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ABSTRACT 

Ultrasound transducers are used in a broad range of applications covering from 

underwater communications to medical imaging and treatment. The ultrasonic transducer 

determines the key specifications such as resolution, sensitivity and signal to noise ratio. 

The capacitive micromachined ultrasonic transducer (CMUT) has emerged as an 

alternative to standard piezoelectric transducers due to advanced microelectronics 

fabrication technology and methods. Comparing to piezoelectric transducers, the CMUT 

is superior to it‟s competitor with higher acoustic bandwidth, higher sensitivity and 

greater coupling with the acoustic medium. Design, fabrication, and characterization of a 

capacitive micromachined ultrasonic transducer (CMUT) array have been presented 

along this thesis. The array is designed to operate in the frequency range of 113-167 kHz. 

The CMUT array is fabricated using an SOI based fabrication technology and includes 

6x6 CMUTs. Necessary test setups and readout circuitry is designed in order to carry out 

the characterization process. Static analysis results are verified with Wyko™ optical 

profilometer, Agilent™ LCR meter and SEM analysis. Dynamic characterizations are 

done with Polytec™ MSA-4 laser Doppler vibrometer. An efficient and low noise 

capacitive readout circuit is designed using transimpedance amplifier scheme with 75 kΩ 

gain and fabricated on a PCB. The developed analytical models, FEA and experimental 

results are in very good agreement to exhibit accuracy of the design methodology. 
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Chapter 1   

INTRODUCTION 

1.1 Goals 

The objective of this project is to design, fabricate and characterize a CMUT 

(Capacitive Micromachined Ultrasound) array for air-coupled applications such as blind 

spot monitoring for cars. The CMUTs have become a strong alternative to piezoelectric 

transducers in medical imaging and immersion applications, however research has been 

mainly focused on immersion applications, and few research efforts are made for air-

coupled CMUTs and their characterization. CMUT‟s enabled wide bandwidth imaging of 

tissues and vessels and with better resolution [1]. Intravascular ultrasound imaging i 

another techniques enabled by the CMUT technology which occupies very small area 

while providing excellent transducer characteristics. Moreover extensive research has 

been done for non-destructive valuation [2], microphones [3] and smart microfluidic 

channels [4]. As explained above, much of the research has been focused on immersion 

applications. This thesis investigates air-coupled CMUT applications such as park assist 

and blind spot monitoring. 

The specific goals of this thesis is 1) design and fabricate a CMUT 2) design and 

realize a transimpedance amplifier based read out circuit, and 3) develop necessary test 

benches and equipment to carry out the characterization processes in order to obtain the 

experimental data, and compare the experimental data with the theoretical simulation 

results from analytical model using Matlab™ and Intellisuite™ finite element analysis 

simulation results. Characterization process is divided in two sections, which are static 

and dynamic characterization. Laser Doppler vibrometer is used to obtain the AC 
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characteristics of the CMUT membrane. For static characterization, experimental data is 

obtained from optical profilometer, scanning electron microscope and capacitance meter. 

For static characterization purposes, the deflection profile of the CMUT 

membrane is characterized using analytical load deflection model, FEA (Finite Element 

Analysis) and optical profilometer. Laser vibrometer is used for dynamic characterization 

in order to obtain steady state response and transient response of the diaphragm. For air-

coupled transmission tests, designed readout circuit based on transimpedance amplifier is 

used to operate the CMUT in receive mode. 

This work is believed to provide useful guidance on characterization of CMUTs, 

therefore bridging the gap between the theory and practice.  

1.2 CMUT Operating Principle 

A typical CMUT geometry is built with a square, circular, or hexagonal 

diaphragm separated from a fixed backplate by a small airgap. Typical cross section of a 

square diaphragm CMUT is shown in Figure 1.1. 
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Figure 1.1. CMUT cross section [38]. 

 

The CMUTs have reciprocal properties; that is it can operate both as a receiver of 

ultrasound and also as a transmitter or an emitter. In the receive mode, the incident 

ultrasound wave causes a deformation of the diaphragm to affect a change in the 

capacitance between the diaphragm and the backplate. A suitable microelectronic circuit 

is used to convert this capacitance change to a useful voltage signal [1], [5], [6] . In the 

transmit mode, an AC signal of suitable amplitude causes the diaphragm to vibrate to 

create an ultrasonic vibration in the surrounding medium. 
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Figure 1.2. CMUT modes of operation. 

 

A control signal operates a switch to enable mode switching from transmit to 

receive and vice versa as seen in Figure 1.2. Typically, the diaphragm is created using a 

microfabricated thin film conductor such as aluminum or polysilicon or a composite of a 

non conducting thin film structural material such as silicon nitride with a thin coating of a 

conducting material such as aluminum or gold on the top is used. Additionally, to avoid 

electrical breakdown after collapse due to the pull-in phenomenon, a thin insulation layer, 

either under the diaphragm conducting material or on the top of the backplate is used. 

Finally, a passivation layer on the top of the diaphragm is used to protect the CMUT from 

environmental elements.  

As the CMUT‟s sensing characteristics depend on the change of capacitance 

between the deformed diaphragm and the backplate, accurate calculation of the 

capacitance between the deformed diaphragm and the flat backplate is crucial and the 

calculation must take account of: 1) the deformed shape of the diaphragm, 2) contribution 

of the fringing field capacitance associated with charge concentration at the diaphragm 

edges, and 3) dielectric contribution of the thin insulation layer used to protect the device 

against any electrical breakdown. 
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1.3 Background 

Acoustical sensors have been used for a long time since World War I for 

underwater imaging and further improvements in piezoelectric materials have been done 

during World War II [1]. Increased computing power have enabled more complicated 

algorithms to be run with larger amounts of data from transducers, however the quality of 

transducers and read out circuit (SNR, bandwidth, etc.) determines the final results of 

ultrasound systems, therefore making front-end electronics and transducers as the most 

critical components of ultrasound imaging systems [1] . Recent advances in 

microfabrication technology made small air gaps to be made, therefore creating very 

large electric field strengths required for capacitive electrostatic transducers to work 

effectively, and compete with piezoelectric transducers. CMUTs also offer advantages of 

larger bandwidth, large arrays with individual electrical connections and integration with 

microelectronics [7]. As the CMUT‟s improved over the time, the characterization 

techniques and understanding of the working principles have advanced as well. 

Characterization provides the validity of the theory, design methodology and 

fabrication of the device. It is also useful for making improvements in theoretical 

equations by data fitting. For static response of CMUT, it is common to use non-contact 

optical profilometers, which scan the surface of the CMUT under a microscope using 

optical interferometry method. Another reported static characterization method is called 

Dynamic Holographic Microscopy [8] , using the principle of holography.  

For dynamic response of CMUTs, laser Doppler vibrometer (LDV) is becoming 

the most common choice, because it causes no loading effect on the membrane, 

exploiting Doppler Effect of the laser beam. Limiting conditions for LDV is the surface 
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roughness, and a good reflection back to the laser sensor is required [9]. Moreover, their 

very high cost decreases accessibility of the device. 

There are many approaches to design of a readout circuit for CMUTs, including 

charge amplifier [10], transimpedance amplifier [11] and standard voltage amplifier. 

Charge amplifier has an advantage of high sensitivity by using charge transfer method, 

but when the transducer has relatively high DC current leakage, this solution becomes 

troublesome. Transimpedance amplifier has large bandwidth, good sensitivity and 

flexibility for many capacitive sensors. Last alternative, voltage amplifiers are not used 

commonly due to small input impedance of the amplifier and high output impedance of 

the capacitive sensors.  

1.4 Scientific Approach 

According to [1], [12] and [13], it has been shown that the static deflection due to 

electrostatic force and acoustic force can be modelled accurately compared to FEA 

results. This thesis provides methods and experimental data for validation of the 

previously developed mathematical models by MEMS Lab. Thesis also extends the static 

characterization into the dynamic characterization area, in order to accurately predict 

diaphragm‟s transient response. Non-contact surface profilometer is used in this thesis, 

and they are often used in material engineering and their resolution is under 1nm 

vertically [14], which is far exceeding the resolution needed for this work. Scanning 

electron microscope (SEM) plays an important role of the static characterization, since 

every detail about the fabricated CMUT have to be known in order to achieve good 

accuracy in static and dynamic characterization of the device. 
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Laser Doppler vibrometer (LDV) is the most accurate method available to 

characterization  researchers for dynamic analysis [15].  LDV extracts the time varying 

displacement and velocity of the surface due to electrostatic change as a function of time. 

Steady state response of the diaphragm due to frequency of excitation voltage and 

transient response due to impulse excitation voltage are obtained with LDV technique.   

1.5 Literature Search 

In recent years, significant progress has been done in modelling and 

characterization of the CMUTs in air and immersion applications. The first air coupled 

CMUT was presented by Stanford researchers M.I. Haller and B.T. Khuri-Yakub [16]. 

Group fabricated two devices based on work of Mason [17], the transducers were 

fabricated using standard micromachining techniques. They have used an optical 

interferometer was used to measure the peak displacement of the 1.8 MHz electrostatic 

transducer at 230 Å/V. 

In [18], 275 x 5600 µm one dimensional CMUT array was characterized 

successfully, showing good agreement with theory. Device operated at 3 MHz in 

immersion, with a DC bias of 35V, outputting 5 kPa/V. 

FEA simulations are an important part of CMUT design to understand the 

transducer characteristics and optimize the transducer response [1]. Authors of [19] 

showed that the device performance can be optimized by depositing the electrode where 

it works the most effective by FEA simulations. Authors showed that bandwidth of the 

metalized devices are twice of the fully metalized CMUT devices. B. Bayram et al [19] 

used FEA to model a circular membrane CMUT. They concluded that the collapse 

voltages of half-metallized and full-metallized structures are almost equal for typical 
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metal plate thickness. Authors of [20] state that the equivalent circuit model of the 

CMUT lacks important features such as coupling to the substrate and the ability to predict 

cross-talk between elements of an array of transducers. They have proposed the evidence 

of crosstalk between CMUTs and took precautions including change of its thickness and 

etched trenches or polymer walls between array elements.  

Stanford researchers I. Wygant, M. Kupnik et al. has fabricated CMUTs with 

vacuum- sealed cavities for transmitting directional sound with parametric arrays for air 

coupled applications which have resonance frequencies of 46 kHz and 54 kHz, 

respectively. [21]. Characterization of the CMUTs showed center frequencies of 46 kHz 

and 55 kHz and 3 dB bandwidths of 1.9 kHz and 5.3 kHz for the 40 µm and 60 µm thick 

membrane devices, respectively. Although they have achieved a range of 3 m, the devices 

operate with excessive DC bias and AC excitation voltages that cannot be found outside 

the laboratories.  

M. Torndahl et. al has compared  two similar piezoelectric and CMUT 

transducers using light diffraction tomography method [22]. They have found out 

superior bandwidth characteristics of CMUTs comparing to piezoelectric transducers. 

M. Buigas, F. Espinosa et al. characterized their fabricated CMUT for immersion 

applications in [23]. CMUTs impulse response is obtained through a send-and-receive 

experiment to be compared with the theoretical results. They have used data fitting to 

achieve a good agreement between theoretical and experimental results. A readily 

available calibrated hydrophone is used in characterization tests in order to measure 

output pressure. 
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J. Kiihamaki et al proposed a new concept for SOI MEMS devices, called plug up [24]. 

They reported a novel process sequence for fabricating micromechanical devices on 

silicon-on-insulator (SOI) wafers. Authors concluded the advantages of the techniques as 

improved immunity to stiction and elimination of conductor metal endurance problems 

during sacrificial etching in hydrofluoric acid. Authors validated their theory with a 

fabricated CMUT device successfully. 

Authors of [25] proposed an SOI based CMUTs and characterized it with an 

impedance analyzer. Their CMUTs consist of 2700 circular active cells of 65 mm 

diameter, with 2 mm thick silicon membranes suspended over a 0.5 mm air gap. 

S.T. Hansen et al [26] reported air coupled CMUTs with dynamic range larger than 

100dB, for non-destructive testing purposes. Experiment was done using two identical 

transducers facing each other, with a 3 mm thick aluminum plate in the middle of two 

transducers. The same transducer was used in [27] for ranging, proximity measurement 

and robotic sensing. 

 Nicolas Sénégond, Dominique Certon et al. characterized a CMUT with a rarely 

used method called Digital Holography Microscopy [8]. They provided characterization 

results for static deflection and roughness tests. Author state that this method provides 

one of the best tools for statistical evaluation of CMUT.  

Andrew Logan et al. fabricated an immersion application CMUT fabricated with 

wafer bonding process and characterized it by using atomic force microscope for surface 

characterization and a commercial hydrophone for dynamic characterization [28]. 
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1.6 Thesis Organization 

Chapter 1 starts with the introduction, and summarizes the available literature on 

CMUT characterization and state-of-art in characterization process. This chapter builds 

the necessary background for the rest of the thesis. 

Chapter 2 presents the method to design CMUTs analytically with Matlab™ and 

using Intellisuite™ FEA tool. 

Chapter 3 presents the method of designing a capacitive readout circuit using 

based on transimpedance amplifier topology including noise calculations. Important 

topics like noise figure and printed circuit board are included in this chapter. 

Chapter 4 includes the fabrication details and processes that is chosen to fabricate 

the CMUT. Specifications of the SOI wafer used are given in this chapter. Validation of 

the fabrication follows the explanation of the fabrication steps. 

Chapter 5 of this thesis shows the results of static characterization part of the 

project. Essential parameters like capacitance, residual stress, stiffness constant, center 

deflection and pull-in voltage are measured and compared with the theoretical results.  

Chapter 6 presents the dynamic characterization results. Simulated and measured 

parameters are resonant frequency, transient response, steady state response, fractional 

bandwidth, and specific bandwidth response of CMUT. 

Chapter 7 deals with the characterization of readout circuitry which is necessary 

for the receive operation of the CMUT. Design of a transimpedance amplifier is 

presented in this chapter. Also, simulation of receive mode and pitch catch mode is 

presented 

Finally chapter 8 draws up the conclusions and future directions. 
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Chapter 2  

CMUT DESIGN 

 This chapter described the design methodology adopted to design the capacitive 

micromachined ultrasound transducers (CMUT) and a transimpedance amplifier based 

readout circuit. Mathematical models used for designing CMUTs are presented in detail 

for square membranes. Analytical results are then verified with Intellisuite™ FEA. 

Readout circuit is an essential part of CMUT system. It translates the capacitive change 

of the CMUT to the electrical signal.  

2.1 Design Methodology 

The final application determines the key parameters of a CMUT such as operating 

frequency and operating voltage. For air coupled blind spot applications, the operating 

frequency should be kept as low as possible, without getting interfered by the natural 

ultrasound noise signals [29]. Capacitance change and deflection of the diaphragm at the 

operating point are also significant factors to determine the device geometry, operating 

voltage, and sensitivity. In the design process, initially an analog equivalent circuit model 

using lumped circuit elements is used to determine approximate behaviour of the CMUT 

considering geometry, materials, fabrication process, etc. The developed geometry is then 

analyzed using 3-D electromechanical FEA and modified to optimize the device 

performance in the target design space. The optimized geometry is then fabricated and 

characterized to verify the design parameters.  

2.2 Center Deflection of CMUT Diaphragm  

The diaphragm center deflection determines the maximum change in capacitance 

for any bias voltage and electrical or ultrasonic load. For this analysis, the diaphragm is 
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considered to be homogenous and isotropic with perfect edge conditions. It is also 

assumed that the clamped edges hold the diaphragm rigidly against any out-of-plane 

rotation or displacement at the edges but allow displacement parallel to the diaphragm 

plane. At the edges, out-of-plane displacement is zero and the tangent plane to the 

displacement surface along the edge coincides with the initial position of the middle 

plane of the diaphragm. The boundary conditions imposed by the clamped edges can be 

expressed mathematically as [30-34]: 
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During the receive mode operation, the diaphragm experiences two pressure 

loads: an electrostatic pressure between the backplate and the diaphragm due to the bias 

voltage and the external mechanical pressure due to the incident acoustical waves. 

Following the variational method, the combined load deflection model of a clamped 

single material square diaphragm subject to large deflection due to both electrical and 

mechanical pressures can be expressed as [35]: 
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where 0w  is the diaphragm center deflection, 0
 

is the residual stress, 0  is the 

permittivity of free space, V  is the bias voltage, D  is the flexural rigidity, ExtP  is the 

external mechanical pressure, and v  is the Poisson ratio of the diaphragm material. In 

(2.2), the term within the first square bracket represents diaphragm stiffness due to 

nonlinear spring hardening, the first term within the second square bracket represents the 

stiffness due to the residual stress; the second term within the second square bracket 

represents the stiffness due to bending, and the third term within the second square 

bracket represents the spring softening due to the nonlinearity of the electrostatic force. 

Moreover, in (2.2) the electrostatic pressure due to the fringing field capacitance is 

neglected as its contribution is negligible compared to the total pressure load. The 

constants ,rC ,bC  and sC  are determined by adjusting the analytical solution with the 

numerical results for a specific design space and following [36] their values for typical 

thin diaphragms are: 
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The Poisson ratio dependent function  sf in (2.2) is given by [36]: 
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(2.4) 

 

Equation (2.2) can be modified to determine the load-deflection characteristics of 

a multilayered diaphragm as shown in Figure 2.1 by replacing the flexural rigidity D  

with the effective flexural rigidity effD  and the airgap 0d  with the effective airgap effd . 
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Figure 2.1. A section of a multilayer laminated plate [38]. 

 

Following Figure 2.1, the effective flexural rigidity effD  is expressed as: 
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where kE  and kv  are the Young‟s modulus and the Poisson‟s ratio of the kth  layer 

respectively. In (2.2), the effective Young‟s modulus E
~

 is the plate modulus and is 

expressed as: 
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where E  is the Young‟s modulus of the diaphragm material. As the thickness of the top 

conducting layer is much lower compared to the thickness of the structural diaphragm 

material, considering only the Young‟s modulus, Poisson ratio, and the residual stress of 

the main structural layer to determine the nonlinear stiffness associated with the spring 

hardening and the stiffness due to the residual stress in (2.2) would not introduce any 

significant error.  

The effective airgap deff is defined as: 

o
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dd
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 (2.11) 

where, dm is the membrane thickness, di is top electrode thickness, rm  is dielectric 

constant of the membrane, ri  is dielectric constant of the top electrode and do is air gap 

distance between diaphragm and backplate. 

The real root of the 3rd order polynomial (2.2) represents the center deflection of 

the diaphragm subject to both electrostatic and external pressure. Two other roots are 

imaginary and have no practical significance.  

As the diaphragm lies in the x-y plane, the parallel plate capacitance between the 

deformed diaphragm and the backplate can be calculated following [37]: 
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In (2.12)  yxw ,  represents the deflection surface of the deformed diaphragm also 

known as the deflection shape function. 

2.2.1 Deflection Shape Function 

Following [38], the deflection profile of a multilayered diaphragm as used in 

typical CMUTs can be determined from: 
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where w0 is the diaphragm center deflection determined using (2.2) and the coefficients 

nc  are adjustable parameters to be determined from FEA simulation results for any 

particular design space. For typical CMUT design space (diaphragm thickness range of 

0.5-3 m and sidelength range of 200-1000 m), investigation shows that three terms 

( 2N ) in (2.13) are necessary for large deflection cases while only two terms ( 1N ) 

are necessary for small deflection cases to achieve a high degree of accuracy. For the 

specified design space, the parameters 0c , 1c , and 2c are determined as: 
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by comparing the results from (2.13) with 3-D FEA using IntelliSuite.  

2.3 Capacitance 

Commonly used parallel plate capacitance model in (2.12) does not take account 

of the fringing field effects that is associated with the electric flux lines originating from 
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diaphragm sides and charge concentration at the diaphragm edges. Though an accurate 

value of the fringing field capacitance can only be obtained by solving Poisson‟s equation 

using a 3-D field solver, a highly accurate value of the fringing field capacitance can be 

calculated by modifying a VLSI on-chip interconnect capacitance model presented in 

[35].  

 

Figure 2.2. Cross- sectional view of a VLSI on-chip interconnect separated from a fixed ground 

plane by a dielectric medium [38]. 

 

Following [35], the per unit length capacitance of a VLSI on-chip interconnect of 

width OCIw  and thickness OCIh , separated from the substrate by a dielectric medium of 

thickness 
OCI

d
0  and relative dielectric constant r , as shown in Figure 2.2 can be 

expressed as: 
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(2.15) 

 

It has been determined that the maximum deviation of (2.15) from the most 

accurate numerical method presented in [35] is only 2% when 
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4/h0.1  ,1/ 0OCI0   OCIOCIOCI ddw  and 6% as long as 

10  ,3.0/ 00   OCIOCIOCIOCI /dhdw  holds. An approximate value of the fringing field 

capacitance for a CMUT fabricated with a square diaphragm of sidelength a2 as shown 

in Figure 1.1 can be calculated by modifying (2.15) as: 
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The first term in (2.16) represents the parallel plate capacitance associated with 

the CMUT as shown in Figure 1.1. The second and third term together represent the 

fringing field capacitance due to the diaphragm sidelength a2  while the fourth term 

represents the fringing field capacitance due to the conductor thickness cd . By 

rearranging (2.16), a functional form of total capacitance associated with a CMUT can be 

derived as: 
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where 0C  is the parallel plate capacitance expressed as 
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and ffC  is the fringing field factor expressed as: 

       5.0

75.0

ff

53.0

2

1
06.1

385.0
effceffeff dd

a
d

a
d

a
C 








  

(2.19) 



 

19 

The third term in (2.19) represents the fringing field capacitance due to the 

conductor thickness cd  and can be neglected as the flux lines originating from the 

conductor sides along the thickness will terminate beyond the coupling area of the device 

and will not contribute to the total capacitance.  

After deformation, the total capacitance is also contributed by two factors: the 

parallel plate capacitance DeformC  between the deformed diaphragm and the backplate 

which can be calculated using (2.12), and the fringing field factor ffC . Thus the total 

capacitance after deformation can be expressed as: 

)1( ffDeform CCC 
 (2.20) 

As the diaphragm edges are rigidly fixed and don‟t undergo any deformation and 

as the fringing field capacitance is contributed mainly by the charges concentrated at the 

edges, the fringing field factor ffC  can be assumed to remain unchanged despite 

diaphragm deformation and (2.19) can be used to calculate ffC  as before. 

2.4 CMUT Lumped Element Model 

Lumped element modeling is used to reduce the complexity of CMUT modeling 

to a manageable level for rapid and efficient simulation. This includes modeling of all 

major sensor performance criteria such as, resonant frequency, damping effects, radiation 

resistance, sensitivity due to bias voltage, etc.  

Sensitivity of the CMUT depends on size, thickness, stress of the diaphragm, 

airgap distance and the bias voltage. These parameters can be calculated following the 

analog electrical model of CMUT presented in [39]. The acoustic force is modeled as 

equivalent voltage source as seen in Figure 2.3. Rr represents radiative resistance and Mr 
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represents air mass. Mm is diaphragm mechanical mass and its compliance is Cm. the air 

gap and movable plate vent losses are represented by resistances Rg and Rh, and the air 

gap compliance is Ca.  

 

Figure 2.3.  Equivalent circuit model of CMUT. 

 

The acoustic impedance of the air in contact with the vibrating diaphragm is 

represented by radiative resistance Rr and air mass Mr. 
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where ρ0 is the air density, c is the sound velocity, and ω is the angular vibration 

frequency. The diaphragm compliance is equal to the average diaphragm deflection 

divided by the applied force. It is estimated from the energy method: 
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where effD  is the effective flexural rigidity and T  is tensile force per unit length which is 

calculated as: 
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dtT   (2.24) 

 

where   is the residual stress of the diaphragm. 

The equivalent mass element Mm is derived from kinetic energy of the square diaphragm 

under the uniform loading. 
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where ρ is mass per unit area of the diaphragm.   

The viscosity loss in the air gap Rg and its compliance Ca are: 
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where n is the hole density in the diaphragm and sf  is the surface fraction occupied by 

the holes, u is the air viscosity coefficient, and d is the average air gap distance. Also 

viscosity loss of the diaphragm plate holes can be approximated as: 
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Equivalent impedance tZ  of the CMUT is expressed as: 
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The total sensitivity tS  of the CMUT is defined as the output voltage oV  per unit 

of incident acoustical pressure P  and can be expressed as [39]: 
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where bV  is the bias voltage. Also, resonant frequency is estimated with [39]: 
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2.5 Stiffness and Residual Stress 

Stiffness and residual stress are key parameters for both static and dynamic 

analysis of the CMUT displacement. Stiffness is calculated from the relationship between 

the mass and resonant frequency. After measuring the resonant frequency, then the 

stiffness parameter is extracted then from the known relationship between mass and 

resonant frequency which is; 
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From the extracted stiffness, residual stress of the diaphragm is calculated using 

the equation from [40]: 
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2.6 Pull-in Voltage 

If the bias voltage exceeds certain limits, the electrostatic attraction force between 

the diaphragm and the backplate overcomes the elastic restoring force associated with the 

diaphragm and the diaphragm collapses on the backplate resulting in a device failure 

[37]. This voltage is known as the pull-in voltage. Determining the pull-in voltage is 

critical in the design process in order to determine the optimum DC operating point of the 

CMUT as increasing the DC bias voltage increases the sensitivity of the device. The pull-

in voltage for a square diaphragm CMUT as shown in Figure 1.1 can be calculated 

following: 
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2.7 Simulink Model for Dynamic Analysis 

For Dynamic simulation, first order parallel plate capacitor model [41] and FEA 

methods are used. First order model is computationally efficient and reaches very good 

accuracy which is a derivation of the parallel plate actuator model represented in [37]. 

The model is built on Matlab/Simulink using building blocks as in Figure 2.4 and Figure. 

Fundamental equation of motion for an electrostatic parallel plate actuator can be 

modeled as: 
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where A  is area, 0  is permittivity of air, g  is the air gap distance, m  is mass, b  is 

damping factor and k  is the stiffness parameter. 

Since (2.35) expresses position as a function of time, continuous iteration is 

necessary to solve the equation to determine the diaphragm position as a function of time. 

In (2.35) the stiffness parameter k is determined from material properties and geometric 

specifications of the diaphragm and the mass m  can be calculated from the known 

volume and density of the diaphragm material. The damping factor b  can be calculated 

following [37]: 

Q

mw
b 0  (2.36) 

 

where Q  is the quality factor. As the mass m  and the angular resonant frequency 0w  is 

known, then damping factor b  can easily be calculated. A Simulink model as shown in 

Figure 2.4 then can be built to solve (2.35) to determine the dynamic response of the 

system. 

 

 

Figure 2.4.  Simulink model of CMUT. 
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Figure 2.5.  Simulink model of CMUT. 

 

 

2.8 FEA Model for Dynamic Analysis 

Intellisuite™ FEA package is used for dynamic analysis of the CMUT. In order to 

run a successful dynamic analysis, Rayleigh damping coefficients  (mass damping 

factor) and   (stiffness damping factor) are determined from [42]: 
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The associated quality factor is expressed as: 
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Once a set of iQ  are determined (Table 2.4) from a frequency analysis with 

resonant modes (Table 2.2), respective damping factors i  can be determined from 

(2.38). The values of i along with i  are then inserted in (2.37) and solved 

simultaneously to obtain   and .  Then, these values are inserted into the damping 

settings of the simulation as in Figure 2.6. As the system is nonlinear, a direct integration 
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method with squeezed film damping has been chosen to carry out the transient analysis 

using FEA with IntelliSuite™.  

2.9 Final Design Specifications 

Following the mathematical models and design methodology presented above, a 

CMUT has been designed and analytically analyzed. Final design specifications of the 

CMUT are summarized in Table 2.1.  

Table 2.1. Final CMUT Design Specifications 

Parameter Value Unit 

Operating Frequency Range 113-167 kHz 

Operating Voltage 20 VDC 

Resonant Frequency 614 kHz 

Pull-in voltage 110 VDC 

Airgap 1 µm 

Diaphragm thickness 2 µm 

Diaphragm Sidelength 225 µm 

Number of CMUTs in an Array 6x6 - 

Array Sidelength 1.8 mm 

Vent Hole Dimension 15x15 µm 

Number of Vent Holes 5x5 - 

 

For FEA simulation of the transient response, a large displacement option with 10 

iterations and an increment number of 70 has been used as shown in Figure 2.7. For 

steady state analysis, first six mode Rayleigh damping coefficients are calculated and fed 

into the simulation to reach the best accuracy. Respective i  values are presented in 

Table 2.3. 
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Figure 2.6.  Material damping properties entry window. 

 

 

Figure 2.7.  Dynamic analysis with FEA. 
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Table 2.2, Table 2.3, Table 2.4 represents mode frequency, mode damping ratio and 

mode quality factor values respectively. 

 

Table 2.2. Frequency with Respect to Mode Number 

Mode Number Frequency (MHz) 

1 0.614 

2 1.3 

3 1.35 

4 2.048 

5 2.49 

6 2.5 

 

Table 2.3. Damping Ratio with Respect to Mode Number 

Mode Number Damping Ratio ( i ) 

1 0.086 

2 0.1865 

3 0.1865 

4 0.282 

5 0.344 

6 0.345 

 

Table 2.4. Quality Factor With Respect To Mode Number 

Mode Number Quality Factor ( iQ ) 

1 5.81 

2 2.68 

3 2.68 

4 1.77 

5 1.45 

6 1.44 
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Chapter 3  

READOUT CIRCUIT 

This chapter presents the design and implementation of a readout circuit 

developed for use with the CMUT to generate a voltage signal in response to an 

ultrasound excitation which is an essential part of the CMUT system. Readout circuit 

translates the capacitive change of the CMUT due to an ultrasound excitation to a useful 

electrical signal. The basic theory of transimpedance amplifier is, when a CMUT‟s 

capacitance changes due to external ultrasound pressure, this change is capacitance will 

require charges to flow from DC bias supply. Due to transimpedance amplifier‟s 

feedback mechanism, this flowing current is forced to pass through a feedback resistor 

RF, connected between the input and output ports of an operational amplifier (Figure 3.1), 

causing an output voltage from the transimpedance amplifier. 

3.1 Design of a Transimpedance Amplifier 

Basic operating principle of a transimpedance amplifier as shown in Figure 3.1 is 

that the current generated by the CMUT due to a change in capacitance flows through the 

RC network which is parallel to an operational amplifier to generate an equivalent 

voltage signal [43]. The ideal operational amplifier will not draw any current in the 

negative input, which translates into very high input impedance for the operational 

amplifier. The negative feedback mechanism of the high gain operational amplifier forces 

current to flow only through the feedback resistor and the capacitor. So the I to V (current 

to voltage) gain is simply defined as: 
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where 

f
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f R
sC

Z ||
1
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(3.2) 

 

and Vo, Iin, ZCMUT  and A(s) are the output voltage, input current, complex impedance of 

the CMUT and the open loop gain of the operational amplifier respectively. 

 

 

 

Figure 3.1. Transimpedance amplifier scheme. 

 

Since transimpedance amplifier is a feedback amplifier structure, feedback factor 

F should be calculated, which is basically how much of the output is fed back to the input 

of the amplifier: 
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From knowledge of the feedback factor, the noise gain of the amplifier can be 

calculated following: 

inZ

f
Z

F
 1 

1
Gain Noise

 

(3.4) 

It is necessary to design the transimpedance amplifier in such a way that the I-V 

gain doesn‟t have a peak caused by a zero introduced due to the capacitance of the 

CMUT. In order to overcome this zero, a feedback capacitor CF is introduced in parallel 

to RF simply because of stability issues. If the capacitance of the CMUT is large enough, 

and the amplifier is not compensated with a feedback capacitor, the overall system 

becomes prone to serious ringing and oscillation problems. The gain vs. frequency and 

phase vs. frequency plots of typical transimpedance amplifiers are shown in Figure 3.2 

and Figure 3.3 respectively. The Matlab codes for the figures are presented in Appendix 

A. From the figures, it can be concluded that to design a stable transimpedance amplifier, 

noise gain curve should be flattened before it crosses the open loop gain line of the 

operational amplifier.  

The CMUT capacitance introduces a zero to the system which is: 

CMUTF

Z
CR

f
2

1


 
(3.5) 

The noise gain increases until it hits the open loop gain of the operational 

amplifier. If there is no pole-zero cancellation applied, the amplifier will oscillate. In 

order to prevent that, a feedback capacitor CF is introduced to the system which will 

create a pole at fp, which is: 
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FF
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2
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

 
(3.6) 

However, besides cancelling the zero, this pole also introduces a phase margin of 

45º at fP , stabilizing the circuit and prevent peaking in the I-V Gain graph. It is to be 

noted that 45º is a theoretical estimation and the actual phase margin (PM) does vary for 

different implementation. A comparison between Matlab simulated design parameters 

and Spice parameters are presented in Table 3.1. 

Table 3.1.  Matlab and Spice Comparison Table 

 
Opamp BW 

(MHz) 
Rf (kΩ) Cf (pF) Cs (pF) f-3db (kHz) Phase Margin (°) 

Spice 14 MHz 75 4.7 65 675 55 

Matlab 14 MHz 75 4.7 65 
63 

6% Deviation 

58 

5.1% Deviation 

 

Where 

 GBW is the Gain Bandwidth product of the operational amplifier 

 Rf is the feedback resistor on the feedback loop of the operational amplifier. 

 Cf  is the feedback capacitor on the feedback loop of the operational amplifier, which 

is used for stability of the transimpedance amplifier topology. 

 Cs is the CMUT capacitance. 

 f-3db is the cutoff frequency of the transimpedance amplifier. 

 Phase margin is the phase difference between input and output signals in a feedback 

amplifier. 
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Figure 3.2. Design graph of the transimpedance amplifier. 

 

 

 

 

Figure 3.3. Phase graph of the circuit. 
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3.2 Noise 

Noise of the transimpedance amplifier can be derived from the circuit in Figure 

3.4. In Figure 3.5, noise regions of the system are clearly indicated. The first noise region 

f1 is a result of the zero introduced by the input sensor capacitance, and is represented as: 

  inFS CRR
f

||2

1
1




 
(3.7) 

 

where AMPCSin CCCC  , CC  is cable capacitance and AMPC  is amplifier input 

capacitance.  

 

 

Figure 3.4.  Transimpedance amplifier. 

 

Second noise region f2 is a pole introduced by inserting the feedback capacitor, in 

order to stabilize the transimpedance amplifier, and is expressed as: 

  FFS CRR
f

||2

1
2




 
(3.8) 

Operational amplifiers open loop gain frequency, fAOL is estimated as: 

inF

u
AOL

CR

f
f

2


 

(3.9) 
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AOLF  represents the intersection of the noise gain and open loop bandwidth where 

uf  is the gain bandwidth product which indicates the bandwidth of the operational 

amplifier. After defining the noise regions, RMS noise of the first region e1 is calculated 

as: 
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(3.10) 

 

where B is operational amplifiers input noise density at 1 Hz and fa=1 Hz 

Second and other noise regions are calculated as multiplying the area under the 

closed loop gain and amplifier noise density curves. Second region‟s RMS noise e2 is 

calculated following: 
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(3.11) 

where fb is 1/f noise corner frequency. Third, fourth and fifth noise region noise values 

are calculated as: 
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(3.14) 

The feedback resistor RF contributes to total noise of the amplifier, which is calculated as: 

BWKTRe FR 4
 

(3.15) 

Finally the total RMS noise of the transimpedance amplifier is represented following: 
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(3.16) 

 

RMS noise calculation is carried out using the values represented in Table 3.2. 

 

 

Figure 3.5. Noise calculation graph of transimpedance amplifier. 

 

Table 3.2. Transimpedance Circuit Component Values 

Component Value Unit 

Operational amplifier bandwidth (LT1122) 14 MHz 

Feedback resistor RF 75 kΩ 

Feedback capacitor CF 4.7 pF 

Cable capacitance Cc 2 pF 

Operational amplifier input capacitance CAMP 4 pF 

 

3.3 Printed Circuit Board 

Printed circuit board (PCB) is necessary in order to create a robust amplifier 

circuit. The PCB is fabricated in Electrical and Computer Engineering Department 

Technician‟s office, with TTECH PCB Prototyping Machine. The design files are 
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generated in EAGLE PCB Design software, then translated into universal Gerber files 

and fed into the PCB Prototyping machine. Fabricated PCB is presented in Figure 3.6. 

 

 

Figure 3.6. Fabricated PCB. 

 

 

In the design of the PCB, ground plane is used in order to reduce noise. The 

CMUT is connected to the circuit with a BNC cable, in order to increase flexibility of the 

overall system. The layout of the PCB can be seen in Figure 3.7. Amplifier circuit 

requires +5V, -5V and Vbias voltages. 
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Figure 3.7. PCB design file. 
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Chapter 4  

FABRICATION 

This chapter presents a step by step description of the process sequence followed 

to fabricate the CMUTs on silicon on insulator (SOI) wafers using a single mask. 

Scanning electron microscopy (SEM) has later been used for geometrical verification of 

the fabrication process. The details of each fabrication step is provided with operating 

conditions, used materials, process type and a conceptual cross sectional view has been 

provided.  

4.1 SOI Wafers 

CMUTs are typically fabricated using the surface micromachining technique or 

using a SOI wafer. In the surface micromachining technique, a CMUT is fabricated with 

a silicon nitride or polysilicon structural diaphragm coated with a thin layer of conducting 

material such as gold or aluminum on the top. The air cavity is realized by sacrificial 

etching of a low temperature deposited silicon dioxide layer on the top of a passivated 

silicon wafer. On the other hand, the SOI wafers come with a buried oxide layer (BOX) 

sandwiched between a single crystal device layer and a handle layer as shown in Figure 

4.1.  

 

Figure 4.1. Cross section of a SOI wafer. 
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Small holes are created in the device layer to facilitate entry of the silicon oxide 

etchant such as buffered oxide etch (BOE) to dissolve the oxide layer to create the cavity. 

The overall process is simpler than the surface micromachining technique. Additionally, 

the SOI wafers offer superior electrical and mechanical qualities such as: 1) higher 

switching speeds [44], 2) higher quality factor, 3) lower residual stress, and 4) better 

thickness uniformity when compared to other diaphragm material like Si3N4 and 

Polysilicon. Based on these considerations, an SOI based fabrication process has been 

selected to fabricate the CMUTs. 

4.2 Mask Preparation 

Only a single mask is necessary to fabricate the CMUTs on an SOI wafer. 

CMUTs are designed to be fabricated as a 6 x 6 planar array separated by a thin strip of 

silicon dioxide as shown in Figure 4.2a. Each of the CMUTs in the planar array has a 

sidelength of 225 µm, a diaphragm thickness of 2 m, and an airgap of 1 m as listed in 

table 2.1. The width of the SiO2 window frame has decided to be 30 m. A 150 m wide 

strip is left in the planar array for gold wire bonding, dicing and handling purposes. Etch 

holes of 15 x 15 m
2
 with a spacing of 20 m edge to edge has been incorporated in each 

of the CMUT diaphragms to release the sacrificial oxide layer underneath the 

diaphragms. These etch holes not only provide the route for etching of the buried oxide 

(SiO2), but also help reducing the air damping during diaphragm deflection. The 

dimensions and spacing of the etch holes are determined from the etch rate of buffered 

oxide etch (BOE) and considering the isotropic etch characteristic of BOE. Figure 4.2b 

shows the details of the etch hole dimensions and their separation distances. The 

separation distances are calculated such that two circular BOE etch-fronts intersect in the 
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middle of the diagonal distance between two etch holes to ensure that the buried oxide 

layer is removed and the diaphragm is released properly at the farthest distance. Material 

properties and geometrical specifications of the SOI wafer used to fabricate the CMUTs 

are listed in Table 4.1. 

    

                                                (a)                                                          (b) 

Figure 4.2.  6 x 6 planar array configuration. 

Table 4.1. SOI Wafer Specifications 

Parameter Specification(s) 

Diameter 150±0.2 mm 

Crystal Orientation <100> 

Overall Thickness 352±5 µm 

Front side finished Polished 

Back Side Finished Nanogrind @2000mesh 

Device Layer 

Thickness 2±0.5 µm 

Type/Dopant n/Sb 

Resistivity <0.2 Ohm-cm 

Handle wafer 

Thickness 350±5 µm 

Type/Dopant n/Phos 

Resistivity <5 Ohm-cm 

Buried Oxide 

Thermal Oxide 1±5% µm 
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4.3 Fabrication Steps 

Step 1: RCA Clean 

 

Figure 4.3. RCA clean. 

 

Before the SOI wafers are subject to any microfabrication process, an RCA 

cleaning is necessary to clean all organic contaminants, oxide layers and heavy metal 

contamination that may build up on the wafer surface. In the RCA cleaning, the first step 

is removal of all organic coatings in a strong oxidant, such as a 7:3 mixture of 

concentrated sulphuric acid and hydrogen peroxide (“pirhana”). Then organic residues 

are removed in a 5:1:1 mixture of water, hydrogen peroxide, and ammonium hydroxide. 

As this step can grow a thin oxide on silicon, it is necessary to insert a dilute HF etch to 

remove this oxide when cleaning a bare silicon wafer. The HF dip is omitted when 

cleaning wafers that have intentional oxide on them. Finally, ionic contaminants are 

removed with a 6:1:1 mixture of water, hydrochloric acid, and hydrogen peroxide [37]. 

The RCA cleaned wafer cross section is shown in Figure 4.3. 
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Step 2: Metal Deposition (Chromium and Gold) 

 

Figure 4.4. Metal deposition . 

 

The second step includes deposition of Gold (Au) layer, which is the top electrode 

of the CMUT. Since gold cannot be deposited on Silicon, a 25 nm layer of Chromium is 

deposited as an adhesion layer. After that, 200 nm thick gold layer is deposited using 

electron-beam evaporation technique (Figure 4.4). The Chromium seed layer was 

deposited at 20% power to obtain a deposition rate of 3.0 Å/sec and Gold conductive 

layer was deposited at 30% power which gives a rate of 9.2 Å /sec. In order to avoid 

oxidation of Chromium, two deposition processes were done in one duty cycle. 
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Step 3: Photolitography 

 

Figure 4.5. Photolitography. 

 

After deposition of the electrode layer, pattern of etch holes must be developed. 

These etch holes provides a router for etching the buried oxide layer (SiO2) as well as 

reducing the air damping during diaphragm deflection. For photolithography process, a 

0.5 m thick Shipley 1805 photoresist has been spin deposited using a thin HMDS layer 

as the primer (Figure 4.5). After soft baking of the photoresist layer, the wafer was 

exposed to UV light to carry out the photolithography and the final pattern was developed 

as seen in Figure 4.6. 

 

Figure 4.6. Final pattern after photolitography. 
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Step 4: Metal (Gold and Chromium) and Silicon Etch 

 

Figure 4.7. Metal and silicon etch. 

 

 

Figure 4.8. Chromium etching. 

 

After patterning the device with photoresist, gold and chromium layers are etched 

in order to expose the silicon layer for further etching of the diaphragm. Gold layer was 

etched using Transene TFA solution (8% I, 21% KI, 71% H2O, etch rate 28 Å /sec) for 

140 seconds (Figure 4.7). After etching the gold layer, RCA cleaning procedure is carried 

out. Then for etching of the Chromium layer, Transene 1020 is used for 12 seconds 

(10-20% Cericmonium Nitrate, 5-6% HNO3, etch rate 40 Å /sec) at 40 
0
C (Figure 4.8). 

The silicon layer is then DRIE (Deep reactive ion etch) etched in the next step, which is 

seen in Figure 4.9. 
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Figure 4.9. Silicon DRIE etch. 

 

 

Step 5: Dicing and Photoresist Removal 

After etching of silicon and devices are ready for release, it is important to get the 

individual dies separated. Dicing process is carried out before the photoresist removal, in 

order to protect the CMUT‟s diaphragm from heat, pressure and any failures due to 

dicing saw. After the dicing process, photoresist was stripped.  

 

Step 6: Release and Critical CO2 Drying 

In order to release the diaphragm, Transene Improved BOE (4-8% HF + NH4F, 

etch rate~800A/min) has been used to sacrificially etch the oxide layer which is followed 

by critical point drying in a typical CPD dryer (Figure 4.10). Critical point drying is 

carried out to avoid stiction of the devices.  

 

Figure 4.10. SiO2 etch. 
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4.4 SEM Validation of Fabricated CMUT Geometry 

After drying, the dies were inspected in SEM to check for proper diaphragm release. 

Figure 4.11 shows SEM image of one of the sensor diaphragms. Figure 4.12 shows the 

SEM image of one of the DRIE etched holes before oxide release and Figure 4.13 shows 

diaphragm after release.   

 

Figure 4.14 shows the SEM measurement across the diagonal distance between 

two etch holes. From   

 

Figure 4.14, it is clear that the diagonal distance between two etch hole corners of 

29.07 m matches very closely with the mask value of 28.28 m and the oxide layer has 

been completely etched in that region. The designed 17.5 m lateral distance of an etch 

hole from the CMUT edge (Figure 4.2b) also matches very closely with SEM measured 

value of 18.03 m as shown in Figure 4.15.  

 

 

Figure 4.11. SEM image of a fabricated CMUT. 
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Figure 4.12. SEM image of an etch hole after DRIE of silicon.  

 

 

Figure 4.13. SEM image of a CMUT diaphragm after release.  
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Figure 4.14. SEM image after BOE showing the release of the SiO2 layer in the diagonal region 

between two etch holes. 

 

 

Figure 4.15. SEM image of lateral etch distance at CMUT edge. 

 

 

These results conclude that the accuracy of the fabrication process is very good. 
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Chapter 5  

STATIC CHARACTERIZATION 

 

This chapter presents the detailed methodology of static characterization of the 

fabricated CMUTs. The methodology involves experimental measurement of key static 

device parameters and comparing them with analytical and FEA results to verify the 

design process. The key measured parameters are: diaphragm and airgap thicknesses, 

diaphragm static deflection, diaphragm stiffness, pull-in voltage, and static capacitance of 

the CMUT. Scanning electron microscope, Polytec laser Doppler vibrometer, LCR meter, 

and optical profilometer are used for measurements. Very good agreement has been 

found between the measured, calculated, and simulated values. 

5.1 SEM and Optical Profilometer Analysis 

As the microfabrication process is associated with some level of uncertainty in the 

thickness of the deposited layer and as the vendor supplied SOI wafers come with a 

certain percent variation in the thickness of the device layer and the oxide layer as listed 

in Table 4.1, it is necessary to measure the actual thickness of the diaphragm and the 

airgap for use in the simulation models to validate the design process. Any deviation in 

these values will cause discrepancy between simulation and experimental results. In order 

to achieve the most accurate results, SEM analysis is done at the University of Western 

Ontario Nanofabrication facility and the optical profilometer analysis is done at the 

Tribology lab at the University of Windsor. 

An inspection of the results from the Wyko optical profilometer, it has been 

observed that the samples have an upwards warping in the center of about 500 nm a 
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shown in Figure 5.2. To verify this, another measurement of the same sample has been 

carried out using a scanning electron microscope. For the SEM analysis employing 

focused ion beam technology, two CMUTs are cut along a mid-point to mid-point cross-

section in order to measure the dielectric layer thickness (before oxide etch), air gap 

distance (after oxide etch), and the diaphragm thickness.  

 

Figure 5.1.  Wyko measurement of warping on CMUT diaphragm. 

 

Figure 5.1 shows the SEM image of the CMUT before oxide release. The 

measurement shows that the thickness of the oxide layer is 997.6 nm and the thickness of 

the SOI device layer is 2.506 µm. Though the oxide layer thickness matches the designed 

airgap thickness, the actual diaphragm thickness is about 25% higher than the designed 

thickness of the diaphragm. However, this deviation matches with the vendor 

specification of 2±0.5 µm. Consequently, the whole analytical and FEA modeling was 

then carried out using the measured thickness of the diaphragm. 
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Figure 5.2. Dielectric and diaphragm layer thickness measurement with SEM. 

 

Figure 5.3 shows the SEM measurement results of the CMUT after oxide etch. 

From the figure it is clear that the CMUT diaphragm indeed has an upward warping in 

the center of 535 nm. This warping can be attributed to the combined residual stress 

having its root in the mismatch of the coefficient of thermal expansion of silicon and gold 

after the underneath oxide was removed. A Comparison of the Wyko and the SEM results 

is provided in Table 5.1. 

Table 5.1. Comparative Table Of Warping Measurement 

Parameter Wyko SEM Deviation from SEM (%) 

Air gap warping (nm) 500 512 2.3 

 

In conclusion, Both SEM and Wyko measurements enabled to determine 

important device dimensions with nm precision. Wyko optical profilometer is found to be 

very accurate within 1.2% compared to SEM measurements. Optical profilometer is 

found to be easy to use, and results are obtained much faster than SEM. But exact 
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diaphragm thickness and dielectric layer thickness cannot be determined with this device. 

The measured dimensions are then used in subsequent comparisons. 

 

 

Figure 5.3. SEM air gap measurement from center of the diaphragm. 

 

5.2 Capacitance 

As the CMUT is basically a variable capacitor, static capacitance measurement 

(zero external pressure and zero bias voltage) is an important part of static 

characterization. Capacitance is calculated using equation (2.16) with a total tier area of 

1.8 mm x 1.8 mm as shown in Figure 4.1a while excluding the coupling area associated 

with the 15 µm x 15 µm etch holes. The theoretical and experimental results are 

summarized in Table 5.2 without considering the warping effect and in table 5.3 with the 

warping effect.  

Table 5.2. Comparison Of Theoretical And Experimental Capacitance 

Calculated Capacitance  

(pF) 

Experimental Capacitance 

(pF) 

Percent Deviation 

(%) 

60.1 58.2 3 
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Following [45], the 535 nm warping of the diaphragm in the center can be 

averaged over the entire plate area to enable a parallel plate style capacitance calculation 

model. Following the prescribed method, the warping distance w0 has been averaged by 

w0/3 to evenly distribute the effect of warping over the entire diaphragm area and this 

average distance (w0/3) has been added to the original airgap thickness to take account of 

the warping. As the effective airgap increases slightly, the warping effect reduces the 

capacitance slightly. Table 5.3 provides the comparison of measured capacitance with 

capacitance calculated considering the warping effect. 

 

Table 5.3. Comparison Of Theoretical And Experimental Capacitance With Warping 

Calculated Capacitance 

(pF) 

Experimental Capacitance 

(pF) 

Percent Deviation 

(%) 

58.6 58.2 0.7 

 

5.3 Capacitance Change with Bias Voltage 

The electrostatic attraction force between the diaphragm and the backplate will 

cause the diaphragm to deform. This will decrease the airgap and the capacitance 

between the diaphragm and the backplate will change.. An Agilent E4980A LCR meter is 

used to measure this change of capacitance as the bias voltage is increased or decreased. 

During the measurement, the DC bias voltage is swept from 0V to 20V (up sweep) and 

again from 0V to -20V (down sweep) using a 1V step size. The corresponding 

capacitance values are recorded using the LCR meter. Figure 5.4 shows the experimental 

capacitance values for both up and down sweep measurements as a function of bias 

voltage. For comparison purpose, the capacitance values are plotted as a function of the 

absolute values for the bias voltage. 
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Figure 5.4. Bias voltage vs capacitance. 

 

One important characteristic of the measurement results to be noticed in Figure 

5.4 is that the capacitance change as a function of bias voltage (for both up sweep and 

down sweep operation) does not increase monotonously. Instead it fluctuates while 

maintaining an overall upward trend. Another interesting fact to be noticed in the graphs 

is that a higher slope of the data fitted curve for the down sweep operation. Figure 5.5 

shows a comparison of FEA and analytical capacitance change results with the data fitted 

experimental capacitance values.  
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Figure 5.5.  Capacitance change vs bias voltage. 

 

From Figure 5.5, it is evident that analytical and FEA capacitance change values 

are in very good agreement; however, the measured capacitance change values are 4 to 

10 times higher than the theoretical or FEA values.  

Since similar data were obtained with multiple test runs, it can be concluded that 

some dielectric charging phenomena occurs in the CMUT as the bias voltage is increased 

or decreased to effect a fluctuation in the capacitance values. The actual physics of this 

dielectric charging is still under investigation and sufficient mathematical models are yet 

to be developed to capture the complex physical phenomenon that takes place when a 

dielectric material like silicon dioxide is exposed to a strong electric field. The 

breakdown voltage of silicon dioxide is 10
7
 V/cm. At 1 V DC bias across the CMUT 

airgap of 1 µm results in an electric field of 10
4
V/cm which is well below the breakdown 

voltage of silicon dioxide. At 20 V, the electric field is 20 x 10
5
 V/cm. Thus, it can be 

concluded that no electrical breakdown has occurred even at 20 VDC . Obvious question is 

what causes this higher capacitance change at higher bias voltage. 
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It is to be noted that although silicon dioxide exhibit excellent insulating properties, their 

lattice is formed by either covalent or ionic bonds, which affect significantly the 

dielectric polarization or charging. Temperature can also provide enough energy to the 

trapped charges to get released and for the dipoles to overcome potential barriers and 

randomize their orientation. In [46] it has been concluded that space charge polarization 

in silicon dioxide due to the presence of free charges or injected charges as well as the 

dipolar polarization constitutes the major charging mechanisms. The presence of 

nanoclusters or nanocrystals is expected to give rise to a random distribution of dipolar 

polarization and in the same time it is expected to give rise to interfacial polarization 

[46]. According to [47] as the electrostatic field gets stronger as the DC bias voltage 

increases causing a decrease in the airgap, excessive charges get trapped into the 

dielectric layer associated with the silicon dangling bonds. Also according to [46] low 

temperature deposition which is usually used in MEMS devices, leads to formation of 

silicon clusters, therefore causing leakage and charge trap interfaces. 

For a fixed bias voltage and no mobile charges and charge traps, electrostatic 

force is assumed to be constant  in time [48]. However, in the test scenario, DC voltage is 

swept and LCR meter uses a small AC signal in order to complete the measurements. 

Also leakage currents are detected in the CMUT device, which comes from the SiO2 

walls and between the electrodes. From the cross section of the CMUT in Figure 5.6, it 

can be seen that there exists a possible charge injection path from the top gold conductor 

to the bottom silicon backplate through the top silicon diaphragm and the oxide layer. In 

addition, a charge injection path may also be created from the top diaphragm to the 
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bottom electrode through the airgap to absorbed moisture particles because of the relative 

humidity [48]. 

 

 

 

Figure 5.6. CMUT cross section. 

 

Paschen defined breakdown voltage of parallel plates in air as a function of 

pressure and gap distance; however, it is not valid for air gaps less than 4 µm [49]. 

Corrected Paschen curve for narrow gaps in MEMS devices is  presented in [49], and 

breakdown voltage in air for a 1 µm plate is about 60V. Comparing with high DC 

operating voltages of CMUT‟s, leakage through air is inevitable, and this effect 

contributes to leakage current and charge trapping. Since leakage currents cause i
2
R 

heating, this effect also increases dielectric charging as mentioned above.  

Due to combined effects of the different phenomena for dielectric charging, the 

net charge that contributes to the capacitance change will be different from the theoretical 

values. Consequently, the measured capacitance is ought to be different from the 

theoretical values. Additionally the amount of trapped charge or dipoles in a silicon 

dioxide film depends on the specific deposition technique. Without sufficient 



 

59 

mathematical models it is very difficult to analytically quantify the amount of dielectric 

charging and consequently the change in capacitance as a function of bias voltage. 

 

5.4 Stiffness and Residual Stress of the Diaphragm 

Following (2.32), the diaphragm stiffness can be extracted from a measurement of 

the resonant frequency. The mass m  of the diaphragm has been calculated from the 

known volume and density of silicon (2330 kg/m
3
) as 101068.3   kg. The resonant 

frequency of the CMUT has been measured using a Polytec™ laser Doppler vibrometer 

available in the University of Waterloo. The experimental set up and a picture of the test 

scenario is shown in Figure 5.7 and Figure 5.8. Using the relation (2.32), the extracted 

stiffness parameter has been extracted as 5400 N/m. Using this value of k  in (2.33), the 

measured value of residual stress of the diaphragm has been extracted as 55 MPa. 

 

Figure 5.7. Measurement setup of Polytec laser Doppler vibrometer. 
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Figure 5.8. Picture of the CMUT planar array in experiment. 

 

A comparison between analytical Matlab calculation, FEA and measurement of 

stiffness parameter is provided in Table 5.4. Very good agreement between theory and 

experiment is achieved. 

Table 5.4. Comparison of Stiffness Constant 

Parameter Matlab FEA Measurement 

Stiffness (N/m) 5447 5339 5410 

Deviation from Measurement (%Δ) 1.2 1.3  

 

5.5 Bias Voltage vs. Center Deflection 

Center deflection is measured using Wyko™ optical profilometer, under different 

bias voltage conditions. Then this measured data is compared with analytical model 

developed in MEMS lab [12], and FEA data.  

In Figure 5.9, center deflection versus bias voltage is presented. Table 5.5 

represents the deviation of the Matlab and FEA results from the measurement results. 

Very good agreement between theory and experiment is achieved.   
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Figure 5.9. Maximum deflection vs bias voltage. 

 

Table 5.5. Center Deflection Deviation From Measurement 

 
Deflection (µm) Maximum Deviation from 

Measurement (%Δ) 

Measurement 0.066 - 

FEA 0.07 6 

MATLAB 0.0748 10.2 

 

5.6 Pull-in Voltage 

The analytical pull-in voltage has been calculated using relation (2.34), and the 

experimental pull-in voltage has been determined using the Polytec laser Doppler 

vibrometer. The experimental set up for pull-in voltage measurement is shown in Figure 

5.7. The experimental pull-in voltage has been measured by observing the diaphragm 

response to decay until the device fails while increasing DC bias voltage. After pull-in, 

the CMUT is failed as shown in Figure 5.12. The pull-in voltage has also been 

determined by 3-D electromechanical FEA using Intellisuite. The 3-D FEA result 

characterizing the pull-in phenomenon is shown in Figure 5.10. It is to be noted that the 
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etch holes are not included in the analytical and the FEA simplification and minimize 

simulation time. Table 5.6 presents a comparison of the experimental pull-in voltage with 

the analytical and FEA simulation results.  

 

 

Figure 5.10. FEA displacement vs voltage graph. 

 

Table 5.6. Pull-In Voltage Comparison Table 

 Pull-in Voltage 

(V) 

Deviation from FEA  

(%Δ) 

Deviation from MATLAB 

(%Δ) 

FEA 106 - - 

Matlab 111.2  4.5 - 

Sample 1 118 10.1 5.7 

Sample 2 110 3.6 1.1 

 

In Figure 5.11 and Figure 5.12, diaphragm after the pull-in is presented. After 

focused ion beam etching, a cross section view shows that the CMUT becomes unusable 

due to the short circuit condition after the pull-in. 
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Figure 5.11. Middle of the diaphragm where pull-in occurred. 

 

 

 

Figure 5.12. Pulled-in device cross section. 
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Chapter 6  

DYNAMIC CHARACTERIZATION 

 

This chapter presents the detailed methodology of dynamic characterization of the 

fabricated CMUTs. The methodology involves experimental measurement of the 

transient and steady state response of the CMUT, electrostatic spring softening, 

bandwidth response and comparing them with analytical (Simulink™) and FEA results to 

verify the design process. Polytec laser Doppler vibrometer has been used for 

measurements. Very good agreement has been found between the measured, calculated, 

and simulated values. 

 

6.1 Resonant Frequency as a Function of Bias Voltage 

The resonant frequency of the SOI based CMUT is measured with a Polytec 

laser Doppler vibrometer (MSA 4). The experimental set up is similar for the static 

measurement. The resonant frequency has been measured for three different bias 

voltages: 10 V, 20 V and 30 V, respectively and a 20 VAC peak to peak signal. The 

frequency of the AC signal has been swept from 100 kHz to 860 kHz. Figure 6.1 shows 

the displacement vs. frequency measurement result from the laser Doppler vibrometer. 

Figure 6.1 also shows the electrostatic spring softening effect due to the bias voltage as 

the resonant frequency goes down with an increasing bias voltage. The measured results 

for 20 V DC excitation with 20 V peak-to-peak AC sweep are compared with the 

analytical values calculated using Matlab™ and 3D electromechanical FEA using 

Intellisuite™. Table 6.1 shows the comparison along with percent deviations. 
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Figure 6.1. Displacement vs. frequency graph with different bias voltages. 

 

Table 6.1.  Resonant Frequency Comparison at 20VDC 

 Resonant Frequency (kHz) with 20 VDC 

and 20 VAC 

Deviation from Measurement 

(%Δ) 

FEA 614 0.02 

MATLAB 614 0.02 

Measured 615 - 

 

 The resonant frequency is plotted as a function of bias voltage in Figure 6.2. 

Comparative table for resonant frequency vs. bias voltage is provided in Table 6.2. 
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Figure 6.2. Resonant frequency vs. DC bias voltage graph. 

 

Table 6.2. DC Bias Vs Resonant Frequency Comparison Table 

DC Bias (V) FEA (kHz) Measurement (kHz) Deviation (%Δ) 

10 639 630 1.4 

20 614 615 0.02 

30 580 600 3.3 

 

Quality factor of the CMUT is extracted from displacement vs. frequency graph 

in Figure 6.1, and defined as: 

center

LH

f

ff
Q


  (6.1) 

 

where fH is the higher f-3db frequency, fL is the lower f-3db frequency, and fcenter is the 

resonant frequency. Following (6.1) quality factor is found to be 5.87. 
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6.2 Transient Analysis of CMUT 

Transient analysis of the diaphragm is done with Polytec laser Doppler 

vibrometer, and compared with Simulink and FEA dynamic simulation results with 

calculated and extracted parameters. For the transient analysis, the CMUT is biased with 

20 VDC and the AC excitation voltage is 20 VAC while a Bias Tee superimposes the AC 

and DC signal as presented in Figure 5.7. An Agilent signal generator is used to generate 

20 Vp-p AC signal from 100 kHz to 860 kHz. Laser vibrometer is connected to a decoder 

and a PC in order to record the dataset. 

The Time vs. displacement graph obtained from the measurement is presented in 

Figure 6.3, and a comparative table is provided in Table 6.3.  

 

Figure 6.3. Displacement vs. time results with VDC=20V and VAC=20Vp-p. 
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Table 6.3. Transient Analysis Deviation from Measurement with VDC=20V and VAC=20Vp-p 

 
Maximum Peak to Peak Deflection 

(nm) 

Maximum Deviation from 

Measurement (%Δ) 

Measurement 87.12 - 

FEA 78.9 9.4 

MATLAB 76.9 11.7 

 

6.3 Steady-state Analysis of CMUT 

Steady-state analysis of CMUT diaphragm is done with a Polytec laser Doppler 

vibrometer. An Agilent signal generator is used to generate 20 Vp-p AC signal from 100 

kHz to 860 kHz. DC bias voltage is swept from 10 VDC to 30 VDC. Mode based FEA 

analysis is done with Intellisuite to simulate the steady state response using the same 

excitation values for the DC and AC excitation. Figure 6.4  presents a comparative plot of 

the steady-state response obtained from Matlab/Simulink, Intellisuite FEA and 

experimental method. Table 6.4 provides maximum deviation of simulation and 

calculated data from the experimental values. 
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Figure 6.4. Displacement vs. frequency results with VDC=20V and VAC=20Vp-p . 

 

Table 6.4. Steady State Analysis Deviation from Measurement 

 
Maximum Peak to Peak Deflection 

(nm) 

Maximum Deviation from 

Measurement (%Δ) 

Measurement 151.9  

FEA 143.8 5.3 

MATLAB 168.6 11 

 

FEA has approximated the peak to peak displacement of diaphragm much better 

than Simulink first order model, because it simulates the displacement with taking 

account of first six vibrational modes from Table 2.3, which are calculated with help of 

FEA frequency analysis. 
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6.4 Fractional Bandwidth 

Fractional bandwidth BWF  is a figure of merit that shows how wideband the 

CMUT is. Fractional bandwidth is calculated from the displacement vs. frequency plot 

shown in Figure 6.1 and Figure 6.4 following: 

%1006  

Center

dB

BW
f

BW
F  (6.2) 

The experimental and theoretical bandwidth values are summarized in Table 6.5.  

 

Table 6.5. Fractional Bandwidth Deviation from Measurement 

 
Experimental - 

VDC=20 V 

Theoretical -

VDC=20 V 
FEA - VDC=20 V 

Fractional BW (%) 27 20 30.7 

Deviation from 

Experimental (%Δ) 
- 7 3.7 

 

6.5 Bandwidth Response of CMUT 

An important aspect of an ultrasound transducer is the bandwidth flatness in a 

desired frequency range. CMUT is tested with a variety of DC voltages in 113-167 kHz 

frequency band to see the bandwidth flatness.  

The CMUT is excited with constant 20 VAC p-p, with 113 kHz and 160 kHz 

respectively. DC bias voltages are swept from 10 VDC to 60 VDC and the results are 

presented in Figure 6.5. The CMUT shows exactly the same peak to peak displacement in 

10 and 40 VDC in 113-167 kHz frequency band. For the rest of the bias voltages the 

maximum deviation from 113 kHz to 160 kHz is in order of 5 nm peak to peak which is 

negligible. The CMUT is concluded to have a flat bandwidth response in 113-167 kHz 

band. 
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3D scan feature of the Polytec laser Doppler vibrometer is used to see the 

diaphragm movement as 3D animation. Fabricated CMUT is found to vibrate dominantly 

in first mode which is seen in Figure 6.6. 

 

 

 

Figure 6.5. Displacement vs bias voltage. 

 

 

Figure 6.6. 3D scan result of CMUT with VDC=30V and VAC=20Vp-p at 113 kHz. 
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Chapter 7  

READOUT CIRCUIT CHARACTERIZATION 

This chapter presents the characterization results of the transimpedance amplifier 

based readout circuit used along with the CMUT. Very good agreement has been found 

between theory and practice.  

7.1 Noise 

Measured and calculated RMS noise values are compared in Table 7.1. Deviation 

of the total output noise from theoretical is due to the inevitable noise sources from the 

environment, such as fluorescent lamps, computer power supplies, grid noise and 60 Hz 

noise. Since the fabricated PCB is not enclosed with shielding, all these noise sources are 

affecting the circuit noise level. 

Table 7.1. Experimental And Theoretical Noise Comparison 

 Calculated (mVrms) Experimental (mVrms) Deviation (%Δ) 

RMS Noise 1.09 1.3 16 

 

7.2 Simulation of Receive Mode 

Microacoustics™ BAT-3 Ultrasound Transmitter is used as a transmitter. First, 

output pressure curve of the transmitter is extracted in NVH Lab at University of 

Windsor, and the result is represented in Figure 7.1.  
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Figure 7.1. Output pressure of BAT-3 transducer with 50Vp-p excitation at 30 mm distance. 

 

For receive mode characterization purpose, the testbench in Figure 7.2 is used. 

Receive mode is simulated using Mason‟s model represented in [39]. From the model, 

output of the CMUT is estimated as a result of incoming sound pressure. 

 

 

Figure 7.2. Testbench for CMUT receive mode. 
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Figure 7.3 represents the Spice simulation result of current from the lumped 

element circuit. This result can be fed into the transimpedance amplifier simulation as a 

current source. 

 

 

Figure 7.3. Simulated current output of the CMUT. 

 

Transimpedance amplifier is modeled in Spice and is represented in Figure 7.4, 

where C1 is the total CMUT tier capacitance, and C2 is the parasitic capacitance seen 

from the input of the amplifier.  

Transmitter is excited with 50 Vp-p AC voltage which results in 0.24 Pa in 20 mm 

distance. 5 Cycle sinusoidal pulse is sent in order to recognize the ultrasound wave from 

the electromagnetic feedthrough noise. The received signals are shown in Figure 7.5 and 

Figure 7.6. Note that after 5 cycles, it takes 2 cycles to damp the oscillation of the 

diaphragm. CMUT is biased with 30 VDC. A comparative table of the experimental and 

theoretical results with 550 kHz 0.24 Pa sound pressure is in Table 7.2. 
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Figure 7.4. Simulation of transimpedance amplifier. 

 

 

Table 7.2. Amplifier Output Deviation from Theory 

 Amplitude (mVp-p)  Deviation (%Δ) 

Theoretical 9.25  

Experimental 8.78 5.1 

 

 

 

Figure 7.5. Incoming received signal. 
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Figure 7.6. Incoming received signal, zoomed version. 

 

7.3 Simulation of Pitch-Catch Mode 

In Pitch-catch mode, two identical CMUTs are used as both receiver and 

transmitter, and the testbench is in Figure 7.7. 

 

Figure 7.7. Pitch-catch mode testbench. 

 

Both CMUT‟s are biased with 50 VDC and transmitting CMUT was excited with 

40 VAC at 550 kHz. Transmitting CMUT failed after the test because of overheating due 

to high leakage currents at this high bias and excitation voltages required due to low 

output pressure of the CMUTs. Table 7.3 represents the deviation between experimental 



 

77 

and theoretical results. Incoming ultrasound wave from the readout circuit is in Figure 

7.8. 

Table 7.3. Amplifier Output Deviation From Theory 

 Amplitude (mVp-p) Deviation (%Δ) 

Theoretical 2.1 - 

Experimental 1.96 6.6 

 

 

 

Figure 7.8. Pitch-catch mode incoming received signal. 
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Chapter 8  

CONCLUSIONS AND DISCUSSIONS 

8.1 Conclusions 

An SOI based CMUT is successfully fabricated, simulated and experimentally 

characterized with detailed static and dynamic characterization methods explained 

throughout the thesis. Necessary testbenches were developed and realized for both static 

and dynamic characterization. Theoretical simulations are successfully carried out with 

analytical modeling using Simulink/Matlab™ and Intellisuite™ FEA software packages. 

Dynamic characterization is done by comparing theoretical data with experimental data 

obtained from Polytec™ laser Doppler vibrometer. Static characterization is done by 

using Wyko™ optical profilometer, SEM (Scanning electron microscope), and LCR 

meter. Finally readout circuit is designed, fabricated, and tested successfully in order to 

operate the CMUT in receive mode.  

Very good agreement has been found in all parts of characterization, except for 

the dynamic capacitance change readings. After investigation, it is concluded that this 

apparent discrepancy in the capacitance change as a function of bias voltage values is due 

to the dielectric charging and trapped charges in the silicon dioxide layer and charge 

conduction through the air in the cavity as suggested in [46] and [50]. Sufficient 

mathematical models to capture these effects of dielectric charging, and charge 

conduction through the air in the cavity are unavailable in literature [46]. Consequently, it 

was not possible to include these effects in the simulation.  

Overall, the characterization process gave insight into the proper methodology of 

design, fabrication, and testing of CMUTs. 
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8.2 Discussion 

Major discrepancy has been found in dynamic capacitance change as a function of 

bias voltage due to dielectric charging, conduction through the moisture trapped in the air 

cavity, ionic contamination of the insulating layer (trapped charges, mobile charges in 

SiO2 and interface charges). 

As the whole test array consists of 6x6 CMUTs, 44% of the total array area 

includes SiO2 as diaphragm support. To overcome this, the total area of insulating layer 

must be minimized. 

As the typical SOI wafers have a single oxide layer that is etched away to create 

the air cavity, if the deflection of the diaphragm due to combined load of electrostatic 

force and ultrasound pressure reaches the pull-in limit, the diaphragm will collapse on the 

back plate to cause a short circuit and destroy the device. Consequently, appropriate 

measure must be taken to ensure that the diaphragm deflection as a combined effect of 

electrostatic force and the ultrasound pressure is well below the pull-in limit of the 

device. Thus, typical SOI wafer based construction, though it is simple and low cost, 

bears a risk of device failure.  

Recently, SOI wafers are available with multiple dielectric layers where one of 

the layer could be made of SiO2 and the other could be made of Si3N4 . Using such an SOI 

wafer will mitigate the risk of device failure. Following the same SOI etching technique, 

Si3N4 will be left after etching of the SiO2, which will act as an insulating barrier between 

the diaphragm and the backplate to prevent any device failure due to diaphragm collapse. 

However, both SiO2 and Si3N4 layers are mingled with trapped charges, ionic 

contamination and interface charges in addition to dielectric charging when exposed to a 

high electric field. In typical MOS (metal oxide semiconductor) geometry, the thickness 
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of the field oxide is very small, typically in the range of a few nm. Thus the effect of the 

impurity charges is small; however, for MEMS devices where the thickness of the oxide 

layer is 1-4 µm‟s the capacitance contributed by the impurity charges is significant. 

Further investigation is necessary to develop thicker oxide films with lower 

contamination or other insulating materials needs to be used as the dielectric spacer 

between the diaphragm and bottom electrode. 

8.3 Future Directions 

For future designs of CMUT, two possible fabrication techniques are suggested.  

 

Figure 8.1. Cross section of a multilayered SOI wafer. 

 

Some companies now offer Multilayered SOI wafers, which is a great option to 

provide a Si3N4 insulating layer on the backplate after the SiO2 etch. A cross section of a 

multilayered SOI wafer is presented in Figure 8.1. After etching of the Si and SiO2 layers, 

the Si3N4 will remain as an insulator shown in Figure 8.2. 

 

Figure 8.2. Cross section of a multilayered SOI wafer after etching Si and SiO2 layers. 
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An alternative to multilayered SOI is to use a polymer called benzocyclobutene 

(BCB) as the insulator layer. BCB has many figures of merit [51] such as low dielectric 

constant, a low electrical current loss factor at high frequencies, low moisture absorption, 

low cure temperature, high degree of planarization, low level of ionic contaminants, high 

optical clarity, good thermal stability, excellent chemical resistance, and good 

compatibility with various metallization systems. Lower ionic contamination prevents 

leakage currents and charge traps, which is an important factor in MEMS devices. 
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APPENDICES 

APPENDIX A 

Transimpedance Amplifier Matlab Code 

%% The following code calculates the transimpedance gain and phase of a 

transimpedance amplifier 

clc; 

clear; 

clear all; 

%% Transimpedance Amplifier Design by Tugrul Zure 

%% Frequency and GBW 

f= 1:100:50e6; %frequency range to be simulated 

w=2*pi.*f; 

s=1i.*w; 

GBW=14e6; %Gain BW product of opamp 

%% Parameters 

flp=6.5; %Lower pole of opamp 

Cs=65e-12; %Sensor capacitance 

Ccm=1e-12; %Opamps common mode capacitance 

Cdiff=1e-12; %Opamp differential mode capacitance 

Cp=Ccm+Cdiff; %Opamp input capacitance 

Cc=2e-12; %cable capacitance 

Cin=Cs+Cp+Cc; %Total input capacitance to opamp 

Rf=75e3; %Feedback resistor 
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Cf=4.7e-12; %Feedback capacitor 

%% Plot A(open loop gain) 

A=(GBW*flp)./(s+flp); 

figure(1); 

semilogx(f,db(A)); 

hold on; 

%% Transimpedance gain of the amplifier 

w0=sqrt(((GBW+1)*flp)/(Rf*(Cin+Cf))); 

q=w0/(flp*(1+GBW*(Cf/(Cin+Cf)))+(1/(Rf*(Cin+Cf)))); 

Gainadv=Rf.*(GBW./(GBW+1)).*(w0.^2./(s.^2+s.*w0/q+w0.^2)); 

Gainadvdb=db(Gainadv); 

semilogx(f,Gainadvdb); 

xlabel('Frequency (Hz)') 

ylabel('Gain (dB)') 

%% Noise gain calculation 

X1=s.*Cf*Rf+1; 

X2=s.*Rf*(Cin+Cf)+1; 

F=(X1)./(X2); 

noisegainx=abs(F); 

noisegain=1./noisegainx; 

semilogx(f,db(noisegain)); 

%% Estimated bandwidth of the transimpedance amplifier 

pole=1/(2*pi*Rf*(Cin+Cf)); 
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F0=sqrt(pole*GBW) 

temp=max(Gainadvdb); 

temp=temp-3.0; 

temp1=find(abs(Gainadvdb-temp)<.01); 

f3db=mean(temp1*100) 

%% Plotting the phase of the transimpedance amplifier 

phase=angle(Gainadv)*180/pi; 

figure(2); 

%semilogx(f, angle(Gainadv)*180/pi); 

semilogx(f, phase); 

xlim([1 50e6]); 

xlabel('Frequency (Hz)') 

ylabel('Phase (Degrees)') 
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