644 research outputs found

    Novel Applications of a Thermally Tunable Bistable Buckling Silicon-on-Insulator (SOI) Microfabricated Membrane

    Get PDF
    Buckled membranes are commonly used microelectromechanical systems (MEMS) structures. Recent work has demonstrated that the deflection and stiffness of these membranes can be tuned through localized joule heating. These devices were implemented into the design and fabrication of two novel device applications, a tunable pressure sensor and a steerable micromirror. A differential pressure across the membrane causes de reflection, up or down, which can be measured and related to a specific pressure. By tuning the stiffness of the membrane, its pressure response is varied providing a wider range of application for the pressure sensor. A 2.0mm by 2.0mm square membrane demonstrated a 60 percent decrease in pressure sensitivity from 1.433m/psi to 0.55m/psi. A steerable micromirror was realized by selectively heating a single quadrant of a buckled membrane, localized heating results in membrane de deflection constrained to that quadrant

    Low-Cost, Water Pressure Sensing and Leakage Detection Using Micromachined Membranes

    Get PDF
    This work presents the only known SOI membrane approach, using Microelectromechanical systems (MEMS) fabrication techniques, to address viable water leakage sensing requirements at low cost. In this research, membrane thickness and diameter are used in concert to target specific stiffness values that will result in targeted operational pressure ranges of approximately 0-120 psi. A MEMS membrane device constructed using silicon-on-insulator (SOI) wafers, has been tested and packaged for the water environment. MEMS membrane arrays will be used to determine operational pressure range by bursting.Two applications of these SOI membranes in aqueous environment are investigated in this research. The first one is water pressure sensing. We demonstrate that robustness of these membranes depends on their thickness and surface area. Their mechanical strength and robustness against applied pressure are determined using Finite Element Analysis (FEA). The mechanical response of a membrane pressure sensor is determined by physical factors such as surface area, thickness and material properties. The second application of this device is water leak detection. In devices such as pressure sensors, microvalves and micropumps, membranes can be subjected to immense pressure that causes them to fail or burst. However, this event can be used to indicate the precise pressure level that malfunction occurred. These membrane arrays can be used to determine pressure values by bursting. We discuss the background information related to the proposed device: MEMS fabrication processes (especially related to proposed device), common MEMS materials, general micromachining process steps, packaging and wire bonding techniques, and common micromachined pressure sensors. Besides, FEA on SOLIDWORKS simulation module is utilized to understand membrane sensitivity and robustness. In addition, we focus on theories supporting the simulated results. We also discuss the device fabrication process, which consists of the tested device’s fabrication process, Deep Reactive Ion Etching (DRIE) for membrane formation, two different realizable fabrication technique (depending on sensing material) of sensing element, metal contact pads, and connectors deposition. In addition, a brief description and operation procedures of the device fabrication tools are provided as well. We also include detailed electrical and mechanical testing procedures and the collected data

    Fabrication and Characterization of Magnetic Nanoparticle Composite Membranes

    Get PDF
    To effectively and accurately deliver drugs within the human body, both new designs and components for implantable micropumps are being studied. Designs must ensure high biocompatibility, drug compatibility, accuracy and small power consumption. The focus of this thesis was to fabricate a prototype magnetic nanoparticle membrane for eventual incorporation into a biomedical pump and then determine the relationship between this membrane deflection and applied pneumatic or magnetic force. The magnetic nanoparticle polymer composite (MNPC) membranes in this study were composed of crosslinked polydimethylsiloxane (PDMS) and iron oxide nanoparticles (IONPs). An optimal iron oxide fabrication route was identified and particle size in each batch was approximately 24.6 nm. Once these nanoparticles were incorporated into a membrane (5 wt. %), the nanoparticle formed agglomerates with an average diameter of 2.26 ±1.23 µm. Comparisons between the 0 and 5 wt. % loading of particles into the membranes indicated that the elastic modulus of the composite decreased with increasing particle concentration. The pressure- central deflection of the membranes could not be predicated by prior models and variation between magnetic and pneumatic pressure-deflection curves was quantified. Attempts to fabricate membranes with above 5 wt. % nanoparticles were not successful (no gelation). Fourier Transform Infrared (FTIR) spectroscopy results suggest that excess oleic acid on the nanoparticles prior to mixing might have prevented crosslinking

    Characterization of a CMUT Array

    Get PDF
    Ultrasound transducers are used in a broad range of applications covering from underwater communications to medical imaging and treatment. The ultrasonic transducer determines the key specifications such as resolution, sensitivity and signal to noise ratio. The capacitive micromachined ultrasonic transducer (CMUT) has emerged as an alternative to standard piezoelectric transducers due to advanced microelectronics fabrication technology and methods. Comparing to piezoelectric transducers, the CMUT is superior to it\u27s competitor with higher acoustic bandwidth, higher sensitivity and greater coupling with the acoustic medium. Design, fabrication, and characterization of a capacitive micromachined ultrasonic transducer (CMUT) array have been presented along this thesis. The array is designed to operate in the frequency range of 113-167 kHz. The CMUT array is fabricated using an SOI based fabrication technology and includes 6x6 CMUTs. Necessary test setups and readout circuitry is designed in order to carry out the characterization process. Static analysis results are verified with Wyko optical profilometer, Agilent LCR meter and SEM analysis. Dynamic characterizations are done with Polytec MSA-4 laser Doppler vibrometer. An efficient and low noise capacitive readout circuit is designed using transimpedance amplifier scheme with 75 kilo ohm gain and fabricated on a PCB. The developed analytical models, FEA and experimental results are in very good agreement to exhibit accuracy of the design methodology

    Doctor of Philosophy

    Get PDF
    dissertationNew hydrogel-based micropressure sensor arrays for use in the fields of chemical sensing, physiological monitoring, and medical diagnostics are developed and demonstrated. This sensor technology provides reliable, linear, and accurate measurements of hydrogel swelling pressures, a function of ambient chemical concentrations. For the first time, perforations were implemented into the pressure sensors piezoresistive diaphragms, used to simultaneously increase sensor sensitivity and permit diffusion of analytes into the hydrogel cavity. It was shown through analytical and numerical (finite element) methods that pore shape, location, and size can be used to modify the diaphragm mechanics and concentrate stress within the piezoresistors, thus improving electrical output (sensitivity). An optimized pore pattern was chosen based on these numerical calculations. Fabrication was performed using a 14-step semiconductor fabrication process implementing a combination of potassium hydroxide (KOH) and deep reactive ion etching (DRIE) to create perforations. The sensor arrays (2×2) measure approximately 3 × 5 mm2 and used to measure full scale pressures of 50, 25, and 5 kPa, respectively. These specifications were defined by the various swelling pressures of ionic strength, pH and glucose specific hydrogels that were targeted in this work. Initial characterization of the sensor arrays was performed using a custom built bulge testing apparatus that simultaneously measured deflection (optical profilometry), pressure, and electrical output. The new perforated diaphragm sensors were found to be fully functional with sensitivities ranging from 23 to 252 μV/V-kPa with full scale output (FSO) ranging from 5 to 80 mV. To demonstrate proof of concept, hydrogels sensitive to changes in ionic strength were synthesized using hydroxypropyl-methacrylate (HPMA), N,N-dimethylaminoethyl-methacrylate (DMA) and a tetra-ethyleneglycol-dimethacrylate (TEGDMA) crosslinker. This hydrogel quickly and reversibly swells when placed environments of physiological buffer solutions (PBS) with ionic strengths ranging from 0.025 to 0.15 M. Chemical testing showed sensors with perforated diaphragms have higher sensitivity than those with solid diaphragms, and sensitivities ranging from 53.3±6.5 to 271.47±27.53 mV/V-M, depending on diaphragm size. Additionally, recent experiments show sensors utilizing Ultra Violet (UV) polymerized glucose sensitive hydrogels respond reversibly to physiologically relevant glucose concentrations from 0 to 20 mM

    MEMS SENSOR PLATFORMS FOR IN SITU CHARACTERIZATION OF LI-ION BATTERY ELECTRODES

    Get PDF
    Lithium-ion batteries provide high energy density while being compact and light-weight and are the most pervasive energy storage technology powering portable electronic devices such as smartphones, laptops, and tablet PCs. Considerable efforts have been made to develop new electrode materials with ever higher capacity, while being able to maintain long cycle life. A key challenge in those efforts has been characterizing and understanding these materials during battery operation. While it is generally accepted that the repeated strain/stress cycles play a role in long-term battery degradation, the detailed mechanisms creating these mechanical effects and the damage they create still remain unclear. Therefore, development of techniques which are capable of capturing in real time the microstructural changes and the associated stress during operation are crucial for unravelling lithium-ion battery degradation mechanisms and further improving lithium-ion battery performance. This dissertation presents the development of two microelectromechanical systems sensor platforms for in situ characterization of stress and microstructural changes in thin film lithium-ion battery electrodes, which can be leveraged as a characterization platform for advancing battery performance. First, a Fabry-Perot microelectromechanical systems sensor based in situ characterization platform is developed which allows simultaneous measurement of microstructural changes using Raman spectroscopy in parallel with qualitative stress changes via optical interferometry. Evolutions in the microstructure creating a Raman shift from 145 cm−1 to 154 cm−1 and stress in the various crystal phases in the LixV2O5 system are observed, including both reversible and irreversible phase transitions. Also, a unique way of controlling electrochemically-driven stress and stress gradient in lithium-ion battery electrodes is demonstrated using the Fabry-Perot microelectromechanical systems sensor integrated with an optical measurement setup. By stacking alternately stressed layers, the average stress in the stacked electrode is greatly reduced by 75% compared to an unmodified electrode. After 2,000 discharge-charge cycles, the stacked electrodes retain only 83% of their maximum capacity while unmodified electrodes retain 91%, illuminating the importance of the stress gradient within the electrode. Second, a buckled membrane microelectromechanical systems sensor is developed to enable in situ characterization of quantitative stress and microstructure evolutions in a V2O5 lithium-ion battery cathode by integrating atomic force microscopy and Raman spectroscopy. Using dual-mode measurements in the voltage range of the voltage range of 2.8V – 3.5V, both the induced stress (~ 40 MPa) and Raman intensity changes due to lithium cycling are observed. Upon lithium insertion, tensile stress in the V2O5 increases gradually until the α- to ε-phase and ε- to δ-phase transitions occur. The Raman intensity change at 148 cm−1 shows that the level of disorder increases during lithium insertion and progressively recovers the V2O5 lattice during lithium extraction. Results are in good agreement with the expected mechanical behavior and disorder change in V2O5, highlighting the potential of microelectromechanical systems as enabling tools for advanced scientific investigations. The work presented here will be eventually utilized for optimization of thin film battery electrode performance by achieving fundamental understanding of how stress and microstructural changes are correlated, which will also provide valuable insight into a battery performance degradation mechanism

    A Customer Programmable Microfluidic System

    Get PDF
    Microfluidics is both a science and a technology offering great and perhaps even revolutionary capabilities to impact the society in the future. However, due to the scaling effects there are unknown phenomena and technology barriers about fluidics in microchannel, material properties in microscale and interactions with fluids are still missing. A systematic investigation has been performed aiming to develop A Customer Programmable Microfluidic System . This innovative Polydimethylsiloxane (PDMS)-based microfluidic system provides a bio-compatible platform for bio-analysis systems such as Lab-on-a-chip, micro-total-analysis system and biosensors as well as the applications such as micromirrors. The system consists of an array of microfluidic devices and each device containing a multilayer microvalve. The microvalve uses a thermal pneumatic actuation method to switch and/or control the fluid flow in the integrated microchannels. It provides a means to isolate samples of interest and channel them from one location of the system to another based on needs of realizing the customers\u27 desired functions. Along with the fluid flow control properties, the system was developed and tested as an array of micromirrors. An aluminum layer is embedded into the PDMS membrane. The metal was patterned as a network to increase the reflectivity of the membrane, which inherits the deformation of the membrane as a mirror. The deformable mirror is a key element in the adaptive optics. The proposed system utilizes the extraordinary flexibility of PDMS and the addressable control to manipulate the phase of a propagating optical wave front, which in turn can increase the performance of the adaptive optics. Polydimethylsiloxane (PDMS) has been widely used in microfabrication for microfluidic systems. However, few attentions were paid in the past to mechanical properties of PDMS. Importantly there is no report on influences of microfabrication processes which normally involve chemical reactors and biologically reaction processes. A comprehensive study was made in this work to study fundamental issues such as scaling law effects on PDMS properties, chemical emersion and temperature effects on mechanical properties of PDMS, PDMS compositions and resultant properties, as well as bonding strength, etc. Results achieved from this work will provide foundation of future developments of microfluidics utilizing PDMS

    Development of a Focused Broadband Ultrasonic Transducer for High Resolution Fundamental and Harmonic Intravascular Imaging

    Get PDF
    Intravascular ultrasound (IVUS) is increasingly employed for detection and evaluation of coronary artery diseases. Tissue Harmonic Imaging provides different tissue information that could additionally be used to improve diagnostic accuracy. However, current IVUS systems, with their unfocussed transducers, may not be capable of operating in harmonic imaging mode. Thus, there is a need to develop suitable transducers and appropriate techniques to allow imaging in multi modes for complementary diagnostic information. Focused PVDF TrFE transducers were developed using MEMS (Micro-Electro-Mechanical-Systems) compatible protocols. The transducers were characterized using pulse-echo techniques and exhibited broad bandwidth (110 at -6dB) with axial resolutions of Such promising results suggest that focused, broadband PVDF TrFE transducers have opened up the potential to incorporate harmonic imaging modality in IVUS and also improve the image quality. In addition, the transducer\u27s multimodality imaging capability, not possible with the current systems, could enhance the functionality and thereby the clinical use of IVU

    Development of a Focused Broadband Ultrasonic Transducer for High Resolution Fundamental and Harmonic Intravascular Imaging

    Get PDF
    Intravascular ultrasound (IVUS) is increasingly employed for detection and evaluation of coronary artery diseases. Tissue Harmonic Imaging provides different tissue information that could additionally be used to improve diagnostic accuracy. However, current IVUS systems, with their unfocussed transducers, may not be capable of operating in harmonic imaging mode. Thus, there is a need to develop suitable transducers and appropriate techniques to allow imaging in multi modes for complementary diagnostic information. Focused PVDF TrFE transducers were developed using MEMS (Micro-Electro-Mechanical-Systems) compatible protocols. The transducers were characterized using pulse-echo techniques and exhibited broad bandwidth (110 at -6dB) with axial resolutions of Such promising results suggest that focused, broadband PVDF TrFE transducers have opened up the potential to incorporate harmonic imaging modality in IVUS and also improve the image quality. In addition, the transducer\u27s multimodality imaging capability, not possible with the current systems, could enhance the functionality and thereby the clinical use of IVU

    Development of a Focused Broadband Ultrasonic Transducer for High Resolution Fundamental and Harmonic Intravascular Imaging

    Get PDF
    Intravascular ultrasound (IVUS) is increasingly employed for detection and evaluation of coronary artery diseases. Tissue Harmonic Imaging provides different tissue information that could additionally be used to improve diagnostic accuracy. However, current IVUS systems, with their unfocussed transducers, may not be capable of operating in harmonic imaging mode. Thus, there is a need to develop suitable transducers and appropriate techniques to allow imaging in multi modes for complementary diagnostic information. Focused PVDF TrFE transducers were developed using MEMS (Micro-Electro-Mechanical-Systems) compatible protocols. The transducers were characterized using pulse-echo techniques and exhibited broad bandwidth (110 at -6dB) with axial resolutions of Such promising results suggest that focused, broadband PVDF TrFE transducers have opened up the potential to incorporate harmonic imaging modality in IVUS and also improve the image quality. In addition, the transducer\u27s multimodality imaging capability, not possible with the current systems, could enhance the functionality and thereby the clinical use of IVU
    • …
    corecore