacks.      

The research in the above work focuses on two aspects. The first is a platform 

to support flexible styles of asynchronous implementation, and the second is to 

increase security levels against SCAs. The inherently asynchronous structure 

may also be robust to environmental variation, yet no relevant data was 
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presented by the authors. The security benefits of asynchronous logic might be 

an interesting direction for investigation in research but is not the main focus 

of the present study. It should also be noted that flexibility in style also implies 

that extra configurability resources are needed and will this consequently 

increase silicon area and power overheads. 

3.7 Summary 

This chapter has presented an overview of commonly used asynchronous 

design styles including the bundle-data and dual-rail communication schemes.  

The asynchronous techniques applied on FPGA in the past decade have been 

reviewed. Motivated by either lower power, high throughput performance and 

in the context of variation tolerance, these architectures summarised as follows: 

Type-1, the early development of the AFPGA relied on significant elements of 

timing assumptions to guarantee the correctness of the asynchronous logic. 

This method combines the delays for both FPGA intra-block and inter-block 

connections and replaces the local timing assumption with global timing 

assumption. In general, these types of asynchronous circuits are easier to 

implement and may be with less overhead. However, it is hard to match delays 

for FPGA inter-block connections since the connection path cannot be 

determined at design time. In the larger technology node wire delay can be 

negligible compare to the logic delay, but at modern sub-nano meter technology, 
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delay matching based on delay assumption is hard to achieve especially 

considering process and environmental variations.   

Type-2, this advanced development of the AFPGA focuses on high performance. 

On the one hand, they are somewhat tolerant to operational variations (process, 

voltage, temperature) through SI/DI with none or minimal reliance on timing 

assumptions. On the other hand, they modify the entire FPGA fabric and 

replace the fundamental basic logic block of current FPGA technology. This 

makes the system design process less accessible by significantly reducing the 

usefulness of existing design tools. Furthermore, some of these architectures 

utilised very fine-grained pipelined architectures consisting of excessive 

numbers of C-elements, implying high area and power overheads.  

Type-3, 2-Phase Dual-rail (2P-DR) and LEDR architecture aim to improve 

power and throughput with the optimised NRZ scheme rather the 4-Phase 

return-to-zero communication. Theoretically, higher throughput and less 

energy would be expected because of reduced transitions on the global 

interconnect. However, due to complex hardware implementation of the phase 

detection circuit, the benefit maybe offset with the increase of circuit size. This 

overhead will increase significantly if implemented at fine-grain levels.  

Type-4: As for the NoC and GALS, the trade-off arguments are the same, where 

the higher or coarser grain architecture will improve power efficiency but the 

challenges in technology scaling and increase in logic density result in 
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inevitable variability issues that affect the chip at both the global and local 

levels.  

With the technology scaling continues and transistor sizes shrink to the 

nanoscale, timing variability have becomes a growing concern. Maintaining 

global clock in multimillion logic cells FPGA is becoming difficult; therefore 

asynchronous design styles are receiving growing attention, since 

asynchronous circuits operation do not rely on tight timing margins. Although 

various style asynchronous FPGAs exist as presented in this chapter, but they 

have not achieved it widespread use compare to its synchronous counterpart 

due two main reasons. Firstly, its lack of supportive automated design tool and 

unfamiliarity of the non-clock design concept to the community. Most of 

asynchronous architectures presented in the study modified the traditional 

structure greatly and make it hard to incorporate or to reuse with existing 

design flows. Secondly, asynchronous handshaking logic normally incurs large 

area overhead especially implemented in fine granularity level.  

The works in this research focus on improving the reliability of the FPGA 

architecture with the support of asynchronous techniques while keeping most 

the fundamental structure of traditional FPGA intact and therefore allows the 

reuse of existing commercial design flows. The proposed architecture will 

compromise between types (1), (2) and (4). The objective is tries to strike a 

sensible balance between maintaining the fundamental FPGA’s structures 

whilst achieving full asynchrony in places where it matters most as follow: 
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1. Maintaining the existing FPGA block structure and maintain the 

possible reuse of existing commercial design flow. 

2. Making critical interconnects paths DI for latency variation tolerance. 

3. Improve or at least maintain throughput performance. 

4. Keep the area and power overhead of the asynchronous handshaking 

logic at minimum by clustering the logic block similar to type-4 but 

balance at the right granularity level. 

Chapter 4 present the implementation and analysis of the asynchronous FPGA 

architecture base on the above specification. 
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Chapter 4. Distributed Control Asynchronous FPGA 
Architecture 

4.1 Introduction  

As mention in the previous chapter, the purpose of this work is to investigate 

a practical approach from the architecture point of view to deal with the 

variability challenges faced in the current and future FPGA technology. 

Asynchronous logic is known to be highly resilient to variability; therefore the 

potential for this approach is attractive. However, various trades-offs with 

asynchronous logic implementation need to be studied in detail in the context 

of field programmable gate arrays (FPGA). This chapter proposes an 

asynchronous FPGA architecture that maintains the basic logic element of the 

conventional FPGAs, allowing maximum reusability of existing automatic 

design flows. Interconnects of this architecture are delay-insensitive (DI) and 

the handshaking is achieved through a distributed controller on every cluster. 

This architecture is mainly aimed to tolerate latency variability resulting from 

the process and environmental variations in modern CMOS process technology. 

In addition, this newly proposed asynchronous architecture also facilitates the 

investigation of systems powered by nondeterministic Vdd sources such as 

energy harvesting systems. Variation tolerance of the architecture is achieved 

by retaining the local computational logic element in single-rail and replacing 

the global clock resources with DI handshaking interconnects. The remainder 
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of the chapter describes the implementation of the medium-grain wrapper 

based asynchronous FPGA structure and its essential components in detail 

followed by a proposed design flow. Variability simulation results are also 

presented with case study implementations. 

4.2 Asynchronous Wrapper 

The Fully-Asynchronous FPGA architectures that are fine-grain or completely 

modified the conventional FPGA structure, for example the highly-pipelined 

PAPA architecture [94, 96] may be highly resistant to variation. However, 

these architectures come with high area and power overheads. Moreover, the 

design process for fine-grain FPGAs is not straightforward and usually 

presents a steep learning curve to the designer.  

The proposition of wrapping the synchronous-block or Intellectual-property (IP) 

units with handshaking logic that communicated asynchronously is not new. 

Such GALS scheme has been introduced since early 80’s [121] and was later 

proposed to apply the technique to FPGAs in [99]. However GALS scheme is 

normally coarse-grain architecture. The granularity of the GALS scheme 

affects the logic usability and tolerability and not able tolerate random 

variation within the synchronous island block. Also, such systems generally 

require a significant alteration of existing FPGA tool design flow.  Therefore 

one strategy to increase acceptability is to retain the existing design flow as 

much as possible. This can be done by keeping the underlying FPGA’s logic 
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structure untouched and introducing a wrapper circuit around it to replace the 

clock tree. This would allow the reuse of the flow in logic synthesis, with the 

optimisation and packing processes largely the same for the data path.  

In addition, asynchronous circuits tend to be based on relatively complex 

coding methods, such as 4-phase dual-rail (4P-DR) or, in general, m-of-n [83]. 

This implies large area overheads. Asynchronous circuits supposedly involve 

low power since they can be made to work only when necessary and do not 

require clock trees. However, in general, complex coding may result in an 

increase of interconnects and switching activities in the FPGAs unless in low 

power coding such as 1-of-4, leading to more dynamic power consumption, 

potentially negating the savings from removing clock signals. The larger circuit 

size may also lead to greater power leakage. Thus the proposed wrapper 

structure is medium-grain, with one wrapper per cluster. This structure sits 

between the fine-grain structure, with one wrapper per logic cell, which is high 

in area overhead and dynamic power, and the fixed coarse-grain structure with 

one wrapper per multiple clusters may reduce the number of global 

interconnects but potentially also reduces its logic utilisation such as in the 

GALS or NoC approaches. The top-down descriptions of the distributed control 

asynchronous wrapper in the FPGA architecture are given as follows.  
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4.3 Top Level Overview of the Architecture 

The proposed wrapper architecture maintains the commonly used island-style 

structure as in most commercial FPGAs, as shown in Figure 38 . The routing 

channels consist of wire segments, switch boxes (SBs) and connection boxes 

(CBs) surrounding the logic cluster (LC). Apart from the clock circuits, the 

conventional FPGA structure has two types of circuits: 1) small logic islands 

(logic clusters); and, 2) large interconnects. In each logic cluster, there are 

several programmable logic elements (PLEs), which are the same as the logic 

clusters in standard existing FPGAs, and a David Cell (DC) element [131]. 

Because the global clock signals have been removed, the DC is used to 

implement distributed control in their place. 

 

Figure 38: Island style architecture. 

Latency variation within the local areas of limited size tends to be easier to 

manage, however, tolerance for unpredictable latency variations in extreme 
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cases is more crucial for long interconnects. Therefore the approach taken is 

retaining the basic conventional FPGA cluster-based structure relatively 

unchanged, this makes each of the cluster behave functionally as a block self-

timed to its environment and replace the synchronous clocking resources with 

distributed DC-based control and DI interconnects. The design of the LC and 

the principles of DC control are demonstrated in the following sections. 

Table 4: Choice of architecture structure. 

Architecture Overview 

Parameter value Reference 

Architecture Island style [132] 

LUT Size (K) 4 * Inputs [133] 

Logic Cluster Size (N) 4 * PLE [133] 

Cluster input Channels (i) 16 [133] 

Channel Type Dual- rail/Channel [83] 

Switch Box (SB) Universal [134] 

Connection Box (CB) Normal [134] 

Process Technology UMC-90nm CMOS - 

Handshake Protocol 4-Phase Dual-Rail [83] 

David Cell (DC)  [135] 

The granularity or structure choice of FPGA affects the logic utilization, speed 

and power performance. This is usually based on three vital logic cluster 
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parameters which are the size (K) of the lookup table (LUT), the cluster size 

(N) or the number of LUTs in a cluster, and the number of inputs per cluster 

(I). In general, increasing the sizes of K and N will improve functionality and 

performance, but at the same time escalate the area exponentially. Cluster 

input size, I, should be kept as small as possible; however, if I is too small, 

numerous logic elements in the cluster may be unavailing [9, 136]. The classic 

FPGA architecture uses four LUTs per cluster and four inputs for each LUT. 

In this setup, the default values are chosen. Table 4 shows the structural 

choices made for the proposed asynchronous FPGA architecture. 

4.4 Asynchronous Wrapper Structure 

The fundamental block of a conventional FPGA comprises a lookup table (LUT), 

a register (DFF) and a multiplexer (MUX). The terminology in Altera is called 

a logic element (LE) or logic cell in Xilinx. In this design, asynchronous logics 

are introduced wrapping around the fundamental logic blocks or LEs. The 

newly designed structure that combines the wrapper and logic blocks 

constitutes the new programmable logic element (PLE). This is shown in 

Figure 39. 
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Figure 39: Wrapper based programmable logic element (PLE). 

The wrapper consists of the following circuits: 

 Programmable completion detection (PCD) 

 Trigger selection switch (SW) 

 Programmable delay (PD) 

 Single- to dual-rail converter (CONV) 

 Completion detection (CD) 

The PCD is used to compute the complete arrival of all valid data. When all 

data arrived, two “ready” signals will be generated from the PCD. This is for 

the two possible used for this input data. Firstly, if the data could be used for 

an operation involving only the local PLE the “ready” signal goes directly to 

the (T.SW – “to SW”) to enable the local LUT to start data processing. Secondly, 

the data may be used for a concurrent operation with other PLEs which may 

or may not be in the same cluster. In this case, the ready signal goes to the 

David Cell (DC)-based distributed control to synchronize with the input data 

for other PLEs (via T.DC – “to DC”) and when the synchronization is complete, 

the SW will be enabled by the F.DC (“from DC”) signal from the DC circuit. 
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The SW is basically a dual-input multiplexer which can select ready signal 

either directly from the PCD or from the distributed DC control when 

synchronization is required. In order to minimize the intermediate transitional 

activities of the circuit and guarantee that the LUT is activated only when the 

data is ready for the entire operation, the enable logic is implemented on the 

LUT. 

The PD is used to set up delays to match with certain operations. Here the first 

PD is used to match the latency of the LUT and the second PD the latency of 

the latch data and to indicate the “ready” state of the single-rail data from the 

MUX. 

CONV is purposed to transform the original single-rail data into a dual-rail 

encoded data for DI communication. CD is completion detection indicating 

validity of dual-rail data has been generated. The CD is optional depending on 

where the control signal came from (either “T.SW” for independent 

acknowledgement or “F.DC” for consolidate acknowledgement).    

The wrapper commission in the following manner, when all input valid data 

are detected, PCD generates a trigger signal. The trigger signal will then act 

as a start indication for LUT to commence computation. PDs match the 

computation time and used to control the effective latching timing. The 

computed result can be then converted from single-rail data to dual-rail before 

propagating to the next stage. The output of the CD is an “ACK” or “Done” 
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signal, generated to the previous stages when the input data has been 

consumed.  

4.4.1 Programmable Completion Detection (PCD) 

 

Figure 40: Programmable completion detection. 

The PCD is the programmable completion detection circuit constituted with C-

element and OR-gates as shown in Figure 40. The OR-gates allows the 

straightforward detection of valid signals from spacers or empty code-words in 

dual-rail encoding. The typical dual-rail code show in Table 5 

Table 5: Dual-rail code-words. 

Code-words Code 

0,0 Spacer 

0,1 0 

1,0 1 

1,1 Not valid 

Because the code-word (1, 1) is illegal and cannot occur, an OR gate is sufficient 

to safely indicate that a single data channel is “valid” or “empty”.  

The completion detection valid-signals can be achieved with C-element that is 

a commonly used component in asynchronous circuits [83]. The C-element 
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provides the hysteresis in the empty-to-valid and valid-to-empty transitions 

required for transparent handshaking. It waits till all inputs to be valid before 

setting the output to high, and waits for all its inputs to become empty to set 

the output to low. For other input combinations, the output does not change. 

C-elements are thus ideal for collecting the states of multiple channels. 

The proposed PLE, the input size of the C-element is four, however, in the 

actual implementation, not all input will be usable. In order to allow the 4-

inputs C-element to function correctly, flexibility configuration are required in 

such case. This is resolved by utilising extra three multiplexers to link the idle 

channel (B, C or D) to Channel A, which is assumed to be always in operative 

if the PLE participates in the computation. The process of enabling or disabling 

the relevant MUX for the relative channel is assumed to be handled by 

automated tools during the synthesis and mapping flow. 

4.4.2 Switch Box (SW) Circuit 

The SW trigger switch box in Figure 41 is a simple programmable multiplexer. 

The purpose of this SW is to facilitate the selection of the trigger or valid signal 

between the PCD block and the DC-control. For concurrent operation, the 

“F.DC” signal is used to synchronise operation for multiple PLEs. The example, 

the subsequent case study section clarifies the function of the SW. 
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Figure 41: SW box circuit. 

4.4.3 Programmable Delay (PD) Unit  

The bundle-data is one of the most efficient approach asynchronous 

handshaking. Delay-element is used here for matching for the latency of the 

data path element being bundled; this local control signal has the equivalent 

functions of clocks of conventional LE. Various delay elements was introduces 

in chapter 3. However, the most common implementation is the chain-

inverters circuit. Considering the process and environmental variation, the 

presented PD is made to be tuneable.  The circuit with four selectable ranges 

PD is shown in Figure 42.  

 

Figure 42: Programmable delay circuit. 

Provided that the variability information concerning the environmental and 

power supply is availble from characterisation process, the PD range can be 
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set at configure time. The PD also can be beneficial in facilitating variation 

mitigation techniques such as chip-wise configuration or late binding [3].  

In order to retain average rather the worst-case performance under a wide 

range of variability, finer tune of programmable delay element may be required. 

However, the implication is higher area overheads in PDs.  

4.4.4 Single-Rail to Dual-Rail Conversion Circuit (CONV) 

Converting the single-rail data output from LE to dual-rail format for the DI 

interconnects is the responsibility of CONV in Figure 39. This is shown in 

Figure 43.  

 

Figure 43: Dual-rail conversion or DEMUX circuit 

At the input of the LE, one of the data wires gives the single-rail binary value 

of valid code-words directly. Once it has been ensured that spacers do not 

propagate to LE, this wire can be used directly for the data input. 
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4.5 Area, Power and Speed Performance 

4.5.1 Area Overhead Calculation 

Asynchronous circuits tend to be larger than synchronous ones. In the case of 

full SI/DI there are overheads in both the control circuits replacing clock 

systems and data path circuits due to the complex coding, such as 4P-DR. Even 

with bundled-data scheme, the clock replacement delay-elements may still be 

more sizable than the synchronous clock scheme.  

Table 6: PLE size in terms of number of transistors. 

BOX BLOCK Parts Included  Total 

Logic 

Element 

LUT SRAM * 16 96 

Mux Tree (K = 4)  

∑ 2𝑖𝑘
𝑖=1   

30 

Buffer * 30 60 

DFF  24 

2:1 MUX  4 

Total: 214 

Wrapper PCD SRAM * 3 18 

2:1MUX * 3 12 

Gates  60 

SW 2:1MUX  * 1 4 

 SRAM * 1 6 
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(PD)*2 (Buffer * 10) * 2 40 

(4:1MUX ) * 2  20 

(SRAM * 2)*2 24 

CONV 2:1MUX * 2 8 

Buffer 2 

CD OR2  6 

Total: 200 

With this added resource, many advantages can be gained. This includes 

improved variation resilience, avoiding the inevitable issues synchronous clock 

systems face with technology scaling, and lower power utilisation in low duty-

cycle process. 

Table 6 shows the complexity of the proposed PLE. Notably, the wrapper 

circuit introduced consist of almost equal number of circuit elements to the LE 

itself. This implies that the PLE is almost twice as big in terms of size. Despite, 

the circuit size overhead, the following power analysis shows that power does 

not increase much.  

4.5.2 Power Comparison 

The proposed PLE is roughly double in size the conventional LE. Typically, 

bigger the circuit higher the dynamic power consumption, but this PLE uses 

asynchronous techniques, which is even driven and without the complex global 
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clock tree should save the power used. Yet, the combined effect of these changes 

is uncertain. Although power optimisation is not the main focus for this section, 

it needs to be studied to see if there any radical changes are likely. 

The most fundamental block or the PLE is used as an example. As variations 

are introduced, it is unreasonable to predict that all of the data will arrive at 

the same time. Here the worst case has been assumed where all four data bits 

arrive at different moments in time. This has no effect on the synchronous 

FPGA, since correct operations are guaranteed by the global clock. Only during 

the clock rising edge, stable data is required. But this is achieved by spending 

power on clocks. In the proposed AFPGA, data computation starts only when 

all of the data has arrived. 

 

Figure 44: (a) Synchronous LUT; and (b) PCD asynchronous LUT. 

The power consumption of conventional SRAM-based LUTs and CD-based 

LUTs are investigated in a comparative study using the following set-up shown 

in (Figure 44): 

 Four signals, namely A, B, C and D, arrive at the input of LUT at different 

times. 



Chapter 4: Distributed Control Asynchronous FPGA Architecture 

108 

 

 Signal A is assumed to arrive last and other signals were changing before it 

becomes stable, with 16 transitions between “0000” to “1111”, changing 1 bit 

at a time. 

 When every signal, including ‘A’, eventually settles, output ‘1’ will be 

produced. 

The simulation results are shown in Figure 45. When there is a transition in 

an input signal, the power line will spike. In the synchronous circuit, every 

change of data between valid clock signals changes the state of the LUT 

address and consumes energy. In the asynchronous design, data will not be 

read from the SRAM until it has received the enable signal (En) from the PCD, 

as shown in Figure 45 (b). The PCD circuit consumes relatively little power, 

and they are corresponds to the tiny power spikes between each pair of high 

power signature spikes in Figure 45 (a) and (b).  
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Figure 45: Operation power: (a) synchronous LUT with timing clock; 

(b) asynchronous LUT with PCD. 

This simulation shows that, although the size of the PLE circuit has increased, 

it consumes roughly the same power and energy as the equivalent clock based-

LUT in this setup. Taking into account the power used by the clock tree circuit 

and dynamic clock transition, the asynchronous LUT with CD may produce 

better power consumption characteristics in overall. The power data can be 

found in Table 7. The simulation is relevant to a relatively low duty-cycle 

situation, but because clock distribution is not included for the synchronous 

case, it was not put at an unfair disadvantage.  
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Table 7: Power and energy comparison. 

Circuit Operation 

Energy 

Average 

Single 

Operation 

Power 

Operating 

Voltage 

LE 

(sync) 

1.037pJ 32.41uW 1.0V 

PLE 

(async) 

0.544pJ 17.00uW 1.0V 

Both the power and area comparisons may show significant advantages for the 

asynchronous architecture if the clock tree network resources are taken into 

account. In the synchronous FPGA, the clock itself brings challenges ranging 

from skew, tree distribution and global buffers. Special resources, such as 

DLLs (dynamic link libraries), PLLs (phase-locked loops) and clock multipliers, 

are also needed. Taking all of this into account, the clock resources in the 

synchronous FPGA will require significant amounts of area, power and 

management effort. In general, a 10% overhead on the maximum clock rate is 

recommended to guarantee operation in the presence of temperature variation. 

Due to the scaling of CMOS feature size, FPGA density increases, replacing 

the complex global clock with the asynchronous handshaking circuit provides 

a promising solution to alleviate the above-mentioned problems [137].   
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4.5.3 Throughput Performance  

In synchronous system design, maximum operating frequency is set based on 

the critical path, and normally the maximum clock frequency is set according 

to it. In asynchronous system design, there is no global clock. Data is 

transferred through stages of logic controlled by handshake protocols which 

are inherently pipelined. The faster the data can be transferred from input to 

output, the higher the throughput can be achieved. To evaluate the maximum 

operating rate, the configuration bits or SRAM of the PLE is first configured 

with predetermine logic (within Cadence Virtuoso environment) and the input 

signals are stimulated. The time between the complete valid input data having 

arrived and valid output generated was recorded. The inverse of the delay from 

input to output is the frequency. The peak frequency of the proposed 

architecture was compared with those of various reported asynchronous 

FPGAs and also a commercial synchronous FPGA (Xilinx-Spartan3). Table 8 

shows the throughput performance of various architectures based the 

literature at their nominal voltage level. Throughput performance of this work 

based on a single proposed PLE also included as a reference. 

Table 8: Throughput comparisons of various architectures. 

Architecture Technology Peak Throughput Nominal 

Voltage 

[100] 0.18um 235MHz 1.8V 

[94] 0.25um 395MHz 2.5V 
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[6] 0.18um 674MHZ 1.8V 

AFPGA (this work) 90nm 1.5GHz 1.0V 

[138] 90nm 326MHz system 

clock 

1.2V 

Variations may result in changes in signal arriving times. A signal arriving too 

early or too late may lead to hold and set-up violations in synchronous system 

design. This can be dealt with by slowing down the clock by an appropriate 

degree to allow extra margins for safety reasons. However the problem of 

deriving the appropriate degree of slow-down in any case is significantly non-

trivial [75]. In general, a 10% slowing down on the maximum clock rate has 

been recommended for temperature variation [137]. However, the results of 

another study [139] indicate that chip frequency variation can be up to 30%. 

Table 8 shows that, at a constant Vdd, all asynchronous FPGAs are faster than 

the synchronous Xilinx Spartan3. Moreover, the experiment described in the 

next section demonstrates that the asynchronous structure also exhibits the 

elastic operation of the PLE at a continuously changing Vdd without the 

necessity for specific retiming and slowing down. 

4.6 Variability Evaluation 

4.6.1 PLE Characterisation with Variable Vdd 

The simulation of the PLE circuit was on Cadance tools on UMC 90nm CMOS 

technology. In the analog design flows, the PLE circuit works correctly as 
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designed without logic errors with Vdd sweep between 0.45V~1.00V. The result 

for delay and energy-per-operation over Vdd performance is shown in Figure 

46. 

 

Figure 46: Delay and operational energy at below nominal Vdd level: 

(a) results table; (b) delay and energy plot over Vdd. 

During the simulation, the circuit shows error operation when Vdd is dropped 

below 0.40V. The observation on the timing graph indicated that this is due to 

the mismatch in bundling data in PD. Similar phenomenon, has previously 

been noticed [140], where inverter-chains based delay-element not maintain 

the correct temporal bundling for memory circuits (such as the SRAM cells 

here in the LUT) when Vdd is lowered towards the sub-threshold region. This 

is due to the rates of slowing down on data path are not in parallel with the 

delay-element when Vdd is reduced. 

The PLE works well under different but constant Vdds as long as the bundling 

delay are matched. In terms of energy usage performance, the result is as 
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expected where operation energy are reduced with the drop of Vdd. Another 

observation from the graph indicated that there is a significant increase in 

latency when lowering the Vdd below 0.6V where the two lines crossed as in 

Figure 46 (b), this is the optimum operation energy point where significant 

energy savings can be achieved without much scarified on speed performance.  

Simulation result in Figure 47 shows that the circuit work correctly within 

0.45-1.0V constant Vdd range. Further simulation is carried out to investigate 

how the PLE behaves under a continuous varying Vdd over the range Vdd rage. 

In this experiment, a relatively slow sinusoid signal was applied to the power 

supply instead. The LE was configured as a parity checker for the value of A, 

B, and C and D. The experiment setup was in self-looping test environment 

with the feedback on the completion triggering the next operation. Figure 47 

shows that the parity-checker was producing correct “even parity” bits on the 

output line continuously under varying Vdd. The output speed (out) and power 

rate (Pwr) are relative to the level of the Vdd. 
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Figure 47: PLE working under variable Vdd. 

4.6.2 Corner Analysis for PVT Variation 

Taking into account manufacturing tolerances for devices as well as 

environmental variations in voltage and temperature, circuit behaviour can be 

obtained through simulations with ranges of PVT (process, voltage, and 

temperature) variation. Process corners for the MOS transistors are ss, tt, ff, 

sf, and fs, where t stands for typical, s for slow and f for fast. The first letter in 

a pair usually pertains to NMOS and the second to PMOS. Fast NMOS slow 

PMOS is referred to as ‘fs’ or ‘fnsp’.  

The worst-case (longest) latency is mainly associated with a high 

PMOS/NMOS threshold voltage (ss), high temperature and low supply voltage 

(Vdd) and the best-case is the converse. The programmable delay (PD) and data 

path (or LUT) delays in all process corners have been obtained to provide an 
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overview of the best- and worst-case scenarios for the circuit with respect to 

slow and fast environments: 

Slow environment corners (V =0.5v & T=400K): 

 LUT (ss: tt: ff: snfp: fnsp) = (1.56ns: 0.79ns: 0.43ns: 0.82ns: 0.75ns)  

 PD  (ss: tt: ff: snfp: fnsp) = (1.82ns: 0.91ns: 0.53ns: 1.01ns: 0.84ns) 

Fast environnement corners (V=1.2V & T=273K) : 

 LUT (ss: tt: ff: snfp: fnsp) = (0.20ns: 0.15ns: 0.12ns: 0.18ns: 0.14ns) 

 PD    (ss: tt: ff: snfp: fnsp) = (0.22ns: 0.16ns: 0.13ns: 0.19ns: 0.15ns) 

Figure 48 (a) and (b) show that this PD successfully bundled the LUT delay 

across a wide voltage range when both are in the ss & ff corners. Further 

analysis was carried out to study cases where the PD and the LUT are in 

different corners. The results show that miss matches can occur in both slow 

and typical corners as shown in Figure 49(a) and (b). This demonstrates the 

need for the use of programmable delays (PD) as mentioned in section 4.4.3 

above. 
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Figure 48: PD and LUT delay successfully bundling: (a) Slow corner 

(temperature=400K). (b) Fast corner (temperature=273K). 

 

Figure 49: Cross over at (sf):  corner (a) Temperature=300K. (b) 

Temperature=273K. 

4.7 Logic Cluster Design 

The logic cluster (LC), consisting of a group of PLEs, is the next level in the 

hierarchy. The unit in the same hierarchical layer in conventional FPGAs is 

known as the configurable logic block (CLB) in Xilinx terminology and the logic 

array block (LAB) in that of Altera.  
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Similar to most commercial FPGAs, the cluster in the proposed architecture 

(Figure 50) consists of four PLEs with the addition of one David cell (DC), 

which forms part of distributed intra-cluster and inter-cluster control. The 

general cluster structure is shown in Figure 50. 

The DC-based distributed control in the cluster takes charge of the control path. 

When input data is ready, the PCDs in the PLEs in the cluster will generate 

trigger signals which may be collected by the DC control for group triggering. 

Some PLEs may need to execute concurrently and others sequentially. The SW 

allows either the selection of self-triggering directly from its corresponding 

PCD for sequential operation or group-triggering from the DC for concurrent 

operation. After computation is completed, the DC withdraws the data and 

propagates the control signal to the next stage. This structure also allows data 

feedback channels from the output of each PLE to the input PCDs of other 

PLEs. The principle of DC control is demonstrated in an example in the 

following section. 
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Figure 50: Logic cluster with DC. 

4.7.1 Distributed Control with David Cell 

In this proposed architecture, David Cells (DCs) are used to implement the 

distributed control, since this kind of control works based on handshake 

protocols. Distributed control using DCs was first proposed by David [131]. 

Extensions with the direct mapping of asynchronous control circuits from Petri 

Nets to DCs have also been reported [135, 141-143]. 

Basic structures of DCs are shown in Figure 51 (a), consisting of two inputs 

(“set” & “reset”), two outputs (“back” & “Fw”), and an SR latch for state keeping 
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(Q and Qb). Both of the inputs are active-low in the implementation. When the 

input “set” is active, Q will be set to high and the inversely active “reset” input 

will set Q back to low. The “back” output signal basically works as an 

acknowledgement of the previous stage of the pipeline for the signal having 

been received, and the “Fw” output signal tells the next stage that the new 

signal is ready to be consumed. 

Figure 51 (b) shows how the basic structure of DC can be modified as 

distributed control for PLEs for computation in the cluster. The signal coming 

into a logic cluster can be from multiple sources, and therefore there will be a 

group of “set” signals (s1 – sn) to trigger signal “Q”. When the control signal 

“Q” is activated, computation will start. An acknowledgement signal “ack” will 

then be generated after the valid signal of the valid output has been produce 

by the CD circuit. The “ack” signal replaces the “back” signal of the basic DC 

structure. Likewise for the output, there may be multiple reset signals (r1 - rn) 

to reset the control signal “Q” of the DC. 
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Figure 51: (a) Basic David cell Structure; (b) DC for distributed 

control; (c) set and reset logic boxes for DC implementations. 

The control flow between LCs can occur in different topologies. Programmable 

logic blocks, namely “Logic 1”, “Logic 2” and “Logic 3” are used to provide this 

required flexibility. “Logic 1” and “Logic 2” are the set function of signal (s1 – 

sn) that will trigger signal “Q” and the forward signal (“Fw”). The reset 

function “Logic 3” based on signals (r1 – r n) will reset the DC back to its 

default state. 

The programmable logic blocks can be implemented with LUTs to cover all 

possible combinational relations of their inputs. Each logic block has four 

inputs with a cluster structure of n=4. This is shown in Figure 51 (c) in more 

detail. 

A basic timing assumption in these programmable logic blocks can help to 

restrict them to a practical scale. Although this makes them not strictly SI, the 

delays within such small local areas can be more easily and reliably managed. 
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Based on this argument, it was decided to choose small-scale timing 

assumptions in this tradeoff. 

4.7.2 David Cell Control Transition Flow 

 

Figure 52: Data flow transition example with DCs. 

DC control may be used to manage a control path across multiple clusters, 

dealing with both intra- and inter-cluster management. Figure 52 shows an 

implementation of a sub-unit of an ALU, where input data ‘A’ and ‘B’ will be 

stored in registers before being passed to Cluster 3 for computation. The output 

of the computation will then be stored in Register C (Cluster 4) to complete the 

sub process (in logic terms: Reg C = Reg A + Reg B). The numbers 1 - 10 are 

used to show the sequence of the transitions.  

(1) Assuming data A and B were stored in Clusters 1 and 2, the 

forward signals Fw1 and Fw2 will be collected as the SET signal 

to trigger the DC in Cluster 3. 
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(2) The trigger (Trg1) rises, and computation will start. 

(3) The completion of computation in Cluster 3 will generate an Ack 

signal that will then reset both of the previous stage’s clusters to 

allow the RESET or clearing of data. Note that the result of data 

computation is ready at this stage. 

(4) The Fw1 and Fw2 signals will go “low” after being reset in stage 

3, indicating that the data is cleared. 

(5) The Fw3 signal will be activated following the transitions in stage 

4 allowing the data generated in stage 3 to be passed along and 

consumed by Cluster 4.  

(6) Then the same transition as stage 2 happens again in Cluster 4 to 

start storing data in Reg C. 

(7) Upon the completion of storing data in Reg C, the Ack2 signal is 

generated to clear its previous stage. The DC in Cluster 3 will then 

be reset. 

(8) The Trg1 signal goes to “low” after being reset. 

(9) Then the Fw3 signal will also go to “low” following the reset of 

stage 7. 
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(10) The process is completed and the DC in Cluster 4 can send a new 

request to its output (next) stage and a new sequence of transitions 

can start. 

4.7.3 Implementation Case Study 

This section describes an example of a sub system design which demonstrates 

the possible ways of configuring such systems on the architecture described in 

the preceding sections, as well as indicating the flexibility and features of this 

architecture.  

A four-bit ripple-carry full adder demonstrates the flexibility of intra-cluster 

operational organization and the independent DC control of the PLEs. Figure 

53 shows the implementation of the four-bit ripple-carry adder using two logic 

clusters. This can demonstrate the typical behaviour of the ripple-carry adder, 

where each stage waits until the previous stage has completed computation 

and propagated its carry output signal. 
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Figure 53: Four bit full Adder example. 

Signals A0-A3, B0-B3 and CIN are assumed to be from the previous stage. The 

arrival of the signals can be in any order due to irregular interconnect lengths 

and computation latencies, based on the assumption of overall DI inter-cluster 

communication. When some of the inputs, A0-1, B0-1, CIN, from the previous 

stage have arrived in Cluster 1, some of the PLEs in this cluster can start 

computation. For example, LE2 may start its computation to generate its carry 

out signal C1. The trigger signal for LE2 was initiated from its corresponding 
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PCD once valid A0, B0 and CIN signals have been detected without any 

mediation from the DC control. 

The C1 signal generated by LE2 is fed via an internal feedback channel (such 

channels were mentioned above although they are not shown in Figure 11) to 

satisfy the PCD conditions of LE3 and LE4. Their PCDs produce two trigger 

signals to the DC, which is waiting to collect these along with the PCD signal 

from PLE1. Once all three of these signals have been collected by the DC, it 

generates a merged trigger signal for the parallel triggering of LE4, LE3 and 

LE1. This merged trigger signal is in fact passed through all four PLEs through 

a chain consisting of all four SWs. The SW in PLE2 will not generate a second 

trigger locally for LE2 because it is programmed to respond to its local PCD 

instead of the DC control. The resulting concurrent action among PLEs 4, 3 

and 1 generates three latched outputs S0, S1 and C2. 

After both clusters have completed their computations, the acknowledgement 

signal ACK will be generated by the output CD together with the output data 

to allow the previous stage to clear its data. There may not be a need to collect 

the CDs from all PLEs for this acknowledgement, since the designer may view 

the cluster as a small enough block so that internal timing assumptions can be 

made. In this case, a subset of CDs is used instead. An acknowledgement is 

generated for the previous stage (only 1 “ack” for all input signals).  
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The forward signal (Fw) will then be generated once the previous stage 

releases its data and passes the control to the next stage to start a new round 

of operation. The same operation happens at the next stage interface, and once 

the data has been used, the ACK coming from the right will reset the DCs in 

both clusters 1 and 2. In this work, these “Fw” & “ack” control signals will be 

routed using the share flexible interconnect resources discuss earlier in section 

2.2.9.  

The circuit in this example demonstrates that not all PLEs must have all of 

the components included in Figure 39 in use. For instance, only when an 

acknowledgement signal is needed from a PLE will be use its right hand side 

CD block. The example also demonstrates the flexibility and programmability 

of the DC set and reset blocks. In this case, the DC setting is not directly 

related to the PCD of PLE2. 

4.7.4 Design Flow 

By retaining the LE structure of conventional FPGAs and having a similar 

organization at the cluster level, the proposed asynchronous FPGA 

architecture to a large degree allows the synthesis of PLEs or clusters through 

the existing FPGA design flow. Because of the replacement of clocks with the 

DC based distributed control, not all parts of the existing LE and LAB design 

flow can be directly applied. However, the basic mapping method should be 
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directly applicable in principle, although modifications are needed to 

accommodate the new control structure.  

As for the DC-based distributed control, direct mapping for asynchronous 

circuits provides a suitable solution. Petri net specifications of the control path 

can be directly mapped onto a DC-based control structure. The proposed design 

flow for systems using this asynchronous FPGA architecture is shown in 

Figure 54. 
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Figure 54: System design flow. 

The system specification is assumed to be in a design language such as Verilog. 

Certain existing asynchronous FPGA design flows, based on de-

synchronization techniques, apply the existing synchronous EDA toolkits 

directly. In this work, the Verilog specification, before applying the existing 

synchronous toolkits, is passed to the next step where, after partition, 
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allocation, and/or scheduling, the design is divided into control, data path 

function blocks, and global data links. This step is similar to the automatic 

division of control and data paths in the process described by Shang [135] and 

their techniques there can be re-used with minimal modifications. Here, only 

after partitioning are the functionalities synthesized using the existing 

synchronous toolkits. 

Control is represented in Petri net models, which can describe all of the types 

of control flow found in a Verilog system specification. For instance, common 

control elements such as fork, join, and arbitration can be represented by the 

Petri net models in Figure 16 which is taken from [135]. 

 

Figure 55: Petri net models of control elements. 

Such a Petri net control model can then be used to generate the DC based 

distributed control with the direct mapping techniques described by [135]. For 

example, as shown in Figure 16, the positions in this Petri net model directly 

indicate the DCs. In other words, for each position in the control Petri net 

model, a DC is specified in the final implementation. The transitions and 
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connection topology among the DC positions are implemented through the SET 

and RESET logic of the DCs and the interconnections between them.  

The data path function blocks can be similarly derived through a step of colour 

Petri net modelling [143]. Once the general function blocks have been 

synthesized, they need to be refined based on the FPGA’s granularity for 

partitioning, depending on the PLE and cluster sizes. This is not available 

directly [143]. However, this is a standard step in converting a general VLSI 

design to FPGA implementation, and so the same methods can be applied. By 

keeping the PLE and cluster sizes of the conventional FPGA, this step is made 

straightforward. This is then followed by obtaining the PLE and cluster 

circuits using existing FPGA mapping techniques. 

The global data interconnect fabric mainly consists of the channels for data 

communication. In this design flow it is implemented directly in dual-rail DI 

circuits. Their generation is also a straightforward process. 

4.8 Summary 

This chapter describes the detailed circuit realization of an asynchronous 

FPGA architecture. This is different from existing asynchronous FPGA 

architectures, and strikes a sensible balance between homogeneity to modern 

synchronous FPGA architecture and full asynchrony in places where it matters 

most, namely long interconnect links. This approach allows more flexibility in 

adjusting levels of DI according to application needs.  
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This approach retains the single-rail data representation of conventional 

FPGAs “in the small” or local cluster. This maximises the reusability of exiting 

FPGA logic mapping tools. On the other hand, by introducing delay-

insensitivity “in the large” into the inter-block long data links, the variation 

tolerance and latency robustness inherent to asynchrony is provided. 

This hybrid structure also provides advantages of both single-rail computation 

and dual-rail communication. This is due to the efficient computation with 

single-rail and the correct operation across a wide Vdd range from dual-rail 

asynchrony.  

A number of structural choices were made; for instance, the granularity and 

block structures follow current commercial FPGA practice.  

The basic building block of the architecture, the programmable logic element 

(PLE), has been designed in detail. It includes a number of finer grain 

components, including a logic element (LE) inherited directly from current 

commercial FPGAs, completion detection circuits and delay matching / data 

bundling circuits.  

Programmable completion detection and bundling delays in the PLE cater for 

functional configurability and variation tolerance. This type of PLE has been 

shown to work under widely variable Vdd with reasonable latency and energy 

behaviours.  
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On the next level above, the PLEs are the clusters. The standard cluster has a 

David cell (DC) distributed control unit managing the operations of the PLEs 

in a cluster. This asynchronous control fully replaces the intra-cluster clock 

system in current commercial FPGAs, providing the complete equivalent 

functional set which includes both in parallel and sequential operations of the 

PLEs in any possible arrangement.  

A design flow for systems in this architecture has been proposed which makes 

maximal use of existing asynchronous and FPGA synthesis methods. Case 

studies demonstrate the functional capabilities of the architecture. A four-bit 

ripple carry full adder showcases the flexibility of intra-cluster DC control. A 

further example additionally demonstrates inter-cluster control from a single 

DC. 

Summary of the performance analysis shows that, although power and 

performance can be achieved with the asynchronous wrapper based technique, 

the area overhead is still substantial. In particular, the computation logic is 

compact compared with existing fine-grain asynchronous FPGA methods, but 

the fully dual-rail structure for interconnects required by DI may not be 

necessary. In the next chapter, the interconnect structure will be optimised 

based on information made possible from recent advancements in variation 

instrumentation and variability maps. 
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Chapter 5. Asynchronously Assisted Logic (AAL) 
Scheme 

5.1 Introduction 

Asynchronous logic has been shown to be more robust to variations but may 

have higher circuit size and power overhead compared to synchronous systems. 

However the degree of asynchrony employed in system designs is the result of 

a trade-off between resources and functionality, and the complete “DI in the 

large” method for interconnects the previous chapter may turn out to be too 

expensive. This chapter describes the implementation of Asynchronously 

Assisted Logic (AAL) hard circuit blocks into the Xilinx FPGA’s CLB. This 

optimised scheme is intended to increase wide range latency variation 

tolerances caused by parametric, voltage supply and temperature (PVT) 

fluctuations, where there is a need, to improve on the global DI interconnect 

structure from the previous chapter. The proposed method suggests deploying 

configurable AAL blocks to reinforce only the variation critical paths with the 

help of variation maps, rather than to re-map and re-route. The layout level 

result shows this method's worst case increase of CLB overall size to be 6.3% 

only. If taking account of the interconnect area size into the area calculation, 

the area overhead will be significantly lower. This optimised variation aware 

strategy retains the structure of the global interconnect resources that occupy 

a large proportion of the modern FPGA’s soft fabric, and yet still permits the 
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dual-rail completion-detection (DR-CD) protocol without the need of globally 

doubling the interconnect resources. Simulation results with the injection of 

voltage variability on both interconnect and computation blocks demonstrate 

the robustness of the method. The propose structure also allow 

implementations of several popular asynchronous styles to support different 

asynchrony at different variability levels. This chapter therefore provides the 

best scenario of practical implementation of variation tolerance support logic 

in FPGA for tolerating variability. 

5.2 Architecture Overview 

Asynchronously assisted logic methods is proposed here in order to provide the 

appropriate level of variation tolerance and yet still preserving as much of the 

modern FPGA overall structure as possible. This approach applies the 

asynchrony only when necessary provide the key for significant overhead 

minimization.  
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Figure 56: Architecture overview: (a) Island style architecture, (b) 

AAL within a CLB. 

Figure 56 (a) Shows overview of an island style FPGA with AAL architecture. 

The structure preserves most of the common blocks of a typical FPGA such as 

the Connection Block (CB) and the Switch Block (SB). Four logic elements (LE) 

normally assemble a slice and cluster or CLB consist of two slices and some 

local routing resources. As in Figure 56(b), the method introduces an AAL block 

within a CLB with minimum expansion of MUXes bridging the existing local 

routing with the AAL when deployed without affecting the global interconnects. 

The impact on latency from variations could affect the data communications 

between CLBs. Therefore maximally one configurable AAL block can be 

introduced to each CLB to provide the appropriate degree of timing elasticity. 

Depending on how dispersed and the severity of the variations, the granularity 

of AAL placement can be reduced. As an example, in Figure 56(a) AAL was 

introduced on every other CLB. The area overhead evaluation and detailed 
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description of an AAL interface within a CLB will be discussed in the following 

sections. 

5.3 AAL Architecture Implementation 

 

Figure 57: AAL plugin to Xilinx’s CLB with SLICEL & SCLICEX.  

Figure 57 shows a more comprehensive AAL block schematic view and its 

interface with the Xilinx’s CLB containing a SLICEL and a SLICEX [144]. To 
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allow interchangeable communication between the synchronous clock and 

asynchronous handshaking signal controls, the trigger line (CK) has been 

made configurable in a CLB containing an AAL. There are M number data 

signal lines for implementation of dual-rail or 1-of-2 protocol. When configured 

as dual-rail, the utilization of slices in a CLB will be decreased. However this 

design tradeoff was aim to avoid the need of doubling the global interconnect 

resources. The output is also interchangeable between single-rail and dual-rail. 

There are N lines connecting the AAL dual-rail line to the spare MUXes inputs 

in SLICEX. Therefore, the J outputs and I inputs of the original CLB remain 

the same. The “ACKo” is the only extra line added in this case.  

5.4 Area Overhead Calculation 

 

Figure 58 Area calculation of CLB with AAL. 

The implementation of this design is in UMC-90nm CMOS technology and 

evaluated the area overhead of the AAL with a CLB containing a Xilinx’s 

SLICEL and SLICEX. Both slices containing 6-inputs lookup table (LUTs) but 



Chapter 5: Asynchronously Assisted Logic (AAL) Scheme 

139 

 

the more complex structure, SLICEL (20736µm2) takes more layout area 

compared to SLICEX (19600 µm2). The AAL occupies a layout area of 2704 µm2 

out of the total CLB size of 43040 µm2. The area overhead of the AAL in this 

case is only 6.3%. If the more complex SLICEM [144] was chosen, the ratio will 

reduce further. 

Table 9: Overhead of various asynchronous schemes. 

Architecture Wrapper 

Type 

LUTs/ 

Wrapper 

I/O Overhead 

Fine-Grain  

AFPGA[6, 95] 

Fine 1 >4x 

Distributed Control AFPGA[69] Medium 4 2x 

AAL (this work) Coarse 8 Same + 1 

Table 9 shows the overhead comparison between different asynchronous 

FPGAs architectures. The fine-grained architecture provides every logic 

element with a wrapper increasing the size of the global interconnect resources 

over 4 times higher. The main advantage of this type of architecture is 

potential fine-grain pipelining for high throughput and high reliability. Yet, 

the overall overhead in size is too large, reduces the chip functional density 

and to some extent negates the technology scaling objective. Distributed 

control AFPGA proposed in [69] reduced the overhead to the factor of two with 

clustered architecture wrapped four LUTs with a wrapper. The wrapper 

consists of dual-rail handshaking logic plus a distributed David Cell (DC) 
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controller. However, this medium grain scheme still doubles the global 

interconnect for dual-rail communication. The DC based controller was also 

made to be programmable to accommodate multiple combinations of control 

logic. Due to the extra-configurable resources, the wrapper occupied about 50% 

of the CLB area. This newly proposed scheme use spare resources in the 

existing slice structure and are trading the utilization of CLB with 

interconnects overhead. The reduced utilization of CLB when AAL are 

deployed is acceptable in this context because only the Variation-critical path 

(VCP) will be used. This can be achieved with the help of tools that allow the 

identification VCPs. The overhead reduction is very significant and makes 

more sense as indicated from simulation results in the following sections. 

5.5 Multi-Style Handshaking Support 

An FPGA’s functional implementation is defined after fabrication. Although 

this may make it suffer more from the variability at nanometer scale regime 

compared to ASIC design, FPGA provides a unique opportunity to reconfigure 

unused resources to mitigate the problem, for example to remap the degraded 

computation block to a region that is not used [77, 81]. The re-routing and re-

mapping techniques are interesting and may work well. However, the place 

and route process normally takes a lot of time and effort. Even worse, it may 

be too late for the system to sense its level of degradation before system starts 
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malfunctioning. We therefore propose to enhance the VCP path with AAL that 

is highly tolerant to variation and does not require exhaustive P&R efforts. 

The AAL block provides the flexibility to implement various styles of 

asynchrony, including single-rail bundled data (SR-BD), dual-rail completion-

detection (DR-CD), and hybrid completion-detection (HB-CD) as needed. The 

structure consists of Programmable Completion Detection (PCD) block, 

Programmable Handshake Circuit (PCH) and Programmable Delay element 

(PD) [69] as shown in Figure 57 and Figure 59. 

 

Figure 59: Dual-Rail Completion-Detection (DR-CD) resources.  

Figure 59 shows the resources used when the AAL is configured to the DR-CD 

mode. Complete arrival and retrieval of all dual-rail valid input data are 

detected by the PCD and PHC for handshaking between AAL blocks. In this 

scheme, encoding within the data itself provide the trigger signal “CK” 

substituting the global clock. The PDs in between the “CK” are closely matched 

with its corresponding slices. Internally delay matching is acceptable as the 

variation within a small region is more manageable. Output data from this 
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scheme can be then converted into dual-rail before propagated to the next stage. 

Figure 60 show an example implementation of a four stage pipelined 4-phase 

DR-CD using AAL. 

 

Figure 60: Four Stages implementation of DR-CD circuit.  

In the SR-BD scheme, the handshaking relies closely on the local matched 

delay line. Data are remained in single-rail and not used as part of the control; 

hence the PCD is not used (Figure 61). This scheme basically replaces the 

global CLK trigger line with the locally handshaking CK trigger. The main 

benefit of this structure is simplicity in control handshaking and circuit size 

that will result in higher operational energy efficiency. Investigation of 

throughput vs energy performance of the architecture will be discussed in the 

next section. Figure 62 shows an example implementation of this bundled-data 

delay matching circuit in four stages. 
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Figure 61: Single-Rail Bundle-Data (SR-BD) resources. 

 

Figure 62 Four Stages implementation of SR-BD circuit. 

It is also entirely possible to mix and match these two most popular 

asynchronous handshaking protocols through one data path (HB-CD), 

depending on where along that path there may be very long interconnects or 

where interconnects are compromised by variability. In addition, the global 

clock could be passed straight through, which basically reverts the CLB back 

to the conventional synchronous behaviour using the switching resources as 

shown in Figure 63. 
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Figure 63: Clock triggers switching.  

5.6 Proposed Variation Aware Design Flow  

The overall system design approach when the AAL method is used is somewhat 

different from that for the conventional FPGA architecture. With AAL blocks 

managing the timing of inter-CLB data communications, place and route is 

less concerned with ensuring that such data delays are always correct, and 

therefore chip area utilization and other factors can be optimized with more 

freedom provided by the additional timing flexibility. The general system 

design flow is shown in Figure 64. 
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Figure 64: Design flow based on variation map. 

5.7 Throughput and Operation Energy Study 

The AAL method provides the flexibility of configuring inter-CLB data 

connections into a full spectrum of different degrees of asynchrony, from 

completely depending on the global clock, to single-rail asynchrony based on 

timing assumptions, to fully completion-detected DI. Based on theory they 

would provide opportunities to trade communication reliability with energy 

costs. In this section, we attempt to quantitatively study the energy and 

speed/throughput  characteristics on the three styles of asynchrony provided 

by the AAL method, i.e. everything based on timing assumptions, everything 

fully completion detected, and a judicious hybrid of the two.  

A case study approach is used in this exploration. First, the FPGA logics are 

configured into a 4-bit ripple-carry-adder (4RCA) and follow by an extended 

version – a cascade of four 4RCAs (4x4RCA) for a longer critical path. The 

examples are selected deliberately for the easy identification of critical paths.  
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5.7.1 Short Critical Path 

Figure 65 shows the test setup. Input B of the adder changes (from increment 

counter) on every complete computation circle based on the valid “Cout” signal 

- the critical path. A closed loop simulation was run for a fixed amount of time 

(200ns) and the number of counts from the incremental counter was recorded 

together with the overall operational energy. 

With a single adder and short critical path, the comparative simulation results 

(at the nominal voltage, 1V) are presented in Table 10. The results show that 

SR-BD has the highest efficiency (throughput over overall operational energy) 

compared to the other two setups. SR-BD performance can also be closely 

benchmarked equivalent to the synchronous design for the reason that 

matching delay lines were carefully tuned to the data-path. This is similar to 

the clock frequency setting based on critical-path in typical synchronous 

system design. Further performance investigations with a supply voltage 

sweep between 0.4-1.0 volts are shown in Figure 66(a) shows that both (DR-

CD) and (HB-CD) consistently produce lower throughput for relying on the 

slow handshaking protocol. The operation energy graph in Figure 66(b) also 

indicates, because of the extra dual-rail and completion-detection logics 

implemented, the circuits are larger and use more power. However, the HB-

CD design can improve the efficiency. 
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Figure 65: Test setup for 4RCA. 

Table 10: Comparison result for short path (4RCA). 

Circuits 

(4RCA) 

Throughput 

(counts) 

Operational 

Energy (pJ) 

SR-BD 23 29.49 

DR-CD 18 37.28 

HB-CD 18 24.64 
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Figure 66: Throughput and energy comparison (Voltage sweep, 0.4 - 

1.0v), (a) Throughput (Counts), (b) Operation Energy (pJ). 

5.7.2 Long Critical Path 

For longer critical path experiment, an an extended version – a cascade of four 

4RCAs (4x4RCA) are implemented in four styles. A typical 16-bit ripple-carry-

adder (RCA) as a synchronous design is followed by three asynchronous 

implementations of 4x4-bit (RCA). The experiment setup is shown in Figure 67 

including an increment counter that records the loop iterations. Same 

incremental counter used for input data B. This setup is common to all the four 

mentioned examples.  
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Figure 67: Test setup for 16RCA and 4x4RCA. 

The same test vector is applied onto all four designs and fixed time (200ms). 

Close loop stimulations were run to measure the throughput/counts and 

average power performances. Results of the simulation are presented in Table 

11: Throughput and energy performance. Note that, in the single-rail delay-

matching (SR-DM) synchronous 16-bit configuration, the 16-bit RCA’s critical 

path delay line is carefully tuned to match the synchronous clock speed 

representation. 

Table 11: Throughput and energy performance. 

no Circuits Throughput 

(Counts) 

Operation 

Energy (pJ) 

1. Single-Rail Delay-Matching 

(SR-DM) (Non-Pipeline) 

6 22.63 

2. Single-Rail Bundle-Data 

 (SR-BD)  

15 52.27 

3.  Dual-Rail Completion-Detection (DR-CD) 15 81.79 
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4. Hybrid Mix-Rail 

Completion-Detection 

(HB-CD) (Carry Chain Only) 

15 66.53 

The maximum count achieved by SR-DM is 6 with an energy consumption of 

22.63pJ. In the 4x4-bit configurations, higher throughput was achieved (15 

counts). This is due to the pipelined natural of the circuits. DR-CD design used 

highest energy because of fully dual-rail completion detection scheme and the 

SR-BD uses much lesser energy for the same throughput. However, this 

scheme relies more on timing assumption, and may not be as robust as DR-CD. 

HB-CD, on the other hand, reduces total operation energy for maintaining the 

same throughput. In this case, a hybrid approach may be beneficial provided 

the critical path is carefully determined based on a somewhat accurate 

variation map – full accuracy is only needed for the data lines covered by 

timing assumptions. A hybrid asynchronous control of data communication 

between CLBs is exactly where the AAL method excels.  

5.8 Variability Study 

In addition to manufacturing process variations, it is also crucial to account for 

potential FPGA operation mode variations post-configuration such as 

fluctuations of voltage and temperature. In this section we study how the 

addition of asynchrony might make FPGA circuits more tolerant to voltage 

variations. 
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5.8.1 Global Variability Simulation 

 

Figure 68: Global Vdd variation simulation setup. 

In the previous section, we demonstrated that all three configurations 

performed correct functions without logic errors under constant Vdds in the 

range of 0.4V-1.0V in 90nm CMOS technology. Using the DR-CD (dual-rail, 

most robust) setup in the previous section, we repeat the tests with three 

dynamic voltage sources as illustrated in Figure 68. The summary of the 

voltage sources presented in Figure 69 is as follows: 

 Vdd 1: Continuously varying voltage (sinusoidal, 0.4-1V, 30MHz).  

 Vdd 2: Random varying voltage (Gaussian, µ = 0.9, 𝜎 = 0.12).  

 Vdd 3: Switching Capacitor from energy harvesting sources (Saw-

tooth, 0.6-1.0V, 50MMz). 
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Figure 69: Correct operation under various viable voltage supplies.  

Vdd 1 is a relatively slow changing voltage and this can be closely related to 

correlated process variation and slow aging variation. Delay normally 

increased with the increase of temperature. Towards lower geometry below 

65nm, 45nm, 38nm and beyond at lower threshold voltage, the temperature 

shows contrarian effects on cell delay [27]. Also within-die variation can be 

random and fluctuates independently of device location. Therefore Gaussian 

noises are presented in Vdd 2. Energy harvesters tend to provide variable 

levels of power. The output waveform of a switching capacitor DC-DC converter 

in [33] shows in Vdd 3. From these results it can be seen that the circuit works 

under all three variable sources without errors at every increasing loop on the 

data value.  
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5.8.2 Interconnects Variability Simulation 

In previous section [145], the robustness of the design with global Vdd 

variation under three variable power supply sources was demonstrated. In this 

section, we going to investigate the voltage variability effects on interconnect 

latency and it’s potential impact on the correct operation as illustrated in 

Figure 70 In FPGAs, a large proportional of the fabric are made of interconnect 

blocks. Variations in interconnect could dominate the global system 

performance. This section study the structure performance under gradual and 

random variable voltages presented in the global interconnect. 

 

Figure 70: Mixed constant Vcc on CLB and variable Vdd on 

interconnect simulation. 

The most robust DR-CD implementation in the previous section was reused 

but with all interconnects replaced with analogue models that are made of non-

standard cell inverter chains. The simulation was done in the mixed signal 

mode – all CLBs are using standard cell with fix 1V Vcc supply, while 

interconnects used custom cells and are powered with variable Vdd supplies. 

The result in Figure 71 shows the correct operation of adder under two variable 

voltage sources: Vdd1, a constantly changing voltage between 0.5-1.1V at 
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25MHz with a sinusoidal shape, and Vdd2, a random variable voltage source 

with Gaussian distribution (µ = 0.9V, 𝜎 =0.12V). 

Variations in the supply voltage result in timing variations of the interconnect 

line. Both data and control lines that are connected through the global 

resources will be affected. However, it can be seen that the circuit works under 

both variable sources without errors with the correct output sum value on 

every cycle. The validity of the data was aligned with the “Valid” signal from 

the output of the dual-rail completion-detection block sampling at the legit 

output values and not spacers. 
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Figure 71: Interconnect variation simulation results 

5.9 System Design on AAL structure 

This section addresses the implementation of more complex systems using the 

AAL method. 

5.9.1 Handshaking Support for Data Flow Structures 

The AAL blocks provide flexibility for implementing various handshaking 

protocols. A full data flow control structure supports Linear, Fork, Join and 

Merge elements. These elements allow the construction of more complex 

system when needed. The 4-Phase Dual-Rail (4P-DR) implementation is 

slightly different compares to the 4-Phase Bundle-Data (4P-BD) due to part of 

the control has been embedded in the data line itself. 
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Table 12: Data flow control elements. 

 

The summaries of implementation elements of both are shown in Table 12 

together with their Petri-net (PN) [131, 143] representations. PNs can be 

graphical and mathematical representations of discrete system. It’s the 

extension of Finite State Machines (FSMs) model for both sequential and 

concurrent circuits. Therefore it’s highly used for modelling asynchronous 

logics. Table 12 shows that the basic handshaking control for ‘linear and fork’ 

are the same for 4P-DR and 4P-BD. For the “join” component, because the dual-

rail data itself can carry valid detection for the controller, therefore no extra 

‘C’ element is needed as in the example used in 4P-BD for the “x-req” and “y-

req” signals. For similar reasons the merge handshake controller is designed 

differently between the 4P-DR and 4P-BD. 
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Following subsection will demonstrate the building of a 4P-BD sub function 

with most of the components listed in the Table 12 

5.9.2 Booth Multiplier Case Study 

This section describes a Booth's multiplication algorithm system in the 

proposed AAL structure with the above-mentioned handshaking components. 

Figure 72 shows the block diagram of a four by four-signed binary 

multiplication. This structure is of interest for study because the adder 

example used for performance study in section IV can be reused with minimum 

alteration as shown the 9-bit adder in the diagram. Also Booth’s multiplier 

provides balance between speed and area utilization using repetition adding 

and shifting. The multiplier value is first extended and stored in register 

“A_reg” and its two’s complemented value is stored in “S_reg”. Conditioned by 

the last two bits of the product accumulator register “M”, addition or 

subtraction will be performed between the multiplicand “P_reg” with the 

“A_reg” or “S_reg” within a set number of iteration controlled by a counter. 
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Figure 72: Block diagram of Booth multiplier. 

 

Figure 73 : Petri-net representation of booth multiplier control flow. 

 

Figure 74: Simplified SR-BD handshaking diagram for Booth 

multiplier. 
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Figure 73 shows the data flow diagram using PN representation for the 

implemented the above Booth’s Multiplier and matching with components in 

Table 12: Data flow control elements, the simplified handshaking building 

block on CLB with AAL block can easily be constructed as in Figure 74. 

 

Figure 75: Simulation waveform of Booth multiplier 

implementations. 

The simulation result using Cadence tools is shown in Figure 75. The 

waveforms show a multiplication of two 4-bit numbers (m = 3 and r = -4). The 

manipulated equivalent of ‘m’ and its two’s complement value are stored in 

A_reg and S_reg individually as 9-bit data in hexadecimal format. For ‘r’, the 

manipulated value is store in P_reg. The number of iterations loop is 

determined by the bit length of value ‘r’. In this case, after four counts, a correct 

product value of “-12” is produced demonstrating the correct operation. 
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5.10 Summary 

This chapter aims to present the integration of robust AAL block into existing 

Xilinx FPGA architecture. The proposed structure does not increase the 

interconnect resource much as compared to typical asynchronous FPGAs that 

would at least double the interconnect resources to support dual-rail 

connection. The die overhead calculation on layout level shows that 

incorporating AAL into a Xilinx’s CLB with SLICEM & SLICEX only incurred 

6.3% of die area overhead at the maximum. The AAL design allows the 

configuration of different styles and degrees of asynchrony for data links 

between CLBs, depending on specific requirements. Quantitative case studies 

using a 16-bit RCA also show that potential throughput improvements can be 

achieved when AAL handshake can be pipelined. In addition, simulations also 

show that the power efficiency can be improved with the hybrid implantation 

of DR-CD protocol on critical path only and keeping the rest single-rail. The 

most robust form of asynchrony is shown to be reliable under radical timing 

variation caused by varying voltages on interconnects. A case study of Booth’s 

multiplier shows the feasibility of building a more complex system on AAL 

structure.  

With the AAL hardware support and potential variation aware design flow, a 

more practical and industry acceptable scenario would be more feasible. 

Standard industrial design flow assumes only one set of bitstream needs to be 
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generated for a large batch of chips implementation. Thus, compared with 

traditional variation aware techniques that require expensive computation for 

re-routing and re-mapping the whole design on the basis of a unique variation 

map for each chip, AAL technique may avoid this. Summary of such approach 

will be discussed in the final conclusion chapter. 
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Chapter 6. Conclusion 

6.1 Summary of Thesis  

This thesis presents a set of practical techniques for incorporation 

asynchronous logic into modern FPGAs architectures as a method of dealing 

with the increasing variability issues face by current and future sub-

nanometer technologies.  

This approach based on Asynchronously-Assisted Logic (AAL) makes it 

possible to provide the  right degree of asynchronous hard microcircuit while 

keeping most the conventional FPGA structure intact. The AAL method 

facilitates the architecture with hard asynchronous components that is 

distributed around the fabric, thus equips the architecture with robust 

hardware resources to combat against timing variation. (Traditional methods 

either modified the architecture greatly for fully asynchronous implementation 

or betting on P&R tools to impose asynchrony logic on exiting FPGA 

architecture, which is not ideal).  

On the way towards the AAL approach, a hybrid FPGA architecture that wraps 

conventional synchronous FPGA logic blocks with distributed asynchronous 

control based on David’s cell options was developed. This approach preserves 

the single-rail data representation of current FPGAs “in the small”, it is 

possible for designers to use existing FPGA logic mapping tools in block design. 
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By introducing delay-insensitivity “in the large” into the inter-block long data 

links, the variation tolerance and latency robustness inherent to asynchrony 

is provided. A number of structural choices were evaluated including the 

granularity and block structures. This provided the foundation on which the 

AAL approach was developed.  

Several existing solutions to the variability problem exploit the reconfiguration 

features of FPGAs. For example the late binding techniques suggest 

performing part of the mapping and routing process as late as possible 

leveraging the unique variation characterising of each chip. The proposed AAL 

method provides a complementary solution to existing variation aware late 

binding approach where delay characterisation is first performed and then 

techniques such the region relocation, logic replacement and path rerouting 

techniques can be applied, with AAL it will be reinforcement. The 

reinforcement strategy suggests retaining the placement and routing and 

supporting the variation critical regions or paths variation robust hardware 

components thus minimising the effort for recalculating the new configuration 

in FPGA.  

Implemented on Faraday 90nm standard cell library on Cadence tools, the 

worst case increase of CLB overhead in the layout level is 6.3% when 

integrated into Xilinx’s vertex 6 architecture. Considering the interconnect 

resources that occupy the biggest slice of the FPGA fabric, the overall size 
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increase for consolidating the AAL block could be significantly lower at around 

2%.  

Furthermore, the AAL resources support multi-style asynchronous 

implementation in tolerating wide range of timing variability. As reviewed in 

chapter 2, the choice of asynchronous implementation style is fixed during the 

specification process motivated mainly for speed or power performance. This 

reduced the flexibility for tolerating wide range of variability. For example the 

bundle data approach is more energy efficient but because it relies heavily on 

the timing assumption, this makes it not suitable to deal with spatial and 

random variation. Alternatively, a highly-pipelined 4phase dual-rail (4P-DR) 

structure choice is made; the robustness of the architecture will be trading-off 

with the huge area overhead. 

The AAL approach avoids the need to globally double the interconnect 

resources to permit either of these handshaking implementation and 

combination benefit of SI/DI schemes. The adjustment is made by reduces the 

logic utilisation of a CLB if AAL is deployed. This is not unreasonable at the 

assumption that AAL will only be deployed on a few targeted variation-critical 

paths (VCPs). This technique has been successfully implemented with a case 

study demonstrated in chapter 5.  
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6.2 Future Work 

This thesis presents an approach for the practical implementation of 

asynchronous logic to assist with the growing variability issue in digital circuit 

design. There are several areas in which this approach could be extended.  

6.1.1 Variation Aware Design Flow with Consolidated Variation Map  

The variability issue will inevitably impact the reliability and timing yield of 

future generation FPGA. In this thesis a hardware optimized solution has been 

proposed, however this needs to be supported by a design flow or automated 

tools. With the assumption of mature off-line and online sensing techniques, 

each chip can be characterised and treated differently. A few variation aware 

techniques were discussed in chapter 2, however in all these papers, either 

only the process variability is considered or in some, the run-time thermal 

variation. Considering one single variation map may not give a comprehensive 

view of the variability problem. It is therefore important to develop an 

algorithm that consolidates both process and run-time variation maps for a 

more realistic variation aware flow. 

6.1.2 Cross Domain and GALS Scheme Study 

Proposed AAL technique suggests multiple asynchronous handshaking 

protocols can be collaboratively worked together. However detail study needs 

to be performed for seamless integration to avoid complex intermingle of 

different protocol in a design. Also, data transfer between asynchronous and 
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synchronous domain would be expected in such implementation.  This is in 

some degree make the system similar to the heterogeneous GALS and 

multiple-clock-domain system. Mixed timing domain in a system makes the 

timing-closure and global-clock distribution difficult to achieve. One of the 

solutions to deal with the global and local communication speed mismatch is 

to make them insensitive to the latency. The Globally Asynchronous Locally 

Synchronous (GALS) methodology does not enforce globally synchronized 

clocks. Instead, communication between modules occurs asynchronously. This 

approach has been popularly used by industry today to implement large SoC 

with sub-modules running on different clocks. This trend is expected to extend 

into future multi-core processors and NoC system. The proposed AAL 

architecture may fit into this paradigm closely. However, the modification and 

design of asynchronous and synchronous domain adapter circuits need to be 

further explored, especially in terms of balancing throughput and size 

overhead. 

6.1.3 Silicon Implementation  

The motivation and focus of this work is centred on the practical 

implementation of FPGA architecture with enhancements for variability. The 

architecture circuit has been designed and simulated in the Cadence tools 

environment using both UMC-90nm and Faraday 90nm technology. It would 

be beneficial, to develop a better sense of context to have the design evaluated 

in smaller technology nodes such as 45nm or below if the tools and foundry 
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library are made available. Also, implementation of the developed architecture 

in silicon for further testing and verification would be a natural next step. 
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Appendix A: Abbreviations 

 

2P-DR:  2-Phase Dual-Rail 

4P-DR:  4-Phase Dual-Rail 

ASIC:   Application –Specific Intergraded Circuit 

CAD:  Computer-Added-Design   

CB:  Connection Block 

CD:  Completion Detection  

CMP:  Chemical Mechanical Polishing  

CPLD:   Complex Programmable Logic Device 

DC:  David Cell  

DI:   Delay Insensitive 

DPA:  Differential Power Analysis  

DR-CD:  Dual-Rail Completion-Detection  

DR-CD:   Dual-Rail Completion-Detection 

DSP:  Digital-Signal-Processing  

DUT:  Device-Under-Test  

EEPROM:  Electrically Erasable Programmable ROM 

EMA:  Electromagnetic Analysis 

FSM:  Finite State Machine 

FU:  Functional-Unit  

GALS:  Global Asynchronous Locally Synchronous  

HB-CD:  Hybrid Completion-Detection  

HCI:  Hot-Carried-Injection  

HDL:  Hardware Description Language 

IoT:  Internet-of-Thing 

IP:  Intellectual Property 
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LC:  Logic Cluster 

LE:  Logic Element  

LEDR:  Level-Encoded Dual-Rail  

LER  Line-Edge-Roughness  

LUT:  Look-Up Table  

NBTI:  Negative Bias-Temperature Instability  

NoC:  Network-on-Chip  

NRZ:  Non-Return-Zero  

P&R:  Placement and Routing  

PAL:   Programmable Array Logic 

PBTI:  Positive Bias-Temperature Instability  

PCB:   Printed Circuit Board 

PCD:  Programmable Completion Detection  

PD:  Programmable Delay 

PL:  Phase Logic 

PLA:   Programmable Logic Array 

PLD:  Programmable Logic Devices  

PLE:  Programmable Logic Elements  

PN  Petri-Net  

PROM:  Programmable Read-Only Memory  

PVT:  Process, Voltage and Temperature 

QDI:  Quasi Delay Insensitive 

RCA:  Ripple-Carry-Adder  

RDF:  Random-Dopant Fluctuation 

RO:  Ring oscillator  

RTA:  Rapid Thermal Annealing  

RZ  Return-to-Zero 

SB:  Switching Block 

SCA:  Side Channel Attack  
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SI:   Speed Independent 

SoC:  System-on-Chip  

SPA:  Simple Power Attack  

SRAM:  Atatic-Random-Access-Memory  

SR-DM:  Single-Rail Direct-Mapping 

SR-DM:  Single-Rail Delay-Matching  

SSTA:  Statistical static Timing Analysis 

STA:  Static Timing Analysis 

TDDB:  Time Dependent Dielectric Breakdown  

VCP:   Variation-Critical Path 
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Appendix B: AAL Implementation  

Incorporating AAL into Xilinx’s CLB 
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Appendix C: Input Vector for Candence 

Input Stimulus “Vector” file sample (Configure LUT 

as Adder) 

; PLE cd stimuli  

; INPUT & DBUS Use BIG_ENDIAN system (LS byte first 0|1|2|3) 

; Address use LITTLE_ENDIAN (MSB fist 3|2|1|0) 

 

Radix 1 1 4444 1 4 1 2 2 2 

Io i I iiii I I i I I o 

vname start WE DBUS<[15:0]> Sel PCD<[3:0]>  SW PD1<[1:0]> PD2<[1:0]>  

sum<[1:0]>  

 

tunit ns 

trise 0.1 

tfall 0.1 

vih 1 

vil 0 

vol 0 

voh 1 

 

;time  start WE DBUS Sel PCD SW PD1 PD2 sum 

    0  0 0 0000 0 0 0 0 0 0; 

   10  0 1 6996 0 0 0 x x x; Adder 

   20  0 0 6996 0 0 0 x x x; 

   40  0 0 xxxx 0 0 0 0 0 0; Spacer 

   60  1 0 xxxx 1 F 1 2 2 x; 

  160  0 0 xxxx 1 F 1 2 2 x; 

  180  1 0 xxxx 1 F 1 2 2 x; 
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Appendix D: Sawtooth Vdd Generation 

Sawtooth Vdd Input Stimulus File Generation in MATLAB  

Representing Energy Harvesting Switching Capacitors 

Supply Sources 

fid = fopen('sawtooth-pwl.txt','w'); %Create a new txt file 

  
A=0.2;  
t = 0:0.0005:1; 
x=A*sawtooth(2*pi*40*t,0.25)+0.8; %40 Hertz wave with duty cycle 25% 

  
fprintf(fid,'%1.4fe-3 ',t); 
fprintf(fid,'%1.4f\n',x); 

  
plot(t,x); 
grid 

 
fclose(fid); 
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Appendix E: Variation Map Generation 

Variation Map Generation in MATLAB 

%Run in Matlab SimulationTime and TimeIncrement are in 
%nanoseconds Mean and StDev of Guassian distribution is in V Nominal 
%voltage is in V 

% Example m file run code >> VariationMap(0.9, 0.4);  

  
function out = VariationMap(Mean, StDev) 

 
times = zeros(1,201); 
xs = zeros(1,201); 
for i=0:1:200 
time=i; 
x=randn(1)*StDev + Mean; 
y=randn(1)*StDev + Mean; 
z= randn(1); 
times(i+1)=time; 
xs(i+1)=x; 
end 

  
subplot(2,1,1) 
plot(times,xs) 
subplot(2,1,2) 
hist(xs,20) 
[X,Y,Z] = peaks(25); 
surf(X,Y,Z); 
out=1;  
end 
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