
Asynchronous Techniques for New

Generation Variation-Tolerant FPGA

Hock Soon Low

A Thesis Submitted for the Degree of Doctor of Philosophy

at Newcastle University

School of Electrical and Electronic Engineering

Faculty of Science, Agriculture & Engineering

October 2015

ii

Asynchronous Techniques for New Generation Variation-Tolerant FPGA ©

Hock Soon Low, Newcastle, October, 2015

iii

Abstract

This thesis presents a practical scenario for asynchronous logic

implementation that would benefit the modern Field-Programmable Gate

Arrays (FPGAs) technology in improving reliability. A method based on

Asynchronously-Assisted Logic (AAL) blocks is proposed here in order to

provide the right degree of variation tolerance, preserve as much of the

traditional FPGAs structure as possible, and make use of asynchrony only

when necessary or beneficial for functionality. The newly proposed AAL

introduces extra underlying hard-blocks that support asynchronous

interaction only when needed and at minimum overhead. This has the

potential to avoid the obstacles to the progress of asynchronous designs,

particularly in terms of area and power overheads. The proposed approach

provides a solution that is complementary to existing variation tolerance

techniques such as the late-binding technique, but improves the reliability of

the system as well as reducing the design’s margin headroom when

implemented on programmable logic devices (PLDs) or FPGAs. The proposed

method suggests the deployment of configurable AAL blocks to reinforce only

the variation-critical paths (VCPs) with the help of variation maps, rather than

re-mapping and re-routing. The layout level results for this method's worst

case increase in the CLB’s overall size only of 6.3%. The proposed strategy

retains the structure of the global interconnect resources that occupy the lion’s

share of the modern FPGA’s soft fabric, and yet permits the dual-rail

iv

completion-detection (DR-CD) protocol without the need to globally double the

interconnect resources. Simulation results of global and interconnect voltage

variations demonstrate the robustness of the method.

v

Acknowledgements

First of all, I would like express my profound thanks for my supervisors Prof

Alex Yakovlev for his support through the course of my studies. His wisdom

and vision were invaluable source of inspiration for me.

I would also like to express my gratitude to Dr Delong Shang and Dr Fei Xia

for their guidance and advice throughout my PhD.

I am also grateful to colleagues and friends in the Microelectronics System

Design research group at Newcastle University for their assistance and

inspiring working atmosphere. Dr Danil Sokolov, Dr XueFu Zhang, Dr Maxim

Rykunov, Dr James Docherty, Dr Graeme Coapes, Dr Nizar Dahir and Dr

Ra’ed Aldujaily and Dr Ghaith Tarawneh. They made my PhD journey more

enjoyable.

Finally, I wish to thanks my family for their love and unwavering support

through the duration of my studies.

vi

CONTENTS

CONTENTS .. vi

FIGURES .. xi

TABLES .. xvi

1 Introduction .. 1

1.1 Motivation and Objective ... 1

1.2 Overview of Chapters ... 5

1.3 Contributions ... 6

1.4 Publications .. 7

Chapter 2. Background ... 9

2.1 Introduction .. 9

2.2 Introduction to FPGA Technology ... 10

2.2.1 Moore’s Law and Configuration Cells .. 13

2.2.2 Programmable Memory ... 14

2.2.3 Modern FPGA Fabric .. 16

2.2.4 Software and Hardware Programmable Devices: 18

2.2.5 Difference between the FPGA and ASIC ... 19

2.2.6 Summary of Evolution .. 22

2.2.7 Fundamental Structure of the FPGA ... 23

2.2.8 Logic Block ... 24

2.2.9 Routing Structure .. 26

2.3 Introduction to Variation ... 27

2.4 Classification of Variability ... 28

vii

2.5 Process Variation Sources .. 30

2.5.1 Tool-Related Variation .. 31

2.5.2 Intrinsic Variation ... 32

2.6 Environmental Variation ... 33

2.6.1 Temperature Variation ... 33

2.7 Temporal Variation – Ageing Related ... 38

2.8 Sensing and Characterisation ... 39

2.8.1 Off-chip Sensing .. 40

2.8.2 On-chip Sensing .. 41

2.8.3 Soft Sensing in FPGA .. 43

2.9 Conventional Variation Tolerance in FPGAs .. 44

2.9.1 STA and SSTA ... 44

2.9.2 Optimisation of Structural Parameters ... 46

2.9.3 Transistor Sizing ... 46

2.9.4 Asynchronous Techniques ... 47

2.10 Variation Aware and Late Binding Techniques 48

2.10.1 Yield Improvement Through Multiple-Configuration 49

2.10.2 Variation Aware Modelling ... 50

2.10.3 Relocation, Remapping and Rerouting ... 52

2.11 Summary .. 53

Chapter 3. Existing Asynchronous Techniques in FPGA 58

3.1 Introduction .. 58

3.2 Principles of Asynchronous Design .. 59

3.3 Bundle Data Design ... 60

viii

3.3.1 Single-Rail Bundle-Data (SR-BD) .. 61

3.3.2 4-Phase and 2-Phase Bundle-Data Handshaking 62

3.4 Delay-Insensitive Encoding ... 65

3.4.1 4-Phase Dual-Rail Handshaking .. 66

3.4.2 Completion Detection (CD) Circuit ... 68

3.4.3 2-Phase Dual-Rail Protocol ... 69

3.5 Asynchronous Circuit Classification: .. 70

3.5.1 Speed–Independent (SI) .. 71

3.5.2 Delay-Insensitive (DI) ... 72

3.5.3 Quasi-Delay-Insensitive (QDI) ... 72

3.6 Reconfigurable Asynchronous Architectures ... 73

3.6.1 Type 1: Bundle Data and Timing Assumption Architectures 74

3.6.2 Type 2: High Performance Architecture ... 77

3.6.3 Type 3: Communication Efficiency (2-Phase Dual-Rail or LEDR) .. 79

3.6.4 Type 4: Hierarchical and Coarse Grain Reconfigurable Architecture

 ... 82

3.6.5 Other Asynchronous Style FPGAs ... 86

3.7 Summary .. 89

Chapter 4. Distributed Control Asynchronous FPGA Architecture 93

4.1 Introduction .. 93

4.2 Asynchronous Wrapper .. 94

4.3 Top Level Overview of the Architecture ... 96

4.4 Asynchronous Wrapper Structure ... 98

4.4.1 Programmable Completion Detection (PCD) 101

ix

4.4.2 Switch Box (SW) Circuit ... 102

4.4.3 Programmable Delay (PD) Unit ... 103

4.4.4 Single-Rail to Dual-Rail Conversion Circuit (CONV) 104

4.5 Area, Power and Speed Performance ... 105

4.5.1 Area Overhead Calculation ... 105

4.5.2 Power Comparison .. 106

4.5.3 Throughput Performance .. 111

4.6 Variability Evaluation ... 112

4.6.1 PLE Characterisation with Variable Vdd 112

4.6.2 Corner Analysis for PVT Variation .. 115

4.7 Logic Cluster Design .. 117

4.7.1 Distributed Control with David Cell .. 119

4.7.2 David Cell Control Transition Flow ... 122

4.7.3 Implementation Case Study ... 124

4.7.4 Design Flow ... 127

4.8 Summary .. 131

Chapter 5. Asynchronously Assisted Logic (AAL) Scheme............................ 134

5.1 Introduction .. 134

5.2 Architecture Overview .. 135

5.3 AAL Architecture Implementation ... 137

5.4 Area Overhead Calculation ... 138

5.5 Multi-Style Handshaking Support .. 140

5.6 Proposed Variation Aware Design Flow .. 144

5.7 Throughput and Operation Energy Study .. 145

x

5.7.1 Short Critical Path .. 146

5.7.2 Long Critical Path ... 148

5.8 Variability Study ... 150

5.8.1 Global Variability Simulation ... 151

5.8.2 Interconnects Variability Simulation ... 153

5.9 System Design on AAL structure ... 155

5.9.1 Handshaking Support for Data Flow Structures 155

5.9.2 Booth Multiplier Case Study .. 157

5.10 Summary .. 160

Chapter 6. Conclusion ... 162

6.1 Summary of Thesis ... 162

6.2 Future Work .. 165

6.1.1 Variation Aware Design Flow with Consolidated Variation Map . 165

6.1.2 GALS Scheme Support .. 165

6.1.3 Silicon Implementation ... 166

Appendix A: Abbreviations ... 168

Appendix B: AAL Implementation ... 171

Appendix C: Input Vector for Candence ... 172

Appendix D: Sawtooth Vdd Generation ... 173

Appendix E: Variation Map Generation ... 174

Bibliography .. 175

Tables

xi

FIGURES

Figure 1: Design margin barriers to efficiency. ... 1

Figure 2: Asynchronous handshaking overhead and elastic margin’s

headroom. .. 2

Figure 3: Theoretical graph of relative cost of elasticity and handshaking

protocols. .. 4

Figure 4: (a) PLA with programmable OR plane; (b) PAL with fixed OR plane

[9]. .. 11

Figure 5: (a) Look-Up Table (LUT) Structure, (b) 6-Transistors SRAM Cell. 13

Figure 6: Modern FPGA fabric with Hard-block .. 18

Figure 7: Basic FPGA and ASIC design flow[17]. .. 20

Figure 8: Key technology comparison vectors. ... 22

Figure 9: Basic logic implementation on the primary logic cell: (a) logic

diagram of a 1-bit adder; (b) truth-table for SUM; (c) logic mapping on a

lookup-table (LUT). ... 25

Figure 10: Hierarchy view of FPGA structure: (a) Island style structure, (b)

Two slices in a CLB, (c) Basic LC structure. .. 26

Figure 11: Routing resources structure. ... 27

Figure 12: Spatial and temporal variation classification. 29

Figure 13: Subdivisions of process variation. ... 31

Tables

xii

Figure 14: Line edge roughness at 90nm and 22nm technology [23]. 33

Figure 15: Classification of sources of environmental variation. 33

Figure 16: Inverse path delay characteristics at lower voltage level with

increase in temperature [29]. .. 35

Figure 17: Ageing related temporal variation. ... 38

Figure 18: Corner analysis with STA tools .. 45

Figure 19: Multiple reconfiguration strategy flow. .. 49

Figure 20: Variation aware chipwise placement design flow [72]. 51

Figure 21: (a) Region relocation, (b) Path reconfiguration. 52

Figure 22: Synchronous clocking system.. 60

Figure 23: Abstract view of Asynchronous Circuit. ... 60

Figure 24: (a) Abstract view of delay matching bundle-data approach; (b)

example of programmable delays bank. (c) AND gate and muxes fine tune

programmable delay [82]. ... 61

Figure 25: Send and receive handshaking. .. 62

Figure 26: (a) 4-phase bundled-data protocol; (b) 2-phase bundled-data

protocol [83]. .. 63

Figure 27: (a) Request sign embedded in dual-rail coding; (b) the codewords;

(c) signal transition waveform; (d) code with Hamming distance = 1. 66

Figure 28: (a) Example of dual-rail completion detection circuit; (b) truth

table for the C-element. ... 69

Tables

xiii

Figure 29: Case study of delay model circuit classification. 71

Figure 30: MONTAGE functional unit (configured as C-Muller gate). 75

Figure 31: PGA-STC functional block with programmable delay element. 76

Figure 32: PAPA architecture logic block [98]. .. 77

Figure 33: 4P-DR and LEDR communication. ... 80

Figure 34: LUT4-based phased logic gate [115]. .. 81

Figure 35: More complex LEDR protocol converter [117]................................ 82

Figure 36: GALS in FPGA: (a) Homogeneous; (b) Heterogeneous. 83

Figure 37: (a) Basic reconfigurable NCL LE; (b) 27 fundamental NCL gates

[127]. .. 87

Figure 38: Island style architecture. .. 96

Figure 39: Wrapper based programmable logic element (PLE). 99

Figure 40: Programmable completion detection. ... 101

Figure 41: SW box circuit. ... 103

Figure 42: Programmable delay circuit. ... 103

Figure 43: Dual-rail conversion or DEMUX circuit 104

Figure 44: (a) Synchronous LUT; and (b) PCD asynchronous LUT. 107

Figure 45: Operation power: (a) synchronous LUT with timing clock; (b)

asynchronous LUT with PCD. .. 109

Tables

xiv

Figure 46: Delay and operational energy at below nominal Vdd level: (a)

results table; (b) delay and energy plot over Vdd. ... 113

Figure 47: PLE working under variable Vdd. .. 115

Figure 48: PD and LUT delay successfully bundling: (a) Slow corner

(temperature=400K). (b) Fast corner (temperature=273K)........................... 117

Figure 49: Cross over at (sf): corner (a) Temperature=300K. (b)

Temperature=273K. .. 117

Figure 50: Logic cluster with DC. ... 119

Figure 51: (a) Basic David cell Structure; (b) DC for distributed control; (c) set

and reset logic boxes for DC implementations. .. 121

Figure 52: Data flow transition example with DCs. 122

Figure 53: Four bit full Adder example. ... 125

Figure 54: System design flow. ... 129

Figure 55: Petri net models of control elements. ... 130

Figure 56: Architecture overview: (a) Island style architecture, (b) AAL

within a CLB. .. 136

Figure 57: AAL plugin to Xilinx’s CLB with SLICEL & SCLICEX. 137

Figure 58 Area calculation of CLB with AAL. ... 138

Figure 59: Dual-Rail Completion-Detection (DR-CD) resources. 141

Figure 60: Four Stages implementation of DR-CD circuit. 142

Tables

xv

Figure 61: Single-Rail Bundle-Data (SR-BD) resources. 143

Figure 62 Four Stages implementation of SR-BD circuit. 143

Figure 63: Clock triggers switching. ... 144

Figure 64: Design flow based on variation map. .. 145

Figure 65: Test setup for 4RCA. ... 147

Figure 66: Throughput and energy comparison (Voltage sweep, 0.4 - 1.0v), (a)

Throughput (Counts), (b) Operation Energy (pJ). ... 148

Figure 67: Test setup for 16RCA and 4x4RCA. ... 149

Figure 68: Global Vdd variation simulation setup. 151

Figure 69: Correct operation under various viable voltage supplies. 152

Figure 70: Mixed constant Vcc on CLB and variable Vdd on interconnect

simulation. ... 153

Figure 71: Interconnect variation simulation results 155

Figure 72: Block diagram of Booth multiplier. .. 158

Figure 73 : Petri-net representation of booth multiplier control flow. 158

Figure 74: Simplified SR-BD handshaking diagram for Booth multiplier. .. 158

Figure 75: Simulation waveform of Booth multiplier implementations. 159

Tables

xvi

TABLES

Table 1: Key configurable cells technology comparison[9]. 16

Table 2: Summary of asynchronous FPGAs ... 73

Table 3: Choice of architecture structure. .. 97

Table 4: Dual-rail code-words. .. 101

Table 5: PLE size in terms of number of transistors. 105

Table 6: Power and energy comparison. ... 110

Table 7: Throughput comparisons of various architectures. 111

Table 8: Overhead of various asynchronous schemes. 139

Table 9: Comparison result for short path (4RCA). 147

Table 10: Throughput and energy performance. .. 149

Table 11: Data flow control elements. .. 156

Chapter 1: Introduction

1

1 Introduction

1.1 Motivation and Objective

The effects of variability have become increasingly significant as a result of the

scaling of technology. Static and dynamic variations affect the reliability of

integrated circuits. Conservative approaches to increases the timing-

margin/guard-band across the whole chip is imprudent and degrades

performance. Figure 1 shows that excessive design margins to guarantee

correct circuit operation over fix periods for both spatial and temporal

variations are wasteful and reduced the circuit’s efficiency in a synchronous

system [1, 2]. (Note: the scale of the margins in Figure 1 and Figure 2 are for

illustration only and may not scale accordingly).

Figure 1: Design margin barriers to efficiency.

FPGAs may be more affected compared to Application-specific integrated

circuit (ASIC) because the circuit mapping and critical path vary depending on

Chapter 1: Introduction

2

user design in post-fabrication [3]. Therefore various traditional variation

tolerance techniques proposed for ASICs may not be directly applicable. Yet,

due to its configurability, the FPGA presents a unique opportunity to address

variability and reliability challenges [4, 5].

Asynchronous designs are highly tolerant to voltage and delay changes, and

have been shown to be very robust in the present of variations [6, 7]. This also

gives the potential for efficiency improvements in the margin headroom as

shown in Figure 2. Therefore, applying asynchronous logic to FPGAs is an

attractive idea.

Figure 2: Asynchronous handshaking overhead and elastic margin’s

headroom.

However, there are three major challenges in applying asynchrony in

balancing between the handshaking overhead and level of tolerances, as

illustrated in Figure 2 . These challenges are as follows:

i. Asynchronous circuits are more difficult to design and test compare to

synchronous ones because of the wide variety of possible signalling

Chapter 1: Introduction

3

protocols and a broad spectrum of the degree of delay insensitivity from

bounded-delay to fully delay insensitive (DI). Partly because of this,

asynchronous designs suffer from a lack of automatic design tools,

especially those combining all possible techniques in a single suite.

These issues have impeded the progress of asynchronous techniques in

the FPGA, because the latter is intrinsically less customizable.

ii. Asynchronous circuit is normally higher in area and power overheads

due to the extra circuitry needed for handshaking. This depends on the

delay assumption made or the protocols used. For example, converting

all of the communication to dual-rail will double the interconnect

resources. This is not acceptable, since interconnects occupy the lion’s

share of the fabric.

iii. Depending on the timing assumptions made or handshaking protocols

used, asynchronous logic can provide a range of improvements in power

and speed/throughput efficiency in addition to its robustness toward

variability. For instance, a single-rail delay-matching (SR-DM) protocol

is more efficient in terms of power and area but more susceptible to

variation compared to the 4-phase dual-rail (4P-DR) scheme which is

more robust to variation but may require higher power and area as

shown in theoretical graph in Figure 3 – relative cost of elasticity and

handshaking protocols. Similar project of cost of elasticity using

different asynchronous tools also presented in [8].

Chapter 1: Introduction

4

Figure 3: Theoretical graph of relative cost of elasticity and

handshaking protocols.

Therefore the objective of this thesis is centred on strategies which can

maximise the variation tolerance benefit and keep the overhead at a balance.

The challenges mentioned above are addressed using the following approaches:

i. A wrapper-based asynchronous logic approach to communication and

the preservation of the LUT-based computation block of modern FPGA

architecture. This allows the re-use of the major part of the design tool

flow, particularly the logic packing and mapping. It seeks to achieve

delay insensitive (DI) in the large for long inter-cluster wires and speed

independence (SI) in the small within clusters.

ii. Characterising the performance of the most popularly used

handshaking protocols that are tailored for reconfigurable logics. The

power, throughput, area and robustness are determined of protocols

Chapter 1: Introduction

5

such as 4-phase dual-rail (4P-DR), 2-phase dual-rail (2P-DR), and

bundled-data (BD).

iii. A strategy to balance the use of asynchrony to tolerate the effects of

variations and the minimization of the area and power overheads.

1.2 Overview of Chapters

Chapter 2 gives an introduction to the development of programmable logic

devices (PLDs) and their evolution into today’s modern FPGA architectures.

The continued scaling of CMOS technology enables the development of many

advanced technologies. However the associated challenges include increasing

variability problems in the manufacturing process as well as the effects of

degradation effects over time. The second part of the chapter classifies the

sources of variability and reviews its impact on FPGA structure as well

existing techniques which attempt to reduce the impact.

Chapter 3 presents a literature review of the use of asynchronous approaches.

The fundamental theory and terminology of asynchronous design are also

briefly introduced here to serve as a basis for further understanding of the

following chapters.

Chapter 4 describes the distributed control architecture which retains the

computational block of the traditional FPGA un-touched (single-rail) and

proposes the asynchronous wrapper and David’s cell control around it. The

Chapter 1: Introduction

6

result achieves a balance between the desire to use asynchrony for tolerate the

effects of variations and retention of the major part of the current design flow.

Chapter 5 presents new concepts for addressing the overhead challenges with

an on-demand strategy. This approach suggests the deployment of

asynchronous logic only on variation-critical paths (VCPs) by leveraging the

mature techniques in obtaining variation maps. The proposed integration of

asynchronously assisted logic (AAL) with state of the art FPGA architecture

involves a minimal increase in overhead. Furthermore, the AAL supports the

use of multi-style asynchronous logic implementation to allow the exploration

of asynchrony at different levels of variation.

Chapter 6 summarises the techniques presented and describes the outlook for

future developments.

1.3 Contributions

 Classification of sources of the variability and its impact on FPGA

architecture (chapter 2)

 Survey of asynchronous reconfiguration architectures based on the

protocols and delay assumption used (Chapter 3)

 A detailed circuit realization at components level for the asynchronous

wrapper using the distributed control approach for asynchronous

components (Chapter 4)

Chapter 1: Introduction

7

 The proposal of a novel AAL architecture that applied Asynchrony only

on the VCPs for the balancing of resource overhead and variation

tolerance (Chapter 5)

 Summaries the work and proposed techniques for advancement.

(Chapter 6)

1.4 Publications

The following papers have been published during the course of this work:

H. S. Low, D. Shang, F. Xia, and A. Yakovlev, "Variation tolerant asynchronous

FPGA", poster presented at the 19th ACM/SIGDA International Symposium

on Field-Programmable Gate Arrays (FPGA 2011) conference, Monterey,

California, pp 282, 2011.

H. S. Low, D. Shang, F. Xia, and A. Yakovlev, "Variation tolerant AFPGA

architecture", presented at the 17th IEEE International Symposium

Asynchronous Circuits and Systems (ASYNC 2011), Ithaca, NY, pp 77–86, 2011.

X. Zhang, D. Shang, F. Xia, H. S. Low, and A. Yakovlev, "A hybrid power

delivery method for asynchronous loads in energy harvesting systems", in

IEEE 10th International New Circuits and Systems (NEWCAS 2012)

conference, Montreal, Canada, pp 413-416, 2012.

Chapter 1: Introduction

8

H. S. Low, D. Shang, F. Xia, and A. Yakovlev, "Asynchronously Assisted FPGA

for Variability", poster presented at the Field Programmable Logic and

Applications (FPL 2014) conference, Munich, Germany, 2014.

Chapter 2 Background: FPGA Technology and Variation Sources

9

Chapter 2. Background

2.1 Introduction

Field-programmable Gate Arrays (FPGAs) have become a popular technology

for implementing digital electronic systems today due to their re-

configurability nature and short design cycle. Continued technology scaling

enables more and more features to be implemented in a same size form-factor.

However, similar to other VLSI design, many new challenges emerged due to

the continued scaling of CMOS process technology. Variability and reliability

have become growing issues in the nanometre scale region.

In order to understand the impact of variation on FPGA architecture, this

chapter first provides an overview of FPGA technology and its development in

recent years. Variation can be from many sources due to imperfection of

manufacturing process, environmental changes or ageing effect resulting in

correlated and random behaviour. This chapter also serves to clarify the terms

by classification of the variability sources and technique commonly used to

characterise them. On-chip, off-chip and soft-sensing classification techniques

will be reviewed.

With the understanding of the variability through the characterisation

techniques available from industry as well as academic research,

improvements of performance and yield can be achieved through variation

aware techniques that are unique for reconfigurable architectures such as

Chapter 2 Background: FPGA Technology and Variation Sources

10

FPGA. The remainder of the chapter is structured into the following

subsections:

i. Introduction to FPGA Technology

ii. Classification of Variability Sources

iii. Sensing and Characterisation Techniques

iv. Variation-tolerant and Yield Improvement Techniques

2.2 Introduction to FPGA Technology

The FPGA is a hardware programmable device whose function can be defined

after fabrication. The concept of the reconfigurable logic device was introduced

in the electronic system design market in 1980s. The reason for the initial

development of reconfigurable devices was mainly to ease the challenges faced

by the traditional board-level design with standard components that increased

in number with circuit complexity and size. The amount of components and

layers of printed circuit boards (PCBs) grew drastically and thus the chance

interconnection errors occurring increased together with the pressure on

create a small form factor to fit the components into the enclosure.

Fuelled by the fast-moving market and evolving standards and rising of mask

development costs in the manufacturing applications-specific integrated

circuits (ASIC), the concept of the programmable logic device (PLD) that would

Chapter 2 Background: FPGA Technology and Variation Sources

11

allow its functionality to be restructured was born and has served the basis for

more advance in PLDs.

The programmable logic array (PLA) was one of the earliest types of PLD.

Figure 4 (a) shows a typical structure of a PLA consisting of a matrix of

programmable AND-gates and OR-gates in a plane used to implement the

minimised standard forms of Boolean expressions, which are sum-of-products

functions.

Figure 4: (a) PLA with programmable OR plane; (b) PAL with fixed

OR plane [9].

Chapter 2 Background: FPGA Technology and Variation Sources

12

With the realization that even with a fixed OR plane, the system would still be

sufficient for logic implementation as a PLA, interconnect optimised

programmable array logic (PAL) structures were introduced in 1978 [10],

trademarked by Monolithic Memories, Inc. (MMI). As illustrated in Figure 4

(b), the architecture was evolved with the removal of the programmable OR-

plane and the introduction of new macro-cells that contained registers and

multiplier for optional combinational or sequential logic implementation. The

concept of the PAL was then extended to offer more complex logic functionality,

and was later succeeded in the market by a new family called complex PLDs

(CPLDs).

Although the level of logic complexity has increased, yet the main market for

CPLDs was still not able to go far beyond a glue-logic within large systems.

FPGA architecture based on the Look-Up Table (LUT) then emerged, which

offered more features rich solutions.

Chapter 2 Background: FPGA Technology and Variation Sources

13

2.2.1 Moore’s Law and Configuration Cells

Figure 5: (a) Look-Up Table (LUT) Structure, (b) 6-Transistors SRAM

Cell.

Gordon Moore, co-founder of Intel, forecast in his 1965 paper, “Cramming more

components onto integrated circuits” [11] that the cost of transistors in a silicon

chip would continue to fall with every advance of technology every two years

or so, and later the prediction turned into a self-fulfilling prophecy. The

doubling of numbers of transistors every 18 months following Moore’s Law has

stimulated drastic growth in the electronics industry. The doubling of

transistor number at a rapid rate has also meant reductions in the cost per

transistor with every new generation of smaller transistors. This benefited the

advances in FPGA technology in the market in the mid-1980s. This is because

the LUT-based FPGA, as in Figure 5 (a), used static-random-access-memory

(SRAM) as the basis of the architecture and the typical SRAM circuit requires

six transistors, as shown in Figure 5 (b), which means the configuration

memory cell comes with a high overhead. However, with the growth indicated

by Moore’s Law, up to this point this has led the industry to exploit transistors

Chapter 2 Background: FPGA Technology and Variation Sources

14

which are almost free, especially in programmable hardware devices. This

validated the area and cost overhead issue on SRAM-based FPGA.

2.2.2 Programmable Memory

Programmable memory or the configuration cells are the underlying

technology for hardware configurability. Earlier PLD devices used

programmable read-only memory (PROM) where the programming could only

be done once and was irreversible; namely the on-time-programmable (OTP)

memory. Anti-fuse memory type, which is one, is more beneficial in terms of

lower area, resistance and capacitance compared to others. Because it is a non-

volatile memory, this means that the system can work instantly at power-up

in contrast to SRAM. In addition, the prime advantage of the anti-fuse PLD

and the FPGA are their susceptibility to faults in environment with heightened

radiation. In particular, the Actel/Microsemi [12] PLDs dominated the military

and aerospace markets for over fifteen years [13]. However, the main

disadvantage of anti-fuse FPGAs is that it requires specialised manufacturing

and programming mechanism. This make it not in-system programmable as

opposed to SRAM, which can fit well within the standard CMOS

manufacturing process, the anti-fuse technology cannot scale and advance at

the same rate as CMOS devices, making it far behind the process geometry in

many generation in comparison.

Chapter 2 Background: FPGA Technology and Variation Sources

15

An alternative Non-volatile memory that supports multiple re-write cycles and

is convenient for in-system programming is the EEPROM (electrically erasable

programmable read-only-memory) or flash memory. Technically this is a type

of EEPROM but offers higher speed when writing large amounts of data

compared to non-flash EEPROM memory. In addition, flash memory also offers

fast read access times similar to DRAM (dynamic RAM) but slower than SRAM.

The key advantages of flash based FPGA over SRAM are its low power

requirement, non-volatility and it is also more secure and reliable for IP

(intellectual property) protection purposes from a security standpoint as no

extra external configuration memory required upon start since SRAM is

volatile and cannot hold the data at power lost. However, the disadvantages of

flash memory are its limited write cycle and the fact that specific

manufacturing processes are used which differ from standard CMOS

technology.

SRAM is the most popular type of memory used in today’s FPGAs for two

primary reasons. First, it offers the unlimited in-system programming and

second the standard CMOS process technology is used and therefore, it benefits

from the advances of the latest scaling of CMOS technology. However,

continuous technology scaling may also have adverse impacts, which are

discuss later in this chapter.

Unlike flash-based non-volatile devices, the volatile SRAM-based FPGA

cannot hold its configuration without power source. Therefore, a dedicated

Chapter 2 Background: FPGA Technology and Variation Sources

16

programming circuity and sequence is needed to load the configuration bits at

every system power-up. This also means that SRAM-based FPGA has a lead-

time at power-up before live operation and requires extra board-level non-

volatile components, which increase the overall cost. Since the configuration

data are stored externally, this also opens up the potential for IP protection

issues, although alternative encryption solutions may eliminate this. A

summary and comparison of these three main types of memory are show in

Table 1.

Table 1: Key configurable cells technology comparison[9].

Memory Type Anti-fuse Flash SRAM

Features

Non-Volatile Yes Yes No

Reconfigurable Cycle one-time Limited Unlimited

Area (element size) Low Moderate High

In-System programing No Yes Yes

Manufacturing Process Anti-fuse custom Flash process Standard CMOS

Speed Fast read, slow write Fast read, slow rewrite Fast

2.2.3 Modern FPGA Fabric

The tradition basic FPGA architecture consisting only of reconfigurable logic,

an interconnect block and the input/output (I/O) pad is call soft fabric. Today’s

state-of-the-art PFGAs are packed with over a million LUTs. Also more and

Chapter 2 Background: FPGA Technology and Variation Sources

17

more hard blocks have been included in the package to improve computation

performance, including the digital-signal-processing (DSP) block, distributed

memory, high-speed communication links, and an advanced clock management

system together with mixed signal analogue functionality. This has made the

architecture increasingly heterogeneous as illustrated in Figure 6. In hybrid

structures, combinations of hard and soft microprocessor cores are also

included. With the advances in FPGA technology, the use of mature

intellectual property (IP) and computer-added-design tools (CAD) have also

facilitated the emergence of user customisable system-on-chip (SoC) FPGAs

that provide significant benefits for embedded system implementation.

Chapter 2 Background: FPGA Technology and Variation Sources

18

Figure 6: Modern FPGA fabric with Hard-block

2.2.4 Software and Hardware Programmable Devices:

Compared to general-purpose microcontrollers and microprocessors (µPs),

FPGA-based circuit implementation is typically much faster. This is because

in the FPGA, It is not necessary for the controller to move the data around

between the data memory and working register in order to perform logic

operations or in the context terms, the sequential fetch-decode-execute loop of

soft-computation. The classic examples of software-programmable

architectures are Von Neumann and Harvard processors. Instead, the

underlying computation in FPGA is hardware-based. All of the possible

combinations of output from a set of inputs is pre-calculated with Boolean

algebra expression in a truth table and Karnaugh map and stored in the LUTs.

The arrival of inputs will essentially become the address pointer to the specific

Chapter 2 Background: FPGA Technology and Variation Sources

19

memory location of the LUT; therefore, complex and multiple iteration

computations can be avoided and results can be obtained almost instantly.

Similar techniques have also been used in microcontrollers to achieve the fast

computation of complex calculations by using the “not-to-compute-all”

technique or, in other words prefetching or pre-calculating and storing all

possible results on LUTs[14]. This technique is very effective and commonly

used in embedded system design to decrease computation time. In the FPGA,

LUT techniques are exploited intensively across the whole architecture.

2.2.5 Difference between the FPGA and ASIC

The application-specific integrated circuit (ASIC) is a general term for fully

customised designs. The main benefit of a device that is fully custom-designed

is its smaller form factor from its manufacturing specifications and lower cost

for high volume production. Whereas the FPGA is a hardware programmable

device that its functionality can be configure by the end user after fabrication,

which explains the term “field-programmable”. The key advantages of the

FPGA over ASIC are the low non-recurring engineering cost, which support

rapid prototyping and fast-time-to-market. However, the disadvantage is that

the FPGA may not be suitable for most electronic system design specifications

because FPGAs are used for general purposes and therefore the logic density

of the chip is multiple folds below that of the ASIC design. This translates into

higher power consumption, higher cost and slower speed performance

compared to equivalent systems implemented with ASIC. However, due to the

Chapter 2 Background: FPGA Technology and Variation Sources

20

advancement of CMOS processes and the introduction of more “hardened”

blocks such as multipliers and accumulators, the performance gap between

FPGAs and ASICs is gradually becoming smaller [15, 16].

Figure 7: Basic FPGA and ASIC design flow[17].

The design of ASICs and FPGAs, however, shares a very similar tools flow.

This is especially true for the upper part of the design flow, from functional

specification normally in HDL (hardware description language) to logic

synthesis and optimisation and later placement and routing. The difference in

placing and routing at this point between the two flows is that the logic has to

be packed and clustered into a fixed prefabricated structure on the FPGA and

Chapter 2 Background: FPGA Technology and Variation Sources

21

the routing resources to join them together, whereas the placement and routing

on the ASIC are free. These similarities between the two flows are shown in

Figure 7. Thus, historically, a main application of the FPGA was primarily

used for ASIC prototyping or function verification before committing costly

manufacturing processes. Due to the levelling of performance, competitive cost

and ‘harden core’ enhancement, FPGAs now move beyond their historical use

and are becoming the core technology platform for applications such as high

speed signal processing, industrial control, communication network data

network switching and high frequency financial trading and computation

accelerators.

Chapter 2 Background: FPGA Technology and Variation Sources

22

2.2.6 Summary of Evolution

Figure 8: Key technology comparison vectors.

This section summaries the different between FPGA and two other key

technologies for electronic system design, the microprocessor (µP) and ASIC.

In Figure 8 (a), the main drives for the ASIC approach are mainly toward

ultimate higher speed and lower power performance. However, the NRE costs

for custom design, layout, fabrication and packaging are high. The mask for

the silicon process is itself extremely expensive with a limited lifespan.

However, in mass production runs this is still more cost-effective. From the

reconfigurable software perspective, the standard processor architecture is

more flexible in term of hardware configuration (such as I/O pin configuration),

low non-recursive engineering costs and firmware programmability. However,

http://en.wikipedia.org/wiki/Mu_(letter)

Chapter 2 Background: FPGA Technology and Variation Sources

23

the downsides are that it is high in operating system overheads and compiler

inefficiency, and there may also be a performance reduction due to the indirect

relationship between the hardware and the software on the processor [18], as

shown in Figure 8 (b).

Programmable devices or the FPGA architecture fit in between the other two

design approaches and offer the greatest hardware configuration flexibility

and higher performance compared to general processor approaches as well as

lower NRE costs compared to the ASIC. In recent and past decade, advances

in research and on the FPGA has been largely focused on improving the speed

performance and optimising power consumption, as illustrated in the green

line in Figure 8 (c). Given the benefit for both application-specificity and

flexibility in a larger system, modern FPGAs are now also blending more and

more application-specific hard-blocks with their traditional soft-fabric forming

new hybrid architectures. The motivation for and benefit from the hybrid

structures are also illustrated in the green line in the yellow pentagon at the

bottom left of Figure 8 (d).

2.2.7 Fundamental Structure of the FPGA

This section explains the underlying building block of the FPGA soft-fabric

architecture and the terms associates with it from the most basic primary

elements to the hierarchy which is build up.

Chapter 2 Background: FPGA Technology and Variation Sources

24

2.2.8 Logic Block

The basic building block in a FPGA comprises a lookup-table (LUT), a register

(DFF) and a multiplexer (MUX), as shown in Figure 10(c). It is normally called

a logic cell (LC) in Xilinx, while the equivalent from Altera is called the logic

element (LE). For ease of explanation, Xilinx’s terms will mainly be used in

this thesis. Figure 9 demonstrates the primary concept of a simple logic

implementation on a FPGA. This example demonstrates the implementation

of basic logic circuit of a single bit adder in Figure 9 (a). The truth-table is first

derived (Figure 9 (b)), this process is normally supported using a synthesis

CAD tools. The synthesis processes basically computes each value of the logical

expression of the circuit according to their functional arguments. In this

example, the expression of sum = A + B+ C = 0x69 is stored in the k-input size

lookup-table or K-LUT as shown in Figure 9 (c). The memory size of the LUT

is defined as 2𝑘 bits or 8 in this case for K = 3. Although the 4-LUT was once

the more common structure, traditionally introduced because of area efficiency,

it should be noted that modern FPGA structures are already built-in with 5 to

7 LUTs for better speed performance.

Chapter 2 Background: FPGA Technology and Variation Sources

25

Figure 9: Basic logic implementation on the primary logic cell: (a)

logic diagram of a 1-bit adder; (b) truth-table for SUM; (c) logic

mapping on a lookup-table (LUT).

Figure 10 (a) shows a basic view of island-style FGA architecture. The cluster

is the next level in the hierarchy of this architecture, consisting of a group of

primary logic cells (LCs). In Altera, the terminology used is the logic array

block (LAB); whereas deviating from Altera, Xilinx has another layer of

hierarchy, a group of LCs called the SLICE and the two SLICEs constitute a

Configurable Logic Block (CLB). The main idea for grouping LCs within a CLB

is to avoid long global interconnects.

Chapter 2 Background: FPGA Technology and Variation Sources

26

Figure 10: Hierarchy view of FPGA structure: (a) Island style

structure, (b) Two slices in a CLB, (c) Basic LC structure.

2.2.9 Routing Structure

Surrounding the CLBs in the island style structure are the routing resources.

The connection block (CB) links the inputs and outputs of CLBs with

programmable switches. The interconnect grids are made of prefabricated

wiring segments, and at each vertical and horizontal interaction of the wiring

segments is a switching block (SB). The SB also consists of a set of switches

that allows the possible routing of signals to the next intended CLB destination.

For clarity of explanation, a simplified CB and SB block connected with only a

few switches are shown in Figure 11.

Chapter 2 Background: FPGA Technology and Variation Sources

27

Figure 11: Routing resources structure.

2.3 Introduction to Variation

Variations have become more dominant with the continued scaling of the

CMOS process. The complexity has increased, resulting in higher fabrication

costs to achieve uniformity in die production. This limitation can result in

random and spatially varying deviations from intended design parameters,

and affecting speed, power and reliability. Conservative approaches to increase

the operating timing margin across the whole chip to reduce the impact of

parametric yield are imprudent and reduce performance, especially when the

consideration is based on worst-case scenarios.

In addition to the physical parameter variation, dynamic environmental

sources of variation such as temperature, or supply voltage changes during

operation require engineers to employ more aggressive techniques. Similar to

Chapter 2 Background: FPGA Technology and Variation Sources

28

all other CMOS devices, FPGAs are no exception. In fact, the impact of

variation could be more severe compared to ASICs, because the circuit

mapping and critical path routing processes may result in any combination of

worst and best case variability path or regions. This section provides a general

description of sources of variation and discusses its impact on FPGA technology.

Finally published variation tolerance techniques are reviewed.

2.4 Classification of Variability

Sources of variation can be classified into two main categories. First, the

imperfection during manufacturing and second operational environmental

changes, degradation over time due to ageing and wear-out can all be broadly

categorised as either spatial or temporal variations [19]. Figure 12 clarifies the

classification of variation based mainly on timeline since the devices was

manufactured. For spatial variation, the time assumption is constant (t=0s),

and the changes of devices in the characteristics over time are therefore

considered temporal (t = t’).

Chapter 2 Background: FPGA Technology and Variation Sources

29

Figure 12: Spatial and temporal variation classification.

a) Process variation or the spatial variation mainly involves imperfection

during the manufacturing process resulting in parametric deviation of

transistor value between different die (inter-die) as well as variation

within a same die (within-die/ Intra-die). Inter-die variation is a

systematic type of variation which generally shows spatial correlation

behaviour and normally results from varying MOS transistor

dimensions in length or width (L/W), oxide thickness (TOX), and flat-

band condition [20] whereas line-edge-roughness (LER) or random-

dopant fluctuations (RDFs) cause within-die variation with stochastic

characteristic [21].

b) Temporal variation, on another hand is due to changes in the

characteristics of a device over its lifetime. Temporal variations can also

be divided into two main branches, which are environmental and ageing,

Chapter 2 Background: FPGA Technology and Variation Sources

30

where voltage and temperature variations can be classified as

environmental.

c) Negative and positive bias-temperature instability (NBTI & PBTI), hot-

carried-injection (HCI), time dependent dielectric breakdown (TDDB),

and electromigration all fall into the Ageing category [22, 23].

2.5 Process Variation Sources

Figure 13 gives a summary of the key factors in process variations, which can

be either systematic or statistical. Systematic variations are caused by

imperfection in the mask and optical tooling mechanism and result in

repetitive offset from chip-to-chip. Systematic variability is deterministic, and

therefore can be estimated and improved using specific design techniques;

however intrinsic variations are statistical and thus the impact cannot be

reduced through improvements in the manufacturing process [24]. The

following briefly explains and classifies them into two main categories of

tooling-related and intrinsic variation.

Chapter 2 Background: FPGA Technology and Variation Sources

31

Figure 13: Subdivisions of process variation.

2.5.1 Tool-Related Variation

Optical lithography has been effectively used in fabrication for over thirty

years. Due to technology scaling, optical lithographic are now in the

subwavelength region where the feature sizes of the devices or transistors are

now below the wavelength (λ) of light. For example, the value of λ has remained

at 193nm from 130nm to more recent 65-nm transistors [25]. Therefore, it has

become extremely difficult to print the wafer exactly as intended on the layout

[22]. Chemical mechanical polishing (CMP) is used for planarizing the metal

interconnect layer between adjacent metal layers due to copper damascene

process. Variations in interconnect thickness at post-CMP affect resistance

and capacitance and result in variations in the delay in interconnects that may

cause non-deterministic circuit behaviour both chip-to-chip and within a chip.

In addition to CMP, rapid thermal annealing (RTA) and the stress liner effect

from the fabrication process also induce variations in length and width

parameters on the device [26].

Chapter 2 Background: FPGA Technology and Variation Sources

32

2.5.2 Intrinsic Variation

Beyond variations due to imperfect fabrication tools, some sources of variation

are intrinsic to the technology involved. Two key sources of variation that are

truly random in nature are random dopant fluctuation (RDF) and line-edge

roughness (LER). RDF is variation resulting from variability in the

concentration of the implanted impurity. RDF affects the transistor’s channel

region and alters its properties, particularly the device’s voltage threshold. The

impurity of atoms in modern process technology has a significant affect since

the total number of dopants is decreasing drastically. Because of the

limitations of lithography and etching tools, the resulting effect is line-edge

roughness (LER). The impact of LER is less prominent for technology nodes

above 90nm. However, in sub-50nm node, LER can critically affect the voltage

threshold, since the ratio of roughness of the edges is becomes closer to the

width of the transistor at the range of 5-10nm as illustrated in Figure 14.

Chapter 2 Background: FPGA Technology and Variation Sources

33

Figure 14: Line edge roughness at 90nm and 22nm technology [23].

2.6 Environmental Variation

Temperature and supply voltage variations are categorised as environmental.

The performance of devices is strongly dictated by these conditions.

Figure 15: Classification of sources of environmental variation.

2.6.1 Temperature Variation

Several factors in addition to the ambient temperature affect the rise and

dissipation of temperature within a chip. Regions of the chip with high activity

and power consumption are normally associated with rises in temperature, or

Chapter 2 Background: FPGA Technology and Variation Sources

34

so called hot spots. This increase of heat in a localised area creates temperature

variation across a chip. Time constants for temperature variation are normally

in the range of milliseconds to seconds. Circuit normally decrease in speed with

a rise of temperature due to reduced carrier mobility and increased

interconnect resistance. Therefore keeping the temperature within a chip well

regulated is necessary to maintain the performance of the circuits. Delays

normally increase with increases in temperature. Towards lower geometries

below 65nm and beyond at lower threshold voltage, the temperature variation

has shown contrarian effects on cell delay [27]. Figure 16 show the

characteristic of a typical circuit at nominal voltage, Vdd = 1.2V where the

circuit gradually slows down with increasing temperature. However, at a level

of Vdd below the nominal value, from 0.9V and 0.8V, the circuit exhibits the

reverse characteristic [28]. Therefore, extra-care has to be taken, especially in

the extent of sub-threshold to reduce operation power and strategy for energy

efficiency improvement with DVFS.

Chapter 2 Background: FPGA Technology and Variation Sources

35

Figure 16: Inverse path delay characteristics at lower voltage level

with increase in temperature [29].

Several factors that affect the temperature variation are listed as follow[23]:

o Neighbouring blocks power characteristic of the circuit switching

activities and capacitive load around the location or within the

same region will affect power consumption and heat generation.

o The thermal conductivity of material is closely related to power

density. Heat generated in bulk CMOS device is dissipated

through both the silicon substrate and the interconnecting wires.

In SOIC (silicon-insulator) technology, however, heat dissipation

occurs mainly along the wires and results in rapid heat increases

in regions that consume a lot of energy. This disparity results in

greater temperature gradients between hot and cold regions

within a chip.

Chapter 2 Background: FPGA Technology and Variation Sources

36

o Cooling efficiency of the packing or heat sink helps to improve

the thermal profile. However, this issue exacerbated in the 3D

(three-dimensional) stacking technology where circuits are

sandwiched together. This means that it becomes more

challenging to dissipate heat.

o Switching activity or the workload running on the system in a

location or core can drastically increase the temperature in a

specific region especially over a long period. In modern multi-core

processor system or reconfigurable systems such as the FPGA,

the workload may be distributed or inter-swap over time. This is

however largely depending on the ability of the underlying

support resources of the architecture for dynamic or partially

dynamic reconfiguration. The strategy of periodically relocating

the workload to different regions or cores will vary the thermal

profile over time.

2.6.2 Supply Voltage Variation

Supply voltage variations mainly result from voltage drop across resistive

interconnect (IR-drop) and inductive (or di/dt) noise. The power distribution

grid within a chip come with its inheriting parasitic resistance, and when a

steady state current flows through, this cause IR-drop which can be derived

from the basic Ohm’s Law as ∆𝑉𝐼𝑅 = 𝑅𝑔𝑟𝑖𝑑 ∗ 𝑖(𝑡) . Meanwhile, fluctuations of

Chapter 2 Background: FPGA Technology and Variation Sources

37

voltage due to the parasitic inductance, commonly referred to as the di/dt noise,

(∆𝑉𝑑𝑖

𝑑𝑡

= 𝐿𝑝𝑎𝑟𝑎𝑠𝑖𝑡𝑖𝑐 ∗
𝑑𝑖

𝑑𝑡
). These rapidly changing power noise effects normally

have time constants in the range from nanoseconds to microseconds [29]. In

summary, the characteristics of the circuit depend significantly on the

operating voltage level. A drop of supply voltage affects both the grain and gate

bias and the impact is reduced in a flow of current. One profound impact of this

on circuit operation is that it does not just increase the delay in the critical

path, but may make those near-critical paths that have not been optimised

become critical.

Energy harvesting system that tends to provide variable power levels can also

be considered as environmental variation. With the expansion of wireless

sensor networks and looking toward to the wider scope of the Internet-of-

Things (IoT), it is becoming more important to prolong and support existing

battery-powered system [7, 30]. In certain applications, energy harvesters have

completely replaced traditional batteries. Examples of commercial applications

are the battery-less (infrared remote control) and (wireless wall switch) [31].

Energy harvester devices tend to provide dynamic power, and voltage levels

may vary at run-time. The strategy to allow circuit working in wider operating

range is therefore intentional [32-34]. The rationale for this kind of circuit is

that energy should be used while it is abundant, which means that circuit can

run at their optimum speeds. This is because the process of energy conversion

and storing incurs extra circuit complexity that reduces its efficiency. The

Chapter 2 Background: FPGA Technology and Variation Sources

38

benefits of this kind of system able to operate under a wide range of operational

voltage levels is maintaining circuit functional or at least part of the core

features at a reduces rate while energy is scare and low [35-38].

2.7 Temporal Variation – Ageing Related

While environmental temporal variation such as changes in temperature and

voltage add to the circuit marginalities, ageing-related temporal variation

affects circuit performance gradually over a period. Key mechanisms

contributing to such effects are TBBD, HCI and BTI [23], as shown in Figure

17.

Figure 17: Ageing related temporal variation.

 Time-dependent dielectric breakdown (TDDB): The creation and joining

of defects in the gate dielectric, causing gate dielectric breakdown.

 Hot carrier injection (HCI): Defects in the gate stack caused by highly

energized carriers under large lateral (drain-to-source) electric fields

cause shifts in the threshold voltage.

Chapter 2 Background: FPGA Technology and Variation Sources

39

 Bias-temperature instability (BTI): The Capturing of holes (electrons)

from the inverted channel in PFETs and NFETs by broken Si–H bonds,

such as charge-trapping sites in high-K gate dielectrics (HfO2).

 Electromigration: is the transport of material caused by the gradual

movement of the ions in a conductor due to the momentum transfer

between conducting electrons and diffusing metal atoms.

2.8 Sensing and Characterisation

Sensing circuits play an important role in understanding and characterising

the variability profiles of a particular batch or individual chip. The primary

function of sensing circuits is twofold. First, to quantify between the deviated

characteristic of a device and its ideal intended behaviour. Secondly, the on-

chip sensing circuits can be used for continued health monitoring to help

provide adaptive refitting for environmental changes and temporal

degradation. Less conservative guard banding can be achieved with the

availability of characterisation information, which can mean timing yield

improvements. Furthermore, with accurate sensing and characterisation, a

detailed variation map can be generated. Utilising such information a

controller can supplement the power of weakening regions and critical paths

can be diverted. Therefore potential run-time malfunctions can be avoided.

This section looks at several frequently used sensing and characterisation

techniques that can be applied to ASIC and FPGA design.

Chapter 2 Background: FPGA Technology and Variation Sources

40

2.8.1 Off-chip Sensing

Off-line sensing is a non-intrusive approach of characterisation without built-

in sensors; external measurements equipment is used instead. The most

straightforward characterisation technique traditionally used is to incorporate

extra test pads for direct access of test probes that are able to inject stimulus

signals containing multiple electrical parameters to the sections of the circuits

[39]. Accurate current and voltage characteristics of the device can be obtained

with this measure. However, such an approach is expensive with the number

of test pads required especially with large circuit, the area overhead makes

this not viable. Although, area optimisation techniques such as multiplexing

the circuit in the array matrix format is possible [40], yet precision and complex

analogue voltage-current measurement setup may still be needed. For modern

multi millions gates FPGAs, this characterisation technique is almost

impossible.

Optical imaging is another attractive non-invasive approach for chip

variability characterisation without the need of embedded hard sensors. This

technique is based on measurements of the deflective of the electromagnetic

wave from the emitting source such as infrared to provide visual

representation of the study. In [41], the optical imaging technique was

successfully demonstrated to map systematic and random variability effect of

microprocessor chip in 65nm technology. Static imaging camera was utilised

in this approach to capture the light emission from off-state leakage current

Chapter 2 Background: FPGA Technology and Variation Sources

41

(LEOSLC). The authors suggest the recorded data that can be easily correlated

to produce variation map and be successfully adapted for the evaluation and

enhancement of the fabrication process as well as to develop countermeasure

for the possible reliability issues.

Thermal and power characterisation using infrared imaging technique applied

on FPGA is recently presented in [42]. In this work, run-time thermal

characterisation is performed by capturing the emissions from the back of the

chip. The result is the visualisation of operational thermal gradient and hot

spot for the particular application mapped on FPGAs. Again, these off-chip

techniques are attractive but require complex measurement equipment and

procedures. In addition, due to the data being gathered externally, this makes

the variation map correlation process less straightforward.

2.8.2 On-chip Sensing

An alternative to the off-chip sensing are built-in hard sensors. The state of

the art of multicore processors is normally equipped with multiple thermal

sensors. Accurate sensing requires fine granularity of build-in sensors that is

scattered across the chip and the question for the research has always been at

what cost or overhead.

Sensing and characterisation based on Ring oscillator (RO) was presented in

the past and recent years due to its simplicity in implementation either on-line

or off-line [3, 43-49] . In [43], authors utilised the method to measure random

Chapter 2 Background: FPGA Technology and Variation Sources

42

variations in MOSFET threshold voltages. Die-to-die variability

measurements with ROs that is sensitive to parameter was proposed in [44].

In [46], authors proposed to create Path-based RO to measure and monitor the

targeted critical path under process variation. RO was also presented as a

temperature sensor as an alternative to analog sensing circuits. RO circuits

may be convenient to deploy, yet this approach may increase the overall area

of the circuit. In addition, the circuit itself is reactive to temperature and

voltage fluctuation. The RO method unfortunately has also been remarked as

a bad instrumentation technique for FPGA variability as it does not accurately

represent the circuit path in FPGA designs. At high frequency oscillation, RO

circuit itself generates heat, this consequently adds extra complexity and

variability to the situation [50].

Increasing technology scaling in nanometer regions results in local random

transistor parameter variations. The effects of such phenomena as random

dopant fluctuations (RDF) and line edge roughness (LER) can dominate

mismatch in neighbouring devices. Particularly in SRAM cells with high

circuit density, mismatch can deteriorate the circuit functionality greatly.

Current latch sense-amplifier (CLSA) for example in [51] is proposed to

measure mismatch between two transistors. Since only a pair of transistors

can be measured at any one time, this limits its usefulness. Extension from the

basic mismatch sensor, array based characterisation is also presented in [52,

53]. Yet, the limitation of this method has been the low sensitivity due to device

Chapter 2 Background: FPGA Technology and Variation Sources

43

properties changing linearly with voltage threshold variation when the device-

under-test (DUT) is biased in the saturation region.

2.8.3 Soft Sensing in FPGA

Reconfigurable architectures such as FPGA give a unique opportunity for

sensing and mitigating the effects of the variability using the generic built-in

flexible resources rather the dedicated embedded sensing circuits. This is

called “soft sensing” in this thesis. Modern FPGA architecture such as Altera’s

Stratix family and Xilinx’s Virtex series are all equipped with a thermal sensor.

However, a single sensor cannot sufficiently provide the temperature gradient

of the chip. Never mind the ability to identify the maximum value or hot spots

of the chip.

Ring oscillator (RO) is a commonly used technique due to its simplicity in

implementation either on-line or off-line. Off-line RO is normally used for

characterisation purposes such as variability of delay with the changes of

temperatures [54]. Authors of [47, 54] proposed one of the earliest thermal soft

sensing approach on reconfigurable computing architecture. Flexible RO-based

thermal sensing replaced conventionally used analog sensor and its complex

control circuit. Example of works in [3, 55] also used RO, instead of thermal,

authors perform characterisation of FPGA process variation effect by

measuring its component delay.

Chapter 2 Background: FPGA Technology and Variation Sources

44

On the other hand, to continuously monitor the health and provide adaptations

to temporal effects [45, 46, 56], on-line soft sensing techniques can be beneficial.

In [57], thermal soft sensing technique is proposed. This approach utilise an

adder-accumulator multiplier to make the computation without the need of RO.

Wong et al. [58-60] proposed novel characterisation techniques that enables

accurate combinatorial delay measurement. This differs from the previous

mentioned methods that used RO for latency measurement [3]. This work

performs characterisation by stepping the system frequency gradually for error

detection.

Leveraging the unique reconfigure structure of FPGA, extra-embedded

analogue sensors can be avoided for PVT (process, voltage and temperature)

characterisation. And this forms sound of the foundations for the work

presented in this thesis. Furthermore, due the final application to be

implemented on the FPGA is not known until it is fabricated, it is hard to

predict where and how sensors should be distributed across the chip evenly.

Therefore, soft sensing grants additional advantages for monitoring circuits,

particularly in the use of on-chip hot spot tracking.

2.9 Conventional Variation Tolerance in FPGAs

2.9.1 STA and SSTA

In Static Timing Analysis (STA), timing analysis is carried out in input

independent manner, and purpose to determine the worst-case delay or critical

Chapter 2 Background: FPGA Technology and Variation Sources

45

path of the circuit over all possible input combinations. Therefore, STA

approach often gives pessimistic timing estimation. Hence, this reduces the

speed performance that could otherwise be much faster. Extensions of the STA

are corner analysis, where worst-case and best-case scenarios for PVT

variation can be presented. The best cases are defined as fastest processes at

highest voltage level operating at the lowest temperature, and the worst case

will be the opposite with a slow process at the lowest voltage and highest

temperature. Examples of the effect of PVT on path delay are shown in Figure

18

Figure 18: Corner analysis with STA tools

Despite the conservative timing estimation on the critical paths, STA is not

able to accurately model intrinsic variability that is random and stochastic.

Under random parametric fluctuations, the shorter paths or near-critical paths

that have not been optimised have the tendency to become critical.

Statistical static timing analysis (SSTA) tools aim to identify these statistically

critical paths and minimize the chances of these paths becoming critical.

However, the drawbacks of SSTA tools include the uniform strategies used

Chapter 2 Background: FPGA Technology and Variation Sources

46

across the whole chip and between different dies. Therefore, accurately

modelling statistical variation from one die to another requires an accurate

variation model value of mean (µ) and standard deviation (σ). Also it is

becoming difficult to produce statistical models for the larger systems with

high random variation that are expected in future node technology, making the

characterisation cost un-scalable to deal with the complexity of a system with

increasing numbers of statistically critical paths [61].

2.9.2 Optimisation of Structural Parameters

Structural parameter optimization is another proposed approach for

mitigating FPGA variation, which focuses on traditional architectural

parameters such as varying the value of N, the number of LUTs per CLB, and

K, the number of inputs to a LUT [62]. However, study in [63] shows that

varying the value of N and K value does not provide significant improvements

over the variation concern [23].

2.9.3 Transistor Sizing

Transistor sizing can be used in ASICs to optimize path delay and power

performance. However, the process of transistor sizing for its width and length

(W/L) at layout level for FPGAs requires a huge effort and will consumes

significant amount of engineering time. Research into automated transistor

sizing on FPGAs for area and speed trade-off [64] is also promising in exploring

the use transistor sizing to mitigate the effect of variability on FPGA

Chapter 2 Background: FPGA Technology and Variation Sources

47

architecture. Yet, this technique is computational expansive and the

variability-critical paths (VCPs) cannot easily predefined.

A recent project named the Programmable Analogue and Digital Array

(PAnDA) architecture [24] represents a new approach to intrinsic variability,

introducing reconfigurable transistor arrays at the analogue level. This

approach allows low-level optimization during the post-fabrication stage and

results in the recovery of the loss of performance yield introduced by stochastic

variability. However, the extra configurability of the architecture also comes

with a high area overhead.

2.9.4 Asynchronous Techniques

Asynchronous designs are highly adaptive to changes in voltage and delay,

providing robustness depending on the delay assumptions that are made [65].

The most robust class is delay-insensitive (DI), where circuits will operate

correctly without any assumption of delay in either gates or wires. Circuits

with carefully identified delay assumptions on isochronic wire are called quasi-

delay-insensitive (QDI) [66] or speed independent (SI) [67]. These circuits

consider only the gate delay and neglect wire delay when ensuring circuit

correctness.

There are many approaches or protocols for implementing asynchronous

circuits. A taxonomy of potential protocol implementations is summarized in

[65]. The choice of an asynchronous communication protocol affects the

Chapter 2 Background: FPGA Technology and Variation Sources

48

characteristics of circuit in term of implementation power, area, throughput

and robustness.

In the past decade, different asynchronous FPGA architectures have been

presented motivated mainly by the pursuit of low power and/or high-speed

performance. These architectures can be classified into two main styles. The

first relies heavily on timing assumptions to guarantee the correctness of the

logic, and the second alters the traditional architecture at fine-grained level

with the intensive use of state-holding memory components (such as C-

elements), which implies significant overheads in size and power [68, 69].

Details of asynchronous FPGA (AFPGA) designs are reviewed in Chapter 3.

2.10 Variation Aware and Late Binding Techniques

Process variation has become a hot issue with the continue technology scaling.

The major challenges are to resolve reliability issues while maintaining yields.

Unique functional configurability of FPGA provide extra-flexibility to mitigate

problems such as variation aware techniques that leverage the knowledge of

how each chip are affected by the variation. With the assumption of mature

off-line and online sensing techniques, each chip can be characterised and treat

differently using late binding techniques such as multiple-reconfiguration,

region relocation, and path reconfiguration. Compare to conservative worst-

case timing assumption approach the variation-aware approach are promising

for better circuit performance.

Chapter 2 Background: FPGA Technology and Variation Sources

49

2.10.1 Yield Improvement through Multiple-Configuration

Figure 19: Multiple reconfiguration strategy flow.

Figure 19 shows technique for timing yield improvement through multiple

reconfigurations. The placement and routing (P&R) of FPGA are flexible,

therefore multiple configuration options for same functional results is possible.

Supposed due to variability in delay, each bitstream generated from the P&R

processes that have identical functional behaviour would have deviation in

timing performance. Therefore, numbers of pre-generated bitstream can be

exploited and test run at the configuration process for each chip until the best

performance configured bitstream has been identified. Although this strategy

may theoretically improve the speed and timing yield performance compare to

the SSTA alone, yet it requires at-speed test for each configuration, which is a

very timing consuming. Furthermore, the large number of configuration

options means huge storage memory needed. This makes it not suitable for

memory resources limited embedded platform. Detail descriptions of multiple

reconfiguration strategy can be found in the work proposed by Sedcode et al.

[70] and Matsumoto et al. [71].

Chapter 2 Background: FPGA Technology and Variation Sources

50

2.10.2 Variation Aware Modelling

There have been several attempts at improving FPGA timing yield by

providing statistical analysis and process variation modelling for variation

aware placement and routing [70, 72-77] . Another example in [73] provides

variation aware timing-driven algorithm to optimise timing statistically and

maximize timing yield. Simulation result based on statistical enhance versatile

place and route (VPR) tools [78] show 3.4x increase in yield with guard-banding

and 25x with speed-binning using the variation aware placement techniques.

However, the guard-banding and speed-binning techniques may not be

sufficient with the presence of within-die variation. This is because the chip

performance will be greatly degraded with the wide banding, removing the part

of the incentive for technology scaling in the first place.

Chapter 2 Background: FPGA Technology and Variation Sources

51

Figure 20: Variation aware chipwise placement design flow [72].

One of the earliest variation aware placement for FPGA is proposed by authors

in [72], the design flow is shows as in Figure 20. The authors suggest with the

help of the software model that have been developed within the VPR

framework [78]. Worthwhileness of variation ware placement is first evaluated

for performance gain can be expected. Simulation result shows up to 19.3%

performance improvement can be achieved with chipwise placement. Part of

this thesis is also based on the assumption that a variation map is obtainable.

In nanometer process technology, variation in FPGA has shown both

correlated and random effects. Authors in [75] proposed an improvement model

that consider both inter-die and intra-die variability including the delay

variability in routing resources. The purposed model also enhanced with

statistical timing analysis, supported by variability aware P&R based on VPR

framework.

Chapter 2 Background: FPGA Technology and Variation Sources

52

2.10.3 Relocation, Remapping and Rerouting

Figure 21: (a) Region relocation, (b) Path reconfiguration.

The idea of region relocation is similar to the strategy used in wear levelling

for managing and prolonging the lifespan of traditional flash memory that

have limited write cycles due to wear out. The wear levelling technique uses

algorithms that track the frequency each location has been written and works

to distribute data evenly across each memory block of the entire flash drive.

This process decreases the total wear on the drive, thereby increasing the

lifespan of the drive. A similar concept applies to the region relocation where

the FPGA are partitioned into regions and circuit can be configured into the

allocated regions. As a region with configuration ages, the circuits can be

swapped to a region that has not been assigned before. This wear-levelling

technique is particularly useful for the extending lifetime of the FPGA as well

as improving its reliability [79].

Chapter 2 Background: FPGA Technology and Variation Sources

53

Srinivasan et al. [80] suggest the relocation of circuit over time with the unused

region of the FPGA to reduce the effect of HCI. Figure 21 (a) illustrates the

regions swapping strategy between high switching activities and the less active

region to minimised the age acceleration effect of HCI. Also with the

assumption of enough modular level of the available regions, partial dynamic-

reconfiguration can also be supported. Contrast with the multiple

reconfiguration techniques, there is no need for generation of multiple

bitstream/netlist, therefore huge storage space requirement can be avoided

[70]. Yet, the challenges with this approach are strategically circuit

partitioning into sub modules and then the support for reassembling them.

Figure 21 (b) shows the path reconfiguration strategy to improve timing yield

in FPGAs compensating for variability by re-mapping and re-placement

[81].This work exploit the flexibility of LUTs mapping and presented a

software tool that can systematically compute all the possible way for a given

logic network. The experiment results show mean and variance of a critical

path delay can be reduced similar to using the statistical Monte Carlo

simulation techniques.

2.11 Summary

Variability issues in sub-nanometer CMOS technology have appeared as a

critical challenge to the ability to deliver a design that meet all the timing,

power and reliability specification. With the continuous scaling of the

Chapter 2 Background: FPGA Technology and Variation Sources

54

technologies and increasing power density, the pressure to deliver the design

within the time frame while dealing with the variability issues is going to get

worse. The two main variability challenges are, first the static variability due

to process scaling and limitation of lithography and etching tools. The

imperfection during of manufacturing process results in parametric or spatial

variability for inter-die and intra-die. Secondly the environmental changes

and temporal ageing variability is dynamic changes after deployment.

Tackling the dynamic variability such voltage changes due to increasing

workload and temperature during operation is relatively more challenging.

Traditional techniques that apply excessive operating margin across the whole

chip based on worst-case scenario reduced system efficiency. This thesis aims

to explore the practical variation tolerance strategies without scarifying the

system efficient that relies on worst-case guard-banding.

In advanced technology nodes, a design with multiple billion atomic-scale

transistors; the assumption that not all of the transistor will work or some will

fail at the later life of the device may not be unfair. FPGA architecture has

been the centre of this work because its inherit reconfigurability nature that

provides unique opportunities to cope with these static and dynamic variability

challenges. For example, rerouting and remapping to achieved thermal and

wear-out balance.

The cornerstone for adaptively to changes is the ability to measure and

quantified the variability profile of a specific chip as well as to track the

Chapter 2 Background: FPGA Technology and Variation Sources

55

changes during operation. The characterization can be performed either with

off-chip or on-chip sensing. The result is chip variability profiles or variation

maps.

Off-chip sensing offers a non-intrusive characterization – for example, optical

and infrared imaging techniques. However, the downside being costly and

complex equipment needed. Also, it’s less intuitive to correlate data collected

externally with the operation activities. On the other hand, the on-chip sensor

allows continue monitoring the health of the chip. Yet, the major challenges

for on-chip sensing are the distribution of the sensors and reduced chip density

due to the area occupied by the sensors. The alternative to the on-chip and off-

chip sensor is soft-sensing. This technique is unique only to FPGA. Soft-

sensing in this thesis context exploits the generic built-in resources of the

FPGA replacing the conventional analogue sensor. For example, the ring

oscillator can be temporally configured across the FPGA fabric evenly and

characterise its thermal profile for “pre” and “post” system implementation.

The “pre” implementation thermal profile gives the static variability map of

the chip while the “post” for dynamic thermal gradient results after a fixed

period of operation. In addition, the soft-sensing technique also provides extra

gratification to implement and track variability on targeted area rather, to

widely distribute them across the whole chip. This reduces area overhead.

Chapter 2 Background: FPGA Technology and Variation Sources

56

Various variation tolerant techniques have been proposed, some are unique

only for FPGA and some are common between the FPGA and ASIC. The

summary of the techniques is shown Table 2.

Table 2: Summary of Existing Variation Tolerance Techniques in FPGA

Techniques Remarks

STA
Pessimistic timing variation analysis based on worst-
case. Reduce performance.

SSTA
Less conservative than STA for intra-die variation but
still a “One-size-fits-all” approach.

Transistor sizing
Time-consuming engineering efforts for over million
transistor circuit.

Structural Parameters Optimisation:
Do not provide significant improvement for variation
concern.

Multiple-configuration
Expansive computation at speed test and required huge
memory for all possible configurations storage.

Variation-aware Modelling
Improve yield over STA and SSTA, however accurate
variation map generation is required for inter-die and
intra-die variability.

Relocation, Remapping and
Rerouting

Improve large storage problem compare to multiple
configuration techniques, however, the challenges are
system partitioning and regions allocation.

Asynchronous Techniques

Highly adaptive to changes in voltage and timing
variability. However, asynchronous circuits are more
complex to design and normally incur high
handshaking's circuit overhead. Also, traditional FPGA
architecture only has limited resources to support
Asynchronous implementation.

STA guaranteed correct operation based on worst-case estimation and,

therefore, reduced in possible performance. Whereas, SSTA is less

conservative compared to STA for intra-die variation and the accuracy of the

model relies heavily on the statistical mean and standard deviation values.

The drawback of these approaches is uniform parameter applied across a whole

batch of dies. Yet, this has been a preference strategy for industry thus far

Chapter 2 Background: FPGA Technology and Variation Sources

57

because it is the only practical approach for mass production solution. In

reality, most of the chip in the market can perform much better than the

manufacturer’s conservative specification. The late-binding and variation-

aware techniques for example proven to achieve higher efficiency above

conservative timing specification recommend by the manufacturer.

Above all, the asynchronous technique that is known to be robust to timing

variation and possibility provide an attractive solution. Despite the potential

benefits, asynchronous FPGAs presented in past have not centred on

improving the reliability aspects – rather mainly focus on low power and

throughput performance. Also, to implement asynchronous logic in

synchronous FPGA is proven to be difficult because it’s required manually

manipulate the existing FPGA resources that are designed for the synchronous

system. Introducing asynchronous friendly logic block to traditional FPGA

architecture, therefore, has been the motivations for this work.

Chapter 3: Existing Asynchronous Techniques in FPGA

58

Chapter 3. Existing Asynchronous Techniques in
FPGA

3.1 Introduction

This chapter discusses the context of incorporating asynchronous logic into the

programmable logic to tolerate and reduce the negative impact of variability.

The focus of this chapter is divided in two main parts as follow:

Firstly, the principle of asynchronous logic and its potential trade-off is

introduced. Popular delay-insensitive encoding strategies such as 4-phase

dual-rail (4P-DR) and 2-phase dual-rail (2P-DR) are reviewed. Circuit

robustness based on timing assumption made is also classified including speed-

independent (SI) and delay-insensitive (DI) circuits. This section serves as a

basis for further understanding and ease of explanation is the following

chapters.

Second part of the chapter reviews different styles of asynchronous FPGA

architectures presented from the past decade motivated mainly by the pursuit

of either low power and/or high speed performance. These architectures are

classified into four main types for ease of explanation in overview as follow.

Type-1, the architecture that is heavily relies on the timing assumption using

bundle data. Type-2, the architectures that target on high throughput

performance by adopting fine-grain pipelined structures. Type-3, handshaking

based optimisation architecture to improve the coding efficiency in dual-rail

Chapter 3: Existing Asynchronous Techniques in FPGA

59

communication for dynamic power reduction in the communication, and Type-

4, the architecture that combine the benefit of both synchronous and

asynchronous circuit that fit the global asynchronous and locally synchronous

(GALS) paradigm. Other type of asynchronous implementation motivated

different benefits such security advantage also reviews, however this is not the

main focus of this work.

The final section summarise the trade-off of each type of these asynchronous

reconfigurable architectures in the context of its benefits and trade-offs to be

used on a FPGA to mitigate the negative effect of the variability.

3.2 Principles of Asynchronous Design

Digital electronic system designs are predominantly synchronous and

sequential. A sequential circuit is specified by a time sequence of inputs,

outputs and internal states. In synchronous sequential circuits, a change of

internal state occurs in response to synchronous clock pulses [3]. Figure 22

shows a high-level representation of a typical synchronous circuit where the

communication of data is governed by the global clock.

Chapter 3: Existing Asynchronous Techniques in FPGA

60

Figure 22: Synchronous clocking system.

In asynchronous designs, no global timing clock is used and communication is

achieved through some sort of handshaking protocols. Typical communication

involves a data request (req) and acknowledgement (ack) to initiate

communication and indicating the response to the request. Often the req/ack

signals are referred to as the control signal or the control path (CTL) and the

data line as the data path (Data). Figure 23 illustrates an abstract view of an

asynchronous circuit with handshaking control. Although the pipeline

structure is shown, this is just for ease of explanation and in reality both

synchronous and asynchronous designs can have different topologies.

Figure 23: Abstract view of Asynchronous Circuit.

3.3 Bundle Data Design

The solution space can be expressed as the cross-product of a number of options,

including:

(2-Phase, 4-Phase) x (Bundle-data, Dual-rail, 1-of-n,…) x (push, pull)

Chapter 3: Existing Asynchronous Techniques in FPGA

61

The choice of protocol affects the characteristics of the circuit implementation,

such as power, area, speed and robustness. This section explains the

terminology commonly uses in asynchronous circuit design. The most popular

handshaking protocols are discussed, including 2-phase and 4-phase

communication together with dual-rail or bundle-data.

3.3.1 Single-Rail Bundle-Data (SR-BD)

Figure 24: (a) Abstract view of delay matching bundle-data approach;

(b) example of programmable delays bank. (c) AND gate and muxes

fine tune programmable delay [82].

The simplest and most widely used asynchronous protocol is single-rail bundle-

data (SR-BD). The advantages of the SR-BD are its simplicity in design, small

size and ease of validation. An abstract view of the SR-BD approach is shown

in Figure 24 (a). The functional block in this scheme is maintains similar to

the synchronous design and replace the clock line with matched-timing delay

line to indicate the completion of computation or valid data have been received

Chapter 3: Existing Asynchronous Techniques in FPGA

62

using the “done” signal. Hence in many ways the design can easily be migrated

between the synchronous and asynchronous domains by interchanging the

clock line with match delays. Match delay lines are normally fixed and realised

by an inverter chain. However, to deal with the variability, tuneable delay line

has also been proposed. Figure 24 (b) shows an example of a programmable

delay (PD) with a control code for the selectable delay bank. The matching

delay can be either fixed or tuneable. Usually, this type of design cannot be

fine-tuned. The headroom in the non-fine-tuned matching delay means that

the circuit may not operate at its optimum speed. Another example of PD

implementation shown in Figure 24 (c) allows more accurate tuning. The

trade-off for the accurate or fine-tuneable PD is increased complexity in control

and need for more configuration logic.

3.3.2 4-Phase and 2-Phase Bundle-Data Handshaking

Figure 25: Send and receive handshaking.

In the bundle-data handshaking scheme, data lines are bundled together with

the request and acknowledge line operating independently. The most common

handshake protocols are 4-phase and 2-phase bundle data. This

communication scheme is easier to elaborate with the concept of data exchange

between sender and receiver units or two subsystems as shown in Figure 25.

Chapter 3: Existing Asynchronous Techniques in FPGA

63

Figure 26: (a) 4-phase bundled-data protocol; (b) 2-phase bundled-

data protocol [83].

The 4-phase bundle-data (4P-BD) communication cycle involves four signal

transitions and this illustrated in Figure 26 (a). The sequence of actions is as

follows:

(1) The sender prepares the data and set the request signal to high,

(2) The receiver accepts the data and responds by setting the “Ack” signal

to high,

(3) The sender then notifies the completion of the transmission by resetting

the “Req” signal back to low,

(4) Finally, the receiver reverts itself to the “ready to receive” state by

setting the “Ack” signal to low to complete the handshaking cycle. Hence a new

cycle is ready to start with both “Req” and “Ack” returned to the low state.

The advantage of the 4P-BD method is that it is relatively simple in term of

circuit implementation. However, the logic has to always be returned to the

zero state to be ready for the next communication cycle (also known as return-

Chapter 3: Existing Asynchronous Techniques in FPGA

64

to-zero (RTZ)). Thus 4-phase communication loses its attractiveness for design

specifications concerned with power and speed performance.

2-phase bundle-data (2P-BD), on the other hand, is a non-return-to-zero

(NRZ) protocol. As illustrated in Figure 26 (b), only two signal transitions are

needed to complete a data transfer operation in reverting to the “ready-for-

next-transition” cycle. The 2-phase protocol is based on signal encoding built

into the “Req” and “Ack” signals, where the transitions between 0 -> 1 and 1->0

both represent a valid “signal event”. As for example illustrated in Figure 26

(b), at (1) when data is ready (at the odd-phase where the “Ack” signal is at the

high level) in first transition cycle, the transition from 0->1 is indicated “Req”

and transition from 1 -> 0 to indicated “Ack” event. In the second cycle (data

ready at even-phase with the “Ack” signal remaining low), the opposite signal

transitions are valid compared to the odd-phase.

Based on the above signal transition graphs, 2-phase communication might be

expected to provide higher communication efficiency and faster throughput

compared to a system using 4-phase communication. However the 2-phase

system requires extra logics for phase differentiation (odd or even), and this

will introduces extra complexity in to the circuit’s design and hence result in

increased silicon area on the controlling circuits. Because of this, there is no

clear criterion to decide which protocol is better. Rather, the best strategy is to

carefully choose the appropriate schemes tailored to the optimisation

objectives for the overall circuit.

Chapter 3: Existing Asynchronous Techniques in FPGA

65

Push and Pull protocol, The Previous example was based on the assumption

that the sender is in the initiating position to start the communication.

Therefore the data was “pushed” from the sender side, or the so-call push

channel. Conversely, the receiver can also request data to be transferred. This

case is classified as the pull channel and the “Req” and “Ack” signals will

operates in reverse.

3.4 Delay-Insensitive Encoding

Bundle-data protocols rely heavily on matching the delay with the data paths.

However, this may incur hefty safety margins in the presence of variation.

Hence the alternative is to use more sophisticated and robust techniques that

are less susceptible to variation in delay. The following section introduces more

robust protocols that can tolerate disparities in delay resulting from for

example, PVT variation. These techniques have data validity built-in within

the coding, and this kind of circuit is classified as delay-insensitive (DI).

Chapter 3: Existing Asynchronous Techniques in FPGA

66

3.4.1 4-Phase Dual-Rail Handshaking

Figure 27: (a) Request sign embedded in dual-rail coding; (b) the

codewords; (c) signal transition waveform; (d) code with Hamming

distance = 1.

4-phase dual-rail (4P-DR) is one of the most popular forms of DI encoding.

In this encoding, the request signal is embedded directly into the data-path.

Figure 27 (a) shows a similar “sender and receiver” scheme as in bundle-data

but with a dual-rail data line and without a dedicated “Req” signal. Instead the

request signal is encoded within the data lines with 2-bits of binary coding.

Combined with the 4-phase protocol, the validity of data can be discriminated

with a “spacer” or “NULL”.

The 4P-DR codeword is shown in Figure 27 (b). (d.1,d.0) are the dual-rail wire

pair, with the combination showing a valid value only when they are either

“0,1” or “1,0” (as shown in the table, logic 0 and logic 1 respectively for the

Chapter 3: Existing Asynchronous Techniques in FPGA

67

codes). The codeword “0, 0” is equivalent to of reset position with Humming

distance equal to 1 from both valid data, as shown in Figure 27 (d), and

therefore this serves as a spacer to indicate that data has been cleared and the

next cycle of transition can take place.

The sequence of 4P-DR handshaking shows in Figure 27 (a) & (c) at the

abstract level as follow:

(1) The receiver indicates that data is ready to be accepted, with “Ack” at

the low state.

(2) The sender then issues the data. At the receiver side, when valid is data

detected, “Ack” is set to high.

(3) The return of “Ack” to the the low state tells the sender that the data

has been completely absorbed and thereby the data can be cleared.

(4) Consequence from the retreat of valid data, “Ack” returns to its initial

low state and a new cycle is ready to start.

It should be noted that the commonly used dual-rail (DR) term is also the case

of m-of-n coding (‘m’ is the number of ones out of the total ‘n’ number of wires)

[84]. For example the dual-rail code in the m-of-n term is 1-of-2. Another

example of commonly use encoding is 1-of-4, which also fit in the n-of-m

paradigm. This encoding is more balanced in power consumption because

computations are always performed at a balanced Hamming weight. Therefore

Chapter 3: Existing Asynchronous Techniques in FPGA

68

it is less vulnerable to side-channel attack. This technique has been exploited

and proposed for implementation on programmable logic for security

applications [85].

3.4.2 Completion Detection (CD) Circuit

The derivation of valid data in the absence of a timing clock is using circuitry

that can determine the completion of transient within a logic block. As

demonstrated in the bundle data scheme, this can be done with the matched

delay. For dual-rail signalling, request signals are embedded together with the

data. The common completion detection circuit for dual-rail communication is

shown in Figure 28 (a) which consists of OR gates and a multiple inputs C-

element. The OR gates are used to detect valid data or mutual-exclusive dual-

rail inputs bits and the result is merged with a Müller “C-element”. The C-

element truth table is shown in Figure 28 (b), where “Done” will output the

logic ‘0’ only if all of the inputs are ‘0’, and likewise for logic ‘1’. If not, the output

value maintains its value.

Chapter 3: Existing Asynchronous Techniques in FPGA

69

Figure 28: (a) Example of dual-rail completion detection circuit; (b)

truth table for the C-element.

3.4.3 2-Phase Dual-Rail Protocol

The 2-phase dual-rail (2P-DR) or level-encoded dual-rail (LEDR) protocol also

uses two wires to encode one bit of data, but information is encoded differently

with level/phase detection. The 2-phase handshake neither requires an empty

“spacer” value nor uses an elegant non-return-to-zero (NRZ) scheme. Figure 8

(a) shows the signal waveform of LEDR signalling where the parity-rail

alternates the phase at each data item and the data-rail carries the valid value

at each phase. Therefore there is only one signal transition per each new data

item. LEDR uses level encoding where the data-rail will hold actual data value

and the parity-rail holds a parity value. The encoding of parity alternates

between odd and even phases. Figure 8 (b) shows the truth table for LEDR

encoding.

Chapter 3: Existing Asynchronous Techniques in FPGA

70

Figure 8: (a) LEDR Signalling; (b) LEDR encoding.

In summary, the 2-phase dual-rail (2P-DR) protocol should have better power

dissipation performance than 4-phase dual-rail (4P-DR) because of its efficient

coding with fewer transitions per data bit and no spacer required. However, its

complexity in circuit implementation makes it an impractical choice, especially

at the fine-grain level. Therefore none of the above protocols are ideal for

replacing the traditional timing clock scheme. Yet, to tackle the global

variability concern the DI circuits can still be valuable when applied

strategically by mixing SR and DR in a architecture. For example, circuits at

the coarse granularity level, such as the GALS paradigm can be used, or the

protocols may be combined. Such system has been proposed in [7, 8] in which

the 4P-DR was applied in the local functional blocks and LEDR for global

communication.

3.5 Asynchronous Circuit Classification:

Asynchronous circuits are classified based on the delay assumption made. At

the circuit level, asynchronous circuits can be classified as being either self-

time, speed-independent (SI) [67] or delay-insensitive (DI) [66]. This section

Chapter 3: Existing Asynchronous Techniques in FPGA

71

provides an overview of the theoretical understanding of these circuit

classifications. Jens and Furber [86-89] summarised the principles and

techniques for asynchronous design in [83]. The concepts of delay models are

easier to illustrate with a classical case study example with three logic gates

(A, B and C) connected together with wires as shown in Figure 29.

Figure 29: Case study of delay model circuit classification.

3.5.1 Speed–Independent (SI)

The speed–independent circuit consider only gates delay and assume wires are

ideal without delay. This assumption may be valid on board-level small circuits

where the wire delay is significantly low or negligible. However, in modern

silicon technology, at very large scale and with long interconnects, this

assumption can no longer be valid. Referring to Figure 29, in the SI

classification the wire delays wd1, wd2 and wd3 are all equal to 0. Note that,

from another theoretical point of view, if wd2 and wd3 are equal the wire

delays can actually be lumped together with the delays of their associated

gates. In this case considering the wires delays the circuit can be still SI.

Chapter 3: Existing Asynchronous Techniques in FPGA

72

3.5.2 Delay-Insensitive (DI)

In delay-insensitive circuits no delay assumptions are made for either wires or

gates. Referring to Figure 29, the wire delays wd1, wd2 and wd3 cannot be

ignored and must be considered alongside gate delay. Therefore this model is

the most robust of all asynchronous classes. However, due to its strict

restrictions only a very limited number of circuits can be classified as DI. One

view [87] concluded that almost no useful DI circuits can be built due to these

heavy restrictions. In order to build a practical circuit, relaxation of the DI

requirement is needed.

Instead, the concept of isochronic forks was introduced by Martin [87] where

an isochronic fork allow signals to reach two destinations with negligible

different in delay or with the assumption that the delay in forks wires wd2 and

wd3 as in Figure 29 can be equal. I this example, if transition observed in Gate

B then transition can also assumed to have happened on Gate C.

3.5.3 Quasi-Delay-Insensitive (QDI)

Quasi-delay-insensitive (QDI) circuits are those using the isochronic fork

assumption. In some senses, this is the best compromise towards a fully DI

circuit. Technically, the QDI circuits are the same class of circuit as SI with

the difference that QDI circuits involve acknowledgements of each transition,

Chapter 3: Existing Asynchronous Techniques in FPGA

73

whereas in SI no such assumption is made between circuit nodes with and

without isochronic forks.

3.6 Reconfigurable Asynchronous Architectures

Different styles of asynchronous FPGA architectures have been presented

since 1992 [5, 18-24] motivated mainly by the pursuit of either low power

and/or high speed performance. From the point of view of implementation

techniques, these architectures can be classified into four main types. Type-1

includes the bundle data and timing assumption architectures, whereas type-

2 architectures focus mainly on high performance using highly pipelined and

fine-grain structures. Type-3 uses 2-phase instead of 4-Phase or so-called non-

return-zero (NRZ) protocols to improve the coding efficiency in order to give

potential power savings in communication, and type-4 includes hierarchical

coarse-grain structures that can fit the GALS paradigm. A summary of

reconfigurable asynchronous logic architectures is shown in Table 3.

Table 3: Summary of asynchronous FPGAs

Year Architectures Unique Style Handshaking References

1994 Montage TRIPTYCH Timing assumption [90]

1995 PGA-STC Delay Matching bundle data 4-Phase Bundle-data [91]

1996 STACC Delay matching bundle data 4-Phase Bundle-data [92]

2001 Phase Logic Phase logic, fine grain 2-Phase Micropipeline [93]

2003 PAPA Highly pipeline, Fine grain 4-Phase Dual-rail [6, 94-98]

2003 GALS Homogeneous GALS 4-Phase Bundle-data [99]

Chapter 3: Existing Asynchronous Techniques in FPGA

74

2003 CalTech Cluster, e1of2 e1of2 [100]

2005 GAPLA Heterogeneous GALS 2-Phase Bundle-data [101, 102]

2007 NCL NULL Convention Logic NCL /QDI [103]

2007 TARTAN
NoC (Hierarchical RF
architecture) 4-Phase Bundle-bundle [104, 105]

2007 Achronix Pipeline, Fine grain 4-Phase Dual-rail [106]

2008 e-FPGA 1-of-n QDI (security) 1-of-n QDI [85]

2010
Distributed
AFPGA David Cell control

Hybrid 4P-DR and
Bundle-data [68]

3.6.1 Type-1: Bundle Data and Timing Assumption Architectures

Asynchronous FPGA solutions have been presented in the literature since 1992

[3-14]. Payne [92] provided a summary of the MONTAGE [90], PGA-STC [91],

and STACC [107] .

MONTAGE from the University of Washington proposed in 1994, was the first

asynchronous FPGA, though it includes a clock signal for implementing

synchronous circuits as well. It was extended from their own synchronous

FPGA architecture by adding special arbitration cells and modifying the

function unit. The MONTAGE architecture relies heavily on the regular

routing structure and fast feedback path to achieve state holding on the

functional unit (LUT), as shown in Figure 30. Under variation, the wire delay

of large and long interconnects cannot be guaranteed, and therefore the chance

of glitches occurring is high.

Chapter 3: Existing Asynchronous Techniques in FPGA

75

Figure 30: MONTAGE functional unit (configured as C-Muller gate).

The PGA-STC was developed at U.C. Davis in 1995. The author basically

proposed that the Xilinx XC4000 series structure should be modified [91] by

replacing the clock with programmable delay elements, as shown in Figure 31.

The idea of the delay-matching bundle-data structure is very similar to clock

design but distributed across the whole fabric by matching the timing of each

individual functional-unit computation time. This bundle data technique could

be highly-efficient in terms of minimizing the area and power overhead. Yet

under variation and at below nominal voltage level, the delay element might

suffer more than the function unit itself. The walk-around strategy could be

used to increase the matching delay line with an extra-long margin for

variability, but this will then defeat the objective of self-time implementation

since a similar result in dealing with variation can be achieved in an

asynchronous architecture by lowering the clock speed or by providing an extra

timing margin or guard-band.

Chapter 3: Existing Asynchronous Techniques in FPGA

76

Figure 31: PGA-STC functional block with programmable delay

element.

The STACC is an architecture developed at the University of Edinburgh by

Payne [92]. It is a dedicated architecture for the implementation of four-phase

bundled-data systems. Its architecture is based on that of fine-grain FPGA

architectures where the global clock is replaced by an array of timing-cells that

generate local register control signals. All of the above asynchronous FPGAs

amend the function units to avoid hazards in signals, and use timing

assumptions to guarantee the correctness of the asynchronous circuits. This

structure has been proposed to replace the clock resources with a structure

similar to a micropipeline [108] together with programmable delay (PD)

elements . This could be a promising strategy to deal with variation. However,

the original paper presented a very conceptual design without a detailed

description of implementation and only simulation data.

Chapter 3: Existing Asynchronous Techniques in FPGA

77

3.6.2 Type-2: High Performance Architecture

Teifel and Manohar presented a fine-grain and highly pipelined asynchronous

structure as a basis for their high performance asynchronous FPGA

architecture [96]. The proposed programmable-asynchronous-pipeline-array,

or so-called PAPA [94, 98] architecture comprises a completely new logic

element compared to the traditional FPGAs in which there are special design

functional units and merge, split, source, sink, copy, token units are used to

support dataflow control, as shown in Figure 32. The handshake protocol used

is 4-phase dual-rail (4P-DR) where each functional unit can be closely pipelined

from one to another with the supported routing structure.

Figure 32: PAPA architecture logic block [98].

The LUT of the PAPA architecture LUT uses pre-charge half-buffer (PCHB)

circuit, which is similar to the architecture presented by Wong, et al. [100], so

that the PCHB circuit performs computations using a network of pull-down n-

Chapter 3: Existing Asynchronous Techniques in FPGA

78

type transistors. Both architectures use the similar general PCHB template as

the building block, but architecture presented by Wong, et al. [100] is

fundamentally different in that the granularity is coarser with a cluster or

CLB-equivalent structure. Both of these architectures are not only great for

high throughput performance thanks to their inherent pipeline structure, but

also robust to PVT variation as in a QDI circuit. Measurement results [6]

demonstrated that these asynchronous architectures can work at wide ranges

of voltage and temperature. This further proved that this class of asynchronous

circuit designs might be a promising avenue addressing the concerns about

variability.

Several patents have also been successfully filed resulting from collaborative

work on PAPA’s architecture as follows:

 Reconfigurable logic fabrics for integrated circuits and systems and

methods for configuring reconfigurable logic fabrics, US 8575959 B2

[109].

 Programmable crossbar structures in asynchronous systems, US

8300635 B2 [110].

 Synchronous to asynchronous logic conversion, US 8291358 B2 [111].

 Programmable asynchronous pipeline arrays, US 7157934 B2 [98].

Chapter 3: Existing Asynchronous Techniques in FPGA

79

The Achronix Semiconductor Corporation [106] used the PAPA

architecture as the basis for the launch of the first commercially available

asynchronous FPGA. Their product family targeted high performance markets

such as the military, networking and telecommunications sectors. Fabricated

at TSMC 65nm technology with a density of 164K LUTs with all the additional

memory, multipliers, SerDes, PLLs and memory controller hard blocks, the

company’s products were claimed to be the fastest FPGAs in the market in

2008 with a maximum frequency of 1.5GHZ [112].

3.6.3 Type-3: Communication Efficiency (2-Phase Dual-Rail or LEDR)

Phase logic (PL) [93] and level-encoded dual-rail (LEDR) [113] both use 2-

phase dual-rail (2P-DR) delay insensitive (DI) data encoding schemes. In this

communication scheme, two wires/rails are used. Similar to the 4-phase dual-

rail (4P-DR), both data and control information are encoded in the dual-rail

package. In 4P-DR, the (0,0) codeword is used as a spacer and (1,1) is unused

or invalid, as shown in Figure 33 (a). In this type of communication, the

codeword always has to return to (0,0) as the “spacer” between valid data.

Whereas, in 2-phase communication the efficient is higher, this is because all

the codewords are set to indicate a valid data. As such, the upper wire/rail of

the code holds the standard single rail data value and the lower one is the

parity bit indicating the phase; see Figure 33(b). Since no return-to-zero phase

is required, the 2-phase or LEDR is also classified as a non-return-to-zero (NRZ)

protocol.

Chapter 3: Existing Asynchronous Techniques in FPGA

80

Figure 33: 4P-DR and LEDR communication.

The uniqueness of this encoding technique lies in the fact that the phase

always alternates with every new data arrived, between phase 0 and phase 1

(or “even” and “odd” phases). For example, in the even phase the code word for

0 = (0,0) and for 1 = (1,1). In the odd phase 0 = (0,1) and 1 = (1,0).

Investigation of the programmable phase logic (PL) with this protocol started

in 2001 by Traver et al. [114-116]. The authors proposed the design of the

LUT4-based phase logic cell to form their basic FPGA logic elements (LEs) as

shown in Figure 34. This was achieved by wrapping the phase control logic

around the 4-input lookup table (LUT4). The idea of keeping the original LUT

structure intact has the potential benefit of minimising the need to completely

redesign or reuse the existing FPGA design tool flow. This bears some

similarity to the work presented in chapter 4, but at a different level of

granularity. The problem with the fine-grain PL structure is that it massively

increases the area overhead with the consequence of higher power leakage

compared to its synchronous counterpart because of the complex coding.

Furthermore, similar to the earlier asynchronous FPGA structures presented

above, the interconnection and communication block that occupied the lion’s

Chapter 3: Existing Asynchronous Techniques in FPGA

81

share of the soft fabric has not been realised and therefore it is difficult to

evaluate their potential power and throughput performance.

Figure 34: LUT4-based phased logic gate [115].

In summary, theoretically, due to the NRZ scheme, the LEDR protocol has

potential advantages compared to the 4-Phase return-to-zero (RZ) protocol in

terms of power and throughput. The potential power improvement is based on

the efficiency of the coding that reduces the number of transitions on the global

interconnect. Also, because the NRZ protocol means that no ‘spacer’ is required,

hence a higher throughput yield may be expected. However, in the hardware

implementation and due to the complex phase detection logic, data encoding

and decoding required, the circuit’s size and power increases significantly

compared to synchronous circuits, for example in the LEDR protocol converter

shown in Figure 35. This overhead makes it impractical to be implemented,

especially at the fine-grain level.

Chapter 3: Existing Asynchronous Techniques in FPGA

82

Figure 35: More complex LEDR protocol converter [117].

Nevertheless, as the subsequent work demonstrated [117-120], the LEDR

protocol can still be beneficial when exploited appropriately. The results

suggest that the strategy should be to employ the LEDR protocol for global

data transfer, leaving the local functional and computational units with the RZ

protocol. Examples of this kind of coarser grain structures are the GALS,

MPSoC and NoC.

3.6.4 Type-4: Hierarchical and Coarse Grain Reconfigurable Architecture

The previous sections have demonstrated that the fine granularity

asynchronous FPGA may have high flexibility and throughput performance,

yet it comes with a silicon size penalty. The robust QDI circuit normally

requires dual-rail interconnects and this may massively increase interconnect

and routing resources composed of switches and configuration bits that

constitute a large proportion of the PPGA soft fabric. The idea of increasing

Chapter 3: Existing Asynchronous Techniques in FPGA

83

granularity by packing together several LUTs to reduce global interconnects is

not new, and may be called the CLB or cluster. However, for certain

applications, increasing the granularity to a higher level such as by grouping

multiple CLBs or functional-units (FUs) together into the same timing domain

may result in better area and power performance. Each group of FUs can work

at their individual local clock domain and the interface between island FUs

will use the asynchronous principle. With the combined benefits of both

synchronous and asynchronous elements, this has given rise to new approach

as such as globally asynchronous and locally synchronous (GALS) and

network-on-chip (NoC) designs.

Figure 36: GALS in FPGA: (a) Homogeneous; (b) Heterogeneous.

Homogeneous GALS

The GALS scheme was introduced in ASICs level as early as 1984 [121], and

Royal and Cheung [99] then proposed to apply the technique to FPGAs. The

Chapter 3: Existing Asynchronous Techniques in FPGA

84

proposed structure uses a 4-phase bundle-data handshake protocol to ease the

synchronization problem for systems with multiple modules working at

different clock domains. The architecture also features micropipelines in the

routing. The unique aspect of the implementation of this architecture

concerned their proposal to convert the conventional synchronous FPGA into

GALS by introducing an asynchronous interface around the regular packed

synchronous block, known as the asynchronous wrapper. This GALS paradigm

introducing an asynchronous circuit at a coarse regular size synchronous block

could reduce the overhead that otherwise may be incur by the fine grain

AFPGA; however the tradeoff would be reduced flexibility. Also, because of the

shapes and sizes of the wrappers for computation blocks across the whole fabric

are the same, as shown in Figure 36 (a), this may reduce the logic utilization

within each island. The authors also recommended using accurately tunable

delay lines, which would have the potential benefit of reducing the effect of

PVT variation [122]. However, this proposed idea required further

development from it conceptual state.

Heterogeneous GALS

Jia and Vemuri [101] proposed a globally asynchronous-locally synchronous

programmable logic array (GALSPLA) architecture together with a CAD tools

design flow [102]. Compared to in [99], their proposed architecture is distinct

in two respects. Firstly, the size and shape of their synchronous logic blocks

are not fixed or can be in heterogeneous shape, which therefore may help in

Chapter 3: Existing Asynchronous Techniques in FPGA

85

improving the logic utilization. Secondly, their asynchronous wrapper uses a

2-phase instead of 4-phase bundle-data communication. Similar to the LEDR,

the tradeoff of this handshaking protocol is better energy and throughput

performance, but the phase conversion circuit may be more complex. The

estimated size overhead for GAPLA architecture adaptation is small (at about

7%), and experimental results showed a performance improvement of 55% can

be expected.

The results show that the concept of using heterogeneous GALS could be

promising. However, from the point of view of variation tolerance, this

proposed architecture may have some limitations due to the fact that bundle-

data handshaking protocols rely heavily on timing assumptions. Furthermore,

at a technology scale beyond 90nm, extrinsic and intrinsic variations become

more prominent. Research has shown that circuits demonstrating the

characteristics of both correlated as well as stochastic variability can be

observed already in commercial off-the-shelf FPGAs [3]. This means that

within the large locally synchronous block, the variability issue still remains.

Networks-on-Chip (NoC)

Networks-on-chip (NoC) represent the next higher level of coarse-grain

architecture that fit well into the GALS paradigm. Instead of the traditional

direct wire-to-wire bus connection, the NoC uses a networking strategy where

data are grouped and transferred in packets. Similar to the pack switching

Chapter 3: Existing Asynchronous Techniques in FPGA

86

network system, routers are needed at each node to communicate data across

the chip. Several asynchronous NoC have been proposed in the literatures that

are composed of asynchronous routers. These include the ASPIN [123]

architecture that uses bundle-data within the router and QDI circuits for long

interlinks, MANGO and QNOC[124] which use standard 4-phase bundle-data

and later use 2-phase mousetrap protocols [125], and the TARTAN [104, 105]

architecture that uses a 4-phase pipelined protocol interfaced with complex

memory support.

3.6.5 Other Asynchronous Style FPGAs

NCL Logic FPGA:

The NULL Convention Logic™ (NCL) [103] was patented and trademarked by

Theseus Logic, Inc. [126] in 1994. It was derived from a mathematical

expression of process completeness and provided inherently convenient in

expressing asynchronous digital circuits.

The NCL is built in a design of 27 fundamental gates with a hysteresis state-

holding capability to retain the output state until all of the input has been de-

asserted again. Each NCL gate is custom-designed at transistor level to exhibit

state holding behaviours similar to those of the C-element.

Chapter 3: Existing Asynchronous Techniques in FPGA

87

Figure 37: (a) Basic reconfigurable NCL LE; (b) 27 fundamental NCL

gates [127].

Smith [127] has proposed two versions of an FPGA logic element (LE) designs

that can realize all the 27 NLC fundamental gates, as shown in Figure 37. The

design wraps the modified LUT with threshold logic at the fine-grain level. The

NCL gates could also be delay insensitive, but the author only cited

comparative simulation results for only the area efficiency, without any

attention given to speed performance and strategy toward PVT variation. Even

with the significant saving of logic gates presented in the optimized version of

the LE, its fine granularity structure means that massive area overheads

might be expected on area compared to the synchronous counterpart. Also the

structure presented was incomplete, lacking interconnect strategy and

potential flow control between the proposed LEs. Even though the proposal

Chapter 3: Existing Asynchronous Techniques in FPGA

88

was later elaborated [128] with grouped LEs or CLB for hierarchical approach,

the work is still very immature in terms of what be required to form a basic

FPGA architecture.

Multi-Style and SAFE – eFPGA

The TIMA Lab in France has presented a unique fully-customized

asynchronous FPGA that has been prototyped in 65nm CMOS technology [85,

129, 130]. The architecture supports multiple style asynchronous logic,

including 2-phase, 4-phase communication protocols and 1-of-n encoding. The

main motivation for using asynchronous logic in this work was to present an

electrically balanced circuit that is robust against side channel attacks (SCAs)

dedicated for security applications.

The lack of a global clock in asynchronous logic mean that the system is more

immune to simple-power-attack (SPA) and differential-power-analysis (DPA)

attacks, and the QDI circuits or the general 1-of-n coding lead to data

computation and communication at a stable Hamming weight. This reduces

the power consumption dependency that can be exploited by SPA, DPA and

electromagnetic-analysis (EMA) attacks.

The research in the above work focuses on two aspects. The first is a platform

to support flexible styles of asynchronous implementation, and the second is to

increase security levels against SCAs. The inherently asynchronous structure

may also be robust to environmental variation, yet no relevant data was

Chapter 3: Existing Asynchronous Techniques in FPGA

89

presented by the authors. The security benefits of asynchronous logic might be

an interesting direction for investigation in research but is not the main focus

of the present study. It should also be noted that flexibility in style also implies

that extra configurability resources are needed and will this consequently

increase silicon area and power overheads.

3.7 Summary

This chapter has presented an overview of commonly used asynchronous

design styles including the bundle-data and dual-rail communication schemes.

The asynchronous techniques applied on FPGA in the past decade have been

reviewed. Motivated by either lower power, high throughput performance and

in the context of variation tolerance, these architectures summarised as follows:

Type-1, the early development of the AFPGA relied on significant elements of

timing assumptions to guarantee the correctness of the asynchronous logic.

This method combines the delays for both FPGA intra-block and inter-block

connections and replaces the local timing assumption with global timing

assumption. In general, these types of asynchronous circuits are easier to

implement and may be with less overhead. However, it is hard to match delays

for FPGA inter-block connections since the connection path cannot be

determined at design time. In the larger technology node wire delay can be

negligible compare to the logic delay, but at modern sub-nano meter technology,

Chapter 3: Existing Asynchronous Techniques in FPGA

90

delay matching based on delay assumption is hard to achieve especially

considering process and environmental variations.

Type-2, this advanced development of the AFPGA focuses on high performance.

On the one hand, they are somewhat tolerant to operational variations (process,

voltage, temperature) through SI/DI with none or minimal reliance on timing

assumptions. On the other hand, they modify the entire FPGA fabric and

replace the fundamental basic logic block of current FPGA technology. This

makes the system design process less accessible by significantly reducing the

usefulness of existing design tools. Furthermore, some of these architectures

utilised very fine-grained pipelined architectures consisting of excessive

numbers of C-elements, implying high area and power overheads.

Type-3, 2-Phase Dual-rail (2P-DR) and LEDR architecture aim to improve

power and throughput with the optimised NRZ scheme rather the 4-Phase

return-to-zero communication. Theoretically, higher throughput and less

energy would be expected because of reduced transitions on the global

interconnect. However, due to complex hardware implementation of the phase

detection circuit, the benefit maybe offset with the increase of circuit size. This

overhead will increase significantly if implemented at fine-grain levels.

Type-4: As for the NoC and GALS, the trade-off arguments are the same, where

the higher or coarser grain architecture will improve power efficiency but the

challenges in technology scaling and increase in logic density result in

Chapter 3: Existing Asynchronous Techniques in FPGA

91

inevitable variability issues that affect the chip at both the global and local

levels.

With the technology scaling continues and transistor sizes shrink to the

nanoscale, timing variability have becomes a growing concern. Maintaining

global clock in multimillion logic cells FPGA is becoming difficult; therefore

asynchronous design styles are receiving growing attention, since

asynchronous circuits operation do not rely on tight timing margins. Although

various style asynchronous FPGAs exist as presented in this chapter, but they

have not achieved it widespread use compare to its synchronous counterpart

due two main reasons. Firstly, its lack of supportive automated design tool and

unfamiliarity of the non-clock design concept to the community. Most of

asynchronous architectures presented in the study modified the traditional

structure greatly and make it hard to incorporate or to reuse with existing

design flows. Secondly, asynchronous handshaking logic normally incurs large

area overhead especially implemented in fine granularity level.

The works in this research focus on improving the reliability of the FPGA

architecture with the support of asynchronous techniques while keeping most

the fundamental structure of traditional FPGA intact and therefore allows the

reuse of existing commercial design flows. The proposed architecture will

compromise between types (1), (2) and (4). The objective is tries to strike a

sensible balance between maintaining the fundamental FPGA’s structures

whilst achieving full asynchrony in places where it matters most as follow:

Chapter 3: Existing Asynchronous Techniques in FPGA

92

1. Maintaining the existing FPGA block structure and maintain the

possible reuse of existing commercial design flow.

2. Making critical interconnects paths DI for latency variation tolerance.

3. Improve or at least maintain throughput performance.

4. Keep the area and power overhead of the asynchronous handshaking

logic at minimum by clustering the logic block similar to type-4 but

balance at the right granularity level.

Chapter 4 present the implementation and analysis of the asynchronous FPGA

architecture base on the above specification.

Chapter 4: Distributed Control Asynchronous FPGA Architecture

93

Chapter 4. Distributed Control Asynchronous FPGA
Architecture

4.1 Introduction

As mention in the previous chapter, the purpose of this work is to investigate

a practical approach from the architecture point of view to deal with the

variability challenges faced in the current and future FPGA technology.

Asynchronous logic is known to be highly resilient to variability; therefore the

potential for this approach is attractive. However, various trades-offs with

asynchronous logic implementation need to be studied in detail in the context

of field programmable gate arrays (FPGA). This chapter proposes an

asynchronous FPGA architecture that maintains the basic logic element of the

conventional FPGAs, allowing maximum reusability of existing automatic

design flows. Interconnects of this architecture are delay-insensitive (DI) and

the handshaking is achieved through a distributed controller on every cluster.

This architecture is mainly aimed to tolerate latency variability resulting from

the process and environmental variations in modern CMOS process technology.

In addition, this newly proposed asynchronous architecture also facilitates the

investigation of systems powered by nondeterministic Vdd sources such as

energy harvesting systems. Variation tolerance of the architecture is achieved

by retaining the local computational logic element in single-rail and replacing

the global clock resources with DI handshaking interconnects. The remainder

Chapter 4: Distributed Control Asynchronous FPGA Architecture

94

of the chapter describes the implementation of the medium-grain wrapper

based asynchronous FPGA structure and its essential components in detail

followed by a proposed design flow. Variability simulation results are also

presented with case study implementations.

4.2 Asynchronous Wrapper

The Fully-Asynchronous FPGA architectures that are fine-grain or completely

modified the conventional FPGA structure, for example the highly-pipelined

PAPA architecture [94, 96] may be highly resistant to variation. However,

these architectures come with high area and power overheads. Moreover, the

design process for fine-grain FPGAs is not straightforward and usually

presents a steep learning curve to the designer.

The proposition of wrapping the synchronous-block or Intellectual-property (IP)

units with handshaking logic that communicated asynchronously is not new.

Such GALS scheme has been introduced since early 80’s [121] and was later

proposed to apply the technique to FPGAs in [99]. However GALS scheme is

normally coarse-grain architecture. The granularity of the GALS scheme

affects the logic usability and tolerability and not able tolerate random

variation within the synchronous island block. Also, such systems generally

require a significant alteration of existing FPGA tool design flow. Therefore

one strategy to increase acceptability is to retain the existing design flow as

much as possible. This can be done by keeping the underlying FPGA’s logic

Chapter 4: Distributed Control Asynchronous FPGA Architecture

95

structure untouched and introducing a wrapper circuit around it to replace the

clock tree. This would allow the reuse of the flow in logic synthesis, with the

optimisation and packing processes largely the same for the data path.

In addition, asynchronous circuits tend to be based on relatively complex

coding methods, such as 4-phase dual-rail (4P-DR) or, in general, m-of-n [83].

This implies large area overheads. Asynchronous circuits supposedly involve

low power since they can be made to work only when necessary and do not

require clock trees. However, in general, complex coding may result in an

increase of interconnects and switching activities in the FPGAs unless in low

power coding such as 1-of-4, leading to more dynamic power consumption,

potentially negating the savings from removing clock signals. The larger circuit

size may also lead to greater power leakage. Thus the proposed wrapper

structure is medium-grain, with one wrapper per cluster. This structure sits

between the fine-grain structure, with one wrapper per logic cell, which is high

in area overhead and dynamic power, and the fixed coarse-grain structure with

one wrapper per multiple clusters may reduce the number of global

interconnects but potentially also reduces its logic utilisation such as in the

GALS or NoC approaches. The top-down descriptions of the distributed control

asynchronous wrapper in the FPGA architecture are given as follows.

Chapter 4: Distributed Control Asynchronous FPGA Architecture

96

4.3 Top Level Overview of the Architecture

The proposed wrapper architecture maintains the commonly used island-style

structure as in most commercial FPGAs, as shown in Figure 38 . The routing

channels consist of wire segments, switch boxes (SBs) and connection boxes

(CBs) surrounding the logic cluster (LC). Apart from the clock circuits, the

conventional FPGA structure has two types of circuits: 1) small logic islands

(logic clusters); and, 2) large interconnects. In each logic cluster, there are

several programmable logic elements (PLEs), which are the same as the logic

clusters in standard existing FPGAs, and a David Cell (DC) element [131].

Because the global clock signals have been removed, the DC is used to

implement distributed control in their place.

Figure 38: Island style architecture.

Latency variation within the local areas of limited size tends to be easier to

manage, however, tolerance for unpredictable latency variations in extreme

Chapter 4: Distributed Control Asynchronous FPGA Architecture

97

cases is more crucial for long interconnects. Therefore the approach taken is

retaining the basic conventional FPGA cluster-based structure relatively

unchanged, this makes each of the cluster behave functionally as a block self-

timed to its environment and replace the synchronous clocking resources with

distributed DC-based control and DI interconnects. The design of the LC and

the principles of DC control are demonstrated in the following sections.

Table 4: Choice of architecture structure.

Architecture Overview

Parameter value Reference

Architecture Island style [132]

LUT Size (K) 4 * Inputs [133]

Logic Cluster Size (N) 4 * PLE [133]

Cluster input Channels (i) 16 [133]

Channel Type Dual- rail/Channel [83]

Switch Box (SB) Universal [134]

Connection Box (CB) Normal [134]

Process Technology UMC-90nm CMOS -

Handshake Protocol 4-Phase Dual-Rail [83]

David Cell (DC) [135]

The granularity or structure choice of FPGA affects the logic utilization, speed

and power performance. This is usually based on three vital logic cluster

Chapter 4: Distributed Control Asynchronous FPGA Architecture

98

parameters which are the size (K) of the lookup table (LUT), the cluster size

(N) or the number of LUTs in a cluster, and the number of inputs per cluster

(I). In general, increasing the sizes of K and N will improve functionality and

performance, but at the same time escalate the area exponentially. Cluster

input size, I, should be kept as small as possible; however, if I is too small,

numerous logic elements in the cluster may be unavailing [9, 136]. The classic

FPGA architecture uses four LUTs per cluster and four inputs for each LUT.

In this setup, the default values are chosen. Table 4 shows the structural

choices made for the proposed asynchronous FPGA architecture.

4.4 Asynchronous Wrapper Structure

The fundamental block of a conventional FPGA comprises a lookup table (LUT),

a register (DFF) and a multiplexer (MUX). The terminology in Altera is called

a logic element (LE) or logic cell in Xilinx. In this design, asynchronous logics

are introduced wrapping around the fundamental logic blocks or LEs. The

newly designed structure that combines the wrapper and logic blocks

constitutes the new programmable logic element (PLE). This is shown in

Figure 39.

Chapter 4: Distributed Control Asynchronous FPGA Architecture

99

Figure 39: Wrapper based programmable logic element (PLE).

The wrapper consists of the following circuits:

 Programmable completion detection (PCD)

 Trigger selection switch (SW)

 Programmable delay (PD)

 Single- to dual-rail converter (CONV)

 Completion detection (CD)

The PCD is used to compute the complete arrival of all valid data. When all

data arrived, two “ready” signals will be generated from the PCD. This is for

the two possible used for this input data. Firstly, if the data could be used for

an operation involving only the local PLE the “ready” signal goes directly to

the (T.SW – “to SW”) to enable the local LUT to start data processing. Secondly,

the data may be used for a concurrent operation with other PLEs which may

or may not be in the same cluster. In this case, the ready signal goes to the

David Cell (DC)-based distributed control to synchronize with the input data

for other PLEs (via T.DC – “to DC”) and when the synchronization is complete,

the SW will be enabled by the F.DC (“from DC”) signal from the DC circuit.

Chapter 4: Distributed Control Asynchronous FPGA Architecture

100

The SW is basically a dual-input multiplexer which can select ready signal

either directly from the PCD or from the distributed DC control when

synchronization is required. In order to minimize the intermediate transitional

activities of the circuit and guarantee that the LUT is activated only when the

data is ready for the entire operation, the enable logic is implemented on the

LUT.

The PD is used to set up delays to match with certain operations. Here the first

PD is used to match the latency of the LUT and the second PD the latency of

the latch data and to indicate the “ready” state of the single-rail data from the

MUX.

CONV is purposed to transform the original single-rail data into a dual-rail

encoded data for DI communication. CD is completion detection indicating

validity of dual-rail data has been generated. The CD is optional depending on

where the control signal came from (either “T.SW” for independent

acknowledgement or “F.DC” for consolidate acknowledgement).

The wrapper commission in the following manner, when all input valid data

are detected, PCD generates a trigger signal. The trigger signal will then act

as a start indication for LUT to commence computation. PDs match the

computation time and used to control the effective latching timing. The

computed result can be then converted from single-rail data to dual-rail before

propagating to the next stage. The output of the CD is an “ACK” or “Done”

Chapter 4: Distributed Control Asynchronous FPGA Architecture

101

signal, generated to the previous stages when the input data has been

consumed.

4.4.1 Programmable Completion Detection (PCD)

Figure 40: Programmable completion detection.

The PCD is the programmable completion detection circuit constituted with C-

element and OR-gates as shown in Figure 40. The OR-gates allows the

straightforward detection of valid signals from spacers or empty code-words in

dual-rail encoding. The typical dual-rail code show in Table 5

Table 5: Dual-rail code-words.

Code-words Code

0,0 Spacer

0,1 0

1,0 1

1,1 Not valid

Because the code-word (1, 1) is illegal and cannot occur, an OR gate is sufficient

to safely indicate that a single data channel is “valid” or “empty”.

The completion detection valid-signals can be achieved with C-element that is

a commonly used component in asynchronous circuits [83]. The C-element

Chapter 4: Distributed Control Asynchronous FPGA Architecture

102

provides the hysteresis in the empty-to-valid and valid-to-empty transitions

required for transparent handshaking. It waits till all inputs to be valid before

setting the output to high, and waits for all its inputs to become empty to set

the output to low. For other input combinations, the output does not change.

C-elements are thus ideal for collecting the states of multiple channels.

The proposed PLE, the input size of the C-element is four, however, in the

actual implementation, not all input will be usable. In order to allow the 4-

inputs C-element to function correctly, flexibility configuration are required in

such case. This is resolved by utilising extra three multiplexers to link the idle

channel (B, C or D) to Channel A, which is assumed to be always in operative

if the PLE participates in the computation. The process of enabling or disabling

the relevant MUX for the relative channel is assumed to be handled by

automated tools during the synthesis and mapping flow.

4.4.2 Switch Box (SW) Circuit

The SW trigger switch box in Figure 41 is a simple programmable multiplexer.

The purpose of this SW is to facilitate the selection of the trigger or valid signal

between the PCD block and the DC-control. For concurrent operation, the

“F.DC” signal is used to synchronise operation for multiple PLEs. The example,

the subsequent case study section clarifies the function of the SW.

Chapter 4: Distributed Control Asynchronous FPGA Architecture

103

Figure 41: SW box circuit.

4.4.3 Programmable Delay (PD) Unit

The bundle-data is one of the most efficient approach asynchronous

handshaking. Delay-element is used here for matching for the latency of the

data path element being bundled; this local control signal has the equivalent

functions of clocks of conventional LE. Various delay elements was introduces

in chapter 3. However, the most common implementation is the chain-

inverters circuit. Considering the process and environmental variation, the

presented PD is made to be tuneable. The circuit with four selectable ranges

PD is shown in Figure 42.

Figure 42: Programmable delay circuit.

Provided that the variability information concerning the environmental and

power supply is availble from characterisation process, the PD range can be

Chapter 4: Distributed Control Asynchronous FPGA Architecture

104

set at configure time. The PD also can be beneficial in facilitating variation

mitigation techniques such as chip-wise configuration or late binding [3].

In order to retain average rather the worst-case performance under a wide

range of variability, finer tune of programmable delay element may be required.

However, the implication is higher area overheads in PDs.

4.4.4 Single-Rail to Dual-Rail Conversion Circuit (CONV)

Converting the single-rail data output from LE to dual-rail format for the DI

interconnects is the responsibility of CONV in Figure 39. This is shown in

Figure 43.

Figure 43: Dual-rail conversion or DEMUX circuit

At the input of the LE, one of the data wires gives the single-rail binary value

of valid code-words directly. Once it has been ensured that spacers do not

propagate to LE, this wire can be used directly for the data input.

Chapter 4: Distributed Control Asynchronous FPGA Architecture

105

4.5 Area, Power and Speed Performance

4.5.1 Area Overhead Calculation

Asynchronous circuits tend to be larger than synchronous ones. In the case of

full SI/DI there are overheads in both the control circuits replacing clock

systems and data path circuits due to the complex coding, such as 4P-DR. Even

with bundled-data scheme, the clock replacement delay-elements may still be

more sizable than the synchronous clock scheme.

Table 6: PLE size in terms of number of transistors.

BOX BLOCK Parts Included Total

Logic

Element

LUT SRAM * 16 96

Mux Tree (K = 4)

∑ 2𝑖𝑘
𝑖=1

30

Buffer * 30 60

DFF 24

2:1 MUX 4

Total: 214

Wrapper PCD SRAM * 3 18

2:1MUX * 3 12

Gates 60

SW 2:1MUX * 1 4

 SRAM * 1 6

Chapter 4: Distributed Control Asynchronous FPGA Architecture

106

(PD)*2 (Buffer * 10) * 2 40

(4:1MUX) * 2 20

(SRAM * 2)*2 24

CONV 2:1MUX * 2 8

Buffer 2

CD OR2 6

Total: 200

With this added resource, many advantages can be gained. This includes

improved variation resilience, avoiding the inevitable issues synchronous clock

systems face with technology scaling, and lower power utilisation in low duty-

cycle process.

Table 6 shows the complexity of the proposed PLE. Notably, the wrapper

circuit introduced consist of almost equal number of circuit elements to the LE

itself. This implies that the PLE is almost twice as big in terms of size. Despite,

the circuit size overhead, the following power analysis shows that power does

not increase much.

4.5.2 Power Comparison

The proposed PLE is roughly double in size the conventional LE. Typically,

bigger the circuit higher the dynamic power consumption, but this PLE uses

asynchronous techniques, which is even driven and without the complex global

Chapter 4: Distributed Control Asynchronous FPGA Architecture

107

clock tree should save the power used. Yet, the combined effect of these changes

is uncertain. Although power optimisation is not the main focus for this section,

it needs to be studied to see if there any radical changes are likely.

The most fundamental block or the PLE is used as an example. As variations

are introduced, it is unreasonable to predict that all of the data will arrive at

the same time. Here the worst case has been assumed where all four data bits

arrive at different moments in time. This has no effect on the synchronous

FPGA, since correct operations are guaranteed by the global clock. Only during

the clock rising edge, stable data is required. But this is achieved by spending

power on clocks. In the proposed AFPGA, data computation starts only when

all of the data has arrived.

Figure 44: (a) Synchronous LUT; and (b) PCD asynchronous LUT.

The power consumption of conventional SRAM-based LUTs and CD-based

LUTs are investigated in a comparative study using the following set-up shown

in (Figure 44):

 Four signals, namely A, B, C and D, arrive at the input of LUT at different

times.

Chapter 4: Distributed Control Asynchronous FPGA Architecture

108

 Signal A is assumed to arrive last and other signals were changing before it

becomes stable, with 16 transitions between “0000” to “1111”, changing 1 bit

at a time.

 When every signal, including ‘A’, eventually settles, output ‘1’ will be

produced.

The simulation results are shown in Figure 45. When there is a transition in

an input signal, the power line will spike. In the synchronous circuit, every

change of data between valid clock signals changes the state of the LUT

address and consumes energy. In the asynchronous design, data will not be

read from the SRAM until it has received the enable signal (En) from the PCD,

as shown in Figure 45 (b). The PCD circuit consumes relatively little power,

and they are corresponds to the tiny power spikes between each pair of high

power signature spikes in Figure 45 (a) and (b).

Chapter 4: Distributed Control Asynchronous FPGA Architecture

109

Figure 45: Operation power: (a) synchronous LUT with timing clock;

(b) asynchronous LUT with PCD.

This simulation shows that, although the size of the PLE circuit has increased,

it consumes roughly the same power and energy as the equivalent clock based-

LUT in this setup. Taking into account the power used by the clock tree circuit

and dynamic clock transition, the asynchronous LUT with CD may produce

better power consumption characteristics in overall. The power data can be

found in Table 7. The simulation is relevant to a relatively low duty-cycle

situation, but because clock distribution is not included for the synchronous

case, it was not put at an unfair disadvantage.

Chapter 4: Distributed Control Asynchronous FPGA Architecture

110

Table 7: Power and energy comparison.

Circuit Operation

Energy

Average

Single

Operation

Power

Operating

Voltage

LE

(sync)

1.037pJ 32.41uW 1.0V

PLE

(async)

0.544pJ 17.00uW 1.0V

Both the power and area comparisons may show significant advantages for the

asynchronous architecture if the clock tree network resources are taken into

account. In the synchronous FPGA, the clock itself brings challenges ranging

from skew, tree distribution and global buffers. Special resources, such as

DLLs (dynamic link libraries), PLLs (phase-locked loops) and clock multipliers,

are also needed. Taking all of this into account, the clock resources in the

synchronous FPGA will require significant amounts of area, power and

management effort. In general, a 10% overhead on the maximum clock rate is

recommended to guarantee operation in the presence of temperature variation.

Due to the scaling of CMOS feature size, FPGA density increases, replacing

the complex global clock with the asynchronous handshaking circuit provides

a promising solution to alleviate the above-mentioned problems [137].

Chapter 4: Distributed Control Asynchronous FPGA Architecture

111

4.5.3 Throughput Performance

In synchronous system design, maximum operating frequency is set based on

the critical path, and normally the maximum clock frequency is set according

to it. In asynchronous system design, there is no global clock. Data is

transferred through stages of logic controlled by handshake protocols which

are inherently pipelined. The faster the data can be transferred from input to

output, the higher the throughput can be achieved. To evaluate the maximum

operating rate, the configuration bits or SRAM of the PLE is first configured

with predetermine logic (within Cadence Virtuoso environment) and the input

signals are stimulated. The time between the complete valid input data having

arrived and valid output generated was recorded. The inverse of the delay from

input to output is the frequency. The peak frequency of the proposed

architecture was compared with those of various reported asynchronous

FPGAs and also a commercial synchronous FPGA (Xilinx-Spartan3). Table 8

shows the throughput performance of various architectures based the

literature at their nominal voltage level. Throughput performance of this work

based on a single proposed PLE also included as a reference.

Table 8: Throughput comparisons of various architectures.

Architecture Technology Peak Throughput Nominal

Voltage

[100] 0.18um 235MHz 1.8V

[94] 0.25um 395MHz 2.5V

Chapter 4: Distributed Control Asynchronous FPGA Architecture

112

[6] 0.18um 674MHZ 1.8V

AFPGA (this work) 90nm 1.5GHz 1.0V

[138] 90nm 326MHz system

clock

1.2V

Variations may result in changes in signal arriving times. A signal arriving too

early or too late may lead to hold and set-up violations in synchronous system

design. This can be dealt with by slowing down the clock by an appropriate

degree to allow extra margins for safety reasons. However the problem of

deriving the appropriate degree of slow-down in any case is significantly non-

trivial [75]. In general, a 10% slowing down on the maximum clock rate has

been recommended for temperature variation [137]. However, the results of

another study [139] indicate that chip frequency variation can be up to 30%.

Table 8 shows that, at a constant Vdd, all asynchronous FPGAs are faster than

the synchronous Xilinx Spartan3. Moreover, the experiment described in the

next section demonstrates that the asynchronous structure also exhibits the

elastic operation of the PLE at a continuously changing Vdd without the

necessity for specific retiming and slowing down.

4.6 Variability Evaluation

4.6.1 PLE Characterisation with Variable Vdd

The simulation of the PLE circuit was on Cadance tools on UMC 90nm CMOS

technology. In the analog design flows, the PLE circuit works correctly as

Chapter 4: Distributed Control Asynchronous FPGA Architecture

113

designed without logic errors with Vdd sweep between 0.45V~1.00V. The result

for delay and energy-per-operation over Vdd performance is shown in Figure

46.

Figure 46: Delay and operational energy at below nominal Vdd level:

(a) results table; (b) delay and energy plot over Vdd.

During the simulation, the circuit shows error operation when Vdd is dropped

below 0.40V. The observation on the timing graph indicated that this is due to

the mismatch in bundling data in PD. Similar phenomenon, has previously

been noticed [140], where inverter-chains based delay-element not maintain

the correct temporal bundling for memory circuits (such as the SRAM cells

here in the LUT) when Vdd is lowered towards the sub-threshold region. This

is due to the rates of slowing down on data path are not in parallel with the

delay-element when Vdd is reduced.

The PLE works well under different but constant Vdds as long as the bundling

delay are matched. In terms of energy usage performance, the result is as

Chapter 4: Distributed Control Asynchronous FPGA Architecture

114

expected where operation energy are reduced with the drop of Vdd. Another

observation from the graph indicated that there is a significant increase in

latency when lowering the Vdd below 0.6V where the two lines crossed as in

Figure 46 (b), this is the optimum operation energy point where significant

energy savings can be achieved without much scarified on speed performance.

Simulation result in Figure 47 shows that the circuit work correctly within

0.45-1.0V constant Vdd range. Further simulation is carried out to investigate

how the PLE behaves under a continuous varying Vdd over the range Vdd rage.

In this experiment, a relatively slow sinusoid signal was applied to the power

supply instead. The LE was configured as a parity checker for the value of A,

B, and C and D. The experiment setup was in self-looping test environment

with the feedback on the completion triggering the next operation. Figure 47

shows that the parity-checker was producing correct “even parity” bits on the

output line continuously under varying Vdd. The output speed (out) and power

rate (Pwr) are relative to the level of the Vdd.

Chapter 4: Distributed Control Asynchronous FPGA Architecture

115

Figure 47: PLE working under variable Vdd.

4.6.2 Corner Analysis for PVT Variation

Taking into account manufacturing tolerances for devices as well as

environmental variations in voltage and temperature, circuit behaviour can be

obtained through simulations with ranges of PVT (process, voltage, and

temperature) variation. Process corners for the MOS transistors are ss, tt, ff,

sf, and fs, where t stands for typical, s for slow and f for fast. The first letter in

a pair usually pertains to NMOS and the second to PMOS. Fast NMOS slow

PMOS is referred to as ‘fs’ or ‘fnsp’.

The worst-case (longest) latency is mainly associated with a high

PMOS/NMOS threshold voltage (ss), high temperature and low supply voltage

(Vdd) and the best-case is the converse. The programmable delay (PD) and data

path (or LUT) delays in all process corners have been obtained to provide an

Chapter 4: Distributed Control Asynchronous FPGA Architecture

116

overview of the best- and worst-case scenarios for the circuit with respect to

slow and fast environments:

Slow environment corners (V =0.5v & T=400K):

 LUT (ss: tt: ff: snfp: fnsp) = (1.56ns: 0.79ns: 0.43ns: 0.82ns: 0.75ns)

 PD (ss: tt: ff: snfp: fnsp) = (1.82ns: 0.91ns: 0.53ns: 1.01ns: 0.84ns)

Fast environnement corners (V=1.2V & T=273K) :

 LUT (ss: tt: ff: snfp: fnsp) = (0.20ns: 0.15ns: 0.12ns: 0.18ns: 0.14ns)

 PD (ss: tt: ff: snfp: fnsp) = (0.22ns: 0.16ns: 0.13ns: 0.19ns: 0.15ns)

Figure 48 (a) and (b) show that this PD successfully bundled the LUT delay

across a wide voltage range when both are in the ss & ff corners. Further

analysis was carried out to study cases where the PD and the LUT are in

different corners. The results show that miss matches can occur in both slow

and typical corners as shown in Figure 49(a) and (b). This demonstrates the

need for the use of programmable delays (PD) as mentioned in section 4.4.3

above.

Chapter 4: Distributed Control Asynchronous FPGA Architecture

117

Figure 48: PD and LUT delay successfully bundling: (a) Slow corner

(temperature=400K). (b) Fast corner (temperature=273K).

Figure 49: Cross over at (sf): corner (a) Temperature=300K. (b)

Temperature=273K.

4.7 Logic Cluster Design

The logic cluster (LC), consisting of a group of PLEs, is the next level in the

hierarchy. The unit in the same hierarchical layer in conventional FPGAs is

known as the configurable logic block (CLB) in Xilinx terminology and the logic

array block (LAB) in that of Altera.

Chapter 4: Distributed Control Asynchronous FPGA Architecture

118

Similar to most commercial FPGAs, the cluster in the proposed architecture

(Figure 50) consists of four PLEs with the addition of one David cell (DC),

which forms part of distributed intra-cluster and inter-cluster control. The

general cluster structure is shown in Figure 50.

The DC-based distributed control in the cluster takes charge of the control path.

When input data is ready, the PCDs in the PLEs in the cluster will generate

trigger signals which may be collected by the DC control for group triggering.

Some PLEs may need to execute concurrently and others sequentially. The SW

allows either the selection of self-triggering directly from its corresponding

PCD for sequential operation or group-triggering from the DC for concurrent

operation. After computation is completed, the DC withdraws the data and

propagates the control signal to the next stage. This structure also allows data

feedback channels from the output of each PLE to the input PCDs of other

PLEs. The principle of DC control is demonstrated in an example in the

following section.

Chapter 4: Distributed Control Asynchronous FPGA Architecture

119

Figure 50: Logic cluster with DC.

4.7.1 Distributed Control with David Cell

In this proposed architecture, David Cells (DCs) are used to implement the

distributed control, since this kind of control works based on handshake

protocols. Distributed control using DCs was first proposed by David [131].

Extensions with the direct mapping of asynchronous control circuits from Petri

Nets to DCs have also been reported [135, 141-143].

Basic structures of DCs are shown in Figure 51 (a), consisting of two inputs

(“set” & “reset”), two outputs (“back” & “Fw”), and an SR latch for state keeping

Chapter 4: Distributed Control Asynchronous FPGA Architecture

120

(Q and Qb). Both of the inputs are active-low in the implementation. When the

input “set” is active, Q will be set to high and the inversely active “reset” input

will set Q back to low. The “back” output signal basically works as an

acknowledgement of the previous stage of the pipeline for the signal having

been received, and the “Fw” output signal tells the next stage that the new

signal is ready to be consumed.

Figure 51 (b) shows how the basic structure of DC can be modified as

distributed control for PLEs for computation in the cluster. The signal coming

into a logic cluster can be from multiple sources, and therefore there will be a

group of “set” signals (s1 – sn) to trigger signal “Q”. When the control signal

“Q” is activated, computation will start. An acknowledgement signal “ack” will

then be generated after the valid signal of the valid output has been produce

by the CD circuit. The “ack” signal replaces the “back” signal of the basic DC

structure. Likewise for the output, there may be multiple reset signals (r1 - rn)

to reset the control signal “Q” of the DC.

Chapter 4: Distributed Control Asynchronous FPGA Architecture

121

Figure 51: (a) Basic David cell Structure; (b) DC for distributed

control; (c) set and reset logic boxes for DC implementations.

The control flow between LCs can occur in different topologies. Programmable

logic blocks, namely “Logic 1”, “Logic 2” and “Logic 3” are used to provide this

required flexibility. “Logic 1” and “Logic 2” are the set function of signal (s1 –

sn) that will trigger signal “Q” and the forward signal (“Fw”). The reset

function “Logic 3” based on signals (r1 – r n) will reset the DC back to its

default state.

The programmable logic blocks can be implemented with LUTs to cover all

possible combinational relations of their inputs. Each logic block has four

inputs with a cluster structure of n=4. This is shown in Figure 51 (c) in more

detail.

A basic timing assumption in these programmable logic blocks can help to

restrict them to a practical scale. Although this makes them not strictly SI, the

delays within such small local areas can be more easily and reliably managed.

Chapter 4: Distributed Control Asynchronous FPGA Architecture

122

Based on this argument, it was decided to choose small-scale timing

assumptions in this tradeoff.

4.7.2 David Cell Control Transition Flow

Figure 52: Data flow transition example with DCs.

DC control may be used to manage a control path across multiple clusters,

dealing with both intra- and inter-cluster management. Figure 52 shows an

implementation of a sub-unit of an ALU, where input data ‘A’ and ‘B’ will be

stored in registers before being passed to Cluster 3 for computation. The output

of the computation will then be stored in Register C (Cluster 4) to complete the

sub process (in logic terms: Reg C = Reg A + Reg B). The numbers 1 - 10 are

used to show the sequence of the transitions.

(1) Assuming data A and B were stored in Clusters 1 and 2, the

forward signals Fw1 and Fw2 will be collected as the SET signal

to trigger the DC in Cluster 3.

Chapter 4: Distributed Control Asynchronous FPGA Architecture

123

(2) The trigger (Trg1) rises, and computation will start.

(3) The completion of computation in Cluster 3 will generate an Ack

signal that will then reset both of the previous stage’s clusters to

allow the RESET or clearing of data. Note that the result of data

computation is ready at this stage.

(4) The Fw1 and Fw2 signals will go “low” after being reset in stage

3, indicating that the data is cleared.

(5) The Fw3 signal will be activated following the transitions in stage

4 allowing the data generated in stage 3 to be passed along and

consumed by Cluster 4.

(6) Then the same transition as stage 2 happens again in Cluster 4 to

start storing data in Reg C.

(7) Upon the completion of storing data in Reg C, the Ack2 signal is

generated to clear its previous stage. The DC in Cluster 3 will then

be reset.

(8) The Trg1 signal goes to “low” after being reset.

(9) Then the Fw3 signal will also go to “low” following the reset of

stage 7.

Chapter 4: Distributed Control Asynchronous FPGA Architecture

124

(10) The process is completed and the DC in Cluster 4 can send a new

request to its output (next) stage and a new sequence of transitions

can start.

4.7.3 Implementation Case Study

This section describes an example of a sub system design which demonstrates

the possible ways of configuring such systems on the architecture described in

the preceding sections, as well as indicating the flexibility and features of this

architecture.

A four-bit ripple-carry full adder demonstrates the flexibility of intra-cluster

operational organization and the independent DC control of the PLEs. Figure

53 shows the implementation of the four-bit ripple-carry adder using two logic

clusters. This can demonstrate the typical behaviour of the ripple-carry adder,

where each stage waits until the previous stage has completed computation

and propagated its carry output signal.

Chapter 4: Distributed Control Asynchronous FPGA Architecture

125

Figure 53: Four bit full Adder example.

Signals A0-A3, B0-B3 and CIN are assumed to be from the previous stage. The

arrival of the signals can be in any order due to irregular interconnect lengths

and computation latencies, based on the assumption of overall DI inter-cluster

communication. When some of the inputs, A0-1, B0-1, CIN, from the previous

stage have arrived in Cluster 1, some of the PLEs in this cluster can start

computation. For example, LE2 may start its computation to generate its carry

out signal C1. The trigger signal for LE2 was initiated from its corresponding

Chapter 4: Distributed Control Asynchronous FPGA Architecture

126

PCD once valid A0, B0 and CIN signals have been detected without any

mediation from the DC control.

The C1 signal generated by LE2 is fed via an internal feedback channel (such

channels were mentioned above although they are not shown in Figure 11) to

satisfy the PCD conditions of LE3 and LE4. Their PCDs produce two trigger

signals to the DC, which is waiting to collect these along with the PCD signal

from PLE1. Once all three of these signals have been collected by the DC, it

generates a merged trigger signal for the parallel triggering of LE4, LE3 and

LE1. This merged trigger signal is in fact passed through all four PLEs through

a chain consisting of all four SWs. The SW in PLE2 will not generate a second

trigger locally for LE2 because it is programmed to respond to its local PCD

instead of the DC control. The resulting concurrent action among PLEs 4, 3

and 1 generates three latched outputs S0, S1 and C2.

After both clusters have completed their computations, the acknowledgement

signal ACK will be generated by the output CD together with the output data

to allow the previous stage to clear its data. There may not be a need to collect

the CDs from all PLEs for this acknowledgement, since the designer may view

the cluster as a small enough block so that internal timing assumptions can be

made. In this case, a subset of CDs is used instead. An acknowledgement is

generated for the previous stage (only 1 “ack” for all input signals).

Chapter 4: Distributed Control Asynchronous FPGA Architecture

127

The forward signal (Fw) will then be generated once the previous stage

releases its data and passes the control to the next stage to start a new round

of operation. The same operation happens at the next stage interface, and once

the data has been used, the ACK coming from the right will reset the DCs in

both clusters 1 and 2. In this work, these “Fw” & “ack” control signals will be

routed using the share flexible interconnect resources discuss earlier in section

2.2.9.

The circuit in this example demonstrates that not all PLEs must have all of

the components included in Figure 39 in use. For instance, only when an

acknowledgement signal is needed from a PLE will be use its right hand side

CD block. The example also demonstrates the flexibility and programmability

of the DC set and reset blocks. In this case, the DC setting is not directly

related to the PCD of PLE2.

4.7.4 Design Flow

By retaining the LE structure of conventional FPGAs and having a similar

organization at the cluster level, the proposed asynchronous FPGA

architecture to a large degree allows the synthesis of PLEs or clusters through

the existing FPGA design flow. Because of the replacement of clocks with the

DC based distributed control, not all parts of the existing LE and LAB design

flow can be directly applied. However, the basic mapping method should be

Chapter 4: Distributed Control Asynchronous FPGA Architecture

128

directly applicable in principle, although modifications are needed to

accommodate the new control structure.

As for the DC-based distributed control, direct mapping for asynchronous

circuits provides a suitable solution. Petri net specifications of the control path

can be directly mapped onto a DC-based control structure. The proposed design

flow for systems using this asynchronous FPGA architecture is shown in

Figure 54.

Chapter 4: Distributed Control Asynchronous FPGA Architecture

129

 SPEC (Verilog)

Partition /
Allocation /

Scheduling

Control Function
blocks

Global data

links

Petri net

representation

DC based

control netlist

Refinement
based on

granularity

design

FPGA
mapping for

PLE &
Cluster

PLE &

Cluster
netlist

Interconnects

in DI

Finish

Figure 54: System design flow.

The system specification is assumed to be in a design language such as Verilog.

Certain existing asynchronous FPGA design flows, based on de-

synchronization techniques, apply the existing synchronous EDA toolkits

directly. In this work, the Verilog specification, before applying the existing

synchronous toolkits, is passed to the next step where, after partition,

Chapter 4: Distributed Control Asynchronous FPGA Architecture

130

allocation, and/or scheduling, the design is divided into control, data path

function blocks, and global data links. This step is similar to the automatic

division of control and data paths in the process described by Shang [135] and

their techniques there can be re-used with minimal modifications. Here, only

after partitioning are the functionalities synthesized using the existing

synchronous toolkits.

Control is represented in Petri net models, which can describe all of the types

of control flow found in a Verilog system specification. For instance, common

control elements such as fork, join, and arbitration can be represented by the

Petri net models in Figure 16 which is taken from [135].

Figure 55: Petri net models of control elements.

Such a Petri net control model can then be used to generate the DC based

distributed control with the direct mapping techniques described by [135]. For

example, as shown in Figure 16, the positions in this Petri net model directly

indicate the DCs. In other words, for each position in the control Petri net

model, a DC is specified in the final implementation. The transitions and

Chapter 4: Distributed Control Asynchronous FPGA Architecture

131

connection topology among the DC positions are implemented through the SET

and RESET logic of the DCs and the interconnections between them.

The data path function blocks can be similarly derived through a step of colour

Petri net modelling [143]. Once the general function blocks have been

synthesized, they need to be refined based on the FPGA’s granularity for

partitioning, depending on the PLE and cluster sizes. This is not available

directly [143]. However, this is a standard step in converting a general VLSI

design to FPGA implementation, and so the same methods can be applied. By

keeping the PLE and cluster sizes of the conventional FPGA, this step is made

straightforward. This is then followed by obtaining the PLE and cluster

circuits using existing FPGA mapping techniques.

The global data interconnect fabric mainly consists of the channels for data

communication. In this design flow it is implemented directly in dual-rail DI

circuits. Their generation is also a straightforward process.

4.8 Summary

This chapter describes the detailed circuit realization of an asynchronous

FPGA architecture. This is different from existing asynchronous FPGA

architectures, and strikes a sensible balance between homogeneity to modern

synchronous FPGA architecture and full asynchrony in places where it matters

most, namely long interconnect links. This approach allows more flexibility in

adjusting levels of DI according to application needs.

Chapter 4: Distributed Control Asynchronous FPGA Architecture

132

This approach retains the single-rail data representation of conventional

FPGAs “in the small” or local cluster. This maximises the reusability of exiting

FPGA logic mapping tools. On the other hand, by introducing delay-

insensitivity “in the large” into the inter-block long data links, the variation

tolerance and latency robustness inherent to asynchrony is provided.

This hybrid structure also provides advantages of both single-rail computation

and dual-rail communication. This is due to the efficient computation with

single-rail and the correct operation across a wide Vdd range from dual-rail

asynchrony.

A number of structural choices were made; for instance, the granularity and

block structures follow current commercial FPGA practice.

The basic building block of the architecture, the programmable logic element

(PLE), has been designed in detail. It includes a number of finer grain

components, including a logic element (LE) inherited directly from current

commercial FPGAs, completion detection circuits and delay matching / data

bundling circuits.

Programmable completion detection and bundling delays in the PLE cater for

functional configurability and variation tolerance. This type of PLE has been

shown to work under widely variable Vdd with reasonable latency and energy

behaviours.

Chapter 4: Distributed Control Asynchronous FPGA Architecture

133

On the next level above, the PLEs are the clusters. The standard cluster has a

David cell (DC) distributed control unit managing the operations of the PLEs

in a cluster. This asynchronous control fully replaces the intra-cluster clock

system in current commercial FPGAs, providing the complete equivalent

functional set which includes both in parallel and sequential operations of the

PLEs in any possible arrangement.

A design flow for systems in this architecture has been proposed which makes

maximal use of existing asynchronous and FPGA synthesis methods. Case

studies demonstrate the functional capabilities of the architecture. A four-bit

ripple carry full adder showcases the flexibility of intra-cluster DC control. A

further example additionally demonstrates inter-cluster control from a single

DC.

Summary of the performance analysis shows that, although power and

performance can be achieved with the asynchronous wrapper based technique,

the area overhead is still substantial. In particular, the computation logic is

compact compared with existing fine-grain asynchronous FPGA methods, but

the fully dual-rail structure for interconnects required by DI may not be

necessary. In the next chapter, the interconnect structure will be optimised

based on information made possible from recent advancements in variation

instrumentation and variability maps.

Chapter 5: Asynchronously Assisted Logic (AAL) Scheme

134

Chapter 5. Asynchronously Assisted Logic (AAL)
Scheme

5.1 Introduction

Asynchronous logic has been shown to be more robust to variations but may

have higher circuit size and power overhead compared to synchronous systems.

However the degree of asynchrony employed in system designs is the result of

a trade-off between resources and functionality, and the complete “DI in the

large” method for interconnects the previous chapter may turn out to be too

expensive. This chapter describes the implementation of Asynchronously

Assisted Logic (AAL) hard circuit blocks into the Xilinx FPGA’s CLB. This

optimised scheme is intended to increase wide range latency variation

tolerances caused by parametric, voltage supply and temperature (PVT)

fluctuations, where there is a need, to improve on the global DI interconnect

structure from the previous chapter. The proposed method suggests deploying

configurable AAL blocks to reinforce only the variation critical paths with the

help of variation maps, rather than to re-map and re-route. The layout level

result shows this method's worst case increase of CLB overall size to be 6.3%

only. If taking account of the interconnect area size into the area calculation,

the area overhead will be significantly lower. This optimised variation aware

strategy retains the structure of the global interconnect resources that occupy

a large proportion of the modern FPGA’s soft fabric, and yet still permits the

Chapter 5: Asynchronously Assisted Logic (AAL) Scheme

135

dual-rail completion-detection (DR-CD) protocol without the need of globally

doubling the interconnect resources. Simulation results with the injection of

voltage variability on both interconnect and computation blocks demonstrate

the robustness of the method. The propose structure also allow

implementations of several popular asynchronous styles to support different

asynchrony at different variability levels. This chapter therefore provides the

best scenario of practical implementation of variation tolerance support logic

in FPGA for tolerating variability.

5.2 Architecture Overview

Asynchronously assisted logic methods is proposed here in order to provide the

appropriate level of variation tolerance and yet still preserving as much of the

modern FPGA overall structure as possible. This approach applies the

asynchrony only when necessary provide the key for significant overhead

minimization.

Chapter 5: Asynchronously Assisted Logic (AAL) Scheme

136

Figure 56: Architecture overview: (a) Island style architecture, (b)

AAL within a CLB.

Figure 56 (a) Shows overview of an island style FPGA with AAL architecture.

The structure preserves most of the common blocks of a typical FPGA such as

the Connection Block (CB) and the Switch Block (SB). Four logic elements (LE)

normally assemble a slice and cluster or CLB consist of two slices and some

local routing resources. As in Figure 56(b), the method introduces an AAL block

within a CLB with minimum expansion of MUXes bridging the existing local

routing with the AAL when deployed without affecting the global interconnects.

The impact on latency from variations could affect the data communications

between CLBs. Therefore maximally one configurable AAL block can be

introduced to each CLB to provide the appropriate degree of timing elasticity.

Depending on how dispersed and the severity of the variations, the granularity

of AAL placement can be reduced. As an example, in Figure 56(a) AAL was

introduced on every other CLB. The area overhead evaluation and detailed

Chapter 5: Asynchronously Assisted Logic (AAL) Scheme

137

description of an AAL interface within a CLB will be discussed in the following

sections.

5.3 AAL Architecture Implementation

Figure 57: AAL plugin to Xilinx’s CLB with SLICEL & SCLICEX.

Figure 57 shows a more comprehensive AAL block schematic view and its

interface with the Xilinx’s CLB containing a SLICEL and a SLICEX [144]. To

Chapter 5: Asynchronously Assisted Logic (AAL) Scheme

138

allow interchangeable communication between the synchronous clock and

asynchronous handshaking signal controls, the trigger line (CK) has been

made configurable in a CLB containing an AAL. There are M number data

signal lines for implementation of dual-rail or 1-of-2 protocol. When configured

as dual-rail, the utilization of slices in a CLB will be decreased. However this

design tradeoff was aim to avoid the need of doubling the global interconnect

resources. The output is also interchangeable between single-rail and dual-rail.

There are N lines connecting the AAL dual-rail line to the spare MUXes inputs

in SLICEX. Therefore, the J outputs and I inputs of the original CLB remain

the same. The “ACKo” is the only extra line added in this case.

5.4 Area Overhead Calculation

Figure 58 Area calculation of CLB with AAL.

The implementation of this design is in UMC-90nm CMOS technology and

evaluated the area overhead of the AAL with a CLB containing a Xilinx’s

SLICEL and SLICEX. Both slices containing 6-inputs lookup table (LUTs) but

Chapter 5: Asynchronously Assisted Logic (AAL) Scheme

139

the more complex structure, SLICEL (20736µm2) takes more layout area

compared to SLICEX (19600 µm2). The AAL occupies a layout area of 2704 µm2

out of the total CLB size of 43040 µm2. The area overhead of the AAL in this

case is only 6.3%. If the more complex SLICEM [144] was chosen, the ratio will

reduce further.

Table 9: Overhead of various asynchronous schemes.

Architecture Wrapper

Type

LUTs/

Wrapper

I/O Overhead

Fine-Grain

AFPGA[6, 95]

Fine 1 >4x

Distributed Control AFPGA[69] Medium 4 2x

AAL (this work) Coarse 8 Same + 1

Table 9 shows the overhead comparison between different asynchronous

FPGAs architectures. The fine-grained architecture provides every logic

element with a wrapper increasing the size of the global interconnect resources

over 4 times higher. The main advantage of this type of architecture is

potential fine-grain pipelining for high throughput and high reliability. Yet,

the overall overhead in size is too large, reduces the chip functional density

and to some extent negates the technology scaling objective. Distributed

control AFPGA proposed in [69] reduced the overhead to the factor of two with

clustered architecture wrapped four LUTs with a wrapper. The wrapper

consists of dual-rail handshaking logic plus a distributed David Cell (DC)

Chapter 5: Asynchronously Assisted Logic (AAL) Scheme

140

controller. However, this medium grain scheme still doubles the global

interconnect for dual-rail communication. The DC based controller was also

made to be programmable to accommodate multiple combinations of control

logic. Due to the extra-configurable resources, the wrapper occupied about 50%

of the CLB area. This newly proposed scheme use spare resources in the

existing slice structure and are trading the utilization of CLB with

interconnects overhead. The reduced utilization of CLB when AAL are

deployed is acceptable in this context because only the Variation-critical path

(VCP) will be used. This can be achieved with the help of tools that allow the

identification VCPs. The overhead reduction is very significant and makes

more sense as indicated from simulation results in the following sections.

5.5 Multi-Style Handshaking Support

An FPGA’s functional implementation is defined after fabrication. Although

this may make it suffer more from the variability at nanometer scale regime

compared to ASIC design, FPGA provides a unique opportunity to reconfigure

unused resources to mitigate the problem, for example to remap the degraded

computation block to a region that is not used [77, 81]. The re-routing and re-

mapping techniques are interesting and may work well. However, the place

and route process normally takes a lot of time and effort. Even worse, it may

be too late for the system to sense its level of degradation before system starts

Chapter 5: Asynchronously Assisted Logic (AAL) Scheme

141

malfunctioning. We therefore propose to enhance the VCP path with AAL that

is highly tolerant to variation and does not require exhaustive P&R efforts.

The AAL block provides the flexibility to implement various styles of

asynchrony, including single-rail bundled data (SR-BD), dual-rail completion-

detection (DR-CD), and hybrid completion-detection (HB-CD) as needed. The

structure consists of Programmable Completion Detection (PCD) block,

Programmable Handshake Circuit (PCH) and Programmable Delay element

(PD) [69] as shown in Figure 57 and Figure 59.

Figure 59: Dual-Rail Completion-Detection (DR-CD) resources.

Figure 59 shows the resources used when the AAL is configured to the DR-CD

mode. Complete arrival and retrieval of all dual-rail valid input data are

detected by the PCD and PHC for handshaking between AAL blocks. In this

scheme, encoding within the data itself provide the trigger signal “CK”

substituting the global clock. The PDs in between the “CK” are closely matched

with its corresponding slices. Internally delay matching is acceptable as the

variation within a small region is more manageable. Output data from this

Chapter 5: Asynchronously Assisted Logic (AAL) Scheme

142

scheme can be then converted into dual-rail before propagated to the next stage.

Figure 60 show an example implementation of a four stage pipelined 4-phase

DR-CD using AAL.

Figure 60: Four Stages implementation of DR-CD circuit.

In the SR-BD scheme, the handshaking relies closely on the local matched

delay line. Data are remained in single-rail and not used as part of the control;

hence the PCD is not used (Figure 61). This scheme basically replaces the

global CLK trigger line with the locally handshaking CK trigger. The main

benefit of this structure is simplicity in control handshaking and circuit size

that will result in higher operational energy efficiency. Investigation of

throughput vs energy performance of the architecture will be discussed in the

next section. Figure 62 shows an example implementation of this bundled-data

delay matching circuit in four stages.

Chapter 5: Asynchronously Assisted Logic (AAL) Scheme

143

Figure 61: Single-Rail Bundle-Data (SR-BD) resources.

Figure 62 Four Stages implementation of SR-BD circuit.

It is also entirely possible to mix and match these two most popular

asynchronous handshaking protocols through one data path (HB-CD),

depending on where along that path there may be very long interconnects or

where interconnects are compromised by variability. In addition, the global

clock could be passed straight through, which basically reverts the CLB back

to the conventional synchronous behaviour using the switching resources as

shown in Figure 63.

Chapter 5: Asynchronously Assisted Logic (AAL) Scheme

144

Figure 63: Clock triggers switching.

5.6 Proposed Variation Aware Design Flow

The overall system design approach when the AAL method is used is somewhat

different from that for the conventional FPGA architecture. With AAL blocks

managing the timing of inter-CLB data communications, place and route is

less concerned with ensuring that such data delays are always correct, and

therefore chip area utilization and other factors can be optimized with more

freedom provided by the additional timing flexibility. The general system

design flow is shown in Figure 64.

Chapter 5: Asynchronously Assisted Logic (AAL) Scheme

145

Figure 64: Design flow based on variation map.

5.7 Throughput and Operation Energy Study

The AAL method provides the flexibility of configuring inter-CLB data

connections into a full spectrum of different degrees of asynchrony, from

completely depending on the global clock, to single-rail asynchrony based on

timing assumptions, to fully completion-detected DI. Based on theory they

would provide opportunities to trade communication reliability with energy

costs. In this section, we attempt to quantitatively study the energy and

speed/throughput characteristics on the three styles of asynchrony provided

by the AAL method, i.e. everything based on timing assumptions, everything

fully completion detected, and a judicious hybrid of the two.

A case study approach is used in this exploration. First, the FPGA logics are

configured into a 4-bit ripple-carry-adder (4RCA) and follow by an extended

version – a cascade of four 4RCAs (4x4RCA) for a longer critical path. The

examples are selected deliberately for the easy identification of critical paths.

Chapter 5: Asynchronously Assisted Logic (AAL) Scheme

146

5.7.1 Short Critical Path

Figure 65 shows the test setup. Input B of the adder changes (from increment

counter) on every complete computation circle based on the valid “Cout” signal

- the critical path. A closed loop simulation was run for a fixed amount of time

(200ns) and the number of counts from the incremental counter was recorded

together with the overall operational energy.

With a single adder and short critical path, the comparative simulation results

(at the nominal voltage, 1V) are presented in Table 10. The results show that

SR-BD has the highest efficiency (throughput over overall operational energy)

compared to the other two setups. SR-BD performance can also be closely

benchmarked equivalent to the synchronous design for the reason that

matching delay lines were carefully tuned to the data-path. This is similar to

the clock frequency setting based on critical-path in typical synchronous

system design. Further performance investigations with a supply voltage

sweep between 0.4-1.0 volts are shown in Figure 66(a) shows that both (DR-

CD) and (HB-CD) consistently produce lower throughput for relying on the

slow handshaking protocol. The operation energy graph in Figure 66(b) also

indicates, because of the extra dual-rail and completion-detection logics

implemented, the circuits are larger and use more power. However, the HB-

CD design can improve the efficiency.

Chapter 5: Asynchronously Assisted Logic (AAL) Scheme

147

Figure 65: Test setup for 4RCA.

Table 10: Comparison result for short path (4RCA).

Circuits

(4RCA)

Throughput

(counts)

Operational

Energy (pJ)

SR-BD 23 29.49

DR-CD 18 37.28

HB-CD 18 24.64

Chapter 5: Asynchronously Assisted Logic (AAL) Scheme

148

Figure 66: Throughput and energy comparison (Voltage sweep, 0.4 -

1.0v), (a) Throughput (Counts), (b) Operation Energy (pJ).

5.7.2 Long Critical Path

For longer critical path experiment, an an extended version – a cascade of four

4RCAs (4x4RCA) are implemented in four styles. A typical 16-bit ripple-carry-

adder (RCA) as a synchronous design is followed by three asynchronous

implementations of 4x4-bit (RCA). The experiment setup is shown in Figure 67

including an increment counter that records the loop iterations. Same

incremental counter used for input data B. This setup is common to all the four

mentioned examples.

Chapter 5: Asynchronously Assisted Logic (AAL) Scheme

149

Figure 67: Test setup for 16RCA and 4x4RCA.

The same test vector is applied onto all four designs and fixed time (200ms).

Close loop stimulations were run to measure the throughput/counts and

average power performances. Results of the simulation are presented in Table

11: Throughput and energy performance. Note that, in the single-rail delay-

matching (SR-DM) synchronous 16-bit configuration, the 16-bit RCA’s critical

path delay line is carefully tuned to match the synchronous clock speed

representation.

Table 11: Throughput and energy performance.

no Circuits Throughput

(Counts)

Operation

Energy (pJ)

1. Single-Rail Delay-Matching

(SR-DM) (Non-Pipeline)

6 22.63

2. Single-Rail Bundle-Data

 (SR-BD)

15 52.27

3. Dual-Rail Completion-Detection (DR-CD) 15 81.79

Chapter 5: Asynchronously Assisted Logic (AAL) Scheme

150

4. Hybrid Mix-Rail

Completion-Detection

(HB-CD) (Carry Chain Only)

15 66.53

The maximum count achieved by SR-DM is 6 with an energy consumption of

22.63pJ. In the 4x4-bit configurations, higher throughput was achieved (15

counts). This is due to the pipelined natural of the circuits. DR-CD design used

highest energy because of fully dual-rail completion detection scheme and the

SR-BD uses much lesser energy for the same throughput. However, this

scheme relies more on timing assumption, and may not be as robust as DR-CD.

HB-CD, on the other hand, reduces total operation energy for maintaining the

same throughput. In this case, a hybrid approach may be beneficial provided

the critical path is carefully determined based on a somewhat accurate

variation map – full accuracy is only needed for the data lines covered by

timing assumptions. A hybrid asynchronous control of data communication

between CLBs is exactly where the AAL method excels.

5.8 Variability Study

In addition to manufacturing process variations, it is also crucial to account for

potential FPGA operation mode variations post-configuration such as

fluctuations of voltage and temperature. In this section we study how the

addition of asynchrony might make FPGA circuits more tolerant to voltage

variations.

Chapter 5: Asynchronously Assisted Logic (AAL) Scheme

151

5.8.1 Global Variability Simulation

Figure 68: Global Vdd variation simulation setup.

In the previous section, we demonstrated that all three configurations

performed correct functions without logic errors under constant Vdds in the

range of 0.4V-1.0V in 90nm CMOS technology. Using the DR-CD (dual-rail,

most robust) setup in the previous section, we repeat the tests with three

dynamic voltage sources as illustrated in Figure 68. The summary of the

voltage sources presented in Figure 69 is as follows:

 Vdd 1: Continuously varying voltage (sinusoidal, 0.4-1V, 30MHz).

 Vdd 2: Random varying voltage (Gaussian, µ = 0.9, 𝜎 = 0.12).

 Vdd 3: Switching Capacitor from energy harvesting sources (Saw-

tooth, 0.6-1.0V, 50MMz).

Chapter 5: Asynchronously Assisted Logic (AAL) Scheme

152

Figure 69: Correct operation under various viable voltage supplies.

Vdd 1 is a relatively slow changing voltage and this can be closely related to

correlated process variation and slow aging variation. Delay normally

increased with the increase of temperature. Towards lower geometry below

65nm, 45nm, 38nm and beyond at lower threshold voltage, the temperature

shows contrarian effects on cell delay [27]. Also within-die variation can be

random and fluctuates independently of device location. Therefore Gaussian

noises are presented in Vdd 2. Energy harvesters tend to provide variable

levels of power. The output waveform of a switching capacitor DC-DC converter

in [33] shows in Vdd 3. From these results it can be seen that the circuit works

under all three variable sources without errors at every increasing loop on the

data value.

Chapter 5: Asynchronously Assisted Logic (AAL) Scheme

153

5.8.2 Interconnects Variability Simulation

In previous section [145], the robustness of the design with global Vdd

variation under three variable power supply sources was demonstrated. In this

section, we going to investigate the voltage variability effects on interconnect

latency and it’s potential impact on the correct operation as illustrated in

Figure 70 In FPGAs, a large proportional of the fabric are made of interconnect

blocks. Variations in interconnect could dominate the global system

performance. This section study the structure performance under gradual and

random variable voltages presented in the global interconnect.

Figure 70: Mixed constant Vcc on CLB and variable Vdd on

interconnect simulation.

The most robust DR-CD implementation in the previous section was reused

but with all interconnects replaced with analogue models that are made of non-

standard cell inverter chains. The simulation was done in the mixed signal

mode – all CLBs are using standard cell with fix 1V Vcc supply, while

interconnects used custom cells and are powered with variable Vdd supplies.

The result in Figure 71 shows the correct operation of adder under two variable

voltage sources: Vdd1, a constantly changing voltage between 0.5-1.1V at

Chapter 5: Asynchronously Assisted Logic (AAL) Scheme

154

25MHz with a sinusoidal shape, and Vdd2, a random variable voltage source

with Gaussian distribution (µ = 0.9V, 𝜎 =0.12V).

Variations in the supply voltage result in timing variations of the interconnect

line. Both data and control lines that are connected through the global

resources will be affected. However, it can be seen that the circuit works under

both variable sources without errors with the correct output sum value on

every cycle. The validity of the data was aligned with the “Valid” signal from

the output of the dual-rail completion-detection block sampling at the legit

output values and not spacers.

Chapter 5: Asynchronously Assisted Logic (AAL) Scheme

155

Figure 71: Interconnect variation simulation results

5.9 System Design on AAL structure

This section addresses the implementation of more complex systems using the

AAL method.

5.9.1 Handshaking Support for Data Flow Structures

The AAL blocks provide flexibility for implementing various handshaking

protocols. A full data flow control structure supports Linear, Fork, Join and

Merge elements. These elements allow the construction of more complex

system when needed. The 4-Phase Dual-Rail (4P-DR) implementation is

slightly different compares to the 4-Phase Bundle-Data (4P-BD) due to part of

the control has been embedded in the data line itself.

Chapter 5: Asynchronously Assisted Logic (AAL) Scheme

156

Table 12: Data flow control elements.

The summaries of implementation elements of both are shown in Table 12

together with their Petri-net (PN) [131, 143] representations. PNs can be

graphical and mathematical representations of discrete system. It’s the

extension of Finite State Machines (FSMs) model for both sequential and

concurrent circuits. Therefore it’s highly used for modelling asynchronous

logics. Table 12 shows that the basic handshaking control for ‘linear and fork’

are the same for 4P-DR and 4P-BD. For the “join” component, because the dual-

rail data itself can carry valid detection for the controller, therefore no extra

‘C’ element is needed as in the example used in 4P-BD for the “x-req” and “y-

req” signals. For similar reasons the merge handshake controller is designed

differently between the 4P-DR and 4P-BD.

Chapter 5: Asynchronously Assisted Logic (AAL) Scheme

157

Following subsection will demonstrate the building of a 4P-BD sub function

with most of the components listed in the Table 12

5.9.2 Booth Multiplier Case Study

This section describes a Booth's multiplication algorithm system in the

proposed AAL structure with the above-mentioned handshaking components.

Figure 72 shows the block diagram of a four by four-signed binary

multiplication. This structure is of interest for study because the adder

example used for performance study in section IV can be reused with minimum

alteration as shown the 9-bit adder in the diagram. Also Booth’s multiplier

provides balance between speed and area utilization using repetition adding

and shifting. The multiplier value is first extended and stored in register

“A_reg” and its two’s complemented value is stored in “S_reg”. Conditioned by

the last two bits of the product accumulator register “M”, addition or

subtraction will be performed between the multiplicand “P_reg” with the

“A_reg” or “S_reg” within a set number of iteration controlled by a counter.

Chapter 5: Asynchronously Assisted Logic (AAL) Scheme

158

Figure 72: Block diagram of Booth multiplier.

Figure 73 : Petri-net representation of booth multiplier control flow.

Figure 74: Simplified SR-BD handshaking diagram for Booth

multiplier.

Chapter 5: Asynchronously Assisted Logic (AAL) Scheme

159

Figure 73 shows the data flow diagram using PN representation for the

implemented the above Booth’s Multiplier and matching with components in

Table 12: Data flow control elements, the simplified handshaking building

block on CLB with AAL block can easily be constructed as in Figure 74.

Figure 75: Simulation waveform of Booth multiplier

implementations.

The simulation result using Cadence tools is shown in Figure 75. The

waveforms show a multiplication of two 4-bit numbers (m = 3 and r = -4). The

manipulated equivalent of ‘m’ and its two’s complement value are stored in

A_reg and S_reg individually as 9-bit data in hexadecimal format. For ‘r’, the

manipulated value is store in P_reg. The number of iterations loop is

determined by the bit length of value ‘r’. In this case, after four counts, a correct

product value of “-12” is produced demonstrating the correct operation.

Chapter 5: Asynchronously Assisted Logic (AAL) Scheme

160

5.10 Summary

This chapter aims to present the integration of robust AAL block into existing

Xilinx FPGA architecture. The proposed structure does not increase the

interconnect resource much as compared to typical asynchronous FPGAs that

would at least double the interconnect resources to support dual-rail

connection. The die overhead calculation on layout level shows that

incorporating AAL into a Xilinx’s CLB with SLICEM & SLICEX only incurred

6.3% of die area overhead at the maximum. The AAL design allows the

configuration of different styles and degrees of asynchrony for data links

between CLBs, depending on specific requirements. Quantitative case studies

using a 16-bit RCA also show that potential throughput improvements can be

achieved when AAL handshake can be pipelined. In addition, simulations also

show that the power efficiency can be improved with the hybrid implantation

of DR-CD protocol on critical path only and keeping the rest single-rail. The

most robust form of asynchrony is shown to be reliable under radical timing

variation caused by varying voltages on interconnects. A case study of Booth’s

multiplier shows the feasibility of building a more complex system on AAL

structure.

With the AAL hardware support and potential variation aware design flow, a

more practical and industry acceptable scenario would be more feasible.

Standard industrial design flow assumes only one set of bitstream needs to be

Chapter 5: Asynchronously Assisted Logic (AAL) Scheme

161

generated for a large batch of chips implementation. Thus, compared with

traditional variation aware techniques that require expensive computation for

re-routing and re-mapping the whole design on the basis of a unique variation

map for each chip, AAL technique may avoid this. Summary of such approach

will be discussed in the final conclusion chapter.

Chapter 6: Conclusion

162

Chapter 6. Conclusion

6.1 Summary of Thesis

This thesis presents a set of practical techniques for incorporation

asynchronous logic into modern FPGAs architectures as a method of dealing

with the increasing variability issues face by current and future sub-

nanometer technologies.

This approach based on Asynchronously-Assisted Logic (AAL) makes it

possible to provide the right degree of asynchronous hard microcircuit while

keeping most the conventional FPGA structure intact. The AAL method

facilitates the architecture with hard asynchronous components that is

distributed around the fabric, thus equips the architecture with robust

hardware resources to combat against timing variation. (Traditional methods

either modified the architecture greatly for fully asynchronous implementation

or betting on P&R tools to impose asynchrony logic on exiting FPGA

architecture, which is not ideal).

On the way towards the AAL approach, a hybrid FPGA architecture that wraps

conventional synchronous FPGA logic blocks with distributed asynchronous

control based on David’s cell options was developed. This approach preserves

the single-rail data representation of current FPGAs “in the small”, it is

possible for designers to use existing FPGA logic mapping tools in block design.

Chapter 6: Conclusion

163

By introducing delay-insensitivity “in the large” into the inter-block long data

links, the variation tolerance and latency robustness inherent to asynchrony

is provided. A number of structural choices were evaluated including the

granularity and block structures. This provided the foundation on which the

AAL approach was developed.

Several existing solutions to the variability problem exploit the reconfiguration

features of FPGAs. For example the late binding techniques suggest

performing part of the mapping and routing process as late as possible

leveraging the unique variation characterising of each chip. The proposed AAL

method provides a complementary solution to existing variation aware late

binding approach where delay characterisation is first performed and then

techniques such the region relocation, logic replacement and path rerouting

techniques can be applied, with AAL it will be reinforcement. The

reinforcement strategy suggests retaining the placement and routing and

supporting the variation critical regions or paths variation robust hardware

components thus minimising the effort for recalculating the new configuration

in FPGA.

Implemented on Faraday 90nm standard cell library on Cadence tools, the

worst case increase of CLB overhead in the layout level is 6.3% when

integrated into Xilinx’s vertex 6 architecture. Considering the interconnect

resources that occupy the biggest slice of the FPGA fabric, the overall size

Chapter 6: Conclusion

164

increase for consolidating the AAL block could be significantly lower at around

2%.

Furthermore, the AAL resources support multi-style asynchronous

implementation in tolerating wide range of timing variability. As reviewed in

chapter 2, the choice of asynchronous implementation style is fixed during the

specification process motivated mainly for speed or power performance. This

reduced the flexibility for tolerating wide range of variability. For example the

bundle data approach is more energy efficient but because it relies heavily on

the timing assumption, this makes it not suitable to deal with spatial and

random variation. Alternatively, a highly-pipelined 4phase dual-rail (4P-DR)

structure choice is made; the robustness of the architecture will be trading-off

with the huge area overhead.

The AAL approach avoids the need to globally double the interconnect

resources to permit either of these handshaking implementation and

combination benefit of SI/DI schemes. The adjustment is made by reduces the

logic utilisation of a CLB if AAL is deployed. This is not unreasonable at the

assumption that AAL will only be deployed on a few targeted variation-critical

paths (VCPs). This technique has been successfully implemented with a case

study demonstrated in chapter 5.

Chapter 6: Conclusion

165

6.2 Future Work

This thesis presents an approach for the practical implementation of

asynchronous logic to assist with the growing variability issue in digital circuit

design. There are several areas in which this approach could be extended.

6.1.1 Variation Aware Design Flow with Consolidated Variation Map

The variability issue will inevitably impact the reliability and timing yield of

future generation FPGA. In this thesis a hardware optimized solution has been

proposed, however this needs to be supported by a design flow or automated

tools. With the assumption of mature off-line and online sensing techniques,

each chip can be characterised and treated differently. A few variation aware

techniques were discussed in chapter 2, however in all these papers, either

only the process variability is considered or in some, the run-time thermal

variation. Considering one single variation map may not give a comprehensive

view of the variability problem. It is therefore important to develop an

algorithm that consolidates both process and run-time variation maps for a

more realistic variation aware flow.

6.1.2 Cross Domain and GALS Scheme Study

Proposed AAL technique suggests multiple asynchronous handshaking

protocols can be collaboratively worked together. However detail study needs

to be performed for seamless integration to avoid complex intermingle of

different protocol in a design. Also, data transfer between asynchronous and

Chapter 6: Conclusion

166

synchronous domain would be expected in such implementation. This is in

some degree make the system similar to the heterogeneous GALS and

multiple-clock-domain system. Mixed timing domain in a system makes the

timing-closure and global-clock distribution difficult to achieve. One of the

solutions to deal with the global and local communication speed mismatch is

to make them insensitive to the latency. The Globally Asynchronous Locally

Synchronous (GALS) methodology does not enforce globally synchronized

clocks. Instead, communication between modules occurs asynchronously. This

approach has been popularly used by industry today to implement large SoC

with sub-modules running on different clocks. This trend is expected to extend

into future multi-core processors and NoC system. The proposed AAL

architecture may fit into this paradigm closely. However, the modification and

design of asynchronous and synchronous domain adapter circuits need to be

further explored, especially in terms of balancing throughput and size

overhead.

6.1.3 Silicon Implementation

The motivation and focus of this work is centred on the practical

implementation of FPGA architecture with enhancements for variability. The

architecture circuit has been designed and simulated in the Cadence tools

environment using both UMC-90nm and Faraday 90nm technology. It would

be beneficial, to develop a better sense of context to have the design evaluated

in smaller technology nodes such as 45nm or below if the tools and foundry

Chapter 6: Conclusion

167

library are made available. Also, implementation of the developed architecture

in silicon for further testing and verification would be a natural next step.

Appendixes

168

Appendix A: Abbreviations

2P-DR: 2-Phase Dual-Rail

4P-DR: 4-Phase Dual-Rail

ASIC: Application –Specific Intergraded Circuit

CAD: Computer-Added-Design

CB: Connection Block

CD: Completion Detection

CMP: Chemical Mechanical Polishing

CPLD: Complex Programmable Logic Device

DC: David Cell

DI: Delay Insensitive

DPA: Differential Power Analysis

DR-CD: Dual-Rail Completion-Detection

DR-CD: Dual-Rail Completion-Detection

DSP: Digital-Signal-Processing

DUT: Device-Under-Test

EEPROM: Electrically Erasable Programmable ROM

EMA: Electromagnetic Analysis

FSM: Finite State Machine

FU: Functional-Unit

GALS: Global Asynchronous Locally Synchronous

HB-CD: Hybrid Completion-Detection

HCI: Hot-Carried-Injection

HDL: Hardware Description Language

IoT: Internet-of-Thing

IP: Intellectual Property

Appendixes

169

LC: Logic Cluster

LE: Logic Element

LEDR: Level-Encoded Dual-Rail

LER Line-Edge-Roughness

LUT: Look-Up Table

NBTI: Negative Bias-Temperature Instability

NoC: Network-on-Chip

NRZ: Non-Return-Zero

P&R: Placement and Routing

PAL: Programmable Array Logic

PBTI: Positive Bias-Temperature Instability

PCB: Printed Circuit Board

PCD: Programmable Completion Detection

PD: Programmable Delay

PL: Phase Logic

PLA: Programmable Logic Array

PLD: Programmable Logic Devices

PLE: Programmable Logic Elements

PN Petri-Net

PROM: Programmable Read-Only Memory

PVT: Process, Voltage and Temperature

QDI: Quasi Delay Insensitive

RCA: Ripple-Carry-Adder

RDF: Random-Dopant Fluctuation

RO: Ring oscillator

RTA: Rapid Thermal Annealing

RZ Return-to-Zero

SB: Switching Block

SCA: Side Channel Attack

Appendixes

170

SI: Speed Independent

SoC: System-on-Chip

SPA: Simple Power Attack

SRAM: Atatic-Random-Access-Memory

SR-DM: Single-Rail Direct-Mapping

SR-DM: Single-Rail Delay-Matching

SSTA: Statistical static Timing Analysis

STA: Static Timing Analysis

TDDB: Time Dependent Dielectric Breakdown

VCP: Variation-Critical Path

Appendixes

171

Appendix B: AAL Implementation

Incorporating AAL into Xilinx’s CLB

Appendixes

172

Appendix C: Input Vector for Candence

Input Stimulus “Vector” file sample (Configure LUT

as Adder)

; PLE cd stimuli

; INPUT & DBUS Use BIG_ENDIAN system (LS byte first 0|1|2|3)

; Address use LITTLE_ENDIAN (MSB fist 3|2|1|0)

Radix 1 1 4444 1 4 1 2 2 2

Io i I iiii I I i I I o

vname start WE DBUS<[15:0]> Sel PCD<[3:0]> SW PD1<[1:0]> PD2<[1:0]>

sum<[1:0]>

tunit ns

trise 0.1

tfall 0.1

vih 1

vil 0

vol 0

voh 1

;time start WE DBUS Sel PCD SW PD1 PD2 sum

 0 0 0 0000 0 0 0 0 0 0;

 10 0 1 6996 0 0 0 x x x; Adder

 20 0 0 6996 0 0 0 x x x;

 40 0 0 xxxx 0 0 0 0 0 0; Spacer

 60 1 0 xxxx 1 F 1 2 2 x;

 160 0 0 xxxx 1 F 1 2 2 x;

 180 1 0 xxxx 1 F 1 2 2 x;

Appendixes

173

Appendix D: Sawtooth Vdd Generation

Sawtooth Vdd Input Stimulus File Generation in MATLAB

Representing Energy Harvesting Switching Capacitors

Supply Sources

fid = fopen('sawtooth-pwl.txt','w'); %Create a new txt file

A=0.2;
t = 0:0.0005:1;
x=A*sawtooth(2*pi*40*t,0.25)+0.8; %40 Hertz wave with duty cycle 25%

fprintf(fid,'%1.4fe-3 ',t);
fprintf(fid,'%1.4f\n',x);

plot(t,x);
grid

fclose(fid);

Appendixes

174

Appendix E: Variation Map Generation

Variation Map Generation in MATLAB

%Run in Matlab SimulationTime and TimeIncrement are in
%nanoseconds Mean and StDev of Guassian distribution is in V Nominal
%voltage is in V

% Example m file run code >> VariationMap(0.9, 0.4);

function out = VariationMap(Mean, StDev)

times = zeros(1,201);
xs = zeros(1,201);
for i=0:1:200
time=i;
x=randn(1)*StDev + Mean;
y=randn(1)*StDev + Mean;
z= randn(1);
times(i+1)=time;
xs(i+1)=x;
end

subplot(2,1,1)
plot(times,xs)
subplot(2,1,2)
hist(xs,20)
[X,Y,Z] = peaks(25);
surf(X,Y,Z);
out=1;
end

References

175

Bibliography

[1] R. Aitken, "Predictive technology for advanced node design exploration," in
Designing with Uncertainty - Opportunities & Challenges, Workshop Invited
Speacker, 2014.

[2] J. M. Levine, E. Stott, and P. Y. K. Cheung, "Dynamic voltage and frequency
scaling with online slack measurement," in Field-Programmable Gate
Arrays ACM/SIGDA International Symposium, Monterey, California, USA,
2014, pp. 109-116.

[3] P. Sedcole and P. Y. K. Cheung, "Within-die delay variability in 90nm
FPGAs and beyond," in International Conference Field Programmable
Technology (ICFPT) 2006, pp. 97-104.

[4] P. Cheung, "Beyond the age of clones," UK Design Forum (UKDF)
Workshops 2013.

[5] P. Cheung and P. Sedcole, "Variability & FPGAs - Disaster or
Opportunities?," Design, Automation & Test (DATE) Workshop Patent,
2008.

[6] R. Manohar, "Reconfigurable asynchronous logic," in Custom Integrated
Circuits Conference (CICC), 2006, pp. 13-20.

[7] K.-L. Chang, J. S. Chang, B.-H. Gwee, and K.-S. Chong, "Synchronous-
logic and asynchronous-logic 8051 microcontroller cores for realizing the
internet of things: a comparative study on dynamic voltage scaling and
variation effects," IEEE Journal Emerging and Selected Topics in Circuits
and Systems, vol. 3, pp. 23-34, 2013.

[8] M. Jelodari and J. D. Garside, "High level synthesis of GALS systems," in
Designing with Uncertainty - Opportunities & Challenges Workshop vol.
2014, ed, 2014.

[9] I. Kuon, R. Tessier, and J. Rose, "FPGA Architecture: Survey and
Challenges," Found. Trends Electron. Des. Autom., vol. 2, pp. 135-253,
2008.

[10] N. J. Rochelle, "Monolithic Memories announces: a revolution in logic
design: Introductory advertisement on PAL (Programmable Array Logic),"
1978.

[11] G. E. Moore, "Cramming more components onto integrated circuits,"
Proceedings of the IEEE, vol. 86, pp. 82-85, 1998.

[12] Microsemi Antifuse FPGAs. Available:
http://www.microsemi.com/products/fpga-soc/antifuse-fpgas

[13] D. Zacher. Using prescision to design Rad-hard Actel devices [Online].
Available:
http://www.pldworld.com/_hdl/2/resources/leo2precision/html/pdfs/actel_ra
d.pdf

[14] T. R. Kuphaldt, Lesson In Eletric Circuits vol. IV-Digital Chapter 16 Principle
of Digital Computing, 200-2008.

http://www.microsemi.com/products/fpga-soc/antifuse-fpgas
http://www.pldworld.com/_hdl/2/resources/leo2precision/html/pdfs/actel_rad.pdf
http://www.pldworld.com/_hdl/2/resources/leo2precision/html/pdfs/actel_rad.pdf

References

176

[15] I. Kuon and J. Rose, "Measuring the gap between FPGAs and ASICs," IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 26, pp. 203-215, 2007.

[16] H. Parandeh-Afshar and P. Ienne, "Measuring and reducing the
performance gap between embedded and soft multipliers on FPGAs," in
International Conference on Field Programmable Logic and Applications
(FPL), 2011, pp. 225-231.

[17] FPGA vs. ASIC. Available: http://www.xilinx.com/fpga/asic.htm
[18] P. Wilson, Design recipes for FPGAs: Newnes, 2007.
[19] S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A. Keshavarzi, and V. De,

"Parameter variations and impact on circuits and microarchitecture," in 40th
Annual Design Automation Conference, Anaheim, CA, USA, 2003, pp. 338-
342.

[20] A. Bansal and R. M. Rao, "Variations: Sourcecs and characterization," in
Low-Power Variation-Tolerant Design in Nanometer Silicon, Swarup.
Bhunia and Siabal. Mukhopadhyay, Eds., ed: Springer, 2011.

[21] A. Asenov, S. Kaya, and A. R. Brown, "Intrinsic parameter fluctuations in
decananometer MOSFETs introduced by gate line edge roughness," IEEE
Transactions on Electron Devices, vol. 50, pp. 1254-1260, 2003.

[22] S. Ghosh and K. Roy, "Parameter variation tolerance and error resiliency:
New design paradigm for the nanoscale Era," Proceedings of the IEEE, vol.
98, pp. 1718-1751, 2010.

[23] S. Bhunia and S. Mukhopadhyay, Low-Power Variation-Tolerant Design in
Nanometer Silicon: Springer, 2011.

[24] J. A. Walker, M. A. Trefzer, S. J. Bale, and A. M. Tyrrell, "PAnDA: A
reconfigurable architecture that adapts to physical substrate variations,"
IEEE Transactions on Computers, vol. 62, pp. 1584-1596, 2013.

[25] S. K. Saha, "Modeling process variability in scaled CMOS technology,"
IEEE Design & Test of Computers, vol. 27, pp. 8-16, 2010.

[26] A. Asenov, "Random dopant induced threshold voltage lowering and
fluctuations in sub-0.1um MOSFET's: A 3-D "atomistic" simulation study,"
Electron Devices, IEEE Transactions, vol. 45, pp. 2505-2513, 1998.

[27] M. Ruben. (2012). How to close timing with hundreds of multi-mode/multi-
corner views. Available:
http://www.eejournal.com/archives/articles/20121206-cadence/

[28] S. Herbert and D. Marculescu, "Variation-aware dynamic voltage/frequency
scaling," in IEEE 15th International Symposium on High Performance
Computer Architecture (HPCA), 2009, pp. 301-312.

[29] M. Wirnshofer, Variation-aware adaptive voltage scaling for digital CMOS
circuits: Springer Dordrecht Heidelberg New York London, 2013.

[30] A. Nahapetian, P. Lombardo, A. Acquaviva, L. Benini, and M. Sarrafzadeh,
"Dynamic reconfiguration in sensor networks with regenerative energy
sources," in Design, Automation & Test in Europe Conference & Exhibition
(DATE), 2007, pp. 1-6.

[31] ARVENI. Available: http://www.arveni.fr/en/

http://www.xilinx.com/fpga/asic.htm
http://www.eejournal.com/archives/articles/20121206-cadence/
http://www.arveni.fr/en/

References

177

[32] A. Yakovlev. Energy-modulated computing [Online]. Available:
http://async.org.uk/tech-reports/NCL-EECE-MSD-TR-2010-167.pdf

[33] X. Zhang, D. Shang, F. Xia, H. S. Low, and A. Yakovlev, "A hybrid power
delivery method for asynchronous loads in energy harvesting systems," in
IEEE 10th International New Circuits and Systems Conference (NEWCAS),
2012, pp. 413-416.

[34] F. Xia, A. Mokhov, A. Yakovlev, A. Iliasov, A. Rafiev, and A. Romanovsky,
"Adaptive resource control in multi-core systems," Newcastle University
NCL-EEE-MICRO-TR-2013-183, 2013.

[35] A. Mokhov, D. Sokolov, and A. Yakovlev, "Adapting Asynchronous Circuits
to Operating Conditions by Logic Parametrisation," in Asynchronous
Circuits and Systems (ASYNC), 2012 18th IEEE International Symposium
on, 2012, pp. 17-24.

[36] F. Xia, A. Mokhov, Y. Zhou, Y. Chen, I. Mitrani, D. Shang, et al., "Towards
power-elastic systems through concurrency management," Computers &
Digital Techniques, IET, vol. 6, pp. 33-42, 2012.

[37] A. Mokhov, M. Rykunov, D. Sokolov, and A. Yakovlev, "Design of
Processors with Reconfigurable Microarchitecture," Low Power Electronics
and Applications, pp. 26-43, 2014.

[38] M. Rykunov, "Design of asynchronous microprocessor for power
proportionality," PhD, School of Electrical and Electronic Engineering,
Newcastle University, 2014.

[39] T. Mizuno, J. Okumtura, and A. Toriumi, "Experimental study of threshold
voltage fluctuation due to statistical variation of channel dopant number in
MOSFET's," Electron Devices, IEEE Transactions, vol. 41, pp. 2216-2221,
1994.

[40] K. Agarwal, F. Liu, C. McDowell, S. Nassif, K. Nowka, M. Palmer, et al., "A
test structure for characterizing local device mismatches," in Symposium on
VLSI Circuits, Digest of Technical Papers, 2006, pp. 67-68.

[41] F. Stellari, P. Song, A. J. Weger, and D. L. Miles, "Mapping systematic and
random process variations using Light emission from Off-State Leakage,"
in IEEE International Reliability Physics Symposium 2009, pp. 640-649.

[42] A. N. Nowroz and S. Reda, "Thermal and power characterization of field-
programmable gate arrays," in Proceedings of the 19th ACM/SIGDA
international symposium on Field programmable gate arrays, Monterey, CA,
USA, 2011, pp. 111-114.

[43] M. Bhushan, M. B. Ketchen, S. Polonsky, and A. Gattiker, "Ring oscillator
based technique for measuring variability statistics," in IEEE International
Conference on Microelectronic Test Structures (ICMTS), 2006, pp. 87-92.

[44] I. A. K. M. Mahfuzul, A. Tsuchiya, K. Kobayashi, and H. Onodera, "Variation-
sensitive monitor circuits for estimation of Die-to-Die process variation," in
IEEE International Conference on Microelectronic Test Structures (ICMTS),
2011, pp. 153-157.

[45] K. M. Zick and J. P. Hayes, "On-line sensing for healthier FPGA systems,"
in Proceedings of the 18th Annual ACM/SIGDA International Symposium

http://async.org.uk/tech-reports/NCL-EECE-MSD-TR-2010-167.pdf

References

178

on Field Programmable Gate Arrays, Monterey, California, USA, 2010, pp.
239-248

[46] W. Xiaoxiao, M. Tehranipoor, and R. Datta, "Path-RO: A novel on-chip
critical path delay measurement under process variations," in IEEE/ACM
International Conference on Computer-Aided Design (ICCAD) 2008, pp.
640-646.

[47] S. Lopez-Buedo, J. Garrido, and E. Boemo, "Thermal testing on
programmable logic devices," in IEEE International Symposium on Circuits
and Systems (ISCAS), 1998, pp. 240-243 vol.2.

[48] N. Dahir, G. Tarawneh, T. Mak, R. Al-Dujaily, and A. Yakovlev, "Design and
implementation of dynamic thermal-adaptive routing strategy for networks-
on-chip," in 22nd Euromicro International Conference on Parallel,
Distributed and Network-Based Processing (PDP), 2014, pp. 384-391.

[49] G. Tarawneh, T. Mak, and A. Yakovlev, "Intra-chip physical parameter
sensor for FPGAS using flip-flop metastability," in International Conference
on Field Programmable Logic and Applications (FPL), 2012, pp. 373-379.

[50] P. Y. K. Cheung. On-silicon instrumentation - An approach to alleviate the
variability problem [Online]. Available: http://www.panda.ac.uk/workshop/

[51] S. Mukhopadhyay, K. Keunwoo, K. A. Jenkins, C. Ching-Te, and K. Roy,
"An On-Chip test structure and digital measurement method for statistical
characterization of local random variability in a process," IEEE Journal of
Solid-State Circuits, vol. 43, pp. 1951-1963, 2008.

[52] R. Rao, K. A. Jenkins, and J.-J. Kim, "A completely digital on-chip circuit for
local-random-variability measurement," in IEEE International Solid-State
Circuits Conference (ISSCC), Digest of Technical Papers, 2008, pp. 412-
623.

[53] R. Rao, K. A. Jenkins, and J.-J. Kim, "A local random variability detector
with complete digital On-Chip measurement circuitry," IEEE Journal of
Solid-State Circuits, vol. 44, pp. 2616-2623, 2009.

[54] S. Lopez-Buedo, J. Garrido, and E. Boemo, "Thermal testing on
reconfigurable computers," IEEE Design & Test of Computers, vol. 17, pp.
84-91, 2000.

[55] Haile. Yu, Qiang. Xu, and P. H. W. Leong, "Fine-grained characterization of
process variation in FPGAs," in International Conference on Field-
Programmable Technology (FPT), 2010, pp. 138-145.

[56] E. Stott, A, J. S. J. Wong, P. Sedcole, and P. Y. K. Cheung, "Degradation
in FPGAs: measurement and modelling," in Proceedings of the 18th Annual
ACM/SIGDA International Symposium on Field Programmable Gate Arrays,
Monterey, California, USA, 2010, pp. 229-238

[57] S. Reda, R. J. Cochran, and A. N. Nowroz, "Improved thermal tracking for
processors using hard and soft sensor allocation techniques," IEEE
Transactions on Computers, vol. 60, pp. 841-851, 2011.

[58] J. S. J. Wong, P. Sedcole, and P. Y. K. Cheung, "Self-Measurement of
combinatorial circuit delays in FPGAs," ACM Trans. Reconfigurable
Technol. Syst., vol. 2, pp. 1-22, 2009.

http://www.panda.ac.uk/workshop/

References

179

[59] J. S. J. Wong and P. Y. K. Cheung, "Improved delay measurement method
in FPGA based on transition probability," in Proceedings of the 19th
ACM/SIGDA international symposium on Field programmable gate arrays,
Monterey, CA, USA, 2011, pp. 163-172

[60] J. S. J. Wong and P. Y. K. Cheung, "Timing measurement platform for
arbitrary black-box circuits based on transition probability," IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 21, pp.
2307-2320, 2013.

[61] N. Mehta and A. DeHon, "Variation and aging tolerance in FPGAs," in Low-
Power Variation-Tolerant Design in Nanometer Silicon, S. Bhunia and S.
Mukhopadhyay, Eds., ed: Springer US, 2011, pp. 365-380.

[62] Ho-Yan. Wong, Lerong. Cheng, Yan. Lin, and Lei. He, "FPGA device and
architecture evaluation considering process variations," in IEEE/ACM
International Conference on Computer-Aided Design (ICCAD) 2005, pp. 19-
24.

[63] J. S. J. Wong, P. Sedcole, and P. Y. K. Cheung, "A transition probability
based delay measurement method for arbitrary circuits on FPGAs," in
ICECE Technology, 2008. FPT 2008. International Conference on, 2008,
pp. 105-112.

[64] I. Kuon and J. Rose, "Automated transistor sizing for FPGA architecture
exploration," in 45th ACM/IEEE Design Automation Conference (DAC),
2008, pp. 792-795.

[65] J. Sparsø and S. Furber, Principles of asynchronous circuit design, 1st ed.:
Springer, 2002.

[66] A. J. Martin, "Compiling communicating processes into delay-insensitive
VLSI circuits," Distributed Computing, vol. 1, pp. 226-234, 1986/12/01 1986.

[67] T.-A. Chu, "Synthesis of self-timed VLSI circuits from graph-theoretic
specifications," PhD, Massachusetts Institute of Technology. Dept. of
Electrical Engineering and Computer Science., Massachusetts Institute of
Technology, 1987.

[68] D. Shang, F. Xia, and A. Yakovlev, "Asynchronous FPGA architecture with
distributed control " in IEEE International Symposium Proceedings of
Circuits and Systems, 2010, pp. 1436-1439.

[69] H. S. Low, D. Shang, F. Xia, and A. Yakovlev, "Variation tolerant AFPGA
architecture," presented at the 17th IEEE International Symposium
Asynchronous Circuits and Systems, Ithaca, NY, 2011.

[70] P. Sedcole and P. Y. K. Cheung, "Parametric yield in FPGAs due to within-
die delay variations: a quantitative analysis," in Proceedings of the 2007
ACM/SIGDA 15th international symposium on Field programmable gate
arrays, Monterey, California, USA, 2007.

[71] M. Yohei, H. Masakazu, K. Takashi, T. Toshiyuki, N. Tadashi, S. Toshihiro,
et al., "Performance and yield enhancement of FPGAs with within-die
variation using multiple configurations," in Proceedings of the 2007
ACM/SIGDA 15th international symposium on Field programmable gate
arrays, Monterey, California, USA, 2007.

References

180

[72] L. Cheng, J. Xiong, L. He, and M. Hutton, "FPGA performance optimization
via chipwise placement considering process variations," in International
Conference on Field Programmable Logic and Applications (FPL), 2006, pp.
1-6.

[73] Y. Lin, M. Hutton, and L. He, "Placement and timing for FPGAs considering
variations," in International Conference on Field Programmable Logic and
Applications (FPL), 2006, pp. 1-7.

[74] Y. Lin, L. He, and M. Hutton, "Stochastic physical synthesis considering
prerouting interconnect uncertainty and process variation for FPGAs," IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 16, pp.
124-133, 2008.

[75] A. Kumar and M. Anis, "FPGA design for timing yield under process
variations," IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 18, pp. 423-435, 2010.

[76] S. Sivaswamy and K. Bazargan, "Statistical analysis and process variation-
aware routing and skew assignment for FPGAs," ACM Transactions on
Reconfigurable Technology System, vol. 1, pp. 1-35, 2008.

[77] P. Sedcole and P. Y. K. Cheung, "Parametric yield modeling and
simulations of FPGA circuits considering within-die delay variations," ACM
Transactions on Reconfigurable Technology System, vol. 1, pp. 1-28, 2008.

[78] V. Betz, J. Rose, and A. Marquardt, Architecture and CAD for deep-
submicron FPGAs. Boston: Kluwer Academic, 1999.

[79] E. Stott and P. Y. K. Cheung, "Improving FPGA reliability with wear-
levelling," in International Conference on Field Programmable Logic and
Applications (FPL), 2011, pp. 323-328.

[80] S. Srinivasan, P. Mangalagiri, Y. Xie, N. Vijaykrishnan, and K. Sarpatwari,
"FLAW: FPGA lifetime awareness," in 43rd Annual Design Automation
Conference, San Francisco, CA, USA, 2006, pp. 115-127.

[81] P. Sedcole, E. Stott, and P. Y. K. Cheung, "Compensating for variability in
FPGAs by re-mapping and re-placement," in International Conference on
Field Programmable Logic and Applications (FPL), 2009, pp. 613-616.

[82] M. Ashouei, J. Hulzink, M. Konijnenburg, Z. Jun, F. Duarte, A. Breeschoten,
et al., "A voltage-scalable biomedical signal processor running ECG using
13pJ/cycle at 1MHz and 0.4V," in IEEE International Solid-State Circuits
Conference Digest of Technical Papers (ISSCC), 2011, pp. 332-334.

[83] J. Sparsø and S. Furber, Principles of asynchronous circuit design - A
systems perspective: Kluwer Academic Publishers, 2001.

[84] T. Verhoeff, "Delay-insensitive codes - an overview," Distributed Computing,
vol. 3, pp. 1-8, 1988/03/01 1988.

[85] T. Beyrouthy, A. Razafindraibe, L. Fesquet, M. Renaudin, S. Chaudhuri, S.
Guilley, et al., "A novel asynchronous e-FPGA architecture for security
applications," in International Conference on Field-Programmable
Technology (ICFPT) 2007, pp. 369-372.

[86] S. Hauck, "Asynchronous design methodologies: An overview," in
Proceedings of the IEEE, 1995, pp. 69-93.

References

181

[87] J. M. Alain, "The limitations to delay-insensitivity in asynchronous circuits,"
presented at the Proceedings of the sixth MIT Conference on Advanced
Research in VLSI, Boston, Massachusetts, USA, 1990.

[88] A. Martin, J. , "Compiling communicating processes into delay-insensitive
VLSI circuits," California Institute of Technology, 1986.

[89] M. B. Josephs, S. M. Nowick, and C. H. Van Berkel, "Modeling and design
of asynchronous circuits," Proceedings of the IEEE, vol. 87, pp. 234-242,
1999.

[90] S. Hauck, S. Burns, G. Borriello, and C. Ebeling, "An FPGA for
implementing asynchronous circuits," IEEE Design & Test of Computers,
vol. 11, p. 60, 1994.

[91] K. Maheswaran, Implementing self-timed circuits in field programmable
gate arrays: University of California Davis, 1995.

[92] R. Payne, Asynchronous FPGA architectures vol. 143, 1996.
[93] D. H. Linder and J. C. Harden, "Phased Logic: supporting the synchronous

design paradigm with delay-insensitive circuitry," IEEE Transactions on
Computers, vol. 45, pp. 1031-1044, 1996.

[94] J. Teifel and R. Manohar, "Programmable asynchronous pipeline arrays,"
in Proceedings of International Conference on Field Programmable Logic
and Applications, 2003.

[95] J. Teifel and R. Manohar, "An asynchronous dataflow FPGA architecture,"
IEEE Transactions on Computers, vol. 53, pp. 1376-1392, 2004.

[96] J. Teifel and R. Manohar, "Highly pipelined asynchronous FPGAs," in
Proceedings of the ACM/SIGDA 12th International Symposium on Field
programmable Gate Arrays, Monterey, California, USA, 2004.

[97] S. Peng, D. Fang, J. Teifel, and R. Manohar, "Automated synthesis for
asynchronous FPGAs," presented at the Proceedings of the ACM/SIGDA
13th international symposium on Field-Programmable Gate Arrays,
Monterey, California, USA, 2005.

[98] J. Teifel and R. Manohar, "Programmable asynchronous pipeline arrays,"
US Patent, 2007.

[99] A. Royal and P. Cheung, "Globally asynchronous locally synchronous
FPGA architectures," in Field-Programmable Logic and Applications. vol.
2778, ed: Springer Berlin / Heidelberg, 2003, pp. 355-364.

[100] C. G. Wong, A. J. Martin, and P. Thomas, "An architecture for asynchronous
FPGAs," in Proceedings of IEEE International Conference on Field-
Programmable Technology (FPT), 2003, pp. 170-177.

[101] X. Jia and R. Vemuri, "A novel asynchronous FPGA architecture design and
its performance evaluation," in International Conference on Field
Programmable Logic and Applications, 2005, pp. 287-292.

[102] X. Jia and R. Vemuri, "CAD tools for a globally asynchronous locally
synchronous FPGA architecture," presented at the 19th International
Conference on VLSI Design, Held jointly with 5th International Conference
on Embedded Systems and Design 2006.

[103] K. M. Fant and S. A. Brandt, "NULL Convention Logic: a complete and
consistent logic for asynchronous digital circuit synthesis," in Proceedings

References

182

of International Conference on Application Specific Systems, Architectures
and Processors (ASAP) 1996, pp. 261-273.

[104] M. Mishra, T. J. Callahan, T. Chelcea, G. Venkataramani, S. C. Goldstein,
and M. Budiu, "Tartan: Evaluating spatial computation for whole program
execution," SIGPLAN Not., vol. 41, pp. 163-174, 2006.

[105] M. Mishra and S. C. Goldstein, "Virtualization on the tartan reconfigurable
architecture," in International Conference on Field Programmable Logic and
Applications (FPL), 2007, pp. 323-330.

[106] Achronix Semiconductor Corporation. Available: http://www.achronix.com/
[107] R. Payne, "Self-timed FPGA systems," in Field-programmable logic and

applications. vol. 975, W. Moore and W. Luk, Eds., ed: Springer Berlin
Heidelberg, 1995, pp. 21-35.

[108] I. E. Sutherland. (1989) Micropipelines. Communications of the ACM. 720-
738.

[109] R. Manohar and C. W. Kelly, "Reconfigurable logic fabrics for integrated
circuits and systems and methods for configuring reconfigurable logic
fabrics," 2013.

[110] V. Ekanayake, C. W. Kelly, and R. Manohar, "Programmable crossbar
structures in asynchronous systems," ed: Google Patents, 2012.

[111] R. Manohar, G. Martin, and J. L. Holt, "Synchronous to asynchronous logic
conversion," ed: Google Patents, 2012.

[112] K. Morris, "Fast. very, very fast. Achronix introduces Speedster," Electronic
Engineering Journal, September 16, 2008 2008.

[113] E. D. Mark, E. W. Ted, and L. D. David, "Efficient self-timing with level-
encoded 2-phase dual-rail (LEDR)," in Proceedings of the 1991 University
of California/Santa Cruz conference on Advanced research in VLSI, 1991.

[114] M. Aydin and C. Traver, "Implementation of a programmable phased logic
cell [FPGA]," presented at the 45th Midwest Symposium on Circuits and
Systems (MWSCAS) 2002.

[115] R. B. Reese, M. A. Thornton, and C. Traver, "A fine-grain Phased Logic
CPU," in Proceedings of IEEE Computer Society Annual Symposium on
VLSI, 2003, pp. 70-79.

[116] C. Traver, R. B. Reese, and M. A. Thornton, "Cell designs for self-timed
FPGAs," in Proceedings of 14th Annual IEEE International ASIC/SOC
Conference, 2001, pp. 175-179.

[117] A. Mitra, W. F. McLaughlin, and S. M. Nowick, "Efficient asynchronous
protocol converters for two-phase delay-insensitive global communication,"
presented at the 13th IEEE International Symposium on Asynchronous
Circuits and Systems (ASYNC), 2007.

[118] Y. Komatsu, S. Ishihara, M. Hariyama, and M. Kameyama, "An
implementation of an asychronous FPGA based on LEDR/four-phase-dual-
rail hybrid architecture," presented at the 16th Asia and South PacificDesign
Automation Conference (ASP-DAC), 2011.

[119] C. LaFrieda, B. Hill, and R. Manohar, "An asynchronous FPGA with two-
phase enable-scaled routing," presented at the IEEE Symposium on
Asynchronous Circuits and Systems (ASYNC), 2010.

http://www.achronix.com/

References

183

[120] R. B. Reese, M. A. Thornton, and C. Traver, "A coarse-grain phased logic
CPU," IEEE Transactions on Computers, vol. 54, pp. 788-799, 2005.

[121] D. M. Chapiro, "Globally-asynchronous locally-synchronous systems
(performance, reliability, digital)," Stanford University, 1985.

[122] S. W. Moore, G. S. Taylor, P. A. Cunningham, R. D. Mullins, and P.
Robinson, "Self calibrating clocks for globally asynchronous locally
synchronous systems," in Proceedings International Conference on
Computer Design, 2000, pp. 73-78.

[123] A. Sheibanyrad, A. Greiner, and I. Miro-Panades, "Multisynchronous and
fully asynchronous NoCs for GALS architectures," IEEE Design & Test of
Computers, vol. 25, pp. 572-580, 2008.

[124] M. N. Horak, S. M. Nowick, M. Carlberg, and U. Vishkin, "A low-overhead
asynchronous interconnection network for GALS chip multiprocessors,"
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 30, pp. 494-507, 2011.

[125] A. Yakovlev, P. Vivet, and M. Renaudin, "Advances in asynchronous logic:
From principles to GALS & NoC, recent industry applications, and
commercial CAD tools," in Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2013, pp. 1715-1724.

[126] Theseuse research - NULL Convention Logic. Available:
http://www.theseusresearch.com/

[127] S. C. Smith, "Design of an FPGA Logic Element for Implementing
Asynchronous NULL Convention Logic Circuits," IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 15, pp. 672-683, 2007.

[128] I. P. Dugganapally, W. K. Al-Assadi, V. Pillai, and S. Smith, "Design and
implementation of FPGA configuration logic block using asynchronous
semi-static NCL circuits," presented at the IEEE Region 5 Conference 2008.

[129] N. Huot, H. Dubreuil, L. Fesquet, and M. Renaudin, "FPGA architecture for
multi-style asynchronous logic," in Proceedings of Design, Automation and
Test in Europe (DATE), 2005, pp. 32-33 Vol. 1.

[130] T. Beyrouthy and L. Fesquet, "An asynchronous FPGA block with its tech-
mapping algorithm dedicated to security applications," International Journal
of Reconfigurable Computing, vol. 2013, p. 12, 2013.

[131] R. David, "Modular design of asynchronous circuits defined by graphs,"
IEEE Transactions on Computers, vol. C-26, pp. 727-737, 1977.

[132] J. Rose, A. El Gamal, and A. Sangiovanni-Vincentelli, "Architecture of field-
programmable gate arrays," Proceedings of the IEEE, vol. 81, pp. 1013-
1029, 1993.

[133] V. Betz and J. Rose, "How much logic should go in an FPGA logic block,"
IEEE Design & Test of Computers vol. 15, pp. 10-15, 1998.

[134] V. Betz, J. Rose, and A. Marquardt, Architecture and CAD for deep-
submicron FPGAs: Kluwer Academic Publishers, 1999.

[135] D. Shang, "Asynchronous communication circuits: Design, test, and
synthesis.," PhD Thesis, University of Newcastle upon Tyne, 2003.

http://www.theseusresearch.com/

References

184

[136] E. Ahmed and J. Rose, "The effect of LUT and cluster size on deep-
submicron FPGA performance and density," IEEE Transactions of Very
Large Scale Integrated (VLSI) System, vol. 12, pp. 288-298, 2004.

[137] T. Behne. (2003). FPGA Clock Schemes. Available: http://www.design-
reuse.com/articles/4854/fpga-clock-schemes.html

[138] XILINX Spartan-3 FPGA Family Data sheet. available online. Available:
http://www.xilinx.com/support/documentation/data_sheets/ds099.pdf

[139] S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A. Keshavarzi, and V. De,
"Parameter variations and impact on circuits and microarchitecture," in
Proceedings of Design Automation Conference, Anaheim, CA, USA, 2003,
pp. 338-342.

[140] A. Baz, D. Shang, F. Xia, and A. Yakovlev, "Self-Timed SRAM for energy
harvesting Systems," in Integrated Circuit and System Design. Power and
Timing Modeling, Optimization, and Simulation. vol. 6448, R. Leuken and
G. Sicard, Eds., ed: Springer Berlin Heidelberg, 2011, pp. 105-115.

[141] D. Sokolov, "Automated synthesis of asynchronous circuits using direct
mapping for control and data paths," PhD Thesis, School od Electrical,
Electronic and Computer Engineering, University of Newcastle Upon Tyne,
2006.

[142] A. Bystrov and A. Yakovlev, "Asynchronous circuit synthesis by direct
mapping: interfacing to environment," in Proceedings of Eighth International
Symposium Asynchronous Circuits and Systems, 2002, pp. 127-136.

[143] D. Shang, F. Burns, A. Koelmans, A. Yakovlev, and F. Xia, "Asynchronous
system synthesis based on direct mapping using VHDL and Petri nets," in
IEE Proceedings of Computers and Digital Techniques, 2004, pp. 209-220.

[144] "Spartan-6 FPGA Configurable Logic Block," XILINX, Ed., ed, 2010.
[145] H. S. Low, D. Shang, F. Xia, and A. Yakovlev, "Asynchronously assited

FPGA for variability," in Field Programmable Logic and Applications Munich,
Germany, 2014, pp. 1-4.

http://www.design-reuse.com/articles/4854/fpga-clock-schemes.html
http://www.design-reuse.com/articles/4854/fpga-clock-schemes.html
http://www.xilinx.com/support/documentation/data_sheets/ds099.pdf

