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ABSTRACT
The exponential periodicity and stability of continuous
nonlinear neural networks with variable coefficients
and distributed delays are investigated via employing
Young inequality technique and Lyapunov method.
Some new sufficient conditions ensuring existence and
uniqueness of periodic solution for a general class of
neural systems are obtained. Without assuming the
activation functions are to be bounded, differentiable
or strictly increasing. Moreover, the symmetry of the
connection matrix is not also necessary. Thus, we
generalize and improve some previous works, and they
are easy to check and apply in practice.
Keywords: Neural networks, exponential periodicity,
distributed delays, Young inequality.

1. INTRODUCTION
In the past few years, the problem of dynamics of dif-
ferent classes of neural networks has been one of the
most active areas of research and has attracted the at-
tention of many researchers, we refer to [1-23]. The
stability of neural networks with delays in the case
of constant coefficients has been studied in Refs. [1-
4,7,8,11-13,17-20]. However, most of them studied the
dynamics of autonomous neural network model. For
the non-autonomous neural network model with vari-
able coefficients and distributed delays, up till now,
the study works are very few. Moreover, studies on
neural dynamical systems not only involve a discus-
sion of stability properties, but also involve many dy-
namic behaviors such as periodic oscillatory behavior,
bifurcation, and chaos. In many applications, the prop-
erty of periodic oscillatory solutions and global expo-
nential stability are of great interest. Recently, many
authors [5,6,9,10,14,15,16,21,22,23] presented several
new conditions for the exponential stability and peri-
odic oscillatory solution of neural networks with de-
lays in the case of constant coefficients. Cao [14] de-
rived some simple sufficient conditions are given for
global exponential stability and the existence of peri-
odic solutions via the method of constructing suitable
Lyapunov functionals. Song and Cao [15] presented
some general sufficient conditions to ensure the global
exponential stability and existence of periodic solutions

of bi-directional associative memory (BAM) neural net-
works with delays and reaction-diffusion terms in terms
of system parameters. In 2004, Li [16] imposed weaker
conditions for the exponential stability than those re-
ported by using the continuation theorem of coinci-
dence degree theory and Lyapunov functions to study
the existence and stability of positive periodic solutions
for a class of BAM neural networks.
As is well known, the use of constant fixed delays in
models of delayed feedback provides of a good approx-
imation in simple circuits consisting of a small number
of cells. However, neural networks usually have a spa-
tial extent due to the presence of a multitude of paral-
lel pathways with a variety of axon sizes and lengths.
Thus there will be a distribution of conduction veloci-
ties along these pathways and a distribution of propaga-
tion delays. In these circumstances, the signal propaga-
tion is not instantaneous and cannot be modelled with
discrete delays and a more appropriate way is to incor-
porate continuously distributed delays. To the best of
the our knowledge, few authors have considered the
exponential periodicity and stability of nonlinear neu-
ral networks with delays [20-21]. However, the expo-
nential periodicity and stability of nonlinear neural net-
works with variable coefficients and distributed delays
have never been tackled.
The purpose of this paper is to study the exponential
periodicity and stability of nonlinear neural networks
with variable coefficients and distributed delays and
give a set of criteria for the exponential periodicity
and stability of the nonlinear neural networks by
constructing new Lyapunov functionals and employing
the Young inequality technique. In this paper, we do
not require the activation functions to be bounded,
differentiable or non-decreasing as are required in
[4-7,11]; also we do not assume that the considered
model has any equilibriums. We will see the obtained
results improve and extend the main results on the
exponential periodicity and stability for the neural
networks given by researchers in [4-6,11].

2. SYSTEM DESCRIPTION AND
PRELIMINARIES

In this paper, we deal with nonlinear continuous-time
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neural networks with variable coefficients and dis-
tributed delays described by the following functional
differential equations

ẋi(t) = −fi(xi(t)) +
n∑

j=1

aij(t)gj(xj(t))

+
n∑

j=1

bij(t)
∫ t

−∞
Kij(t− s)gj(xj(s))ds + Ji(t), (1)

where i = 1, 2, · · · , n and n denotes the number of
neurons in a neural network; xi(t) corresponds to the
state of the ith neuron at time t; gj(xj(t)) denote the
activation functions of the jth neuron at time t; aij(t),
bij(t) are the connection weights at the time t; Ji(t)
is the input periodic vector function with period ω, i.e.
there exists a constant ω > 0 such that Ji(t + ω) =
Ji(t)(i = 1, 2, · · · , n) for all t ≥ 0. To obtain our re-
sults, we first give the following assumptions:
(H1) aij(t), bij(t), Ji(t), i = 1, 2, · · · , n, j =
1, 2, · · · , n are all continuous ω-periodic functions on
R.
(H2) fi : R → R is differentiable and strictly mono-
tone increasing, i.e. di = infx∈R{f ′i (x)} > 0, i =
1, 2, · · · , n. For simplicity, let D be an n × n con-
stant diagonal matrix with diagonal elements di > 0,
i = 1, 2, · · · , n.
(H3) gi(·) is globally Lipschitz continuous (GLC) and
monotone increasing activation function; that is, for
each j ∈ {1, 2, · · · , n}, there exist L∗j and Lj such
that 0 < L∗j ≤ (gj(x) − gj(y))/(x − y) ≤ Lj for
all x, y ∈ R.
(H

′
3) gi(·) ∈ GLC i.e. for each j ∈ {1, 2, · · · , n}, gj :

R → R is globally Lipschitz continuous with Lipschitz
constant Lj > 0, i.e. |gj(x) − gj(y)| ≤ Lj |x − y| for
all x, y ∈ R.
The delay kernels K(·) = (Kij(·))n×n, i, j =
1, 2, · · · , n are assumed to satisfy the following con-
ditions simultaneously:
(i) Kij : [0,∞) → [0,∞);
(ii) Kij are bounded and continuous on [0,∞);
(iii)

∫∞
0

Kij(s)ds = 1;
(iv) there exists a positive number ε such that∫∞
0

Kij(s)eεsds < ∞.
The literature [24] has given some examples to meet the
above conditions.
As a special case of neural system (1), the neu-
ral networks with constant input vector J =
(J1, J2, · · · , Jn)T ∈ Rn can reduce to the following
functional differential equations:

ẋi(t) = −fi(xi(t)) +
n∑

j=1

aij(t)gj(xj(t)) + Ji

+
n∑

j=1

bij(t)
∫ t

−∞
Kij(t− s)gj(xj(s))ds.(2)

Define xt(s) = x(t + s), s ∈ (−∞, 0], t ≥ 0. Let
x(t) = (x1(t), x2(t), · · · , xn(t))T , its norm is defined
as

‖φt‖r = sup
−∞≤s≤0

|x(t + s)|r,

where

|x(t + s)|r =
[ n∑

i=1

|xi(t + s)|r
]1/r

.

Assume that the model (1) is supplemented with initial
values of the type

xi(t) = φi(t), t ∈ (−∞, 0]

in which φi(t), i = 1, 2, · · · , n are continuous func-
tions.
It is known obviously that model (2) serves as a gen-
eral framework for neural network models. For in-
stance, when fi(xi(t)) = dixi, the neural network
model becomes a delayed dynamical system studied
in [23]; when D is an identity matrix, n is an even
number and the weight matrices A = (aij)n×n =

0, B = (bij)n×n =
[

0 B1

B2 0

]
, and B1, B2 are

(n/2) × (n/2) matrices, model (1) reduces to a BAM
network with delay studied in [16].
Definition 1. System (1) is globally exponentially sta-
ble, if there are constants ε > 0 and M ≥ 1 such that

‖xt − yt‖r ≤ M‖φ− ϕ‖re
−εt (3)

for all t > 0; in which φ and ϕ are the initial functions
of solutions x(t) and y(t), respectively.
Definition 2. The neural system (1) is said to be expo-
nentially periodic if there exists one ω-periodic solution
of the system and all other solutions of the system con-
verge exponentially to it as t → +∞.
Definition 3 For any continuous function V : R → R,
Dini’s time-derivative of V (t) is defined as

D+V (t) = lim
h→0+

sup
V (t + h)− V (t)

h
. (4)

It is easy to see that if V (t) is locally Lipschitz, then
|D+V (t)| < ∞.
Lemma 1 (Young’s inequality [4]). Assume that a > 0,
b > 0, p > 1, 1

p + 1
q = 1, then the following inequality:

ab ≤ 1
p
ap +

1
q
bq (5)

holds.

3. MAIN RESULTS
Let C = C([−∞, 0], Rn) be the Banach space of all
continuous function from [−∞, 0] to Rn with the topol-
ogy of uniform convergence. For any φ ∈ C, let

‖φ‖ = sup
−∞≤t≤0

( n∑

i=1

|φi(t)|r
)1/r

.

Given any φ, ϕ ∈ C, let

x(t, φ) = (x1(t, φ), x2(t, φ), · · · , xn(t, φ))T ,

x(t, ϕ) = (x1(t, ϕ), x2(t, ϕ), · · · , xn(t, ϕ))T

be the solutions of (1) starting from φ and ϕ, respec-
tively.
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Theorem 1. Suppose (H1) − (H3) hold and the de-
lay kernels K(·) satisfy (i)-(iv). If there exist constants
λj > 0 and ajj(t) > 0, j = 1, 2, · · · , n, such that

−rdi + raii(t)Li + (r − 1)
n∑

j=1,j 6=i

|aij(t)|

+
n∑

j=1,j 6=i

λj

λi
|aji(t)|Lr

i + (r − 1)
n∑

j=1

|bij(t)|

+
n∑

j=1

λj

λi
|bji(t)|Lr

i < 0, (6)

where r ≥ 1, then the nonlinear neural networks (1)
with variable coefficients and distributed delays is ex-
ponentially periodic.
Proof. Define xt(φ) = x(t + θ, φ), θ ∈ (−∞, 0], then
xt(φ) ∈ C for all t ≥ 0. Thus, it follows from (1) that

ẋi(t, φ)− ẋi(t, ϕ)

= −
(
fi(xi(t, φ))− fi(xi(t, ϕ))

)

+
n∑

j=1

aij(t)
(
gj(xj(t, φ))− gj(xj(t, ϕ))

)

+
n∑

j=1

bij(t)
∫ t

−∞
Kij(t− s)

×
(
gj(xj(s, φ))− gj(xj(s, ϕ))

)
ds (7)

for t ≥ 0, i = 1, 2, · · · , n.
From (H1)− (H3), it is easy to deduce that there exist
di and Li ≥ 0 such that |fi(xi(t, φ))− fi(xi(t, ϕ))| ≥
di|xi(t, φ)−xi(t, ϕ)| and |gi(xi(t, φ))−gi(xi(t, ϕ))| ≤
Li|xi(t, φ)− xi(t, ϕ)|.
From (6), we can choose a small ε > 0 such that

ε− rdi + raii(t)Li + (r − 1)
n∑

j=1,j 6=i

|aij(t)|

+
n∑

j=1,j 6=i

λj

λi
|aji(t)|Lr

i + (r − 1)
n∑

j=1

|bij(t)|

+
n∑

j=1

λj

λi
|bji(t)|Lr

i < 0, i = 1, 2, · · · , n. (8)

Consider the following positive definite Lyapunov
functional candidate

V (t) =
n∑

i=1

λi

[
|xi(t, φ)− xi(t, ϕ)|reεt

+
n∑

j=1

∫ ∞

0

Kij(s)

×
∫ t

t−s

|bij(s)|
∣∣∣gj(xj(z, φ))− gj(xj(z, ϕ))

∣∣∣
r

×eε(z+s)dzds

]
. (9)

Computing the upper right derivative of V (t) along the

solution of (7) for t ≥ 0, we get

D+V (t)

=
n∑

i=1

λi

[
D+

(
|xi(t, φ)− xi(t, ϕ)|reεt

)

+
n∑

j=1

|bij(t)|
∫ ∞

0

Kij(s)
∣∣∣gj(xj(t, φ))

−gj(xj(t, ϕ))
∣∣∣
r

× eε(t+s)ds

−
n∑

j=1

|bij(t)|
∫ ∞

0

Kij(s)
∣∣∣gj(xj(t− s, φ))

−gj(xj(t− s, ϕ))
∣∣∣
r

× eεtds

]

≤ eεt
n∑

i=1

λi

[
(ε− rdi)|xi(t, φ)− xi(t, ϕ)|r

+raii(t)Li|xi(t, φ)− xi(t, ϕ)|r
+r

∑

j=1,j 6=i

|aij(t)||xi(t, φ)− xi(t, ϕ)|r−1

×
∣∣∣gj(xj(t, φ))− gj(xj(t, ϕ))

∣∣∣

+r
n∑

j=1

|bij(t)||xi(t, φ)− xi(t, ϕ)|r−1

×
∫ t

−∞
Kij(t− s)

∣∣∣gj(xj(s, φ))

−gj(xj(s, ϕ))
∣∣∣ds

+
n∑

j=1

|bij(t)|
∫ ∞

0

Kij(s)
∣∣∣gj(xj(t, φ))

−gj(xj(t, ϕ))
∣∣∣
r

× eεsds

−
n∑

j=1

|bij(t)|
∫ ∞

0

Kij(s)
∣∣∣gj(xj(t− s, φ))

−gj(xj(t− s, ϕ))
∣∣∣
r

ds

]
. (10)

By Lemma 1, it can follow that

r
n∑

j=1,j 6=i

|aij(t)||xi(t, φ)− xi(t, ϕ)|r−1

×
∣∣∣gj(xj(t, φ))− gj(xj(t, ϕ))

∣∣∣

≤ (r − 1)
n∑

j=1,j 6=i

|aij(t)||xi(t, φ)− xi(t, ϕ)|r

+
n∑

j=1,j 6=i

|aij(t)|
∣∣∣gj(xj(t, φ))

−gj(xj(t, ϕ))
∣∣∣
r

, (11)

and

r
n∑

j=1

|bij(t)||xi(t, φ)− xi(t, ϕ)|r−1
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×
∫ t

−∞
Kij(t− s)

∣∣∣gj(xj(s, φ))− gj(xj(s, ϕ))
∣∣∣ds

≤ (r − 1)
n∑

j=1

|bij(t)||xi(t, φ)− xi(t, ϕ)|r

+
n∑

j=1

|bij(t)|
∫ t

−∞
Kij(t− s)

∣∣∣gj(xj(s, φ))

−gj(xj(s, ϕ))
∣∣∣
r

ds. (12)

Estimating the right of inequality (10) using (11)-(12)
and the delay kernels’ conditions (i)-(iv), we obtain

D+V (t) ≤ eεt
n∑

i=1

λi

[
(ε− rdi) + raii(t)Li

+(r − 1)
n∑

j=1,j 6=i

|aij(t)|

+
n∑

j=1,j 6=i

λj

λi
|aji(t)|

+(r − 1)
n∑

j=1

|bij(t)|

+
n∑

j=1

λj

λi
|bji(t)|Lr

i

]

×|xi(t, φ)− xi(t, ϕ)|r ≤ 0. (13)

Therefore
V (t) ≤ V (0), t ≥ 0. (14)

From (9), we derive

eεt
(

min
1≤i≤n

λi

) n∑

i=1

|xi(t, φ)− xi(t, ϕ)|r ≤ V (t)

and

V (0) =
n∑

i=1

λi

[
|xi(0, φ)− xi(0, ϕ)|r

+
n∑

j=1

|bij(0)|
∫ ∞

0

Kij(s)

×
∫ 0

−s

∣∣∣gj(xj(z, φ))− gj(xj(z, ϕ))
∣∣∣
r

×eε(z+s)dzds

]

≤ max
1≤i≤n

λi

[
1 + Lr

n∑

j=1

|bij(0)|

×
∫ ∞

0

Kij(s)
∫ 0

−s

eε(z+s)dzds
]
‖φ− ϕ‖r,

where L = max
1≤i≤n

{Li} is a constant. Therefore, from

(14), we get

n∑

i=1

|xi(t, φ)− xi(t, ϕ)| ≤ M‖φ− ϕ‖e− ε
r t, r ≥ 1

for all t ≥ 0, where

M =
( 1

min
1≤i≤n

λi

)1/r
[

max
1≤i≤n

λi

(
1 + Lr

n∑

j=1

|bij(0)|

×
∫ ∞

0

Kij(s)
∫ 0

−s

eε(z+s)dzds
)]1/r

≥ 1.(15)

We can choose a positive integer N such that

Me−
ε
r Nω ≤ 1

3
.

Define a Poincaré mapping P : C → C

‖PNφ− PNϕ‖ ≤ 1
3
‖φ− ϕ‖. (16)

where PNφ = xNω(φ). This implies that PN is a con-
traction mapping. Therefore, there exists a unique fixed
point φ∗ ∈ C such that PNφ∗ = φ∗. So,

PN (Pφ∗) = P (PNφ∗) = Pφ∗.

This shows that Pφ∗ ∈ C is also a fixed point of PN ,
hence, Pφ∗ = φ∗, that is, xω(φ∗) = φ∗. Let x(t, φ∗) be
the solution of (1) through (0, φ∗). By using J(t+ω) =
J(t) for t ≥ 0, x(t+ω, φ∗) = x(t, φ∗) is also a solution
of (1). Note that

xt+ω(φ∗) = xt(xω(φ∗)) = xt(φ∗) for t ≥ 0,

then
x(t + ω, φ∗) = x(t, φ∗) for t ≥ 0,

This shows that x(t, φ∗) is a periodic solution of (1)
with period ω. From (8), it is easy to see that all other
solutions of (1) converge to this periodic solution expo-
nentially as t → +∞.
Corollary 1. Suppose (H1) − (H3) hold and the de-
lay kernels K(·) satisfy (i)-(iv). If there exist constants
λj > 0 and ajj(t) > 0, j = 1, 2, · · · , n, such that

−di + aii(t)Li +
n∑

j=1,j 6=i

λj

λi
|aji(t)|Li

+
n∑

j=1

λj

λi
|bji(t)|Li < 0, (17)

then the nonlinear neural networks (1) with variable co-
efficients and distributed delays is exponentially peri-
odic.
Similar to the proof of Theorem 1, we can easily obtain
the following results.
Theorem 2. Suppose (H1) − (H3) hold and the de-
lay kernels K(·) satisfy (i)-(iv). If there exist constants
λj > 0 and ajj(t) < 0, j = 1, 2, · · · , n, such that

−rdi + raii(t)L∗i + (r − 1)
n∑

j=1,j 6=i

|aij(t)|

+
n∑

j=1,j 6=i

λj

λi
|aji(t)|Lr

i + (r − 1)
n∑

j=1

|bij(t)|

+
n∑

j=1

λj

λi
|bji(t)|Lr

i < 0, (18)
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where r ≥ 1, then the nonlinear neural networks (1)
with variable coefficients and distributed delays is ex-
ponentially periodic.
Proof. The first step of proof is similar to Theorem 1.
Then from (18), we can choose a small ε > 0 such that

ε− rdi + raii(t)L∗i + (r − 1)
n∑

j=1,j 6=i

|aij(t)|

+
n∑

j=1,j 6=i

λj

λi
|aji(t)|Lr

i + (r − 1)
n∑

j=1

|bij(t)|

+
n∑

j=1

λj

λi
|bji(t)|Lr

i < 0, i = 1, 2, · · · , n. (19)

Consider the following positive definite Lyapunov
functional candidate

V (t) =
n∑

i=1

λi

[
|xi(t, φ)− xi(t, ϕ)|reεt

+
n∑

j=1

∫ ∞

0

Kij(s)

×
∫ t

t−s

|bij(s)|
∣∣∣gj(xj(z, φ))

−gj(xj(z, ϕ))
∣∣∣
r

eε(z+s)dzds

]
. (20)

Since ajj(t) < 0, we have

raii(t)Li|xi(t, φ)− xi(t, ϕ)|r
≤ raii(t)L∗i |xi(t, φ)− xi(t, ϕ)|r. (21)

Therefore, by using (21) and computing the upper right
derivative of V (t) along the solution of (20) for t ≥ 0,
we get

D+V (t)

=
n∑

i=1

λi

[
D+

(
|xi(t, φ)− xi(t, ϕ)|reεt

)

+
n∑

j=1

|bij(t)|
∫ ∞

0

Kij(s)
∣∣∣gj(xj(t, φ))

−gj(xj(t, ϕ))
∣∣∣
r

× eε(t+s)ds

−
n∑

j=1

|bij(t)|
∫ ∞

0

Kij(s)
∣∣∣gj(xj(t− s, φ))

−gj(xj(t− s, ϕ))
∣∣∣
r

× eεtds

]

≤ eεt
n∑

i=1

λi

[
(ε− rdi)|xi(t, φ)− xi(t, ϕ)|r

+raii(t)L∗i |xi(t, φ)− xi(t, ϕ)|r
+r

∑

j=1,j 6=i

|aij(t)||xi(t, φ)− xi(t, ϕ)|r−1

×
∣∣∣gj(xj(t, φ))− gj(xj(t, ϕ))

∣∣∣

+r
n∑

j=1

|bij(t)||xi(t, φ)− xi(t, ϕ)|r−1

×
∫ t

−∞
Kij(t− s)

∣∣∣gj(xj(s, φ))

−gj(xj(s, ϕ))
∣∣∣ds

+
n∑

j=1

|bij(t)|
∫ ∞

0

Kij(s)
∣∣∣gj(xj(t, φ))

−gj(xj(t, ϕ))
∣∣∣
r

× eεsds

−
n∑

j=1

|bij(t)|
∫ ∞

0

Kij(s)
∣∣∣gj(xj(t− s, φ))

−gj(xj(t− s, ϕ))
∣∣∣
r

ds

]
. (22)

By Lemma 1, it can follow that

r
n∑

j=1,j 6=i

|aij(t)||xi(t, φ)− xi(t, ϕ)|r−1

×
∣∣∣gj(xj(t, φ))− gj(xj(t, ϕ))

∣∣∣

≤ (r − 1)
n∑

j=1,j 6=i

|aij(t)||xi(t, φ)− xi(t, ϕ)|r

+
n∑

j=1,j 6=i

|aij(t)|
∣∣∣gj(xj(t, φ))

−gj(xj(t, ϕ))
∣∣∣
r

, (23)

and

r

n∑

j=1

|bij(t)||xi(t, φ)− xi(t, ϕ)|r−1

×
∫ t

−∞
Kij(t− s)

∣∣∣gj(xj(s, φ))

−gj(xj(s, ϕ))
∣∣∣ds

≤ (r − 1)
n∑

j=1

|bij(t)||xi(t, φ)− xi(t, ϕ)|r

+
n∑

j=1

|bij(t)|
∫ t

−∞
Kij(t− s)

∣∣∣gj(xj(s, φ))

−gj(xj(s, ϕ))
∣∣∣
r

ds. (24)

Estimating the right of inequality (22) using (23)-(24)
and the delay kernels’ conditions (i)-(iv), we obtain

D+V (t) ≤ eεt
n∑

i=1

λi

[
(ε− rdi) + raii(t)L∗i

+(r − 1)
n∑

j=1,j 6=i

|aij(t)|

+
n∑

j=1,j 6=i

λj

λi
|aji(t)|
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+(r − 1)
n∑

j=1

|bij(t)|

+
n∑

j=1

λj

λi
|bji(t)|Lr

i

]

×|xi(t, φ)− xi(t, ϕ)|r ≤ 0. (25)

Therefore
V (t) ≤ V (0), t ≥ 0. (26)

From (20), we derive

eεt
(

min
1≤i≤n

λi

) n∑

i=1

|xi(t, φ)− xi(t, ϕ)|r ≤ V (t)

and

V (0) =
n∑

i=1

λi

[
|xi(0, φ)− xi(0, ϕ)|r

+
n∑

j=1

|bij(0)|
∫ ∞

0

Kij(s)

×
∫ 0

−s

∣∣∣gj(xj(z, φ))− gj(xj(z, ϕ))
∣∣∣
r

×eε(z+s)dzds

]

≤ max
1≤i≤n

λi

[
1 + Lr

n∑

j=1

|bij(0)|

×
∫ ∞

0

Kij(s)
∫ 0

−s

eε(z+s)dzds
]
‖φ− ϕ‖r,

where L = max
1≤i≤n

{Li} is a constant. Therefore, we can

get

n∑

i=1

|xi(t, φ)− xi(t, ϕ)| ≤ M‖φ− ϕ‖e− ε
r t, r ≥ 1

for all t ≥ 0, where

M =
( 1

min
1≤i≤n

λi

)1/r
[

max
1≤i≤n

λi

(
1 + Lr

n∑

j=1

|bij(0)|

×
∫ ∞

0

Kij(s)
∫ 0

−s

eε(z+s)dzds
)]1/r

≥ 1.(27)

We can choose a positive integer N such that

Me−
ε
r Nω ≤ 1

3
.

Define a Poincaré mapping P : C → C

‖PNφ− PNϕ‖ ≤ 1
3
‖φ− ϕ‖. (28)

where PNφ = xNω(φ). This implies that PN is a con-
traction mapping. Therefore, there exists a unique fixed
point φ∗ ∈ C such that PNφ∗ = φ∗. So,

PN (Pφ∗) = P (PNφ∗) = Pφ∗.

This shows that Pφ∗ ∈ C is also a fixed point of PN ,
hence, Pφ∗ = φ∗, that is, xω(φ∗) = φ∗. Let x(t, φ∗) be
the solution of (1) through (0, φ∗). By using J(t+ω) =
J(t) for t ≥ 0, x(t+ω, φ∗) = x(t, φ∗) is also a solution
of (1). Note that

xt+ω(φ∗) = xt(xω(φ∗)) = xt(φ∗) for t ≥ 0,

then
x(t + ω, φ∗) = x(t, φ∗) for t ≥ 0,

This shows that x(t, φ∗) is a periodic solution of (1)
with period ω. From (19), it is easy to see that all other
solutions of (1) converge to this periodic solution expo-
nentially as t → +∞.
Corollary 2. Suppose (H1) − (H3) hold and the de-
lay kernels K(·) satisfy (i)-(iv). If there exist constants
λj > 0 and ajj(t) < 0, j = 1, 2, · · · , n, such that

−di + aii(t)L∗i +
n∑

j=1,j 6=i

λj

λi
|aji(t)|Li

+
n∑

j=1

λj

λi
|bji(t)|Li < 0, (29)

then the nonlinear neural networks (1) with variable co-
efficients and distributed delays is exponentially peri-
odic.
Theorem 3. Suppose that (H1)− (H2) and (H

′
3) hold,

and the delay kernels K(·) satisfy (i)-(iv). If there exist
constants λj > 0, j = 1, 2, · · · , n, such that

−rdi + r|aii(t)|Li + (r − 1)
n∑

j=1,j 6=i

|aij(t)|

+
n∑

j=1,j 6=i

λj

λi
|aji(t)|Lr

i + (r − 1)
n∑

j=1

|bij(t)|

+
n∑

j=1

λj

λi
|bji(t)|Lr

i < 0, (30)

where r ≥ 1, then the nonlinear neural networks (1)
with variable coefficients and distributed delays is ex-
ponentially periodic.
Corollary 3. Suppose that (H1)−(H2) and (H

′
3) hold,

and the delay kernels K(·) satisfy (i)-(iv). If there exist
constants λj > 0, j = 1, 2, · · · , n, such that

−di + |aii(t)|Li +
n∑

j=1,j 6=i

λj

λi
|aji(t)|Li

+
n∑

j=1

λj

λi
|bji(t)|Li < 0, (31)

then the nonlinear neural networks (1) with variable co-
efficients and distributed delays is exponentially peri-
odic.
When J = (J1, J2, · · · , Jn) is a constant vector, then
for any constant T ≥ 0 we have J = J(t + T ) = J(t)
for t ≥ 0. Thus, by the above results, when the suffi-
cient conditions in Theorems 1-3 are satisfied, a unique
periodic solution becomes a periodic solution with any
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positive constants as its period. period. So, the periodic
solution reduced to a constant solution, that is, an equi-
librium point. Furthermore, all other solutions glob-
ally exponentially converge to this equilibrium point
as t → +∞. The unique equilibrium point of the de-
layed neural system (2) is globally exponentially stable.
Suppose x(t) = (x1(t), x2(t), · · · , xn(t))T , y(t) =
(y1(t), y2(t), · · · , yn(t))T are two solutions of model
(2) with φ, ϕ as their initial functions. Then, by apply-
ing Theorems 1-3, we can easily obtain the following
results, respectively.
Theorem 4. Suppose (H1) − (H3) hold and the de-
lay kernels K(·) satisfy (i)-(iv). If there exist constants
λj > 0 and ajj(t) > 0, j = 1, 2, · · · , n, such that

−rdi + raii(t)Li + (r − 1)
n∑

j=1,j 6=i

|aij(t)|

+
n∑

j=1,j 6=i

λj

λi
|aji(t)|Lr

i + (r − 1)
n∑

j=1

|bij(t)|

+
n∑

j=1

λj

λi
|bji(t)|Lr

i < 0, (32)

where r ≥ 1, then the nonlinear neural networks (2)
with variable coefficients and distributed delays is ex-
ponentially stable.
Theorem 5. Suppose (H1) − (H3) hold and the de-
lay kernels K(·) satisfy (i)-(iv). If there exist constants
λj > 0 and ajj(t) < 0, j = 1, 2, · · · , n, such that

−rdi + raii(t)L∗i + (r − 1)
n∑

j=1,j 6=i

|aij(t)|

+
n∑

j=1,j 6=i

λj

λi
|aji(t)|Lr

i + (r − 1)
n∑

j=1

|bij(t)|

+
n∑

j=1

λj

λi
|bji(t)|Lr

i < 0, (33)

where r ≥ 1, then the nonlinear neural networks (2)
with variable coefficients and distributed delays is ex-
ponentially stable.
Theorem 6. Suppose that (H1)− (H2) and (H

′
3) hold,

and the delay kernels K(·) satisfy (i)-(iv). If there exist
constants λj > 0, j = 1, 2, · · · , n, such that

−rdi + r|aii(t)|Li + (r − 1)
n∑

j=1,j 6=i

|aij(t)|

+
n∑

j=1,j 6=i

λj

λi
|aji(t)|Lr

i + (r − 1)
n∑

j=1

|bij(t)|

+
n∑

j=1

λj

λi
|bji(t)|Lr

i < 0, (34)

where r ≥ 1, then the nonlinear neural networks (2)
with variable coefficients and distributed delays is
exponentially stable.
Remark 1. As consequence of Theorems 4-6, com-
bining Corollaries 1-3, if choose r = 1 in Theorems

4-6, we can obtain a series corollaries of Theorems
4-6 for the exponential stability of the nonlinear neural
networks (2) with variable coefficients and distributed
delays.
Remark 2. It is obvious that the results obtained in
this section improve and extend the results that were
recently reported in [16,21]. In particular, we extend
the main results of References [16] without assuming
the boundedness of the activation functions. Therefore,
this work gives some improvements to previous ones.
Remark 3. In Theorem 1, we give a new Lyapunov
functional for the nonlinear neural network systems
with distributed delays. This functional is constructed
by improving the Lyapunov functional given by Li in
[16].

4. A NUMERICAL EXAMPLE
Example Consider the following nonlinear neural net-
works with variable coefficients and distributed delays:

ẋi(t) = −fi(xi(t)) +
n∑

j=1

aij(t)gj(xj(t))

+
n∑

j=1

bij(t)
∫ t

−∞
Kij(t− s)gj(xj(s))ds

+Ji(t), i = 1, 2 (35)

associated with the the initial conditions:
xi(s) = φi(s) for s ∈ [0,∞), where φi(s)
are bounded continuous functions on R. By tak-
ing gi(x) = sin

(
1
3x

)
+ 1

3x, so they are obvi-
ously Lipschitz continuous with Lipschitz constant
Li = 2

3 , i = 1, 2. And let’s take Kij(t) = 2
π(1+t2) ,

i, j = 1, 2, f1(x1(t)) = 4(sin(3x1(t)) + 2),
f2(x2(t)) = 2 cos(x2(t)) + 6, aij(t) = 1

5 sin(i + j)t,
bij(t) = 1

2 (cos it − sin jt) (i, j = 1, 2); Ji(t) are any
continuous 2π-periodic functions for i = 1, 2. Then
it is easy to verify that when r = 1, λ1 = λ2 = 1,
(35) verifies all the sufficient condition of Theorem 1.
Therefore, according to Theorem 1, (35) has a unique
2π-periodic solution and all solutions of (35) converge
to the 2π-periodic solution.

5. CONCLUSIONS
In this paper, we have studied a class of continuous
nonlinear neural networks with variable coefficients
and distributed delays via employing Young inequality
technique and Lyapunov method and established a se-
ries of new criteria on the exponential periodicity and
stability for the model. we generalize and improve
some previous works without assuming the activation
functions are to be bounded, differentiable. These con-
ditions are presented in terms of system parameters and
have importance leading significance in designs and
applications of nonlinear neural networks system with
variable coefficients and distributed delays. An illus-
trative example is also worked out to demonstrate the
effectiveness of our results. In addition, the methods
given in this paper may be extended to study some more
complex systems, such as nonlinear BAM neural net-
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works with variable coefficients and distributed delays.
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