430 research outputs found

    Dense point sets have sparse Delaunay triangulations

    Full text link
    The spread of a finite set of points is the ratio between the longest and shortest pairwise distances. We prove that the Delaunay triangulation of any set of n points in R^3 with spread D has complexity O(D^3). This bound is tight in the worst case for all D = O(sqrt{n}). In particular, the Delaunay triangulation of any dense point set has linear complexity. We also generalize this upper bound to regular triangulations of k-ply systems of balls, unions of several dense point sets, and uniform samples of smooth surfaces. On the other hand, for any n and D=O(n), we construct a regular triangulation of complexity Omega(nD) whose n vertices have spread D.Comment: 31 pages, 11 figures. Full version of SODA 2002 paper. Also available at http://www.cs.uiuc.edu/~jeffe/pubs/screw.htm

    Bregman Voronoi Diagrams: Properties, Algorithms and Applications

    Get PDF
    The Voronoi diagram of a finite set of objects is a fundamental geometric structure that subdivides the embedding space into regions, each region consisting of the points that are closer to a given object than to the others. We may define many variants of Voronoi diagrams depending on the class of objects, the distance functions and the embedding space. In this paper, we investigate a framework for defining and building Voronoi diagrams for a broad class of distance functions called Bregman divergences. Bregman divergences include not only the traditional (squared) Euclidean distance but also various divergence measures based on entropic functions. Accordingly, Bregman Voronoi diagrams allow to define information-theoretic Voronoi diagrams in statistical parametric spaces based on the relative entropy of distributions. We define several types of Bregman diagrams, establish correspondences between those diagrams (using the Legendre transformation), and show how to compute them efficiently. We also introduce extensions of these diagrams, e.g. k-order and k-bag Bregman Voronoi diagrams, and introduce Bregman triangulations of a set of points and their connexion with Bregman Voronoi diagrams. We show that these triangulations capture many of the properties of the celebrated Delaunay triangulation. Finally, we give some applications of Bregman Voronoi diagrams which are of interest in the context of computational geometry and machine learning.Comment: Extend the proceedings abstract of SODA 2007 (46 pages, 15 figures

    A Sparse Delaunay Filtration

    Get PDF
    We show how a filtration of Delaunay complexes can be used to approximate the persistence diagram of the distance to a point set in ?^d. Whereas the full Delaunay complex can be used to compute this persistence diagram exactly, it may have size O(n^?d/2?). In contrast, our construction uses only O(n) simplices. The central idea is to connect Delaunay complexes on progressively denser subsamples by considering the flips in an incremental construction as simplices in d+1 dimensions. This approach leads to a very simple and straightforward proof of correctness in geometric terms, because the final filtration is dual to a (d+1)-dimensional Voronoi construction similar to the standard Delaunay filtration. We also, show how this complex can be efficiently constructed

    Improved Incremental Randomized Delaunay Triangulation

    Get PDF
    We propose a new data structure to compute the Delaunay triangulation of a set of points in the plane. It combines good worst case complexity, fast behavior on real data, and small memory occupation. The location structure is organized into several levels. The lowest level just consists of the triangulation, then each level contains the triangulation of a small sample of the levels below. Point location is done by marching in a triangulation to determine the nearest neighbor of the query at that level, then the march restarts from that neighbor at the level below. Using a small sample (3%) allows a small memory occupation; the march and the use of the nearest neighbor to change levels quickly locate the query.Comment: 19 pages, 7 figures Proc. 14th Annu. ACM Sympos. Comput. Geom., 106--115, 199

    Self-Improving Algorithms

    Full text link
    We investigate ways in which an algorithm can improve its expected performance by fine-tuning itself automatically with respect to an unknown input distribution D. We assume here that D is of product type. More precisely, suppose that we need to process a sequence I_1, I_2, ... of inputs I = (x_1, x_2, ..., x_n) of some fixed length n, where each x_i is drawn independently from some arbitrary, unknown distribution D_i. The goal is to design an algorithm for these inputs so that eventually the expected running time will be optimal for the input distribution D = D_1 * D_2 * ... * D_n. We give such self-improving algorithms for two problems: (i) sorting a sequence of numbers and (ii) computing the Delaunay triangulation of a planar point set. Both algorithms achieve optimal expected limiting complexity. The algorithms begin with a training phase during which they collect information about the input distribution, followed by a stationary regime in which the algorithms settle to their optimized incarnations.Comment: 26 pages, 8 figures, preliminary versions appeared at SODA 2006 and SoCG 2008. Thorough revision to improve the presentation of the pape

    Witness (Delaunay) Graphs

    Get PDF
    Proximity graphs are used in several areas in which a neighborliness relationship for input data sets is a useful tool in their analysis, and have also received substantial attention from the graph drawing community, as they are a natural way of implicitly representing graphs. However, as a tool for graph representation, proximity graphs have some limitations that may be overcome with suitable generalizations. We introduce a generalization, witness graphs, that encompasses both the goal of more power and flexibility for graph drawing issues and a wider spectrum for neighborhood analysis. We study in detail two concrete examples, both related to Delaunay graphs, and consider as well some problems on stabbing geometric objects and point set discrimination, that can be naturally described in terms of witness graphs.Comment: 27 pages. JCCGG 200

    VoroCrust: Voronoi Meshing Without Clipping

    Full text link
    Polyhedral meshes are increasingly becoming an attractive option with particular advantages over traditional meshes for certain applications. What has been missing is a robust polyhedral meshing algorithm that can handle broad classes of domains exhibiting arbitrarily curved boundaries and sharp features. In addition, the power of primal-dual mesh pairs, exemplified by Voronoi-Delaunay meshes, has been recognized as an important ingredient in numerous formulations. The VoroCrust algorithm is the first provably-correct algorithm for conforming polyhedral Voronoi meshing for non-convex and non-manifold domains with guarantees on the quality of both surface and volume elements. A robust refinement process estimates a suitable sizing field that enables the careful placement of Voronoi seeds across the surface circumventing the need for clipping and avoiding its many drawbacks. The algorithm has the flexibility of filling the interior by either structured or random samples, while preserving all sharp features in the output mesh. We demonstrate the capabilities of the algorithm on a variety of models and compare against state-of-the-art polyhedral meshing methods based on clipped Voronoi cells establishing the clear advantage of VoroCrust output.Comment: 18 pages (including appendix), 18 figures. Version without compressed images available on https://www.dropbox.com/s/qc6sot1gaujundy/VoroCrust.pdf. Supplemental materials available on https://www.dropbox.com/s/6p72h1e2ivw6kj3/VoroCrust_supplemental_materials.pd

    Load-Balancing for Parallel Delaunay Triangulations

    Get PDF
    Computing the Delaunay triangulation (DT) of a given point set in RD\mathbb{R}^D is one of the fundamental operations in computational geometry. Recently, Funke and Sanders (2017) presented a divide-and-conquer DT algorithm that merges two partial triangulations by re-triangulating a small subset of their vertices - the border vertices - and combining the three triangulations efficiently via parallel hash table lookups. The input point division should therefore yield roughly equal-sized partitions for good load-balancing and also result in a small number of border vertices for fast merging. In this paper, we present a novel divide-step based on partitioning the triangulation of a small sample of the input points. In experiments on synthetic and real-world data sets, we achieve nearly perfectly balanced partitions and small border triangulations. This almost cuts running time in half compared to non-data-sensitive division schemes on inputs exhibiting an exploitable underlying structure.Comment: Short version submitted to EuroPar 201

    Well-Centered Triangulation

    Get PDF
    Meshes composed of well-centered simplices have nice orthogonal dual meshes (the dual Voronoi diagram). This is useful for certain numerical algorithms that prefer such primal-dual mesh pairs. We prove that well-centered meshes also have optimality properties and relationships to Delaunay and minmax angle triangulations. We present an iterative algorithm that seeks to transform a given triangulation in two or three dimensions into a well-centered one by minimizing a cost function and moving the interior vertices while keeping the mesh connectivity and boundary vertices fixed. The cost function is a direct result of a new characterization of well-centeredness in arbitrary dimensions that we present. Ours is the first optimization-based heuristic for well-centeredness, and the first one that applies in both two and three dimensions. We show the results of applying our algorithm to small and large two-dimensional meshes, some with a complex boundary, and obtain a well-centered tetrahedralization of the cube. We also show numerical evidence that our algorithm preserves gradation and that it improves the maximum and minimum angles of acute triangulations created by the best known previous method.Comment: Content has been added to experimental results section. Significant edits in introduction and in summary of current and previous results. Minor edits elsewher
    corecore