
Title Novel global asymptotic stability criteria for delayed cellular
neural networks

Author(s) Xu, S; Lam, J; Ho, DWC; Zou, Y

Citation Ieee Transactions On Circuits And Systems Ii: Express Briefs,
2005, v. 52 n. 6, p. 349-353

Issued Date 2005

URL http://hdl.handle.net/10722/43015

Rights

©2005 IEEE. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for
resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be
obtained from the IEEE.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/37882322?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 52, NO. 6, JUNE 2005 349

Novel Global Asymptotic Stability Criteria for
Delayed Cellular Neural Networks

Shengyuan Xu, James Lam, Senior Member, IEEE, Daniel W. C. Ho, Member, IEEE, and Yun Zou

Abstract—This brief provides improved conditions for the exis-
tence of a unique equilibrium point and its global asymptotic sta-
bility of cellular neural networks with time delay. Both delay-de-
pendent and delay-independent conditions are obtained by using
more general Lyapunov–Krasovskii functionals. These conditions
are expressed in terms of linear matrix inequalities, which can be
checked easily by recently developed standard algorithms. Exam-
ples are provided to demonstrate the reduced conservatism of the
proposed criteria by numerically comparing with those reported
recently in the literature.

Index Terms—Cellular neural networks (CNNs), global asymp-
totic stability, linear matrix inequality (LMI), time-delay systems.

I. INTRODUCTION

CELLULAR NEURAL networks (CNNs), which were in-
troduced in [8], have been a subject of intense research

activities in the literature over the past years and have found
extensive applications in image processing, pattern recognition
and classification, solving nonlinear algebraic equations, and
other areas [7], [11]. It has been shown that such applications
rely on the analysis of the dynamical behavior of CNNs. Since
stability is one of the most important issues related to such be-
havior, the study of the stability problem of CNNs has received
much attention in recent years and a great number of results on
this issue have been reported; see, e.g., [10], [14], and the refer-
ences therein.

On the other hand, time delays are often encountered in
various practical systems such as chemical processes, long
transmission lines in pneumatic systems, biological and neural
networks [3], [12]. The existence of time delays may lead to
oscillation, divergence or instability in neural networks due
to finite speed of information processing. Therefore, many
researchers have investigated the problem of stability analysis
for neural networks with time delays. For example, the global
asymptotic stability of delayed CNNs with bounded and non-
monotonic activation functions were studied in [2] and [5],
respectively, where several sufficient conditions were given via
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different approaches. These results were extended to a more
general class of CNNs with delays in [6], [18]. Recently, a
linear matrix inequality (LMI) approach to the stability anal-
ysis of delayed CNNs was introduced in [13], in which some
sufficient conditions were presented. The results in [13] were
further improved in [1] by using different Lyapunov–Krasovskii
functionals. It is noted that all the above mentioned asymptotic
stability results are delay-independent; that is, they do not
include any information on the size of delays. It is known that
delay-dependent stability conditions, which employ the infor-
mation on the size of delays, are generally less conservative
than delay-independent ones especially when the size of the
delay is small [12], [16]. Considering this, a delay-dependent
asymptotic stability condition for symmetric delayed CNNs
was proposed in [9]. When the CNN is not symmetric, the
delay-dependent results can be found in [17].

In this paper, attention is focused on the derivation of
improved conditions for the existence of a unique equilib-
rium point and its global asymptotic stability of CNNs with
time-invariant delay. By constructing more general Lya-
punov–Krasovskii functionals, less conservative stability
conditions are established. These conditions are expressed in
terms of LMIs. It is worth pointing out that the LMI condition
can be checked numerically very efficiently by resorting to
recently developed interior-point methods, and no tuning of
parameters will be involved [4]. Both delay-dependent and
delay-independent results are given. Examples are provided to
demonstrate the less conservatism of the proposed criteria.

Notation: Throughout this brief, for real symmetric matrices
and , the notation (respectively, ) means

that the matrix is positive semi-definite (respectively,
positive definite). The superscript “ ” represents the transpose.
The notation refers to the Euclidean vector norm. We use

to denote the minimum eigenvalue of a real symmetric
matrix. Matrices, if not explicitly stated, are assumed to have
compatible dimensions.

II. MAIN RESULTS

Consider a continuous-time CNN with a constant delay de-
scribed by the following nonlinear retarded functional differen-
tial state equation:

(1)

where
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is the state vector

is the neuron activation function with ,
, and are the interconnection

matrices representing the weighting coefficients of the neurons,
is a constant vector representing the bias.

The scalar is a constant delay of the system.
The following assumption will be made throughout the paper.
Assumption 1: [6] The activation function is nonde-

creasing, bounded and globally Lipschitz; that is

(2)

Then, by [6], it can be seen that there exists an equilibrium
for (1). For the sake of simplicity in the stability analysis of (1),
we make the following transformation to (1):

(3)

where

is an equilibrium point of system (1). Under the transformation
of (3), it is easy to see that (1) becomes

(4)

where

is the state vector of the transformed system, and

with

and , for . It is noted that satisfies
(2); that is

(5)

Before presenting the main results, we give the following
lemma, which will be used in the sequel.

Lemma 1: [15] Let , and be real matrices of appro-
priate dimensions with . Then, for any vectors , with
appropriate dimensions

Now, we are in a position to present a new asymptotic stability
condition for system (4), which is independent of the size of the
delay.

Theorem 1: The origin of the delayed CNN in (4) is the
unique equilibrium point and it is globally asymptotically stable

for all delay if there exist matrices , ,
and two diagonal matrices and such that the fol-
lowing LMI holds:

(6)
where

(7)

(8)

Proof: We prove this theorem in two steps. Firstly, we
show the uniqueness of the equilibrium point by contradiction.
Let be the equilibrium point of the delayed CNN in (4). Then,
we have

(9)

Suppose . By (9), it is easy to see that

(10)

and

(11)

Note that

(12)

where

Then, it follows from (10)–(12) that

(13)

Now, applying Lemma 1, we have

where

This together with (13) implies

(14)

On the other hand, pre- and post-multiplying (6) by
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and its transpose, respectively, we obtain

which, by the Schur complement formula, results in

This contradicts with (14). Therefore, we have that at the equi-
librium point , which, by (9), implies . That is,
the origin of the delayed CNN in (4) is the unique solution to
(9), and hence, (4) has a unique equilibrium point.

Next, we show that the unique equilibrium point of (4) is
globally asymptotically stable. To this end, we denote

and

Define a Lyapunov–Krasovskii functional candidate for system
(4) as

where

(15)

(16)

(17)

Then, the time derivative of along the solution of (4) gives

(18)

Considering the relationship in (5) and noting that and
are diagonal matrices, we can deduce

(19)

(20)

Noting and using Lemma 1, we have

(21)

Let

Then, by (18)–(21), it can be shown that

(22)

From the inequality in (6), it is easy to see that

Therefore, by using Lemma 1 again, we obtain

This together with (22) gives

where

Now, applying the Schur complement formula to (6) gives that
. Therefore

(23)

where

Finally, by [12], it follows from (23) that the time-delay system
is asymptotically stable. This completes the proof.

Remark 1: The Lyapunov–Krasovskii functional used in
Theorem 1 is more general than that in [1], which will result
in the fact that Theorem 1 will be less conservative than the
condition derived in [1]. It is also worth pointing out that
Theorem 1 is obtained under the assumption that the activation
functions are nonstrict, while [13, Theorem 2] is obtained
under the assumption that the activation functions are strict.
Therefore, Theorem 1 in this paper is applicable to a wider
class of delayed CNNs than [13, Theorem 2].

Next, we provide an example to illustrate the reduced con-
servatism of Theorem 1 by comparing it with recently reported
delay-independent asymptotic stability results in the literature.

Example 1: Consider a delayed continuous-time CNN in (4)
with parameters

We assume that

For this delayed CNN, it can be checked that the matrix inequal-
ities in both [1, Theorem 1] and [13, Theorem 2] have no solu-
tions. Also, it is found that the asymptotic stability conditions in
[6] and [18] are not satisfied. Therefore, Theorem 1 in [1], The-
orem 2 in [13], and the results in [6] and [18] fail to conclude
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whether this delayed CNN is asymptotically stable or not. How-
ever, by resorting to the Matlab LMI Control Toolbox, we find
that the LMI in Theorem 1 in this paper is feasible. Hence, by
Theorem 1, it can be seen that the delayed CNN is asymptotic
stable. This shows that the condition given in Theorem 1 is less
conservative than those in [1], [6], [13], and [18].

Considering delay-dependent asymptotic stability conditions
are generally less conservative than delay-independent ones, we
now provide such a condition for the delayed CNN (4) in the
following theorem.

Theorem 2: The origin of the delayed CNN in (4) is the
unique equilibrium point and it is globally asymptotically stable
for any delay if there exist matrices , ,

and three diagonal matrices , and
such that the following LMI holds:

(24)

where is given in (7), and

Proof: Under the condition of the theorem, the unique-
ness of the equilibrium point can be established by following a
similar line as in the proof of Theorem 1, and thus is omitted.
Now, we prove that the unique equilibrium point of (4) is
globally asymptotically stable. To this end, we define a Lya-
punov–Krasovskii functional candidate for (4) as

where , and are defined in (15)–(17), re-
spectively, and

Then, the time-derivative of along the solution of (4)
provides

(25)

Noting that is a diagonal matrix, we then have

(26)
Considering (18), (19), (25) and (26), it can be deduced that

(27)

Now, by Lemma 1, it can be shown that

(28)

Then, it follows from (20), (27), and (28) that

(29)

where

By (24), it is easy to have that

Then, by Lemma 1, it can be deduced that

This together with (29) gives

(30)
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where

Applying the Schur complement formula to (24), we have that
for all

which, by the Schur complement formula implies that
. Then

where

Therefore, we have that (4) is asymptotically stable for any delay
.

The following examples are given to show the reduced con-
servatism of the delay-dependent asymptotic stability result in
Theorem 2.

Example 2: Consider a delayed continuous-time CNN in (4)
with parameters

In this example, we suppose that

For this delayed CNN, it can be checked that the asymptotic
stability conditions in [6] and [18], Theorem 1 in [1], Theorem
2 in [13] as well as Theorem 1 in this paper are not satisfied.
Therefore, they fail to conclude whether this delay system is
asymptotically stable or not. Now, we resort to Theorem 2 in
this paper to check the asymptotic stability of the delay system.
It is found that the LMI in (24) is feasible for all delay

. Therefore, by Theorem 2, we conclude that the
delay system is delay-dependent asymptotically stable. If we use

Theorem 1 in [17], we can calculate the largest allowed value
of , which is 75.27% smaller than that obtained by
our method. This shows that the condition given in Theorem 2 is
less conservative than that in [17] when checking the asymptotic
stability of a given delay neural network.

III. CONCLUSION

This paper has provided improved criteria for the existence of
a unique equilibrium point and its global asymptotic stability of
continuous delayed CNNs. Both delay-dependent and delay-in-
dependent stability conditions have been proposed in terms of
LMIs, which can be checked easily by using recently developed
standard algorithms. Examples via numerical comparisons with
the recently reported results have demonstrated the lower con-
servatism of the proposed criteria in this paper.
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