321 research outputs found

    A new method for fish-disease diagnostic problem solving based on parsimonious covering theory and fuzzy inference model

    Get PDF
    There are three kinds of uncertainty in the process of fish-disease diagnosis, such as randomicity, fuzzy and imperfection, which affect the veracity of fish-disease diagnostic conclusion. So, it is important to construct a fish-disease diagnostic model to effectively deal with these uncertainty knowledge’s representation and reasoning. In this paper, the well-developed parsimonious covering theory capable of handling randomicity knowledge is extended. A fuzzy inference model capable of handling fuzzy knowledge is proposed, and the corresponding algorithms based the sequence of obtaining manifestations are provided to express imperfection knowledge. In the last, the model is proved to be effective and practicality through a set of fish-disease diagnostic casesIFIP International Conference on Artificial Intelligence in Theory and Practice - Expert SystemsRed de Universidades con Carreras en Informática (RedUNCI

    A new method for fish-disease diagnostic problem solving based on parsimonious covering theory and fuzzy inference model

    Get PDF
    There are three kinds of uncertainty in the process of fish-disease diagnosis, such as randomicity, fuzzy and imperfection, which affect the veracity of fish-disease diagnostic conclusion. So, it is important to construct a fish-disease diagnostic model to effectively deal with these uncertainty knowledge’s representation and reasoning. In this paper, the well-developed parsimonious covering theory capable of handling randomicity knowledge is extended. A fuzzy inference model capable of handling fuzzy knowledge is proposed, and the corresponding algorithms based the sequence of obtaining manifestations are provided to express imperfection knowledge. In the last, the model is proved to be effective and practicality through a set of fish-disease diagnostic casesIFIP International Conference on Artificial Intelligence in Theory and Practice - Expert SystemsRed de Universidades con Carreras en Informática (RedUNCI

    Cooperative Particle Swarm Optimization for Combinatorial Problems

    Get PDF
    A particularly successful line of research for numerical optimization is the well-known computational paradigm particle swarm optimization (PSO). In the PSO framework, candidate solutions are represented as particles that have a position and a velocity in a multidimensional search space. The direct representation of a candidate solution as a point that flies through hyperspace (i.e., Rn) seems to strongly predispose the PSO toward continuous optimization. However, while some attempts have been made towards developing PSO algorithms for combinatorial problems, these techniques usually encode candidate solutions as permutations instead of points in search space and rely on additional local search algorithms. In this dissertation, I present extensions to PSO that by, incorporating a cooperative strategy, allow the PSO to solve combinatorial problems. The central hypothesis is that by allowing a set of particles, rather than one single particle, to represent a candidate solution, combinatorial problems can be solved by collectively constructing solutions. The cooperative strategy partitions the problem into components where each component is optimized by an individual particle. Particles move in continuous space and communicate through a feedback mechanism. This feedback mechanism guides them in the assessment of their individual contribution to the overall solution. Three new PSO-based algorithms are proposed. Shared-space CCPSO and multispace CCPSO provide two new cooperative strategies to split the combinatorial problem, and both models are tested on proven NP-hard problems. Multimodal CCPSO extends these combinatorial PSO algorithms to efficiently sample the search space in problems with multiple global optima. Shared-space CCPSO was evaluated on an abductive problem-solving task: the construction of parsimonious set of independent hypothesis in diagnostic problems with direct causal links between disorders and manifestations. Multi-space CCPSO was used to solve a protein structure prediction subproblem, sidechain packing. Both models are evaluated against the provable optimal solutions and results show that both proposed PSO algorithms are able to find optimal or near-optimal solutions. The exploratory ability of multimodal CCPSO is assessed by evaluating both the quality and diversity of the solutions obtained in a protein sequence design problem, a highly multimodal problem. These results provide evidence that extended PSO algorithms are capable of dealing with combinatorial problems without having to hybridize the PSO with other local search techniques or sacrifice the concept of particles moving throughout a continuous search space

    Evolutionary Computation and QSAR Research

    Get PDF
    [Abstract] The successful high throughput screening of molecule libraries for a specific biological property is one of the main improvements in drug discovery. The virtual molecular filtering and screening relies greatly on quantitative structure-activity relationship (QSAR) analysis, a mathematical model that correlates the activity of a molecule with molecular descriptors. QSAR models have the potential to reduce the costly failure of drug candidates in advanced (clinical) stages by filtering combinatorial libraries, eliminating candidates with a predicted toxic effect and poor pharmacokinetic profiles, and reducing the number of experiments. To obtain a predictive and reliable QSAR model, scientists use methods from various fields such as molecular modeling, pattern recognition, machine learning or artificial intelligence. QSAR modeling relies on three main steps: molecular structure codification into molecular descriptors, selection of relevant variables in the context of the analyzed activity, and search of the optimal mathematical model that correlates the molecular descriptors with a specific activity. Since a variety of techniques from statistics and artificial intelligence can aid variable selection and model building steps, this review focuses on the evolutionary computation methods supporting these tasks. Thus, this review explains the basic of the genetic algorithms and genetic programming as evolutionary computation approaches, the selection methods for high-dimensional data in QSAR, the methods to build QSAR models, the current evolutionary feature selection methods and applications in QSAR and the future trend on the joint or multi-task feature selection methods.Instituto de Salud Carlos III, PIO52048Instituto de Salud Carlos III, RD07/0067/0005Ministerio de Industria, Comercio y Turismo; TSI-020110-2009-53)Galicia. Consellería de Economía e Industria; 10SIN105004P

    Evaluating ecosystem interventions for improved health outcomes - The case of the Volta Estuary mangroves and malaria

    Get PDF
    Degradative alteration of ecological systems worldwide is progressing at a time when their influence on human wellbeing is becoming more evident. For some ecosystems and aspects of wellbeing, more concrete knowledge exists. Insights into the science of mangrove-health relationships are however limited and fragmented, with no assessments of human perspectives around these phenomena. This study investigated the nature of the mangrove-human health nexus by assessing the impacts of mangrove ecosystem interventions on health-related ecosystem goods and services and self-reported malaria experiences. Using a mix of methods comprising a systematic literature review, key informant interviews, health questionnaires and Qualitative Comparative Analysis (QCA), this study merges three bodies of work. Research participant viewpoints were synthesised regarding the evolution of mangrove characteristics and use patterns over time, and how these are affected by ecosystem restoration. Survey respondents were also engaged in a recall exercise of malaria experiences over the same period, to provide a basis for causal inference analysis using QCA methodology. Results show that mangrove dependence is declining with ecosystem degradation in Ghana, but ecosystem restoration can modulate some negative health impacts of mangrove degradation, such as infectious disease risk and threats to protein nutrition. Further, specific ecological conditions elicited by ecosystem interventions work together diversely to decrease malaria incidence, but mainly to amplify benefits of current malaria vector control interventions. The causal relationships reveal that certain aspects of wetland restoration can be strengthened to deliver conditions that improve consequences of current malaria management strategies. Environment and health managers must collaborate in policy reorientation, monitoring, evaluation, and capacity building to realise more tangible scientific evidence and sustainable cross-sector outcomes. Ecosystem interventions could plug the shortfalls arising from resource constraints in health policy implementation, towards more uniform outcomes especially in marginal communities

    On the intelligent management of sepsis in the intensive care unit

    Get PDF
    The management of the Intensive Care Unit (ICU) in a hospital has its own, very specific requirements that involve, amongst others, issues of risk-adjusted mortality and average length of stay; nurse turnover and communication with physicians; technical quality of care; the ability to meet patient's family needs; and avoid medical error due rapidly changing circumstances and work overload. In the end, good ICU management should lead to an improvement in patient outcomes. Decision making at the ICU environment is a real-time challenge that works according to very tight guidelines, which relate to often complex and sensitive research ethics issues. Clinicians in this context must act upon as much available information as possible, and could therefore, in general, benefit from at least partially automated computer-based decision support based on qualitative and quantitative information. Those taking executive decisions at ICUs will require methods that are not only reliable, but also, and this is a key issue, readily interpretable. Otherwise, any decision tool, regardless its sophistication and accuracy, risks being rendered useless. This thesis addresses this through the design and development of computer based decision making tools to assist clinicians at the ICU. It focuses on one of the main problems that they must face: the management of the Sepsis pathology. Sepsis is one of the main causes of death for non-coronary ICU patients. Its mortality rate can reach almost up to one out of two patients for septic shock, its most acute manifestation. It is a transversal condition affecting people of all ages. Surprisingly, its definition has only been standardized two decades ago as a systemic inflammatory response syndrome with confirmed infection. The research reported in this document deals with the problem of Sepsis data analysis in general and, more specifically, with the problem of survival prediction for patients affected with Severe Sepsis. The tools at the core of the investigated data analysis procedures stem from the fields of multivariate and algebraic statistics, algebraic geometry, machine learning and computational intelligence. Beyond data analysis itself, the current thesis makes contributions from a clinical point of view, as it provides substantial evidence to the debate about the impact of the preadmission use of statin drugs in the ICU outcome. It also sheds light into the dependence between Septic Shock and Multi Organic Dysfunction Syndrome. Moreover, it defines a latent set of Sepsis descriptors to be used as prognostic factors for the prediction of mortality and achieves an improvement on predictive capability over indicators currently in use.La gestió d'una Unitat de Cures Intensives (UCI) hospitalària presenta uns requisits força específics incloent, entre altres, la disminució de la taxa de mortalitat, la durada de l'ingrès, la rotació d'infermeres i la comunicació entre metges amb al finalitad de donar una atenció de qualitat atenent als requisits tant dels malalts com dels familiars. També és força important controlar i minimitzar els error mèdics deguts a canvis sobtats i a la presa ràpida de deicisions assistencials. Al cap i a la fi, la bona gestió de la UCI hauria de resultar en una reducció de la mortalitat i durada d'estada. La presa de decisions en un entorn de crítics suposa un repte de presa de decisions en temps real d'acord a unes guies clíniques molt restrictives i que, pel que fa a la recerca, poden resultar en problemes ètics força sensibles i complexos. Per tant, el personal sanitari que ha de prendre decisions sobre la gestió de malalts crítics no només requereix eines de suport a la decisió que siguin fiables sinó que, a més a més, han de ser interpretables. Altrament qualsevol eina de decisió que no presenti aquests trets no és considerarà d'utilitat clínica. Aquesta tesi doctoral adreça aquests requisits mitjançant el desenvolupament d'eines de suport a la decisió per als intensivistes i es focalitza en un dels principals problemes als que s'han denfrontar: el maneig del malalt sèptic. La Sèpsia és una de les principals causes de mortalitats a les UCIS no-coronàries i la seva taxa de mortalitat pot arribar fins a la meitat dels malalts amb xoc sèptic, la seva manifestació més severa. La Sèpsia és un síndrome transversal, que afecta a persones de totes les edats. Sorprenentment, la seva definició ha estat estandaritzada, fa només vint anys, com a la resposta inflamatòria sistèmica a una infecció corfimada. La recerca presentada en aquest document fa referència a l'anàlisi de dades de la Sèpsia en general i, de forma més específica, al problema de la predicció de la supervivència de malalts afectats amb Sèpsia Greu. Les eines i mètodes que formen la clau de bòveda d'aquest treball provenen de diversos camps com l'estadística multivariant i algebràica, geometria algebraica, aprenentatge automàtic i inteligència computacional. Més enllà de l'anàlisi per-se, aquesta tesi també presenta una contribució des de el punt de vista clínic atès que presenta evidència substancial en el debat sobre l'impacte de l'administració d'estatines previ a l'ingrès a la UCI en els malalts sèptics. També s'aclareix la forta dependència entre el xoc sèptic i el Síndrome de Disfunció Multiorgànica. Finalment, també es defineix un conjunt de descriptors latents de la Sèpsia com a factors de pronòstic per a la predicció de la mortalitat, que millora sobre els mètodes actualment més utilitzats en la UCI

    A comparison of the CAR and DAGAR spatial random effects models with an application to diabetics rate estimation in Belgium

    Get PDF
    When hierarchically modelling an epidemiological phenomenon on a finite collection of sites in space, one must always take a latent spatial effect into account in order to capture the correlation structure that links the phenomenon to the territory. In this work, we compare two autoregressive spatial models that can be used for this purpose: the classical CAR model and the more recent DAGAR model. Differently from the former, the latter has a desirable property: its ρ parameter can be naturally interpreted as the average neighbor pair correlation and, in addition, this parameter can be directly estimated when the effect is modelled using a DAGAR rather than a CAR structure. As an application, we model the diabetics rate in Belgium in 2014 and show the adequacy of these models in predicting the response variable when no covariates are available

    A Statistical Approach to the Alignment of fMRI Data

    Get PDF
    Multi-subject functional Magnetic Resonance Image studies are critical. The anatomical and functional structure varies across subjects, so the image alignment is necessary. We define a probabilistic model to describe functional alignment. Imposing a prior distribution, as the matrix Fisher Von Mises distribution, of the orthogonal transformation parameter, the anatomical information is embedded in the estimation of the parameters, i.e., penalizing the combination of spatially distant voxels. Real applications show an improvement in the classification and interpretability of the results compared to various functional alignment methods
    corecore