308 research outputs found

    Almost periodic solutions of retarded SICNNs with functional response on piecewise constant argument

    Get PDF
    We consider a new model for shunting inhibitory cellular neural networks, retarded functional differential equations with piecewise constant argument. The existence and exponential stability of almost periodic solutions are investigated. An illustrative example is provided.Comment: 24 pages, 1 figur

    Novel global asymptotic stability criteria for delayed cellular neural networks

    Get PDF
    This brief provides improved conditions for the existence of a unique equilibrium point and its global asymptotic stability of cellular neural networks with time delay. Both delay-dependent and delay-independent conditions are obtained by using more general Lyapunov-Krasovskii functionals. These conditions are expressed in terms of linear matrix inequalities, which can be checked easily by recently developed standard algorithms. Examples are provided to demonstrate the reduced conservatism of the proposed criteria by numerically comparing with those reported recently in the literature. © 2005 IEEE.published_or_final_versio

    Synchronization of coupled neutral-type neural networks with jumping-mode-dependent discrete and unbounded distributed delays

    Get PDF
    This is the post-print version of the Article. The official published version can be accessed from the links below - Copyright @ 2013 IEEE.In this paper, the synchronization problem is studied for an array of N identical delayed neutral-type neural networks with Markovian jumping parameters. The coupled networks involve both the mode-dependent discrete-time delays and the mode-dependent unbounded distributed time delays. All the network parameters including the coupling matrix are also dependent on the Markovian jumping mode. By introducing novel Lyapunov-Krasovskii functionals and using some analytical techniques, sufficient conditions are derived to guarantee that the coupled networks are asymptotically synchronized in mean square. The derived sufficient conditions are closely related with the discrete-time delays, the distributed time delays, the mode transition probability, and the coupling structure of the networks. The obtained criteria are given in terms of matrix inequalities that can be efficiently solved by employing the semidefinite program method. Numerical simulations are presented to further demonstrate the effectiveness of the proposed approach.This work was supported in part by the Royal Society of the U.K., the National Natural Science Foundation of China under Grants 61074129, 61174136 and 61134009, and the Natural Science Foundation of Jiangsu Province of China under Grants BK2010313 and BK2011598

    State estimation for discrete-time neural networks with Markov-mode-dependent lower and upper bounds on the distributed delays

    Get PDF
    Copyright @ 2012 Springer VerlagThis paper is concerned with the state estimation problem for a new class of discrete-time neural networks with Markovian jumping parameters and mixed time-delays. The parameters of the neural networks under consideration switch over time subject to a Markov chain. The networks involve both the discrete-time-varying delay and the mode-dependent distributed time-delay characterized by the upper and lower boundaries dependent on the Markov chain. By constructing novel Lyapunov-Krasovskii functionals, sufficient conditions are firstly established to guarantee the exponential stability in mean square for the addressed discrete-time neural networks with Markovian jumping parameters and mixed time-delays. Then, the state estimation problem is coped with for the same neural network where the goal is to design a desired state estimator such that the estimation error approaches zero exponentially in mean square. The derived conditions for both the stability and the existence of desired estimators are expressed in the form of matrix inequalities that can be solved by the semi-definite programme method. A numerical simulation example is exploited to demonstrate the usefulness of the main results obtained.This work was supported in part by the Royal Society of the U.K., the National Natural Science Foundation of China under Grants 60774073 and 61074129, and the Natural Science Foundation of Jiangsu Province of China under Grant BK2010313

    Stability and synchronization of discrete-time Markovian jumping neural networks with mixed mode-dependent time delays

    Get PDF
    Copyright [2009] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.In this paper, we introduce a new class of discrete-time neural networks (DNNs) with Markovian jumping parameters as well as mode-dependent mixed time delays (both discrete and distributed time delays). Specifically, the parameters of the DNNs are subject to the switching from one to another at different times according to a Markov chain, and the mixed time delays consist of both discrete and distributed delays that are dependent on the Markovian jumping mode. We first deal with the stability analysis problem of the addressed neural networks. A special inequality is developed to account for the mixed time delays in the discrete-time setting, and a novel Lyapunov-Krasovskii functional is put forward to reflect the mode-dependent time delays. Sufficient conditions are established in terms of linear matrix inequalities (LMIs) that guarantee the stochastic stability. We then turn to the synchronization problem among an array of identical coupled Markovian jumping neural networks with mixed mode-dependent time delays. By utilizing the Lyapunov stability theory and the Kronecker product, it is shown that the addressed synchronization problem is solvable if several LMIs are feasible. Hence, different from the commonly used matrix norm theories (such as the M-matrix method), a unified LMI approach is developed to solve the stability analysis and synchronization problems of the class of neural networks under investigation, where the LMIs can be easily solved by using the available Matlab LMI toolbox. Two numerical examples are presented to illustrate the usefulness and effectiveness of the main results obtained

    Global point dissipativity of neural networks with mixed time-varying delays

    Get PDF
    By employing the Lyapunov method and some inequality techniques, the global point dissipativity is studied for neural networks with both discrete time-varying delays and distributed time-varying delays. Simple sufficient conditions are given for checking the global point dissipativity of neural networks with mixed time-varying delays. The proposed linear matrix inequality approach is computationally efficient as it can be solved numerically using standard commercial software. Illustrated examples are given to show the usefulness of the results in comparison with some existing results. © 2006 American Institute of Physics.published_or_final_versio

    On Exponential Periodicity And Stability of Nonlinear Neural Networks With Variable Coefficients And Distributed Delays

    Get PDF
    The exponential periodicity and stability of continuous nonlinear neural networks with variable coefficients and distributed delays are investigated via employing Young inequality technique and Lyapunov method. Some new sufficient conditions ensuring existence and uniqueness of periodic solution for a general class of neural systems are obtained. Without assuming the activation functions are to be bounded, differentiable or strictly increasing. Moreover, the symmetry of the connection matrix is not also necessary. Thus, we generalize and improve some previous works, and they are easy to check and apply in practice.Facultad de Informátic

    On Exponential Periodicity And Stability of Nonlinear Neural Networks With Variable Coefficients And Distributed Delays

    Get PDF
    The exponential periodicity and stability of continuous nonlinear neural networks with variable coefficients and distributed delays are investigated via employing Young inequality technique and Lyapunov method. Some new sufficient conditions ensuring existence and uniqueness of periodic solution for a general class of neural systems are obtained. Without assuming the activation functions are to be bounded, differentiable or strictly increasing. Moreover, the symmetry of the connection matrix is not also necessary. Thus, we generalize and improve some previous works, and they are easy to check and apply in practice.Facultad de Informátic

    Finite-time synchronization of Markovian neural networks with proportional delays and discontinuous activations

    Get PDF
    In this paper, finite-time synchronization of neural networks (NNs) with discontinuous activation functions (DAFs), Markovian switching, and proportional delays is studied in the framework of Filippov solution. Since proportional delay is unbounded and different from infinite-time distributed delay and classical finite-time analytical techniques are not applicable anymore, new 1-norm analytical techniques are developed. Controllers with and without the sign function are designed to overcome the effects of the uncertainties induced by Filippov solutions and further synchronize the considered NNs in a finite time. By designing new Lyapunov functionals and using M-matrix method, sufficient conditions are derived to guarantee that the considered NNs realize synchronization in a settling time without introducing any free parameters. It is shown that, though the proportional delay can be unbounded, complete synchronization can still be realized, and the settling time can be explicitly estimated. Moreover, it is discovered that controllers with sign function can reduce the control gains, while controllers without the sign function can overcome chattering phenomenon. Finally, numerical simulations are given to show the effectiveness of theoretical results

    Global exponential stability of a class of neural networks with unbounded delays

    No full text
    In this paper, the global exponential stability of a class of neural networks is investigated. The neural networks contain variable and unbounded delays. By constructing a suitable Lyapunov function and using the technique of matrix analysis, some new sufficient conditions on the global exponential stability are obtained.Досліджено глобальну експоненціальну стійкість одного класу нейронних сіток. Нейронні сітки містять змінні та необмежені загаювання. На основі побудови відповідної функції Ляпунова та техніки матричного аналізу отримано нові достатні умови глобальної експоненціальної стійкості
    corecore