580 research outputs found

    Low-power low-voltage VLSI operational amplifier cells

    Full text link

    Performance enhancement in the desing of amplifier and amplifier-less circuits in modern CMOS technologies.

    Get PDF
    In the context of nowadays CMOS technology downscaling and the increasing demand of high performance electronics by industry and consumers, analog design has become a major challenge. On the one hand, beyond others, amplifiers have traditionally been a key cell for many analog systems whose overall performance strongly depends on those of the amplifier. Consequently, still today, achieving high performance amplifiers is essential. On the other hand, due to the increasing difficulty in achieving high performance amplifiers in downscaled modern technologies, a different research line that replaces the amplifier by other more easily achievable cells appears: the so called amplifier-less techniques. This thesis explores and contributes to both philosophies. Specifically, a lowvoltage differential input pair is proposed, with which three multistage amplifiers in the state of art are designed, analysed and tested. Moreover, a structure for the implementation of differential switched capacitor circuits, specially suitable for comparator-based circuits, that features lower distortion and less noise than the classical differential structures is proposed, an, as a proof of concept, implemented in a ΔΣ modulator

    DESIGN OF TWO STAGE BULK-DRIVEN OPERATIONAL TRANSCONDUCTANCE AMPLIFIER (OTA) WITH A HIGH GAIN FOR LOW VOLTAGE APPLICATION

    Get PDF
    An Operational Transconductance Amplifier (further abbreviated as OTA) is a voltage controlled current source used to produce an output current proportional to the input voltage. A schematic architecture for a 180nm OTA is presented in this thesis with the goal of improving the open-loop gain for a 0.9V supply voltage with a rail-to-rail bulk-driven input stage. Results show an open loop gain 97.14 dB with a power consumption of 3.33uW. An OTA with over 90 dB open loop gain and lower power consumption is highly suitable for low-voltage applications. The slew rate of the OTA is 0.05V/uS with a unity-gain bandwidth of 8.4MHz. A 10uA ideal bias current reference is utilized for the design. The phase margin is around 49.2 degrees. The threshold voltage for a 180nm N-channel Metal Oxide Semiconductor (also known as NMOS) device is around 400mV which restricts the low voltage applications in most amplifier circuits. The fourth terminal (bulk) of the MOS device is utilized to optimize the voltage headroom (Vds). The bulk terminal uses a much lesser source to drain voltage than the gate-driven transistors, and the transistors remain ON with an input voltage as low as 0.1V. A bulk-driven input stage ensures the amplification in the subthreshold region (input signal less than the threshold voltage of the MOS device). However, even with the bulk input MOS device, a rail-to-rail input stage is employed to improve the dynamic range for the input signal from 0V to 0.9V with a supply voltage of 0.9V. The fluctuation in open loop gain concerning the change in input signal in the published research is because of the constant instability in the intrinsic transconductance of the input devices. A possible solution is presented in this thesis by adding a second dominant pole to the circuit (i.e., second stage for the OTA), which reduces the dependency of intrinsic transconductance (bulk-driven device) on the total open loop gain of the amplifier. Thus, a significant gain of 97.14 dB with minimal fluctuations is achieved. Furthermore, adding a second stage improves the gain by distributing the dependency of the gain due to the first stage to both poles in the circuit. Hence, the problem of fluctuating transconductance of the input stage is resolved by the constant intrinsic transconductance of the MOS near the second pole (M19). To improve the gain, a folded cascoded amplifier connected with the input stage results in a better impedance (in the first stage) known as the gain stage. In the second stage, a large PMOS common source amplifier gives a good output current compared to the input stage to enhance the output swing and drive a purely capacitive load of 0.5pF. Furthermore, a miller capacitance is used to compensate for the frequency between the first and the second stage and improving the unity-gain bandwidth. An additional biasing circuit in the second stage amplifies the current output of the first stage and thus improving the slew rate of the entire device. In addition, the biasing circuit resolves the biasing issues for the second-stage common-source amplifier. It improves the output swing of the device to obtain a clean/undistorted output waveform. All the simulations are carried out in the LTSpice simulation tool to test the waveforms and bode plot for open loop gain and phase margin (49.2 degrees) at different processes (slow, typical, and fast), input voltages (0-0.9V), supply voltage (0.8V, 0.9V, 1.0V) and temperatures (-10 to 100 degree C)

    Analysis and design of a family of low-power class AB operational amplifiers

    Get PDF
    PostprintA new class AB output stage is presented which extends a family of recently proposed stages based on current mirrors without requiring extra-compensation capacitances. In-depth circuit analysis also shows the significant advantage of such stages for low-power consumption and leads to the derivation of an optimum design strategy. Experimental realizations are described, in particular a micropower amplifier for cardiac pacemaker application

    Rail-to-Rail Operational in Low-Power Reconfigurable Analog Circuitry

    Get PDF
    Analog signal processing (ASP) can be used to decrease energy consumption by several orders of magnitude over completely digital applications. Low-power field programmable analog arrays (FPAA) have been previously used by analog designers to decrease energy consumption. Combining ASP with an FPAA, energy consumption of these systems can be further reduced. For ASP to be most functional, it must achieve rail-to-rail operation to maintain a high dynamic range. This work strives to further reduce power consumption in reconfigurable analog circuitry by presenting a novel data converter that utilizes ASP and rail-to-rail operation. Rail-to-Rail operation is achieved in the data converter with the use of an operational amplifier presented in this work. This efficient yet elementary data converter has been fabricated in a 0.5μ\mum standard CMOS process. Additionally, this work looks deeper into the challenges of students working remotely, how MATLAB can be used to create circuit design tools, and how these developmental tools can be used by circuit design students

    Low Voltage Low Power Analogue Circuits Design

    Get PDF
    Disertační práce je zaměřena na výzkum nejběžnějších metod, které se využívají při návrhu analogových obvodů s využití nízkonapěťových (LV) a nízkopříkonových (LP) struktur. Tyto LV LP obvody mohou být vytvořeny díky vyspělým technologiím nebo také využitím pokročilých technik návrhu. Disertační práce se zabývá právě pokročilými technikami návrhu, především pak nekonvenčními. Mezi tyto techniky patří využití prvků s řízeným substrátem (bulk-driven - BD), s plovoucím hradlem (floating-gate - FG), s kvazi plovoucím hradlem (quasi-floating-gate - QFG), s řízeným substrátem s plovoucím hradlem (bulk-driven floating-gate - BD-FG) a s řízeným substrátem s kvazi plovoucím hradlem (quasi-floating-gate - BD-QFG). Práce je také orientována na možné způsoby implementace známých a moderních aktivních prvků pracujících v napěťovém, proudovém nebo mix-módu. Mezi tyto prvky lze začlenit zesilovače typu OTA (operational transconductance amplifier), CCII (second generation current conveyor), FB-CCII (fully-differential second generation current conveyor), FB-DDA (fully-balanced differential difference amplifier), VDTA (voltage differencing transconductance amplifier), CC-CDBA (current-controlled current differencing buffered amplifier) a CFOA (current feedback operational amplifier). Za účelem potvrzení funkčnosti a chování výše zmíněných struktur a prvků byly vytvořeny příklady aplikací, které simulují usměrňovací a induktanční vlastnosti diody, dále pak filtry dolní propusti, pásmové propusti a také univerzální filtry. Všechny aktivní prvky a příklady aplikací byly ověřeny pomocí PSpice simulací s využitím parametrů technologie 0,18 m TSMC CMOS. Pro ilustraci přesného a účinného chování struktur je v disertační práci zahrnuto velké množství simulačních výsledků.The dissertation thesis is aiming at examining the most common methods adopted by analog circuits' designers in order to achieve low voltage (LV) low power (LP) configurations. The capability of LV LP operation could be achieved either by developed technologies or by design techniques. The thesis is concentrating upon design techniques, especially the non–conventional ones which are bulk–driven (BD), floating–gate (FG), quasi–floating–gate (QFG), bulk–driven floating–gate (BD–FG) and bulk–driven quasi–floating–gate (BD–QFG) techniques. The thesis also looks at ways of implementing structures of well–known and modern active elements operating in voltage–, current–, and mixed–mode such as operational transconductance amplifier (OTA), second generation current conveyor (CCII), fully–differential second generation current conveyor (FB–CCII), fully–balanced differential difference amplifier (FB–DDA), voltage differencing transconductance amplifier (VDTA), current–controlled current differencing buffered amplifier (CC–CDBA) and current feedback operational amplifier (CFOA). In order to confirm the functionality and behavior of these configurations and elements, they have been utilized in application examples such as diode–less rectifier and inductance simulations, as well as low–pass, band–pass and universal filters. All active elements and application examples have been verified by PSpice simulator using the 0.18 m TSMC CMOS parameters. Sufficient numbers of simulated plots are included in this thesis to illustrate the precise and strong behavior of structures.

    Design and Analysis of a General Purpose Operational Amplifier for Extreme Temperature Operation

    Get PDF
    Operational amplifiers (op amps) are key functional blocks that are used in a variety of analog subsystems such as switched-capacitor filters, analog-to-digital converters, digital-to-analog converters, voltage references and regulators, etc. There has been a growing interest in using such circuits for extreme environment electronics, in particular for electronics capable of operating down to deep-cryogenic temperatures for lunar and Martian surface explorations. This thesis presents the design and analysis of a general purpose op amp suited for “extreme environment” applications, with a wide operating temperature range of 93 K to 398 K. The op amp has been implemented using a CMOS architecture to exploit the low temperature operational advantages offered by MOS devices, such as increase in carrier mobility, increased transconductance, and improved switching speeds. The op amp has a two-stage architecture to provide high gain and also incorporates common-mode feedback around the input stage. Tracking compensation has been implemented to provide stable frequency compensation over wide temperature. The op amp has been fabricated in a commercial 0.35-μm 3.3-V SiGe BiCMOS process. The op amp has been tested for the temperature range of 93 K to 398 K and is unity-gain stable and fully functional over this range. This thesis begins with a study of the impact of temperature on MOS devices and operational amplifiers. Next, the design of the wide temperature general-purpose operational amplifier is presented along with an analysis of the common-mode feedback circuit. The op amp is then characterized using simulation results. Finally, the test setup is presented and the measurement results are compared with those from simulation
    corecore