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ABSTRACT 

To effectively and accurately deliver drugs within the human body, both new designs and 

components for implantable micropumps are being studied.  Designs must ensure high 

biocompatibility, drug compatibility, accuracy and small power consumption.  The focus 

of this thesis was to fabricate a prototype magnetic nanoparticle membrane for eventual 

incorporation into a biomedical pump and then determine the relationship between this 

membrane deflection and applied pneumatic or magnetic force.  The magnetic 

nanoparticle polymer composite (MNPC) membranes in this study were composed of 

crosslinked polydimethylsiloxane (PDMS) and iron oxide nanoparticles (IONPs).  An 

optimal iron oxide fabrication route was identified and particle size in each batch was 

approximately 24.6 nm.  Once these nanoparticles were incorporated into a membrane (5 

wt. %), the nanoparticle formed agglomerates with an average diameter of 2.26 ±1.23 

µm.  Comparisons between the 0 and 5 wt. % loading of particles into the membranes 

indicated that the elastic modulus of the composite decreased with increasing particle 

concentration.  The pressure- central deflection of the membranes could not be predicated 

by prior models and variation between magnetic and pneumatic pressure-deflection 

curves was quantified.  Attempts to fabricate membranes with above 5 wt. % 

nanoparticles were not successful (no gelation).  Fourier Transform Infrared (FTIR) 

spectroscopy results suggest that excess oleic acid on the nanoparticles prior to mixing 

might have prevented crosslinking.  
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CHAPTER ONE 

INTRODUCTION TO MAGNETIC NANOPARTICLE POLYMER COMPOSITE 
MEMBRANES 

1.1 Research Intent 

Magnetic nanoparticle polymer composites (MNPC) are polymeric materials 

designed to actuate in the presence of magnetic fields.  A broad array of applications has 

been proposed in which these MNPCs could be used including cancer therapy, 

antimicrobial water treatment, microfluidic transport systems, and vibration/shock 

adsorption [1.1-1.5].  An additional application is the fabrication of MNPC membrane 

actuators for their inclusion in diaphragm pump devices.  These devices could be 

remotely driven using a magnetic force (that is, the pump would not be connected 

physically to the actuating mechanism, but rather driven by an externally applied 

magnetic field [1.6, 1.7]).   

Researchers have demonstrated that MNPC membrane deflection depends on the 

magnetic field, nanoparticle composition (magnetic properties of the nanoparticles), the 

membrane’s concentration of those particles, and the stiffness of the membrane [1.5, 1.7, 

1.8].  However, there are no reports that empirically relate MNPC membrane deflection 

to the applied magnetic field gradient [1.3, 1.8].  There is also a need to determine if the 

response of these membranes to mechanical or magnetic force are similar [1.9].  

The objective of this thesis is to present a prototype MNPC membrane, and define the 

relationship between a MNPC membrane’s structure and deflection during the application 

of external forces (magnetic and mechanical).  We hypothesize that the membrane’s 

behavior could be estimated by equating the mechanical force normally applied within 
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the generalized membrane mechanical deflection theorem [1.10, 1.11] with a simple 

Maxwell approximation of magnetic force [1.12, 1.13].  This thesis gives an overview of 

membrane pump development and design (Chapter 1), synthesis methods for magnetic 

nanoparticles used in MNPC systems (Chapter 2), fabrication and characterization 

methods used in this work (Chapter 3), structure property results for iron oxide 

nanoparticles (IONP’s)-polydimethylsiloxane (PDMS) membranes in (Chapter 4), and 

future work needed to improve these preliminary results (Chapter 5).   

1.2 Overview of Positive Displacement Pumps and Micropump Design 

Pumps are apparatuses that transport fluid through mechanical action from one 

point in space to another [1.14].  While pumps originated around 300-200 BCE [1.15], 

there are still innovative designs being discovered.  Though information about pump 

classification varies in literature; gravity, direct lift, and positive displacement are 

generally referenced as the three main categories [1.16], and examples are shown Figure 

1.1.  Gravity pumps uses the force of gravity to transport fluid [1.16].  Direct lift pumps 

use mechanical force to lift fluid from one reservoir to another fluid storage [1.16]. 

Positive displacement pumps apply mechanical force to a volume of fluid pushing it into 

a desired direction [1.16].   



3

Figure 1.1: These images are representations of the main categories pumps. The images of 
the fire pump and the Archimedes screw were taken from Water Engineering of Ancient 
Civilizations [1.15]  

Over the last 2000 years, variations of positive displacement pump systems have 

been developed due to both new applications being identified and design efficiency 

improvements [1.17].  One design category of these types of pump systems is the 

diaphragm pump [1.18], an example of which is shown in Figure 1.2.  This system 

operates using a driver, diaphragm, chamber, and valve components [1.19].  The driver 

applies a force on the diaphragm, which then deflects and changes the internal volume of 

the chamber [1.19, 1.20].  The valves are used to direct the flow of fluid into and out of 

the chamber [1.19, 1.20].   
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Figure 1.2 Representation of a diaphragm pump where A. is the driving force mechanism, 
B. the membrane/diaphragm, C. the chamber, and D. are the inlet and outlet check valves

A variant of the diaphragm pump is currently used for drug delivery [1.17, 1.20] to 

combat situation of patient harm due to medication related errors [1.21].  These 

medication related errors, such as inaccurate regulation of intravenous treatment, can 

result in adverse effects to patient harm [1.21] and it is estimated that 35% of all errors 

are related to the use of current medical pump systems [1.21].  New miniaturized pumps 

are being investigated to to deliver medication at low desired dosages, avoid 

contamination, and be driven with a small power source [1.22].  The design criteria for 

the use of these systems are high biocompatibility, drug compatibility, flow rate accuracy 

and precision, mostly-completely implantable, and small power consumption [1.17, 1.23, 

1.24].  Research groups are investigating a range of actuation methods including 

piezoelectric, thermopneumatic, electrostatic, or electromagnetic drivers.  A range of 

micropump systems that use different types of drivers can be seen in Table 1.1.  

Electromagnetic drivers can supply a force remotely (i.e. distance between device 

and driver) and the applied magnetic fields can penetrate biological systems with minimal 

effect [1.17].  The electromagnetic pump designs generally fall into two types: systems 

where a permanent magnetic is attached at the center of the membrane [1.17, 1.24, 1.33], 
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or systems where the membrane is embedded with magnetic particles [1.3, 1.31, 1.39] 

that are micrometers or nanometers in size [1.7, 1.40-1.42].  The following section will 

discuss the properties of these particles embedded in MNPC.  

Table 1.1:  Table of authors that designed micropump systems using various actuating 
mechanisms and diaphragm materials 
Driver Diaphragm 

material 
Membrane dimensions Deflection/flow rate 

measurement system 
Piezoelectric Si 4 mm x 8 mm x 70 µm Laser interferometry [1.26] 

Piezoelectric PDMS Thickness  100-200 µm Micro-PIV [1.27] 

Electrostatic Si 1.7 mm x 1 mm x 15 µm Not recorded [1.28] 

Electrostatic Si 1.7 mm x 1 mm x 15 µm Not recorded [1.29] 

Thermopneumatic Si 7 mm x 7 mm x 10-30 µm Syringe pump [1.30] 

Electromagnetic PDMS Not recorded Laser interferometry [1.31] 

Electromagnetic PDMS 4-7mm diameter 34-37 µm  thickness Optical microcopy [1.32] 

Electromagnetic PDMS 10 mm diameter 0.1- 0.5 mm  thickness  Laser interferometry [1.33] 

Bimetallic Al-Si Not recorded Not recorded [1.34] 

Electrowetting Silicone 5.6 mm x 5.6 mm x 80 µm Laser interferometry [1.35] 

Shape memory alloy Ti, Ni 8.4 mm x 8.4 mm x 10 µm Not recorded [1.36] 

Shape memory alloy Ti, Ni, Si 3.7 mm x 3.7mm x 7 µm Laser interferometry [1.37] 

Phase change Si 30 µm Thickness Laser interferometry [1.38] 

1.3 Magnetic Nanoparticles 

Nanoparticle dimensions (diameter) are known to affect the domain (regions of 

uniform magnetic moments with the material separated by domain walls [1.43]) and 

superparamagnetic limits (the ability to easily flip the magnetization of the magnetic 

material due to thermal energy fluctuations [1.43]).  Below a critical diameter for 

spherical particles, the particles are considered to have a single domain and exhibit a 

uniform magnetic moment [1.43, 1.44]. The critical diameter, , of the magnetic domain 

has been previously expressed as: 

 (1.1) 
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where  is the exchange constant (i.e. the measure of interaction strength between 

adjacent electron spins due to the exchange interaction [1.45]) , is the effective 

anisotropy constant,  is the permeability of free space,  is the saturation 

magnetization of the particle.   

The energy responsible for pinning the magnetic moment in a particular direction 

is the magnetic anisotropy energy  [1.43, 1.44, 1.46, 1.47], and is expressed as: 

 (1.2) 

where  is the particle volume and  is the angle between the magnetization and the 

energetically favorable direction of which magnetic moments align.  When the size of the 

magnetic nanoparticle is reduced below this threshold value, the magnetic anisotropy 

energy is comparable with the thermal activation energy, , where  is Boltzmann’s 

constant [1.47].  By reducing the particle diameter, the energy associated with pinning the 

magnetic moment in a particular direction is depressed [1.43, 1.47].  This allows the 

moment of the particle to be randomly orientated above a certain temperature, until a 

magnetic field is applied to the system as depicted in Figure 1.3 [1.48]. 
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Figure 1.3 Figure depicts how the moments, which are symbolized as the arrows, in 
superparamagnetic nanoparticles behavior changes from random to aligned when a 
magnetic field is applied. 

1.3.1 Types of Magnetic Nanoparticles and Applications 

Nanoparticles used for biomedical applications are primarily iron oxide based 

nanoparticles (IONPs) [1.49], but other compositions have been investigated for nano-

based biomedical research [1.50-1.52].  For example, doped gadolinium oxide 

nanoparticles were used by Zhou et al. to serve as a bioimaging and magnetic resonance 

imaging contrast agent [1.53].  These researchers were able to develop a method for 

creating size controlled Gd2O3 nanoparticles and then doping those particles with other 

lanthanide series ions.  It was observed that this material fluoresces under near infrared 

excitation and can be seen in a dark room.  Cobalt have been studied in applications such 

as membranes for micro pumps [1.54] and bio actuation applications [1.40].  Like pure 

iron, pure cobalt has high magnetization saturation, which determines the amount of 

magnetic field necessary to move the material [1.40].  Unfortunately, pure cobalt readily 
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oxidizes unless coated with an inorganic species [1.40, 1.52], and the oxidized species of 

cobalt is toxic to the human body [1.52, 1.55].  Generally, the synthesis of forming these 

particles is very similar to each other, in that the particles are formed via chemical or 

physical alterations from a starting material.  

1.3.2 Overview of Iron Oxide Nanoparticle Synthesis Via Co-Precipitation and 

Thermal Decomposition Methods 

IONPs are generally synthesized through either a physical or chemical method 

[1.56, 1.57].  Physical methods such as ball-milling break bulk materials down to a 

desired size distribution [1.56, 1.57].  Though the concept of the physical process is 

straightforward, the processing time for grinding particles of a consistent size can take 

days [1.57].  It also produces particles of varying shapes with large size distributions 

[1.56, 1.57].   

Chemical methods such as co-precipitation or thermal decomposition alter 

reaction species to synthetically grow nanoparticles [1.58].  The chemical approach for 

synthesizing nanoparticles has demonstrated the capability to consistently produce 

particles with a uniform shape and small size dispersion in less time than the physical 

process [1.59].  To have a uniform set of properties, nanoparticles are generally 

synthesized via chemical method, especially for bio-applications [1.59].  

The co-precipitation method is the most common and simplest route for 

synthesizing IONPs [1.58].  By increasing the pH (8-14) of an aqueous solution of 
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ferrous and ferric salt in an inert atmosphere, magnetite nanoparticles will 

precipitate [1.43, 1.58].  The expected reaction will be: 

(1.3) 

The main advantage to this method is its ability to synthesize large amounts of 

nanoparticle in a batch in less time than the physical approach [1.57, 1.58]. 

Unfortunately, this method is limited in it’s ability to restrict the particle size distribution 

due do to kinetic factors that primarily controls the particle growth [1.43, 1.58].  

Another common chemical method, thermal decomposition, makes up for the co-

precipitation method’s lack of particle size control during the nanofabrication process 

[1.43].  In this process, nanoparticles are produced by thermally decomposing an 

organometallic compound in a high boiling point organic solvent containing a stabilizing 

surfactant [1.43].  Generally, the organometallic precursors used in this reaction are metal 

acetylacetonate (M(C5H7O2)n), metal cupferronate (M(C6H5N2O2)n), or metal carbonyl 

(M(CO)n) [1.43].  By controlling the ratios of the starting reagents, reaction temperature, 

and reaction time, precise control over size and nanoparticle morphology will be attained. 

Though this method produces nanoparticles with a small size distribution, the particles 

are hydrophobic due to the surfactant that covers the surface of the particles [1.43] and 

need to be modified prior to use in biological settings.  Overall, both methods have their 

advantages and have been observed in MNPC materials [1.41, 1.54, 1.60].  
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1.4 Introduction to MNPC Membranes and Applications 

There have been many instances of magnetic particles in a polymeric matrix 

within small-scale devices [1.31, 1.32, 1.61, 1.62].  These systems have been effectively 

demonstrated in a range of application spanning from valve-less micropumps and 

miniature reservoirs to filtration systems [1.32, 1.63, 1.64, 1.66-1.68].  These composite 

materials have the advantages of low cost of processing and low elastic modulus [1.8]. 

For diaphragm micropumps, low elastic moduli equates to large attainable deflection 

within the system [1.69].  This is important since deflection is proportional to the volume 

of fluid displaced [1.69].  In 2004, Yamahata et al. demonstrated relatively large 

deflections using a microfluidic device [1.65].  This utilized a thermosetting PDMS 

circular membrane able to deflect up to 200 µm.  Another micropump system design 

(micro-reservoir) was fabricated by Pirmoradi et al. in 2011 [1.32].  This system used a 

porous PDMS magnetic composite membrane as the actuating component, with a 

diameter of 6 mm and thickness of 40 µm.  The largest measured deflection attained by 

this membrane system was 219 µm.  Other applications for MNPC include filtration 

systems [1.66-1.68]. Dudek et al. explored the effect of embedding magnetic 

nanoparticles in gas permeable polymer membranes [1.67].  In this study, poly 2,6-

dimethyl-1,4-phenylene oxide 25 µm thick membranes were impregnated with iron oxide 

particles with the intent of establishing a gas selective system.  This was observed by 

attempting to permeate gas mixtures of oxygen and nitrogen through the MNPC 

membrane system, which was effectively separated due to the paramagnetic properties of 

oxygen.  This control over gas diffusion through MNPC membrane materials was also 
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observed in Rybak et al. [1.68].  Overall these systems have successfully been used in 

array of applications.  
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CHAPTER TWO 

 MAGNETIC NANOPARTICLE MEMBRANES AND MAGNETIC 

DEFLECTION DETERMINATION  

The efficiency of micropumps and magnetic micropumps can be improved 

through both new designs and materials [2.1].  While the central deflection of membranes 

within membrane micropumps can be measured when a mechanical force or magnetic 

field gradient is applied, it would be preferable to predict these deflections as a function 

of the mechanical properties, magnetic properties, and membrane geometry [2.2-2.5]. 

The geometric properties of the MNPC membranes are the membrane thickness, diameter 

and the window geometry- all of which are used to predict deflection under pneumatic 

loading for homogeneous membranes [2.2-2.4].   

The average core diameter of the nanoparticles has been used to determine the 

magnetic properties of the system.  If it is assumed that the magnetic nanoparticles of the 

system are superparamagnetic, an estimate the magnetization of the nanoparticles in the 

composite system can be found by using a Langavin function to approximate the 

magnetization as a function of field [2.6, 2.8].  The magnetization of the nanoparticles is 

important in estimating the magnetic force applied to a MNPC system because it is a 

measure of the net dipole moments within the material that orientate towards the applied 

magnetic field [2.8].  

In this chapter, a brief description of methodology for synthesizing MNPC 

membranes will be discussed (Section 2.1).  This will include an analysis of the two 

major membrane synthetic methodologies and the observed effects of these techniques on 
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the membrane’s mechanical properties, structural properties, and thus the attainable 

deflection of the membrane.  Section 2.2 will be a discussion on membrane 

characterization via pressure deflection.  This will include details on approximating 

magnetic deflection, volume displacement, and measurement error using a bulge test 

system.  

2.1 Introduction to Synthesis Methods for Constructing MNPC Systems 

Literature has shown that there are various methods for constructing MNPC 

systems [2.5-7, 2.13, 2.14], which can be put into two main categories, the ex-situ and in-

situ methods [2.13, 2.14].  The ex-situ method uses pre-synthesized nanoparticles and 

polymer to form the composite material [2.13, 2.14].  Typically, the nanoparticles are 

encapsulated within a polymer matrix that has been crosslinked [2.5, 2.6, 2.9, 2.15].  The 

in-situ approach synthesizes nanoparticles within the preformed polymer matrix (mainly 

through a derivative version of the co-precipitation method), or crosslinking the ligands 

on the nanoparticles to form the composite matrix [2.13, 2.14, 2.16]. The synthesis 

method used to produce the composite membrane will affect the mechanical and 

structural properties of the system [2.5, 2.7].   

2.1.1 The Effect of MNPC Synthesis Method on the Mechanical Properties of the 

Membrane System 

The fabrication method has been shown to alter elastic modulus of a system keep 

the architecture and chemistry similar [2.5-2.7, 2.13].  It has been shown that the 
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magnetoelastic ratio (i.e. the weight/volume loading of particles in the material divided 

by the elastic modulus of the material) varies depending on the method of construction 

[2.5-2.7, 2.13, 2.14, 2.17].  For example, both Fahrni et al. and Evans et al. demonstrated 

the synthesis of MNPC systems using PDMS as the matrix and IONPs as the filler using 

two different methods of construction [2.6, 2.7].  Fahrni et al. used an ex-situ method by 

mixing magnetic nanoparticles that had surfactant on the surface with Sylgard 184 

(PDMS) prepolymer prior to crosslinking.  This was achieved by adding an IONP powder 

to tetrahydrofuran (THF) and then mixing it in the PDMS prepolymer.  The THF was 

then evaporated before the curing agent was mixed with the system.  They used this 

method to construct multiple samples with varying weight percentages and found that the 

elastic modulus of the system decreased as the weight percent of nanoparticles increased 

[2.6].  This trend is later seen in another publication, Pirmoradi et al., where this effect 

was cited as being caused by the poor adhesion between the surface of the nanoparticle 

and polymer matrix [2.5].  Evans et al. used the in-situ method by adding the 

nanoparticles and then crosslinking the PDMS ligand on the surface of the particles to 

form the matrix.  This was achieved by using a co-precipitation process IONPs, and then 

forming a particle complex by binding a 3,000 g/mol aminopropylmethylsiloxane co-

dimethylsiloxane (PDMS-NH2) to the particle surface.  The complex was then 

crosslinked by adding dicumyl peroxide and heating it to 180ºC for 2 hours.  This method 

was used to form composites with varying particle weight percentages, and for this 

MNPC process, it was seen that the modulus for the structure increased as particle 

concentration increased [2.7].  This was also seen in the publication of Song et al. where 
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the nanoparticles were used to crosslink the polymer matrix, increasing the elastic 

modulus of the composite as opposed to decreasing it [2.13].  These observations suggest 

that the mechanical properties of these composites are directly affected by how the 

nanoparticles are bound in the system.  Thus, it is important to consider the method of 

construction for it will deduce the outcome of the mechanical properties of these systems. 

Figure 2.1 depicts a simplified diagram that represents resulting materials from both 

fabrication routes.   

Figure 2.1: A.) is a diagram representing the composite material from B. Evans et al. B.) is 
a diagram representing the material from F. Fahrni et al.  
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2.1.2 The Effect of MNPC Synthesis Method on the Structural Properties of the 

Membrane System 

The structural properties most affected by the synthesis method are the thickness 

and the nanoparticle agglomeration size [2.1, 2.7, 2.14].  Within MNPC membrane 

studies, many groups reference the formation of nanoparticle agglomerations [2.5, 2.6] 

which can impact the ability to distribute the nanoparticles throughout the membrane. 

The nanoparticle dispersion in the polymer matrix could be important, because it could 

alter the membrane response under magnetic stimuli [2.5, 2.7].  For example, large 

particles could apply a larger magnetic force within a gradient compared to smaller 

particles.  Using the ex-situ method, the composite system tends to have large aggregates 

[2.5].  This becomes an issue when designing systems with dimensions that would be 

smaller than the largest particle agglomeration [2.5-2.7].  

The core diameter of the nanoparticles can be also affected by the choice 

synthesis method [2.14, 2.18].  The ex-situ methods have not been shown to affect the 

final nanoparticle diameter, for the nanoparticles are synthesized prior to the composites 

construction [2.5, 2.6, 2.14, 2.19].  However, some in-situ methods have been observed to 

influence the final nanoparticle size and shape [2.14, 2.18].    

2.2 Mechanical and Magneto-Mechanical Testing of Membrane Systems 

Many groups have studied how polymeric membranes deform under pneumatic 

force, through both experimental validation and the creation of analytical models [2.5, 

2.9].  The deflection at the center of a membrane due to an applied pneumatic force can 
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be experimentally determined through the use of a bulge testing system [2.2, 2.3, 2.4, 

2.9].  This method characterizes the free standing thin film window (i.e. membrane) of a 

material by applying a known pressure to one side and measuring the deflection height 

[2.3, 2.4].  This technique is commonly performed on metals and ceramic materials, but 

has been used in the characterization of polymeric films [2.4, 2.10, 2.11].  This was 

demonstrated by Huang et al., where bulge testing was used in determining the 

mechanical properties of poly methyl methacrylate (PMMA) films with thicknesses 

ranging from 77 nm to 352 nm [2.11].  This study determined the Young’s modulus of 

the PMMA films to be 5.2 GPa.  The use of this technique on soft materials was 

demonstrated by Thangawng et al. [2.12].  In this study, the mechanical properties of 70 

nm thick polydimethylsiloxane films were investigated for the purpose of being a bio 

interface for studying cellular mechanics.  

An extension of these is needed to account for magnetic force in MNPC 

membrane applications with biopumps (i.e. a pump system that is implantable).  Only a 

few articles have identified the relationship between  pneumatic and magnetic forces on a 

membrane and the membrane’s deflection [2.5, 2.9].  Wang et al. used micrometer sized 

particles within their membranes and observed the membrane deflection during the 

application of a magnetic field [2.9].  In this study, they assumed a nonlinear relationship 

between pneumatic and magnetic loading could evaluate the deflection attained during 

membrane stimulation.  Pirmoradi et al. in 2010 observed a non-linear relationship 

between the pressure caused by the magnetic field and deflection [2.5].  Continuing 
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previous efforts, the following sections will try to predict magnetic deflection based on 

prior membrane pneumatic pressure - deflection relationships.     

2.2.1 Introduction to Mechanical Testing of Membrane Systems via Pressure 

Deflection 

Bulge testing has been used to character the mechanical properties of thin film 

polymer and polymer composite systems [2.3, 2.17, 2.20-2.22].  The magnitude of 

deflection of membranes depends primarily on the geometry of the membrane window, 

the applied pressure, and the mechanical properties of the material [2.23].  Vlassak et al. 

and Vinci et al. developed the generalized bulge equation (equation 2.1) that describes 

the response of a pressurized thin film system [2.2, 2.4].  The applied pressure, P, is  

(2.1) 

where a is the radius of a circular membrane, t is the thickness of the membrane, 

c1 and c2 are geometric constants that relate to the shape and Poisson’s ratio membrane, 

σ0 is the residual stress within the film, E is the elastic modulus,  is Poisson’s ratio of 

the sample, and h is the deflection height of the membrane center [2.3, 2.4, 2.17, 2.23]. 

The resulting data should be similar to the graph in Figure 2.2 when pressure is plotted 

against deflection. 
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Figure 2.2: This a representative graph of the pressure deflection data when no slip or 
wrinkles are present during sample preparation. 

Curve fitting this equation to the pressure/deflection data of a bulge test [2.3, 2.4, 2.25] 

allows for the determination of the elastic modulus or the residual stress in the film due to 

processing [2.2, 2.4, 2.24].  The fabrication method for each membrane will control the 

mechanical properties of the membrane.  For example, the fabrication method has been 

shown to alter elastic modulus of the composite system  
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2.2.2 Response of Magnetic Particles of Magnetic Fields 

When a magnetic field is applied to a MNPC membrane, the center membrane 

deflection is related to the force applied on the nanoparticles.  This force on the system, 

, can be described by: 

 (2.2) 

where  is the permeability of free space,  is the magnetic moment of the system, and 

H is the applied magnetic field [2.8].  The contributing variables that affect the magnetic 

force are the magnetization of the particles, the total volume of particles within the 

membrane, and the gradient of the applied magnetic field.  If it is assumed that the 

magnetization of particles is along the direction of the magnetic field and that only the 

field gradients along that direction are considered [2.8], then Equation 2.2 can be reduced 

to   

 (2.3) 

where V is the volume of magnetic particles, M is the magnetization of those particles in 

the x direction of magnetic field, and  is the magnetic field gradient in the x direction. 

This function approximates the magnetic force on an object due to a known magnetic 

field gradient but does not account for the magnetization of the material.  By assuming 
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that the magnetic material is superparamagnetic, the Langevin function can be used to 

approximate its magnetization.  This function approximates the magnetic moment of 

superparamagnetic materials in an applied field [2.6, 2.26], and is denoted as: 

 (2.4) 

where M is the magnetization of the particles,  is the bulk magnetic solid saturation 

moment of that material, is the volume fraction of nanoparticles.  The parameter  is 

denoted as: 

 (2.5) 

where is the Boltzmann's constant, T is temperature, D is the diameter of the 

nanoparticles, H is the magnetic field, and  is a variable that donates  without the 

magnetic field.  By rearranging Equation 2.4 to solve for magnetization and setting 

as , the magnetization of nanoparticles can be described as: 

M(x)  (2.6) 

Values attained through this equation can be used to account for magnetization when 

approximating the magnetic force on a membrane under a known magnetic field. 
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However, to estimate the deflection of the membrane, the force must be divided by the 

area of the window opening to approximate the pressure.  This approximation can be 

represented as: 

 (2.7) 

where  is the magnetic field applied to the membrane,  is the radius of the window 

open, and  is the pressure on the membrane due to the applied magnetic force.  This 

pressure assumption allows the use of the generalized bulge equation to evaluate the 

magnetic deflection of a MNPC membrane, and in turn the volume production generated 

during deflection.   

By assuming that the shape of the deflected membrane is hemispherical, the 

volume generated during membrane deflection can be approximated using the height and 

the radius of the window opening.  The volume displaced during deflection of an edge 

clamped membrane can be depicted as in Figure 2.3.  
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Figure 2.3: This caption is the side view of a deflected circular membrane that is bound at 
the edges.  The variables in this image coincide with determining the displacement volume 
during membrane deflection.  

This depiction can be expressed as 

 (2.8) 

where  is the volume generated during membrane deflection and  is the radius of the 

window that spans parallel from the center of the membrane to the edge [2.28].  The 

value c is denoted as  

 (2.9) 
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where is the maximum displacement of the membrane center [2.28].  With this 

approximation, the amount of volume displaced by the system can be estimated. 

2.2.3 Bulge Testing Apparatus and Augmentations for Magnetic Deflection 

The bulge testing system was originally designed to monitor the deflection of a 

membrane under applied pneumatic pressure (detailed in Appendix).  Figure 2.4 shows 

the main components of this system.  

Figure 2.4: Clemson University bulge testing system with data flow schematic.  Pressure 
values and rates are entered into the LabVIEW software, which is communicated to the 
pressure controller through the data acquisition component (DAQ).  A pressure load is then 
applied to the testing stage, and both the laser vibrometer signal and the pressure signal 
from the transducer is relayed back to the software through the DAQ. 
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Alterations where made to the program and clamp of the bulge test system for 

more data acquisition and to account for magnetic deflection.  The program was 

augmented by having it collect the data of all of the monitored parameters, and having 

that information storable in an adjacent program called NI DIAdem™ (for a more 

detailed discussion refer to the appendix section). The aluminum top clamp and non-

magnetic 304 stainless steel screws used in the clamping system were replaced with a 1.1 

mm poly lactic acid top clamp and brass polymer screws.  This eliminated any magnetic 

effects during the magnetic deflection analysis due to the system setup, and allowed for 

closer placement of the actuating ring magnet.   

2.3 Summary 

In conclusion, the fabrication route for constructing MNPC membranes will affect the 

mechanical and structural properties.  While the two identified routes can be used to 

produce membranes, the final application property requirements will dictate which route 

should be implemented.  Modeling the nonlinear relationship between the pressure 

applied to a membrane and the attained deflection apex has been detailed in previous 

works.  Using specific assumptions, this pressure deflection relationship could be used in 

describing the magnetic deflection of an MNPC membrane. 
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CHAPTER THREE 

MATERIALS FOR CONSTRUCTING MNPC MEMBRANES AND 

CHARACTERIZATION METHODS 

The materials chosen for this system are crosslinked PDMS for the polymer 

matrix and IONPs as the magnetic filler.  Prior studies confirmed that both materials have 

acceptable biocompatibility and useful properties for bio-micropump applications [3.1, 

3.3-3.7].  The bulk mechanical properties of crosslinked PDMS has been referenced as 

having a low elastic modulus, which reduces the amount of force needed for a membrane 

of this material to deflect [3.1, 3.7-3.10].  To fabricate PDMS with iron oxide particles, 

we used the published method by Pirmoradi et al. as the starting point for this study [3.1]. 

As stated previously, the ex-situ method effects the nanoparticle agglomeration within the 

film and sets a lower limit on attainable thickness.  Though, it can be also viewed that 

some of the groups that used ex-situ method lacked the ability to properly stabilize the 

nanoparticles in the mixture prior to crosslinking the system.  Nevertheless in Pirmoradi 

et al.’s study, the agglomeration size within the material was on average less than 1.6 ± 

0.25 µm in diameter, resulting in a membrane no thinner than 35 µm to be formed [3.1]. 

However, for our study the thickness of the membrane was arbitrarily chosen to be 

around 100-200 µm, which negates the limiting effects of the method.   

3.1 Nanoparticle Synthesis 

The IONP synthesis process used in this study were determined by comparing two 

methods, Hyeon et al. and Huber (unpublished works).  The Hyeon synthesis method was 

performed by adding 1 mL (7.60 mmol) of iron pentacorbonyl to a mixture of 7.15 mL 
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(22.8 mmol) oleic acid and 50 mL of octyl ether in a 100 ml three neck round bottom 

flask under nitrogen purged at 100 ºC.  The solution was mixed using a magnetic stir bar 

and heating was controlled using a Glas-Col heating mantle and a J-Chem temperature 

control box and thermal couple.  The solution was allowed to equilibrate at 100 ºC for 30 

min and then increased to reflux at a rate of 3.33 ºC/min.  The solution was allowed to 

equilibrate for 1 hour and then removed from heat to cool for 30 min.  After the allotted 

time 1.964 g (7.60 mmol) of 1,2 hexadecandiol was added to the solution and then left to 

stand at 130 ºC.  The solution was allowed to equilibrate at 130 ºC for 30 min and then 

increased to reflux again at a rate of 3.33 ºC/min. The solution was allowed to stand for 1 

hour and then removed from heat to cool in air. 

Nanoparticles synthesized through the Huber method were fabricated via thermal 

decomposition of 6.445 g (18.25 mmol) of Fe(III) acetylacetonate was mixed with 90 mL 

(285.17 mmol) of oleic acid in a 500 mL three-neck round bottom flask.  The solution 

was stirred at 400 revolutions per minute (RPM) using an IKA RW 20 D S1 overhead 

stirrer.  The solution was allowed to stand in a metal heating bath for 15 min. at 150 ºC 

under nitrogen flow (1 L/min.).  The bath was then heated at 5 ºC per min. to 350 ºC and 

held for approximately five hours.  After the time had expired, the flask was quickly 

removed from the metal bath and left to cool to room temperature in air.   

Cleaning the particles produced by both methods was performed by adding 45 mL 

of acetone to five mL of the reaction solution in a centrifuge tube. The solution was then 

mixed vigorously by using a combination of a Vortexer (Scientific Industries Inc. Vortex-

Genie 2 no.G560) for 5 min. and then sonicated (Bransonic Ultrasonic Cleaner 2510R-
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DTH) for 2 min.  This was done with the intent of removing excess ligand and other 

unreacted material from the particle solution.  The particles were then precipitated by 

using a Thermo Scientific Sorvall Legend x1 centrifuge at a speed of 10k RPM held for 

five min.  The precipitant was dispersed in 5 mL of hexane by using the vortexer for two 

min. and sonication for 30 seconds.  This wash procedure was done three times on the 

entire batch of each method before their collection.  The particles synthesized via Huber 

method were collected in a 500 mL one-neck round bottom flask and the particles 

synthesized via Hyeon method were collected for characterization in 4-5 scintillation 

vials.  The solution produced by the Huber method was dried using a Heidolph Laborota 

4000 efficient rotovap at 40 ºC at 180 RPM and suspended in 200 mL of hexane for 

nanoparticle characterization and storage. 

3.2 MNPC and Metallic Film Processing 

The magnetic nanoparticle membranes in this study were synthesized using a 

methods in literature [3.1, 3.7].  The nanoparticle solution (20 mL with an iron 

concentration of 3.43 mg/mL) was sonicated for five min. and then added drop wise to 

1.8 g Sylgard 184 PDMS base component in a scintillation vial through a 5 mL microliter 

pipet.  The new solution was mixed for five min. at 1500 RPM using the overhead 

mechanical stirrer, sonicated in the Bransonic Ultrasonic Cleaner 2510R-DTH sonication 

bath for ten min., and dried under reduced pressure at 50 ºC at max RPM under vacuum. 

This was done until the solution became viscous and this process was repeated until the 

desired concentration of nanoparticles was reached within the vial. Sylgard 184 PDMS 
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(0.36 g) part B was added to the solution then mixed and bath sonicated using the 

previous parameters and instruments.  The solution was then dried under reduced 

pressure at room temperature at 180 RPM under vacuum, and then poured onto a five µm 

thick polymethyl methacrylate (PMMA) release layer atop of a 304 stainless steel 

substrate polished to a mirrored finish from Stainless Supplies Inc.  The PMMA release 

layer used in these experiments was synthesized prior to pouring the PDMS/IONP 

samples by thoroughly mixing ~ 0.7 grams of PMMA in ten mL of chloroform, and then 

spin coating three mL of the solution onto the stainless steel disc using the Specialty 

Coating System Spin Coater P6204-A at 700 RPM for 60 seconds.  The steel disc and 

release layer were then placed in the Shel Lab 1400E vacuum oven for two hours at 

approximately 120ºC under vacuum to ensure that excess chloroform was removed.  The 

PDMS/IONP samples were spin coated at ~1000 RPM for 30 seconds and then placed in 

the vacuum oven at 116 ºC under vacuum for three hours.  Next, the film was removed 

from the oven and two samples were harvested for structural analysis.  The film was then 

plasma cleaned using the Harrick-Plasma PDC-001 for one min. at max power and then 

sputtered upon using an augmented Kurt J. Lesker company sputtering system with 

processing parameters of ~9.9-9.7e-7 Torr base pressure, and 1.5e-2 Torr processing 

pressure.  Titanium (10 nm) was deposited as an adhesion layer after ten min. under 100 

W DC plasma followed with gold (100 nm) after 28 min. under 160 W RF.  A thin (2 µm 

in thickness) layer of pure PDMS was spin coated atop of the gold film and left to sit in 

the vacuum oven for 48 hours at room temperature under vacuum.  The resultant film 
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system is depicted in Figure 3.1.  This entire construction process was used to ensure that 

consistency was held for each weight percentage. 

Figure 3.1:  This depiction shows how the layers of the film system will result after the 
MNPC construction process is completed.  It should be noted that only the gold and MNPC 
layers will be used for bulge testing and magnetic deflection testing.  

3.3 Sample Preparation for Characterization. 

The nanoparticles and MNPC membranes were structurally characterized. 

Nanoparticle characterization was conducted using the Hitachi TEM H 7600 transfer 

electron microscope (TEM) to determine particle size, and Thermo Scientific Inductive 

coupling plasma mass spectroscopy X series 2 (ICP-MS) to measure concentration of 

iron.  The MNPC membrane was characterized to determine distribution of particles 
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(Olympus Optical BX60F-3 optical microscopy (OM)), and roughness (a Mikro Precision 

Instruments Wyko Nt-2000 topographical white light Profilometry). 

To analyze the nanoparticles, an aliquot of 50 µL from the concentrated stock 

suspension of IONPs in hexane was taken and then dispersed with 20 mL of additional 

hexane.  Of this diluted suspension, an aliquot of 10 µL was added to a TEM grid and 

allowed to dry.  The grid was imaged with magnifications varying from 50,000 to 

100,000 x.  The captured images were used to determine the size and shape of the 

nanoparticles.  ICP-MS was used to determine the concentration of the bulk suspension 

by taking 0.5 mL of the bulk solution and adding 20 mL of hexane.  Ten µL of this 

suspension was taken and digested it with 418 µL of nitric acid.  The resulting solution is 

diluted to 14 mL for a desired 2 wt. % of nitric acid and then measured following a 

calibration curve of standard solutions varying in iron concentration.  Determining the 

concentration of nanoparticles of the overall reaction is important in determining the 

conversion efficiency of the reaction and to ascertain if the desired amount of 

nanoparticles were met.  Figure 3.2 depicts how samples for each test were harvested for 

each weight percentage sample set. 
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Figure 3.2: This is a relative depiction of were samples were harvested for testing.  The blue 
boxes are the primary site for TOPO and pneumatic and magnetic deflection.  The green 
and red boxes are secondary and tertiary sites magnetic and pneumatic deflection.  The 
orange is the SEM site.  The black and dark blue are the OM sites (i.e. clustering and 
surface changes).  The black box is also the Nano-DMA™ site.  The black dots represent the 
general scans and scan areas for TOPO measurements.  All other squares are extra 
samples. 

As shown in Figure 3.2, two 1.7 cm2 samples were harvested from the MNPC 

film for three OM images for each weight percentage sample.  The first sample was 

harvested prior to the sputtering process for estimating cluster size, and the second 

sample was used to observe changes in the metallic film before and after the sample are 

removed from the substrate.  The OM samples were harvested from the center of each 

substrate.  One objective (between 5 – 50 x with a 250-25 µm scale bar approximately) 
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was used for each image analysis to determine cluster size.  In the event cluster size could 

not be determined by OM.  TOPO was conducted on three 1.7 cm2 samples per weight 

percentage.  One of the samples came from the prior study with OM and two were 

harvested from the edge and in between.  A total of seven scans per weight percentage 

were taken from center to edge to determine the average thickness of each film.   

3.4 Mechanical and Magneto-Mechanical Characterization 

Once membranes were made, the following characterization methods were used 

to identify the mechanical properties and magnetic response of these membranes. 

Nanoindentation was used to measure the elastic moduli of the membranes.  Ten indents 

were initially taken on one 1.7 cm2 sample per weight percentage using a Hysitron TS 70 

TriboScope® series using a Nano-DMA™ transducer.  The Ti-047(04) 90 conical tip 

was used with a constant frequency of 45 Hz during the indentation.  Twenty steps with 

100 cycles per step were taken with a starting and ending quasi-static load of 75-175 µN 

with a dynamic load of .75 µN.  These parameters were set so that the penetration depth 

is less than 450 nm for a total time of 1.01 minutes for each indent.  Bulge testing and 

magnetic deflection were conducted using  the custom built system discussed earlier.  For 

bulge testing, each sample was cycled for four times through a pressure range of 0.1 

PSI at a rate of 0.01 PSI per second.  For magnetic deflection, the magnetic source was a 

0.1 tesla ring magnet with dimensions of one inch outer diameter, 0.5 inches inner 

diameter, and 0.25 inches in thickness.  The properties of this magnet were approximated 

for one direction was placed on top of a 1.1 mm thick plastic clamp to deflect each 
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sample three times for ~10000 seconds each time.  Pressure and deflection during this 

evaluation is monitored and record via the LabVIEW program.  
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CHAPTER FOUR 

RESULTS, DISCUSSION, AND CONCLUSION 

4.1 Determining Method to Synthesizing Easy to Model Nanoparticles 

The thermal decomposition method of synthesizing nanoparticles detailed in 

Hyeon et.al. was used [4.1].  The assumed nanoparticles this method produced were 

monodisperse maghemite particles instead of the magnetite particles. This method was 

altered by substituting the oxidizing agent, dehydrated trimethylamine N-oxide 

(CH3)3NO, with the reducing agent, 1,2 hexadecondiol, at the same molar ratio.  This 

reaction was performed using an increased molar ratio (by a factor of 5), which yielded 

black nanoparticles.  However, the reproducibility of this synthesis proved resulting 

batches of nanoparticles with large sizes and differing geometries as seen in Figure 4.1.   

Figure 4.1: TEM of nanoparticles synthesized using Hyeon et al. method, which displays 
particles of varying geometries. 
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However, using the synthesis outlined in Chapter 2 the nanoparticles derived were 

spherical and monodispersed in shape as seen in Figure 4.2.  

Figure 4.2: TEM of nanoparticles derived using the Sandia National Laboratory 
(unpublished research).  The left (a.) shows shape and size uniform amongst the particles, 
while the right (b.) shows the nanoparticle distribution. 

In order to attain the amount of nanoparticles necessary for producing MNPC 

membrane systems, two nanoparticle synthesis reactions were conducted.  The target 

weight amount and particle diameter was approximately 1.28 g of IONPs with a core 

A. 
B. 
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diameter of 25 nm.  Both reactions synthesized a combined amount of 1.733 g of 

nanoparticles with a mean core diameter of 24.6 nm with a standard deviation of ±3.1 

nm.  The TEM and size histogram of the nanoparticles can be seen in figure 4.3. 

Figure 4.3: A.) A representative TEM image and b.), the nanoparticle size analysis 
histogram of the combined nanoparticle batches synthesized.  

When comparing Figures 4.2 to 4.3a the shape of the particles of Figure 4.3 is more 

ellipsoidal than circular.  A possible reason for this discrepancy relates to the time used to 

synthesize.  The reactions conducted for constructing films with nanoparticles of uniform 

size in this thesis were scaled up by a factor of six from the method used to synthesize the 

nanoparticles in Figure 4.2.  However, the time used for this synthesis was almost two 

hours longer due to the size of reaction vessel.  Over this time period, smaller particles 

can dissolve and redeposit on to larger particles, known as the Ostwald ripening [4.2]. 

This can form polydisperse nanoparticles in time dependent nanoparticle syntheses, 

which is a plausible explanation for the odd particle shapes and size distribution.  
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4.2 Determining Method for MNPC Membrane Processing 

The following section outline the process improvements made during this project 

to improve MNPC membrane fabrication.  Preliminary methods involved using 

polystyrene petri dishes as substrates during spin coating and film curing.  Polystyrene 

dishes were initially used due low economic cost for the quality of film roughness being 

produced. PDMS films would not adhere to the petri dish’s nanometer rough surface, but 

the substrate would deform during the curing process of the system as seen in Figure 4.4.   

Figure 4.4 MNPC film system on petri dish after the curing process. 

Thus, there was a need to find a material that would offer the same low roughness, but 

would not buckle during the curing process.  PMMA coated mirrored steel was 

introduced as a way to support the MNPC film curing process and would not buckle, 

which can be viewed in Figure 4.5.   

Petri dish 

MNPC film 
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Figure 4.5. Image of a MNPC membrane on top of a mirrored steel substrate.  The 
substrate allows for higher temperatures during the MNPC crosslinking process without 
deformation. 

This substrate was proven to be successful during the crosslinking process, and was used 

in the attempt of synthesizing films with higher weight percent of nanoparticles. 

4.3 Analysis and Comparison of Particle Clustering in MNPC Film Systems 

Two samples from 0 wt. % and 5 wt. % film systems were harvested in the 

manner detailed in Chapter 3.  The bright field optical images of the unloaded and loaded 

samples displayed expected results for each film system.  As shown Figure 4.6, the 5 wt. 

% sample clearly shows clustering within the film with an average particle diameter of 

2.26 ±1.23 µm and average particles per cluster 1.54 x 106 ±2.5 x 106.   
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Figure 4.6: Nanoparticle loaded and unloaded film systems. Left, is the 5 wt. % film system. 
Right, is the 0 wt. % film system. 

 The average cluster size determined by OM was consistent with literature [4.3], which 

justified that further cluster analysis using a higher powered microscope was not 

necessary. 

4.4 Analysis of the Metallic Layer System 

When preparing the sample for bulge testing or magnetic deflection, the thin 

metallic film on top of the sample can fail as seen in Figure 4.7.  This component of the 

system is very important because, it is the conduit in measuring deflection using the laser 

vibrometer.  If the reflective film cracked or buckled during the sample preparation, this 

would introduce error into the deflection measurement.  To minimize the effects of 

sample preparation on the metallic layer an additional PDMS layer was spin coated on 

top of the gold layer [4.4]. 

Particle 
cluster 

PDMS film surface 

Steal substrate 
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Figure 4.7: Metallic film that failed as a result of sample preparation. 

This top layer is then discarded during sample preparation with minimal damage to the 

metallic film as seen in Figure 4.8.  The resultant films are sufficiently reflective to be 

analyzed by bulge testing.  

Delaminated 
gold layer 

Rubber 
mat

Aluminum 
bottom clamp 

PDMS 
sample 
with gold 
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Figure 4.8: Example of a film system with minimal damage after sample preparations. 

 4.5 Thickness Analysis of the Film Systems 

After receiving a metallic layer and polymer protective coating, films were 

harvested in the manner described in Chapter 3, and the thickness of each film was 

analyzed accordingly.  The thickness of the unloaded to the loaded samples for the set 

spin-coating parameters, varied drastically.  The thickness from center to edge of the 

unloaded sample varied from 48-49 µm, however the loaded sample varied from 108-183 

µm in thickness.  

4.6 Preliminary Mechanical Characterization Results of MNPC Membrane via 

Nano-DMA™ 

Prior to characterizing the MNPC membranes bulge testing, a preliminary 

experiment was conducted.  This experiment was to prove that the elastic modulus of 

Rubber mat 

PDMS 
coating 

MNPC sample 
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these materials changed with increasing concentrations of IONPs and that this difference 

can be monitored using Nano-DMA™.  Samples containing nanoparticle weight 

percentages of 0 wt.% and a 5 wt. % were used and sample sizes of 100 sample points of 

elastic modulus data was taken.   

Figure 4.9: Nano-DMA™ data of the 5 wt. % and 0 wt. % samples 

The mean and standard deviation were calculated using Minitab software and a paired T-

test was performed using Minitab software to determine if the mean elastic modulus 

values for each sample were equivalent.  The null hypothesis for this test was that the 

elastic modulus for both samples was statistically the same.  (note: If the p-value of this 

test is less than the alpha value the null hypothesis is rejected.)  It was concluded that the 

elastic moduli of the 0 wt. % and 5 wt. % samples were 15.2 ± 3.4 MPa and 10.2 ± 2.7 

MPa, respectively. The finding of the T-test concluded that, at a 95% confidence interval 
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(alpha value equal to 0.05), the p-value was 0.000.  This suggests that the modulus of 

each sample is statistically different and the elastic modulus decreasing as particle 

concentration in the film increases was observed.  This observed mechanical property 

trend was similar to that of materials found in literature fabricated using the ex-situ 

methodology 

4.7 Results of Pressure Deflection Testing of the MNPC Membranes 

For pressure deflection, the data acquired between loaded and unloaded samples 

was used to determine residual stress of the film system.  The data was fitted to an offset 

equation with all the known parameters, which is depicted by Equations 4.1 

 (4.1) 

where  is the approximated pressure at the origin,  is the experimentally found 

pressure data,  is the calculated displacement offset,  is the experimentally found 

displacement data, A is the parameter component that contains residual stress, and B is 

the parameter component that contains elastic modulus.  This technique was used to 

account for offsets in the pressure and displacement data due to error in the bulge test 

system [4.5].   

When the elastic modulus measured by Nano-DMA™ technique was used, the 

data did not fit Equation 4.1.   Setting the equation so that the modulus is unknown fits 

the data as seen as the trend line in Figure 4.10.  This fit determined an average modulus 
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of 2.29 ± 0.31 MPa for the unloaded samples and 1.04 ± 0.20 MPa for the loaded.  The 

residual stress for each system was 13.6 ± 9.0 KPa and 29.4± 18.3 MPa for the unloaded 

and loaded samples, respectively.  

Figure 4.10: Representative bulge testing data with curve fit line without using known 
Young's modulus values 

4.8 Results of Magnetic Deflection Testing of the MNPC Membranes 

For magnetic deflection of the 5 wt. % 0 wt. % samples, the data did not correlate 

to the expected hypothesis.  The ring magnet used in this test possesses a magnetic field 

strength of ~.06 T in the center of the ring at 1.1 mm away from the ring surface, which 

was determined using a Metrolab Three-axis Hall magnetometer.  This was the lowest 

distance at which the samples were tested.  Using the original assumptions, the model 
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predicted that the deflection of the loaded membrane to be .162 µm and 0 µm for the 5 

wt. % and 0 wt. % samples respectively.  However, it was observed by magnetic 

deflection that the membranes deflected 17.36 µm and -2.13 µm for the 5 wt. % and 0 wt. 

% samples respectively.  The suspected reason for this is that certain assumptions within 

the current mathematical model are violated while testing with the current magnetic 

deflection setup, and that an uncounted force was applied to the system.  After an 

analysis of the test set up for magnetic deflection, the use of a ring magnet to deflect the 

MNPC system was not suitable for a comparison to the model.  It was suitable for 

validating whether membrane deflection is detectable using the vibrometer system due to 

its high magnetic field and field gradient.  However, the field and field gradient geometry 

of the ring magnet is not represented in the current model under consideration.  

The model accounts for a system that applies a magnetic field and gradient in one 

direction and assumes that the force is consistent across the area of the membrane.  This 

would imply that the way in which a magnetic and pneumatic force deflects a MNPC 

membrane is equal.  This would be the case for cylindrical, permanent magnets where, at 

certain distances from its poles, the magnetic field and field gradient remains constant 

across the lateral directions.   



54

Figure 4.11:  H-field profile of the center of the ring magnet over a distance of 0 to 15 mm. 

Figure 4.12: The depiction of the magnetic field for an axially magnetized ring magnet. 

Ring magnets can be magnetized in a variety of anisotropies.  For our experiments 

the type of ring magnet used was axially magnetized through the thickness of the material 
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as depicted in the H-field profile of Figure 4.11.  Notice how the magnetic field changes 

between 2 and 6 mm; this is expected for ring magnets magnetized as suggested.  Figure 

4.12 is an illustration of a ring magnet magnetized as described based off Lin and Yang et 

al. fluid element analysis [4.6, 4.7].  For a certain distance away from the ring magnet, 

the field and field gradient will change in the lateral direction.  This means that the 

membrane was affected both laterally and vertically at the center.  As stated earlier, the 

field strength used to test at the center of the membrane was approximately 0.06 tesla; 

however the field strength increases from the center of the ring to the internal edge.  With 

this in mind, the earlier assumption that the force is equal across the membrane is 

violated.  The interpretation could then be that, during magnetic deflection with a ring 

magnet at said distance, the membrane will experience more force towards the edges than 

at the center.  This is best depicted by Figure 4.13, where the thicker arrows represent a 

larger force experienced at that location.  
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Figure 4.13: Depiction of how a ring magnet is theorized to effects the MNPC membranes 
when the magnetic field gradient is greater in the lateral direction compared to the normal 

The negative deflection of the 0 wt % sample was not predicted by the model nor 

expected through conventional wisdom.  A possible reason for this is due to the residuals 

ferrous material on the testing stage.  Though the testing clamp was redesigned to replace 

most of the materials of the current testing clamp, what was not replaced was the ferrous 

material of the testing stage (see appendices for better stage description).  The top clamp 

connects to the stage through a cast iron screw component.  By placing the magnet on the 

top clamp will introduce a magnetic field within close proximity of the cast iron 

component.  This magnetic field would exert a downward force on the clamp system, 

causing the membrane to buckle during testing.  In essence, comparing the current test set 
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up using the pneumatic model defined in earlier chapters neither validates the current 

hypothesis nor disproves it.  Further augmentation using a material with a magnetic field 

that follows the assumptions of the model would be beneficial.  

4.9 Results of Processing MNPC Films with Higher Particle Concentrations 

 Using particles produced by the Sandia method resulted in synthesizing films 

only 0 and 5wt. % at a crosslinking ratio of 3:1 (B:C).  The prescribed method outline in 

Chapter 3 to construct the 20 wt. % sample failed to crosslinked film upon the surface of 

the substrate.  What resulted was a polymer melt without a ridged shape that coagulated 

into small patches across the surface of the substrate as seen in Figure 4.14.  

Figure 4.14: MNPC film sample that did not crosslink after deposition, evident by the visual 
appearance of the mirrored steel substrate. 
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As a result, additional crosslinker was added to the remaining planned samples, changing 

the ratio from 5:1 to 3:1.   

4.9.1 Analysis of Uncrosslinked MNPC Systems 

An investigation was conducted to confirm why film systems 10-20 wt. % failed 

to crosslink.  An extraction was performed on the 15 wt.% sample by scrapping .461 g of 

the uncrosslinked sample into a 50 ml centrifuge tube and performing an additional wash 

step outlined in section 2.2.1.  The sample was then separated from the supernatant by 

decanting the liquid and drying by flowing nitrogen gas over the sample.  The sample 

was reweighed to estimate the percent of weight loss due to washing.  As a result the 

sample weight after the extraction was .406 g, which amounted to 12% weight loss.  

The yellow supernatant was then collected, centrifuged, and dried with nitrogen 

gas.  The resultant residue was collected and analyzed with an Agilent Technologies Cary 

600 Series FTIR with the Cary 620 Microscope and the Cary 680 Spectrometer and the 

PIKE technologies MIRacle diamond ATR attachment.  The resultant spectra of the 

sample was compared to the spectra of oleic acid and iron oleate to confirm if an excess 

of either chemical was present in the sample as seen in Figure 4.15.  
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Figure 4.15: FTIR finger print region comparison of the 15 wt. % sample, iron oleate, and 
oleic acid. 

As it appears, the spectra of the sample lack the two peaks between 1600 and 1500 cm-1

that distinguishes iron oleate from oleic acid [4.8].  The plausible explanation for why the 

films above 10 wt. % did not crosslink was due to the presence of an excess amount of 

oleic acid that could have interfered with gelation [4.3, 4.9].  It is perceived in previous 

works that oleic acid interferes with the platinum catalyst used within the system to 

crosslink [4.3, 4.9].  However, it is perception that oleic acid directly affects the 

crosslinking density of the system by reacting with the methylsilane sites in the backbone 

of the polymer chain.  This PDMS elastomer kit uses alkene functionalized end-groups to 
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react with methyl silane sites to gel forming the crosslinked polymer system.  Oleic acid 

is a monounsaturated fat with an alkene group that could react with these sites, thus 

inhibiting the system’s ability to crosslink by reducing the amount of sites available. By 

affecting the methyl silane reaction sites the polymer’s ability to gel decreases or not 

occur.  This could have consequences that would affect the elastic modulus of the 

resulting films if the excess oleic acid is not completely washed from the particles, and 

the presence on the particles should also be of concern 

4.10 Conclusions 

In summary, the prescribed method for synthesizing MNPC films was successful 

at constructing a system contain up to 5 wt. % of magnetic nanoparticles.  OM confirmed 

the presence of clustering within the 5 wt. % loaded system, which was comparable to 

literature.  The thickness of the loaded and unloaded systems varied drastically when 

comparing the disc samples to each other.  

Preliminary mechanical characterization of the 0 and 5 wt. % samples determined 

that the moduli for each sample are significantly different.  It was also shown that the 

depression in modulus trend consistent with literature when characterized by Nano-

DMA™.  However, using these moduli to approximate the residual stress in bulge testing 

resulted in inaccurate values.  When comparing the mathematical model to experimental 

data, the amount of magnetic deflection expected underestimates the true value by almost 

two orders of magnitude for the 5 wt. % system.   
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When comparing the assumptions of the model to the experimental setup for 

testing magnetic defection the model does not account for lateral differences in the 

magnetic field and field gradient.  This implies that the model is not agreeable for the 

experimental setup and a better approximation would be retrofitting the testing system to 

follow the assumptions of the model.  For the 0 wt. % system, magnetic deflection 

averaging approximately 2 um was observed which also not accounted for the model. 

Constructing film systems containing IONPs more than 5 wt. % was not successful.  This 

was due to excess oleic acid within the system that was not removed using the prescribed 

washing method. 
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CHAPTER FIVE 

FUTURE RESEARCH DIRECTIONS TO ENHANCE RESULTS 

While progress has been made to experimentally understand the structure-

performance relationships of PDMS-IONP membranes, this work should be expanded 

before being utilized to design and fabricate MNPC membranes to integration into an 

operational biomicropumps.  This chapter will highlight the necessary steps to improve 

the membrane processing, magneto-mechanical characterization, and the comparison 

between in-situ and ex-situ synthesized materials presented in previous chapters.  Section 

4.1 will highlight suggested alterations to MNPC synthesis presented in Chapter 2 and 

how it affected the mechanical properties presented in Chapter 3.  This section will also 

consider new material synthesis methods to reduce agglomeration within MNPC 

membranes.  In Section 4.2, improvements will be suggested to improve the accuracy of 

the experimental mechanical characterization methods and pressure deflection model. 

5.1 Possible Methods to Improve Current MNPC Structure through Fabrication 

The membranes fabricated using the ex-situ synthesis method presented in 

Chapter 3 had a similar relationship between nanoparticle loading and elastic modulus to 

those reported earlier [5.1, 5.2].  Other groups had suggested the reasons for this decrease 

could be related to: an interfacial absorption issue between the polymer chains and the 

nanoparticle surface [5.2], or an interference with the curing ability of the polymer matrix 

[5.1, 5.2].  Nanoparticles that are synthesized in organic solutions contain an organic 
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coating for aggregation suppression and stability [5.3].  Introducing particles (i.e., ligand 

coated nanoparticles) of this type into a polymer matrix reduces the possibility of 

interfacial absorption of the polymer matrix to the nanoparticle surface.  This can affect 

the mechanical properties of the composite by not reinforcing the system when a stress is 

applied [5.2, 5.4].  

The other postulate, which is the interference with the curing ability during 

MNPC membrane processing, was theorized due to the reaction kinetics involved in 

crosslinking this type of PDMS.  The matrix material used in both this and previous 

studies is Sylgard 184™ [5.1, 5.2, 5.5], which utilizes the reaction between methylsilane 

in the polymer backbone and the alkene end-groups of the polymer chain [5.6].  This 

reaction becomes competitive when a material containing unsaturated hydrocarbon is 

introduced during the synthesis.  Depending on the amount of this material may cause the 

crosslinking density of the resulting polymer matrix to be less than intended or not 

crosslinked.   

In this study, specific reasons for the decrease in elastic modulus with increasing 

particle loading were not experimentally determined.  This study did show that increasing 

the amounts oleic acid present could change the stiffness by preventing crosslinking. 

This influence of oleic acid was highlighted previously by Fahrni et al. [5.1].  A study to 

quantify the amount of free oleic acid (acid that is not bound to the nanoparticle) could be 

used to identify its effects on the system’s stiffness.  Proper material purification can be 

used to remove any remaining free oleic acid from the nanoparticle solution [5.7, 5.8]. 

Thermogravimetric analysis TGA can be performed to calculate the amount of oleic acid 
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on the nanoparticle surface [5.7, 5.8].  From that one only needs to add an aliquots series 

of oleic acid with a constant amount of nanoparticles to confirm the effects of acid on 

membrane properties.  The benefits of this study would allow for the finding of a 

potential upper limit amount of oleic acid a membrane system could have without 

affecting the crosslinking.  If correct, this could possibly be another avenue of control 

over the mechanical properties of the MNPC membrane system.   

Nanoparticle agglomeration is a consistent issue when using the ex-situ 

fabrication method to synthesize MNPC membranes [5.1, 5.2, 5.9].  This study confirms 

that using physical means to reduce nanoparticles agglomeration within a polymer matrix 

will reduce agglomerates to that of 1-2 µm.  This becomes a problem for membrane 

systems that need a thickness thinner than a micron because the nanoparticles would not 

achieve uniform dispersion throughout the system.  A way to combat this would be to use 

an in-situ MNPC fabrication method [5.9, 5.10].  This method has been shown to reduce 

the nanoparticle agglomeration within the composite, and also achieve higher particle 

concentrations within the system.  Thus, the use of this method would address the issues 

of failure to increase nanoparticle concentration in the system and the particle clustering 

issues.   

Switching from an ex-situ to an in-situ fabrication method could improve the as-

fabricated structure of the PDMS-IONP membranes.  However, materials of this nature 

demonstrate an enhancement of mechanical properties as the nanoparticle concentration 

in the system increases [5.9].  A comparison between processes would offer better insight 

into the strengths and weaknesses of the materials derived from each synthesis type.  An 
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experimental path to achieve this would be to alter the Evan et al. fabrication method to 

imbed coated nanoparticles into the matrix [5.9].  This can be performed by synthesizing 

IONPs through co-precipitation and splitting the batch for different functionalization 

routes.  One part of the batch can be partially functionalized with oleic acid before 

crosslinking, while the other batch would follow a procedure similar to Evans et al.  Both 

systems would use the amine functionalized PDMS as the matrix material.  Using this 

process will offer better control over slight material variation found in literature, while 

maintaining both systems conceptual differences.     

Another path of interest would be combining the in-situ and ex-situ methods as a 

possible means of controlling the system’s mechanical properties. The combination of 

these methods would seek to increase the contents of the magnetic component in the 

MNPC system, while depressing or not affecting the material’s stiffness.  This could be 

achieved by varying the process stated in the previous paragraph to combine both sets of 

particles into a single matrix before crosslinking.  Using these methods in combination 

could be the foundation for MNPC materials with extreme amounts of magnetic particle 

loading and controlled mechanical properties.  

5.2 Enhancing the Current Magnetic-Mechanical Characterization Capabilities at 

Clemson University 

By improving the methods outlined in Chapter 2, the influence of the magnetic 

field on the membrane shape, deflection resolution and measurement repeatability could 

be quantitatively defined.  The magnetic field and field gradient should be altered by the 
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raising and lowering a ring magnet.  As discussed in Section 3.6.2 the direction of force 

on the center of the membrane will change depending on the distance between the 

membrane and ring magnet.  Below a distance of 5 mm, the field gradient in the lateral 

direction becomes greater than the direction normal to ring magnet axial surface.  Thus 

the membrane experience a force that is pulls it more lateral than normal.  This force on 

the membrane is dissimilar to the force applied pneumatically by the bulge system, thus it 

was not possible to directly compare the deflection response.  Also, the magnetic 

properties of the magnet are fixed to certain distances away from the sample, so in order 

to change the magnetic field and field gradient the clamping system must be changed to 

compensate.  To improve this system, future students could (1) design a new way to 

move the permanent magnet to set distances from the membrane or (2) use an 

electromagnet instead of a permanent magnet.   

For designing a system where the mobility of a permanent magnet is augmented, a 

future student would need to make a few adjustments to the current setup.  The current 

clamping system would need to become detachable from the pressure deflection system 

to be able to compare the membrane response to both stimuli.  A testing stage would need 

to be constructed above the current apparatus to hold the clamped membrane in place, 

while the permanent magnet is moved vertically underneath.  The mobility of the magnet 

would be dependent upon a micrometer, allowing for better measurements of distance. 

These system changes are based on Singh et al. apparatus [5.5], and could allow for the 

testing of permanent magnets with different geometric shapes.  The design complexity of 

this system should be simplistic and be able to measure magnetic defection accurately.     
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To design an apparatus that controls the magnetic field and field gradient applied 

to a membrane, without a mobile permanent magnet, would need to integrate a solenoid 

coil into the system.  The coil would be composed of enameled copper wire, which is 

commercially available, and could be housed within the clamping system.  The magnetic 

field produced by a solenoid coil is determined by the applied current, permeability of 

free space, and number of turns along the coil.  The distance of the coil to the sample and 

the number of turns in the coil would be fixed, while the current applied to the system 

would be variable.  This concept was previously designed by Lederer et al. [5.11], where 

a magnetic micropump system was constructed using an integrated coil for actuation. 

This idea could give rise to better control over the magnetic field resolution achievable 

during magneto-mechanical characterization.   



69

5.3 References 

[5.1] Fahrni, Prins, Ijzendoorn, Magnetization and Actuation of Polymeric 
Microstructures with Magnetic Nanoparticles for Application in Microfluidics, Journal of 
Magnetism and Magnetic Materials, 321, (2009) 1843-1850. 
[5.2] Pirmoradi, Cheng, Chiao, A Magnetic Poly(Dimethylesiloxane) Composite 
Membrane Incorporated with Uniformly Dispersed, Coated Iron Oxide Nanoparticles, 
Journal of Micromechanics and Microengineering, 20, (2010) 015032. 
[5.3] Wang, Wong, Teng, Lin, “ Pulling ” Nanoparticles into Water : Phase Transfer of 
Oleic Acid Stabilized Monodisperse Nanoparticles into Aqueous Solutions of R -
Cyclodextrin, Nano Letters, 3, (2003) 1555-1559. 
[5.4] Bokobza, Rapoport, Reinforcement of Natural Rubber, Journal of Applied Polymer 
Science, 85, (2002) 2301-2316. 
[5.5] Singh, Shirolkar, Limaye, Gokhale, Khan-Malek, Kulkarni, A Magnetic Nano-
Composite Soft Polymeric Membrane, Microsystem Technologies, 19, (2012) 409-418. 
[5.6] Dow Corning Corporation, in, Dow Corning Corporation, (2005) 1-8. 
[5.7] Shen, Gee, Tan, Pellechia, Greytak, Purification of Quantum Dots by Gel 
Permeation Chromatography and the Effect of Excess Ligands on Shell Growth and 
Ligand Exchange, Chemistry of Materials, 25, (2013) 2838-2848. 
[5.8] Davis, Qi, Witmer, Kitchens, Powell, Mefford, Quantitative Measurement of 
Ligand Exchange on Iron Oxides Via Radiolabeled Oleic Acid., Langmuir: The ACS 
Journal of Surfaces and Colloids, 30, (2014) 10918-10925. 
[5.9] Evans, Fiser, Prins, Rapp, Shields, Glass, Superfine, A Highly Tunable Silicone-
Based Magnetic Elastomer with Nanoscale Homogeneity, Journal of Magnetism and 
Magnetic Materials, 324, (2012) 501-507. 
[5.10] Fuhrer, Athanassiou, Luechinger, Stark, Crosslinking Metal Nanoparticles into the 
Polymer Backbone of Hydrogels Enables Preparation of Soft, Magnetic Field-Driven 
Actuators with Muscle-Like Flexibility, Small, 5, (2009) 383-388. 
[5.11] Lederer,Heinisch, Hilber, Jakoby, Electromagnetic Membrane-Pump with an 
Intergrated Magnetic Yoke, IEEE Sensors, (2009) 532-537. 



70

APPENDIX 



71

Appendix A 

Bulge Testing System Operation 

A.1 Bulge Testing System Development 

The bulge test system, Figures A.1and A.2, was originally designed by Nathan 

Mitchell and later improved by Julie Reid [A.1]. 

Figure A.1: The vibrometer computer and pressure controls 
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Figure A.2: The components of the bulge testing stage where the deflection measurements 
are taken. 

This system currently monitors the deflection of membranes at a point (normally the 

center of the membrane), the pneumatic pressure from the Druck pressure controller, and 

the measured pneumatic pressure below the membranes as read by a pressure transducer 

as a function of time.  The laser vibrometer signal strength (which signifies that amount 

of light that is reflected back to the detector of the vibrometer) is also monitored [A.1]. 

The current program, collects voltage readings to calculate the membrane center 

height (in µm), the pressure from the transducer (in psi), and data rate (one point per 0.01 

sec) [A.1].  The previously reported resolution each component is as follows: 
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• The maximum height that can be detected is  ± 500 µm [A.1].

• The precision of the pressure controller can apply pressure to the system

with an error of ± .003 PSI [A.2].

• The resolution of the pressure transducer has a measurement error of ±

.036 PSI, which is one order of magnitude higher than the controller [A.2,

A.3].

This system is unique because it was designed to test samples produced by roll-to-

roll techniques and these sheets are clamped to create membranes.  To prepare a sample, 

the flat membrane is  superglued into an aluminum die with a circular opening  using 

Locatite 401 instant adhesive [A.1].  The work in this thesis always used a 6 mm 

diameter that was then mounted over the pressure inlet of the bulge testing stage to be 

evaluated [A.1].  The top part of the clamp, made of 3D printed poly lactic acid produced 

at Clemson University’s Rich laboratory, allowed for magnetic deflection measurements 

within a distance of 1.1 mm to the membrane.   

Measurement Error and Limitations within Bulge Testing System 

Error during the measurement has been known to occur due to slight changes in 

the membrane geometry when preparing samples.  Before gluing samples into the clamp, 

the membrane must be flat and devoid of wrinkles.  The top clamp must also be tighten to 

where the sample will not slip, but not over tighten to were the membrane could buckle 

as seen in previous work [A.1].  The consequence of having a wrinkled or buckled 
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membrane violates an assumption when applying the bulge testing equation, as described 

above [A.4-A.6].  If excess glue is used, it will bleed into the window opening and create 

a thin film on the bottom of the sample.  This leads to error during the analysis by slightly 

altering the geometry of the membrane.  If not enough glue is applied, the sample will be 

able to slip during the evaluation, also causing an alteration in the geometry of the 

membrane [A.1].  The effect of membrane slip during bulge testing is represented in 

Figure A.3 below.  

Figure A.3: This is a representative graph of how slip appears in the data collected from 
bulge testing.  The sample used for this representation went through two pressure cycles of 
± 1 PSI  

Consistent bulge testing data should be symmetric around the origin when positive and 

negative pressure is applied to the system, while also overlaying each pressure cycle.  In 

Figure A.3 the inconsistency in the data occurs as a form of a discontinuity during 

pressure cycling, thus causing the data from cycle one and two not to overlay. It is during 

this discontinuity that the sample housed in the test clamping system is believed to have 

slipped during testing, which would cause large variations in the concluded moduli and 
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residual stress values.  However, if the sample is fashioned to the clamping system 

correctly then the data should appear as shown in Figure 2.1 of Chapter 2.  Taking special 

precautions to avoid these oversights during sample preparation will reduce error in the 

pressure/deflection data due to the process.   

Using Clemson University’s Improved Bulge Testing System

System Setup: System Initiation 

1) Turn on air flow leading to the DPI 515 (pressure controller) and the air table.

a) Ensure that the pressure gauge at the main manifold reads 40 PSI.

b) Ensure that the pressure gauge at the junction point reads 35 PSI.

2) Turn on vacuum pump, DPI 515, MSA I400 vibrometer controller and laser, and the

power supply for the PMP 4060 (pressure transducer).

3) Access the laser vibrometer system software.

4) Turn on the adjacent computer.

5) Initiate the LabVIEW program “Akeem’s recalibrated xy.vi” and activate the

DIAdem™ software using the computer directly across from the bulge testing stage,

see Figures A.4 and A.5  for appearance.

6) Let system stand for at least one hour before using to allow for the vibrometer laser to

thermally equalize.
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Figure A.4: LabVIEW program front panel 



77

Figure A.5: DIAdem™ Software 

Preparing Samples for Bulge Testing 

1) Take one 1.7 cm2 sample and flatten across the silicone mat reflective side down,

ensuring no air is trapped between the interface to ensure that no buckling will be

present during testing.

Note: Ensure that the mat is clean and free of dust. 

2) On the bottom clamp add a thin glaze of superglue around the hole opening and

quickly/carefully place on top of sample.

Note: It is better to perform this action on the air table that hosts the vibrometer 

apparatus, and be careful not to allow any glue too close to the hole opening. 
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3) Allow super glue to dry for two minutes and then gently pull away the silicone mat to

expose sample surface.

Note: Be careful not to remove the mat impetuously, least damage to the metallic 

surface of the sample will occur. 

4) Using the appropriate screws, attach the top clamp ensuring that it is flush with the

bottom clamp.

Warning: Over tightening top clamp will result in presence of winkles across the 

sample surface and will be seen as overestimations in data evaluation. 

5) Tightly screw clamped sample onto the testing stage.

6) Use stage micrometers to find the center of the sample.

Running Tests 

1) Start the program by pressing the arrow button and change the desired parameters.

a) For bulge testing, change the precision, units, rate, rate mode, and set point to

desired value.

Note: For magnet deflection, change precision and units only.  Once the start

button has been pressed, the program starts recording data

2) Apply parameters by pressing the control button.

a) If applying pressure cycles to the sample, then this program allows for negative

and positive set points during a test.

3) When finished testing, press the control (measure) button and stop acquisition button.
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Note: Magnetic deflection follows the same course of action except that the only 

buttons that need to be pressed to start and stop the data acquisition are the arrow and 

stop acquisition. 

Turning Off the Bulge Testing System 

1) Exit out of the DIAdem™ and LabVIEW program and shutdown computer.

2) Turn off laser and exit out of the MSA software.

3) Shutdown the computer, the MSA 400 vibrometer controller, the power source to the

PMP 4060, the DPI 515, and the vacuum pump.

4) Close the air pressure valve.
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