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Preface

In 2012, an expanded set of events was co-located with the 28th Annual Symposium on Computa-
tional Geometry (SoCG), hosted at UNC Chapel Hill, June 17-20, 2012. The Minisymposium on
Publicly Available Geometric/Topological Software (GTS) was one of them, and was scheduled for
the afternoons of June 17th and June 19th.
The aim of the minisymposium was to provide a platform for the presentation of publicly available
and/or open source geometric and topological software. It was intended to provide a means for the
dissemination and familiarization of existing or forthcoming publicly available software. It consisted
of a series of tutorial talks about open source and/or publicly available geometric/topological soft-
ware, which the attendees were to follow on their own laptops, followed by an open demo/software
presentation session.
We had four invited tutorial on software packages for persistent homology, 3-manifold topology,
polytope geometry, and Voronoi diagrams. As a result of the open call for contributions, there were
six submissions, among which three were accepted as tutorials for software packages on graph drawing,
persistent homology and rigidity analysis, two were accepted for the open demo session, and one was
rejected.
As organizers, we would like to thank the invited speakers Benjamin Burton, Michael Joswig and
Dmitriy Morozov for accepting our invitation, as well as the contributed presenters for submitting a
proposal for their software packages. Finally, we would like to thank the SoCG local organizer Jack
Snoeyink, and the CG-Week coordinator Joe Mitchell for their help and support in organizing GTS.

Menelaos Karavelas
Monique Teillaud

Organizers

Menelaos Karavelas University of Crete & FO.R.T.H.
Monique Teillaud INRIA Sophia Antipolis – Méditerranée
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Dionysus
A brief overview

Dmitriy Morozov∗

1 Introduction

Over the last decade, persistent homology [2] has matured from an elegant idea into a rich theory with century-
old roots. Two pillars — algebra and fast algorithms — support its foundation. The former has guided its
theoretical development; the latter has nurtured a range of applications. Software is the essential bridge between
the two: assembling the growing collection of techniques in a single code-base makes the theory accessible to a
wider audience.

Although Dionysus’ original goal was to facilitate experiments with persistence algorithms, we won’t discuss
it here. Instead we focus on an accidental benefit. While the core library is written in C++, most of its
functionality has been exposed to Python. This high-level interface is both rich and simple, allowing for many
sophisticated techniques to be implemented in a few lines of code. Because it follows the C++ API very
closely, translating a Python prototype into C++ becomes a straightforward exercise. The library is available
at mrzv.org/software/dionysus.

Throughout the overview we assume familiarity with persistence — [1] is an excellent introduction — and give
only cursory definitions.

2 Functions and filtrations

The main input to any persistence algorithm is a filtration of a simplicial complex, i.e., a nested sequence of
complexes:

∅ = K0 ⊆ K1 ⊆ . . . ⊆ Kn−1 ⊆ Kn = K. (1)

We can assume without loss of generality that subsequent complexes differ by a single simplex. So we can
represent a filtration compactly by an ordered list of simplices [σ1,σ2, . . .], where complex Ki = ∪i

j=1σj . It’s
rarely practical to construct such a filtration by hand. So, unless it is generated by an external tool, we rely on a
few common constructions. Two of them cover many standard scenarios: distance functions and piecewise-linear
functions.

2.1 Distance functions

In computational geometry, a distance function is a fruitful representation of the geometry of a compact set.
Denoted by dP : Rd → R for a compact set P ⊆ Rd, it measures everywhere the distance to the closest point in
P , dP (x) = infy∈P ‖x− y‖.

Alpha shapes. The sublevel sets of a distance function are unions of balls, d−1
P (−∞, r] = ∪p∈P Br(p). When the

set P is finite, we can clip these balls by the Voronoi regions of their centers to get a collection {Br(p)∩Vor(p)}p.
Because the sets are convex, the nerve of this collection, called an alpha shape, captures the homotopy type of
the union:

ASr(P ) = Nrvp∈P {Br(p) ∩ Vor(p)} * ∪p∈P Br(p).

As we increase the threshold r, the alpha shapes filter the Delaunay triangulation of the point set P . In particular,
we can assign to each simplex the smallest value of the distance function on its dual Voronoi cell. In this context,
ASr(P ) is the union of the simplices for which this value does not exceed r. In Python, we can compute the
Delaunay triangulation together with the necessary values with the fill_alpha_complex() function. Each

∗Lawrence Berkeley National Laboratory, dmitriy@mrzv.org. The author would like to acknowledge the support at LBNL of the
DOE Office of Science, Advanced Scientific Computing Research, under award number KJ0402-KRD047, under contract number
DE-AC02-05CH11231.

This is an abstract related to a tutorial or demo given at GTS 2012. It has been made public for the benefit of the community and should be considered
a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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generated simplex stores a pair (value,critical) in its data field. Here value determines when the simplex
enters the alpha shape, and critical is a flag indicating whether the simplex intersects its dual Voronoi cell.
Consequently, we can use Python list comprehensions to extract any given alpha shape:

simplices = Filtration()
fill_alpha_complex(points, simplices)
alpha_shape = [s for s in simplices if s.data[0] <= alpha]

Or get a complete alpha-shape filtration by sorting the simplices with respect to the data field and dimension:

simplices.sort(data_dim_cmp)

Class Filtration is an auxiliary construction that both records the order of the simplices, and allows fast access
to any given simplex.

Vietoris–Rips complexes. Often it is more convenient to work with pairwise distances between points, rather
than their explicit embedding in a Euclidean space. In this case, an alternative construction approximates the
information captured by the distance function. Vietoris–Rips complex for parameter r contains all those simplices
whose edge lengths do not exceed r, VRr(P ) = {σ ⊆ P | ‖u− v‖ ≤ r ∀ u, v ∈ σ}.

In Python, we express distances between points through an auxiliary class that knows their number and how
to measure a distance between a pair, see the example below. (PairwiseDistances provides a shortcut for
points in a Euclidean space.) Given an instance distances of such a class, we can instantiate a class Rips whose
method generate fills a simplicial complex up to prescribed threshold r and skeleton dimension k. Furthermore,
its method cmp is suitable for sorting the simplices by increasing edge lengths, while eval determines for any
simplex the length of its longest edge.

The following example constructs a DictDistances class that looks up edge lengths in a dictionary, returning
infinity for missing information. It’s then used as an input to the Rips class to generate a filtration of a 2-skeleton
of a Vietoris–Rips complex for parameter r = 3.

class DictDistances:
def __init__(self, dictionary, count = None):

self.d = dictionary
self.count = count or len(dictionary)

def __call__(self,i,j):
if i in self.d and j in self.d[i]:

return self.d[i][j]
elif j in self.d and i in self.d[j]:

return self.d[j][i]
else:

return float(’inf’)

def __len__(self):
return len(self.d)

octahedron = {0: {1: 1, 3:1}, 2: {1:1, 3:1}, 4: {0:2, 1:2, 2:2, 3:2}, 5: {0:3, 1:3, 2:3, 3:3}}
distances = DictDistances(octahedron, 6)
rips = Rips(distances)
simplices = Filtration()
rips.generate(2, 3, simplices.append) # 2-skeleton up to distance 3
simplices.sort(rips.cmp)

for s in simplices:
print s, rips.eval(s)

2.2 Piecewise-linear functions

Given a simplicial complex K and a function f̂ : VertK → R defined on the vertices of K, we linearly interpolate
it on the interiors of the simplices. The result is a piecewise-linear function f : K → R. The sublevel sets of

2
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f are not subcomplexes of K — a levelset may cut a simplex in half — so we need a scheme to construct a
filtration with the same persistence as f . To solve this problem, we define a lower-star filtration of K by setting
Ka = {σ ∈ K | max

v∈σ
f̂(v) ≤ a}. In words, the subcomplex Ka contains all the simplices on which the function f

does not exceed value a. It’s clear from the definition that Ka changes only as a passes the value f̂(v) of one of
the vertices. It’s not immediately obvious, but true that Ka is homotopy equivalent to f−1(−∞, a].

Assuming list values contains the function f̂ , where values[i]= f̂(vi), we construct the lower-star filtration
of f : K → R by sorting the simplices with respect to their highest vertex:

def max_vertex_cmp(values):
def max_vertex(s):

return max(values[v] for v in s.vertices)

def compare(si,sj):
return cmp(max_vertex(si), max_vertex(sj)) or cmp(si.dimension(), sj.dimension())

return compare

filtration = Filtration(complex, max_vertex_cmp(values))

max_vertex_cmp() returns a comparison function that remembers the list of vertex values. Sorting the filtration,
we get the lower-star filtration ordering of all the simplices.

3 Persistence algorithms and diagrams

Given a filtration (1), we can compute its homology as a sequence of vector spaces and linear maps connecting
them (we assume homology is computed with coefficients in a field):

0 → H(K1) → . . . → H(Kn−1) → H(Kn).

Persistence keeps track of cycles as they appear and disappear in this filtration and computes a collection
of intervals that represent the cycles’ lifetimes. We can think of the input to a persistence algorithm as the
boundary matrix D, where the columns and rows are ordered with respect to the filtration. In turn, we can
interpret standard persistence algorithms as computing a matrix decomposition R = DV , where matrix R is
reduced, meaning the lowest non-zero entries in its columns fall in unique rows, and matrix V is full-rank and
upper-triangular.

The columns of these auxiliary matrices have an immediate interpretation. If the column R[i] = 0, then the
column V [i] is, by definition, a cycle; it’s born with the addition of σi in the filtration. If R[i] .= 0, then it’s
a cycle that dies with the addition of simplex σi. Indeed, it’s the boundary of the chain V [i], which contains
σi. The row j of the lowest non-zero entry in column R[i] tells us when the cycle was born — namely, with the
addition of simplex σj . Notice that matrix R contains all the pairing information.

3.1 Algorithms

In Dionysus, StaticPersistence expresses the original algorithm [2], which computes matrix R. If we are
interested in both matrices, R and V , we can use the class DynamicPersistenceChains. Both have a method
pair_simplices, which performs the actual computation1.

p = StaticPersistence(filtration)
p.pair_simplices()

or

p = DynamicPersistenceChains(filtration)
p.pair_simplices()

Once the matrices are processed, we can examine their result by iterating over the instances of these classes. An
auxiliary map smap converts the iterators into the filtration simplices.

1StaticPersistence.pair_simplices(), by default, uses an optimization [2] that stores only positive simplices in matrix R. This
behavior can be turned off by passing True to the method.
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smap = p.make_simplex_map(filtration)
for i in p:

if i.sign():
sigma = smap[i]
if i.unpaired():

print sigma.dimension(), sigma.data, "inf"
else:

tau = smap[i.pair()]
print sigma.dimension(), sigma.data, tau.data

In the for-loop, the sign() of a simplex determines whether it created a homology class or destroyed it. In the
former case, we recover the simplex sigma responsible for the birth. We check whether it is unpaired(), i.e.,
whether the homology class it created ever died. If it didn’t, we output the dimension() and data associated
with sigma as well as "inf" to indicate the infinite lifetime. If sigma is paired, we recover its pair() tau, and
output sigma’s dimension() and data as the birth time, plus tau’s data as the death time.

The above snippet outputs the persistence diagram — in fact, all the non-empty persistence diagrams. But
sometimes we want more. To recover explicit cycles that were born and later died in the filtration, i.e., the
columns of matrix R, we use the cycle attribute of the persistence elements. The following snippet outputs the
matrix R, one column per line.

for i in p:
for ii in i.cycle:

print smap[ii],
print

If p is an instance of DynamicPersistenceChains, its elements have an attribute chain, which gives access to
columns of matrix V . Thus we can, for example, recover the cycles that never die:

for i in p:
if i.sign() and i.unpaired():

for ii in i.chain:
print smap[ii],

print

Remark. Dionysus also provides ZigzagPersistence and CohomologyPersistence classes with slightly differ-
ent semantics. We omit them here for lack of space.

3.2 Diagram comparison

It’s convenient to record a collection of all persistence pairs (bi, di) in a persistence diagram, denoted by Dgmp(f).
Function init_diagrams() returns all such (non-zero) diagrams, each expressed in a class PersistenceDiagram.

diagrams = init_diagrams(p, filtration)

A fundamental property of persistence is its stability [3], which says that if two functions are close, then so
are their persistence diagrams:

W∞(Dgmp(f),Dgmp(g)) ≤ ‖f − g‖∞.

Here W∞ denotes the bottleneck distance between the two diagrams. To define it, we compute a bijection
γ : Dgmp(f) → Dgmp(g) that minimizes the longest distance between a point and its image:

W∞(Dgmp(f),Dgmp(g)) = inf
γ
sup
x

‖x− γ(x)‖∞.

Rephrased algorithmically, we find the smallest value ε such that the bipartite graph on the two diagrams with
an edge for every pair of points closer than ε contains a perfect matching. In Dinoysus, given two diagrams dgm1
and dgm2, we can find their bottleneck_distance(dgm1, dgm2).

Stronger stability results hold for more restrictive classes of functions. Specifically, for Lipschitz functions
(with certain conditions on their domains), the persistence diagrams are stable with respect to the Wasserstein
distance [4]:

Wq(Dgmp(f),Dgmp(g)) ≤ C · ‖f − g‖k∞,

4
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where constants C and k depend on the domain of the functions. Here the Wasserstein distance finds the
matching γ that minimizes the sum of powers of its edge lengths:

Wq(Dgmp(f),Dgmp(g)) =

(

inf
γ

∑

x

‖x− γ(x)‖q∞

)1/q

.

The seemingly small change makes a major difference in practice: Wq is much more sensitive because it accounts
for the full diagrams rather than just the longest edge in a matching. In Dionysus, we can find it by calling
wasserstein_distance(dgm1, dgm2, q).

4 Code

Derived metric. To illustrate some of the above features, consider the following problem. Given a collection of 3-
dimensional point clouds, stored in a list point_clouds, we want to find the persistence diagrams of the distance
functions they induce on R3. Treating these diagrams as points, we measure the Wasserstein distances between
them. These measurements define a (finite) metric space, and we compute the persistence of its Vietoris–Rips
filtration. To put it briefly: what is the homology of the collection of point clouds?

First we compute the persistence diagrams for the alpha shape filtration for every point set in the collection:

def alpha_persistence_diagrams(points):
f = Filtration()
fill_alpha_complex(points, f)
f.sort(data_dim_comparison)
p = StaticPersistence(f)
p.pair_simplices()
diagrams = init_diagrams(p, f, lambda s: s.data[0])
return diagrams

diagrams = [alpha_persistence_diagrams(cloud) for cloud in point_clouds]

Armed with the diagrams, we create a WassersteinDistances class suitable for the construction of a Vietoris–
Rips filtration. We pick arbitrary thresholds k and r; their real choice is very application-dependent.

class WassersteinDistances:
def __init__(self, diagrams, q, dim = 1):

self.diagrams = diagrams
self.dimension = dim
self.q = q

def __len__(self):
return len(self.diagrams)

def __call__(self, i, j):
dgmi = self.diagrams[i][self.dimension]
dgmj = self.diagrams[j][self.dimension]
return wasserstein_distance(dgmi, dgmj, self.q)

distances = WassersteinDistances(diagrams, q = 3)
rips = Rips(distances)
simplices = Filtration()
rips.generate(k, r, simplices.append) # k-skeleton up to distance r
simplices.sort(rips.cmp)

Having generated the Vietoris–Rips filtration simplices, we compute its persistence diagrams:

p = StaticPersistence(simplices)
p.pair_simplices()
rips_diagrams = init_diagrams(p, simplices, rips.eval)

Besides pure curiosity, the knowledge of homology helps us choose candidate target spaces for dimensionality
reduction. For example, if we find a 1-dimensional homology class, we can translate it into a map to a circle [5].
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Noisy domain. Stability of persistence diagrams helps us cope with the noise in the function values when the
domain is fixed. But sometimes even the domain can be noisy. For example, instead of a function f : X → R on
a perfect compact set X , we may be given its noisy sampling P , where each point has a value f̂(p). With mild
assumptions on the function — most importantly, it needs to be Lipschitz — and the quality of the sampling,
we can recover the persistence diagram of the implicit original f : X → R using image persistence. Two papers
propose the same procedure [6, 7]: the first using alpha-shapes, the second using Vietoris–Rips complexes.

Denoting the Vietoris–Rips complex VRy(P ) with P y, the key idea is that a map on homology from Pα to P β ,
for suitably chosen α and β, filters out noisy homology classes while preserving the real cycles of X . (It’s exactly
the idea behind homology inference [3].) If now we filter these sublevel sets with respect to the function value f
and look at the images of the former filtration in the latter, we get an image persistence diagram that provably
approximates the persistence diagram of the original function. Denoting by P y

x the Vietoris–Rips complex for
parameter y constructed on the points p with f̂(p) ≤ x, i.e., P y

x = VRy(f̂−1(−∞, x]), we get a pair of persistence
modules:

H(P β
a1
) → H(P β

a2
) → . . . → H(P β

an−1
) → H(P β

an

)
↑ ↑ ↑ ↑

H(Pα
a1
) → H(Pα

a2
) → . . . → H(Pα

an−1
) → H(Pα

an

)

The persistence diagram of the image of the lower module in the upper approximates the persistence diagram
of f . To express this pair of filtrations in Dionysus, we must filter P β with respect to the sampled function f̂ ,
and indicate when a simplex falls into Pα.

# Assume points and values are given as well as hdim, alpha, and beta
distances = PairwiseDistances(points)
rips = Rips(distances)
simplices = Filtration()
rips.generate(hdim + 1, beta, simplices.append)
simplices.sort(max_vertex_cmp(values)) # Just like a PL-function

img_persistence = ImagePersistence(simplices, lambda s: rips.eval(s) <= alpha)
img_persistence.pair_simplices()

The lambda-function passed to ImagePersistence indicates for every simplex whether it belongs to the sub-
complex Pα.
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javaPlex: a research platform for persistent homology

Andrew Tausz∗ Mikael Vejdemo-Johansson† Henry Adams‡

Abstract

The javaPlex software package continues the Stanford tradition of software for persistent homology and
cohomology computation. javaPlex in particular is built with explicit aims for ease of use as a tool for
research into computational topology, and is available under an open source license with extensive source
code documentation.

The main design aim in the construction of javaPlex has been ease of extension – lowering the threshold
to implement new algorithms or insights from ongoing research into computational topology in a framework
that provides most if not all current persistence algorithms in a single interface.

1 Motivation and Design Goals

The main reason for the existence of javaPlex is to provide researchers in the area of topological data analysis a
unified software library to support their investigations. With this in mind, the design goals for it are as follows:

• Support for new directions for research: The main goal of the javaPlex package is to provide
an extensible base to support new avenues for research in computational homology and data analysis.
While its predecessor jPlex was very well suited towards computing simplicial homology, its design made
extension difficult.

• Interoperability: javaPlex can be run either as a Java application, or it can be called from any Java
compatible language. Supported languages include Matlab, Jython and Processing.

• Adherence to generally accepted software engineering practices: As a means to realizing the
first goal, the javaPlex software package was designed and implemented with software engineering best-
practices. Emphasis was placed on maintainability, modularity and reusability of the different parts of the
code.

We refer the reader to [Car09] for a very readable introduction to the field of topological data analysis as well
as the computational tasks involved.

2 Availability and Licensing

javaPlex is an open source package, available through Google Code at http://code.google.com/p/javaplex.
The javaPlex package is issued under the New BSD License which is describe at http://www.opensource.org/
licenses/bsd-license.php.

3 Related Platforms

Two platforms similar in capability and spirit to javaPlex are Dionysus and GAP persistence. Dionysus contains
state-of-the-art implementations of the standard algorithms for persistent topology and topological data analysis.
While Dionysus may have an edge in terms of computational speed (especially since it is written in C++),
javaPlex is written so that it is maximally accessible to newcomers to the field of computational topology. GAP
persistence is a new package developed by one of the authors which presents similar algorithms in the context of
the group-theoretic computer algebra system GAP.

∗ICME, Stanford University, atausz@stanford.edu
†School of Computer Science, University of St Andrews, Scotland , mvvj@st-andrews.ac.uk
‡Department of Mathematics, Stanford University, henrya@math.stanford.edu

This is an abstract related to a tutorial or demo given at GTS 2012. It has been made public for the benefit of the community and should be considered
a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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3.1 Overall Structure

In a nutshell, the two main capabilities of javaPlex are:

• Computation of the persistent homology of filtered chain complexes of finite vector spaces

• Automated construction of filtered complexes from geometric data

We expect most users of javaPlex to go through the “standard” persistent homology pipeline: compute
persistent simplicial homology of complexes constructed from point cloud data using Vietoris-Rips or witness
complexes. The internal structure, however, anticipates and includes further extensions.

4 Algebraic Background on Persistence Modules

To compute the homological properties of a point cloud, [ELZ02] introduced persistent homology, refined by
[ZC05]. Using one of a whole family of methods, the point cloud induces a filtered simplicial complex, where the
filtration encodes distance data as increasing “closeness” data for the data points in the point cloud.

Figure 1: Motivating the definition of persistence: the homology classes that survive from one stage to the next
are more likely to be large and significant; all the small, potentially noise-induced classes exist in only one of
these two stages.

Thus, from a point cloud, we acquire a filtered simplicial complex. The homology of this with field coefficients
is, since homology is a functor, a linear diagram of vector spaces and linear maps.

Consider the situation in Figure 1. To the left, we have a hypothetical intermediate stage of a filtered simplicial
complex. The betti number at this stage, an indicator of the size of the homology of a geometric object, would
indicate a structure with three holes. However, as the filtration continues, two of the three detected holes are
filled in, yielding the picture to the right. However, the gap to the lower right ends up bridged, creating two
holes, both detected by the homology computation.

By a cursory inspection of the point cloud, we would be inclined to say that the “true” number of relevant
holes, or cycles, in the data is just one – and this one significant hole is characterized by the homology class
corresponding to the hole being in the image of the inclusion map: the two superfluous cycles to the left vanish
along the map induced by the inclusion of simplicial complexes, and the superfluous cycle to the left was not
present before this induced map.

This example motivates our definition of a persistent homology class with life time starting at the filtration
stage p and persisting through to filtration stage q as an equivalence class of cycles in the simplicial complex Σp

modulo boundaries from the simplicial complex Σq.
The dimensions of such persistent homology groups are captured as betti barcodes, in which a line is drawn

parallel to the x-axis, from p to q for any basis element in this Hp,q
∗ (Σ∗). Similarly, a persistence diagram

captures the same information, with each basis element corresponding to the point (p, q) in the plane. We view
as significant features those that are described by long intervals, or equivalently those with a long distance from
the x = y diagonal in the persistence diagram.

8
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As demonstrated in [ZC05], the sequential diagrams of linear vector spaces and linear maps

V0
i0−→ V1

i1−→ . . .

corresponding to the homology of a filtered simplicial complex correspond through an equivalence of categories
to graded modules over F[x], the polynomial ring in one variable. The equivalence is by sending the diagram
above to the vector space

⊕

k Vk, and introducing an action of x on this vector space by x · v = ik(v) for v ∈ Vk.
The equivalence carries a long way: the chain complex of a filtered simplicial complex is a filtered chain

complex, which fits into this model too, by making each stage correspond to the corresponding filtration stage.
Thus, the homology of a filtered simplicial complex becomes a process entirely internal to the category of graded
F[x]-modules.

It should be noted that these modules are graded in two useful ways. One grading comes from the filtration,
setting |v| = k for a basis element v if v ∈ Vk/Vk−1. Another comes from the dimension: |v| = k if v is a
simplicial k-chain.

5 Filtered Complex Generation

As mentioned in the abstract, one of the primary function of javaPlex is the construction of filtered chain
complexes of vector spaces associated to actual point cloud datasets. The motivation for such constructions is
that they provide a persistent model of the dataset in question across all scales. javaPlex currently supports the
construction of two main types of filtered simplicial complexes: the Vietoris-Rips and lazy-witness constructions.
To begin, suppose that we have a finite metric space (X , d). In practice, it is possible that X is a set of points
in Euclidean space, although this is not necessary.

5.1 The Vietoris-Rips Construction

We define the filtered complex VR(X , r) as follows. Suppose that the points of X are {x1, ...xN}, where N = |X |.
The Vietoris-Rips complex is constructed as follows:

• Add points: For all points x ∈ X , x ∈ VR0(X , 0)

• Add 1-skeleton: The 1-simplex [xi, xj ] is in VR1(X , r) iff d(xi, xj) ≤ r

• Expansion: We define VR(X , r) to be the maximal simplicial complex containing VR1(X , r). That is, a
simplex [x0, ..xk] is in VR(X , r) if and only if all of its edges are in VR1(X , r).

An extensive discussion on algorithms for computing the Vietoris-Rips complex can be found in [Zom10]. The
javaPlex implementation is based on the results of this paper.

5.2 The Lazy-Witness Construction

The fundamental idea behind the lazy-witness construction is that a relatively small subset of a point cloud can
accurately describe the shape of the dataset. This construction has the advantage of being more resistant to
noise than the Vietoris-Rips construction. An extensive discussion about it can be found in [dSC04].

The lazy-witness construction starts with a selection of landmark points, L ⊂ X with |L| = L. One possibility
is to simply choose a random subset of X . Another possibility is to perform a sequential max-min selection: An
initial point l0 is selected, and then we inductively select the point lk which maximizes the minimum distance
to all previously generated points. This max-min construction tends to produce more evenly spaced points than
the random selection. Again we refer the reader to [dSC04] for a more detailed discussion, as well as empirical
results supporting these claims.

This construction is parameterized by a value ν, which most commonly takes the values 0, 1, or 2. We also
define the distance matrix D to contain the pairwise distances between the points in X .

• Define mi: If ν = 0, let mi = 0, otherwise, define mi to be the ν-th smallest entry in the i-th column of D

• Add points: For all points l ∈ L, l ∈ LW0(X , 0, ν)

• Add 1-skeleton: The 1-simplex [li, lj] is in LW1(X , r, ν) iff there exists an x ∈ X such that max(d(li, x),
d(lj , x)) ≤ r +mi.

• Expansion: We define LW(X , r, ν) to be the maximal simplicial complex containing LW1(X , r, ν).

9
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6 Homology Computation

The other primary function of the javaPlex library is the set of algorithms that actually compute the homology
and cohomology of a filtered chain complex. Key references to background material regarding these algorithms
can be found in [ZC05, dSMVJ10]. Although we do not describe them in detail here, we note that the algorithms
for computing persistent absolute/relative (co)homology can be formulated as matrix decomposition problems.
The fundamental reason for this is the equivalence of category of persistent vector spaces of finite type, and the
category finitely generated graded modules over F[t]. This correspondence is described in [ZC05].

The homology algorithms are built in a way that is optimized for chain complexes implemented as streams.
By this we mean that a filtered chain complex is represented by a sequence of basis elements that are produced
in increasing order of their filtration indices. Enforcing the constraint that all complexes must be implemented
this way allows javaPlex to perform the matrix decomposition operations in an efficient online fashion.

7 Applications

Although in principle javaPlex can compute the persistent homology of arbitrary chain complexes of vector
spaces, almost always these complexes arise from some sort of topological construction. Below we outline these
different situations.

7.1 Simplicial Homology

This is the “standard” situation, which was also handled by previous versions in the Plex software family. Here,
we have a filtered sequence of simplicial complexes X1 ⊂ X2 ⊂ ... ⊂ Xn, from which we define the vector space
of chains, C(Xi) consisting of formal sums of elements of Xi with coefficients in the field F.

In this case the boundary operator ∂ : C(Xi) → C(Xi−1) is the actual geometric boundary defined by

∂([v0, ..., vn]) =
∑

i

(−1)i[v0, ..., v̂i, ..., vn]

7.2 Cellular Homology

In this case, X = X∗ is a filtered cell complex. This complex is formed by inductively adding n-cells to the
n− 1-skeleton, by the gluing maps

ϕn
α : Sn−1 → Xd−1

which map the boundaries of the n-cells enα to the n − 1 skeleton. Note that in the above, we use n to denote
the grading by dimension, and d to denote the grading by filtration index.

The boundary operator then becomes

∂(enα) =
∑

β

deg(ϕn
αβ)e

n−1
β

where deg refers to the topological degree of a map.
Note that while javaPlex is fully capable of computing the persistent homology of arbitrary cell complexes,

the specification of such complexes are more tedious than simplicial complexes. Nevertheless they offer the user
a parsimonious way of defining a wide class of topological spaces.

7.3 Operations on Chain Complexes

The abstraction away from geometric primitives allows javaPlex to handle more general algebraic constructions
using complexes. These include computations such as tensor products, hom complexes and mapping cylinders.

8 Examples

8.1 Simplicial Homology

In Figure 2, one can see an example of a filtered simplicial complex generated from points on a torus. As one
moves from left to right, the filtration parameter, r, is increased yielding a more connected complex. In Figure
3 we show the persistence barcodes for the same shape. Note that the significant intervals corresponding to
homological features that last for a long time in the filtration.

10
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Figure 2: Example of a Lazy-Witness complex generated from randomly sampled points on a torus.

Figure 3: Persistence barcodes for a lazy-witness filtration of random points on a torus. The parameters used
were: N = 1000, L = 300, rmax = 0.3. The inner and outer radii of the torus were 0.5 and 1, respectively.
The max-min selection procedure was used to create the landmark set. Note that long intervals correspond to
significant homological features, and short ones are most likely the result of noise. We can see that the number
of significant intervals in each dimension equals the expected Betti number.
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8.2 Matlab Scripting Example - Cellular Homology

In this section we show a brief Matlab session in which the cellular homology is computed for a Klein bottle over
different coefficient fields. Essentially, this code examples constructs a cellular Klein bottle, initializes persistence
algorithm objects over the fields Z/2Z, Z/3Z, and Q, and computes the persistence intervals. We emphasize the
fact that javaPlex does not rely on Matlab in any way - it is merely being used as a scripting platform here.

% get the cellular sphere of the specified dimension
stream = examples.CellStreamExamples.getCellularKleinBottle();

% get cellular homology algorithm over Z/2Z
Z2_persistence = api.Plex4.getModularCellularAlgorithm(3, 2);
% get cellular homology algorithm over Z/3Z
Z3_persistence = api.Plex4.getModularCellularAlgorithm(3, 3);
% get cellular homology algorithm over Q
Q_persistence = api.Plex4.getRationalCellularAlgorithm(3);

% compute over Z/2Z - should give (1, 2, 1)
Z2_intervals = Z2_persistence.computeIntervals(stream)

% compute over Z/3Z - should give (1, 1, 0)
Z3_intervals = Z3_persistence.computeIntervals(stream)

% compute over Q - should give (1, 1, 0)
Q_intervals = Q_persistence.computeIntervals(stream)

The output of this example is:

Z2_intervals =
Dimension: 2 [0, infinity)
Dimension: 1 [0, infinity), [0, infinity)
Dimension: 0 [0, infinity)

Z3_intervals =
Dimension: 1 [0, infinity)
Dimension: 0 [0, infinity)

Q_intervals =
Dimension: 1 [0, infinity)
Dimension: 0 [0, infinity)

This is exactly what we expect, due to the presence of 2-torsion in the Klein bottle.

Acknowledgments. We would like to thank the reviewers for providing useful comments.
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Using Regina to experiment and compute
with 3-manifold triangulations and normal surfaces

Benjamin A. Burton∗

1 Introduction

Three-dimensional topology is a fertile ground for algorithmic problems. Prominent amongst these are decision
problems (e.g., recognising the unknot, or testing whether two triangulated 3-manifolds are homeomorphic);
decomposition problems (e.g., decomposing a triangulated 3-manifold into a connected sum of prime 3-manifolds);
and recognition problems (e.g., “naming” the 3-manifold described by a given triangulation).

In three dimensions, such problems typically have highly complex and inefficient solutions—running times are
often exponential or super-exponential, and implementations are often major endeavours developed over many
years (if they exist at all). This is in contrast to dimension two, where many such problems are easily solved in
small polynomial time, and dimensions ≥ 4, where such problems can become undecidable [8, 19].

Regina [2, 6] is a software package for 3-manifold topologists and knot theorists. It aims to provide powerful
algorithms and heuristics to assist with decision, decomposition and recognition problems; more broadly, it
includes a range of facilities for the study and manipulation of 3-manifold triangulations. It offers rich support
for normal surface theory, a major algorithmic framework that recurs throughout 3-manifold topology.

Regina is now 13 years old, with over 175 000 lines of source code. It is released under the GNU General
Public License, and contributions from the research community are welcome. It adheres to the following broad
development principles, in order of precedence:

1. Correctness: Having correct output is critical, particularly since one of Regina’s key applications is in
computer proofs. For example, it uses arbitrary precision integer arithmetic where it cannot be proven
unnecessary, and the API documentation makes thorough use of preconditions and postconditions.

2. Generality: Algorithms operate in the broadest possible scenarios (within reason), and do not require
preconditions that cannot be easily tested. For instance, unknot recognition runs correctly for both bounded
and ideal triangulations, and even when the input triangulation is not known to be a knot complement.

3. Speed: Because many of its algorithms run in exponential or super-exponential time, speed is crucial.
Regina makes use of sophisticated algorithms and heuristics that, whilst adhering to the constraints of
correctness and generality, make it practical for real topological problems.

Regina has featured in a number of topological applications. One recent example is the resolution of Thurston’s
30-year old question of whether the Weber-Seifert dodecahedral space is non-Haken [7], using a computer proof
that is the cumulation of several decades of theoretical and algorithmic developments by many different authors.

2 Overview of Regina

Regina is multi-platform, and offers a drag-and-drop installer for MacOS, an MSI-based installer for Windows,
and ready-made packages for several GNU/Linux distributions. It is thoroughly documented, and stores its data
files in a compressed XML format. Regina provides three levels of user interface:

• a full graphical user interface, based on the Qt framework [20];

• a scripting interface based on Python, which can interact with the graphical interface or be used a stand-
alone Python module;

• a programmers’ interface offering native access to Regina’s mathematical core through a C++ shared library.

∗School of Mathematics and Physics, The University of Queensland, bab@maths.uq.edu.au

This is an abstract related to a tutorial or demo given at GTS 2012. It has been made public for the benefit of the community and should be considered
a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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There are facilities to help new users learn their way around, including an illustrated users’ handbook, context-
sensitive “what’s this?” help, and sample data files that can be opened through the File −→Open Example menu.

Regina’s core strengths are in working with triangulations, normal surfaces and angle structures. It only
offers basic support for hyperbolic geometries, for which the software packages SnapPea [27] and its successor
SnapPy [9] are more suitable. Regina includes implementations of high-level decision and decomposition algo-
rithms, including the only known full implementations of 3-sphere recognition and connected sum decomposition.

For the remainder of this paper we give a short outline of Regina’s core features. For a more comprehensive
list, see http://regina.sourceforge.net/docs/featureset.html.

3 Triangulations

The most basic object in Regina is a 3-manifold triangulation. Regina does not restrict itself to simplicial
complexes; instead it uses generalised triangulations, a more general notion that can represent a rich array of
3-manifolds using very few tetrahedra.

Specifically, a triangulation is formed from n tetrahedra by affinely identifying (or “gluing”) some or all of their
4n faces in pairs. A face is allowed to be identified with another face of the same tetrahedron. It is possible
that several edges of a single tetrahedron may be identified together as a consequence of the face gluings, and
likewise for vertices. It is common to work with one-vertex triangulations, in which all vertices of all tetrahedra
become identified as a single point.

Figure 1 illustrates a two-tetrahedron triangulation of the real projective space RP 3. The two tetrahedra are
labelled 0 and 1, and the four vertices of each tetrahedron are labelled 0, 1, 2 and 3. Faces 012 and 013 of
tetrahedron 0 are joined directly to faces 012 and 013 of tetrahedron 1, creating a solid ball; then faces 023 and
123 of tetrahedron 0 are joined to faces 132 and 032 of tetrahedron 1, effectively gluing the top of the ball to the
bottom of the ball with a 180◦ twist.

0
0

0

1
1

1

2
2

2

3
3

3

Tetrahedron 0 Tetrahedron 1

Figure 1: A triangulation of the real projective space RP 3

All of this information can be encoded in a table of face gluings, which is how Regina represents triangulations:

Tetrahedron Face 012 Face 013 Face 023 Face 123
0 1 (012) 1 (013) 1 (132) 1 (032)
1 0 (012) 0 (013) 0 (132) 0 (032)

Consider the cell in the row for tetrahedron t and the column for face abc. If this cell contains u (xyz ), this
indicates that face abc of tetrahedron t is identified with face xyz of tetrahedron u, using the affine gluing that
maps vertices a, b and c of tetrahedron t to vertices x, y and z of tetrahedron u respectively.

For any vertex V of a triangulation, the link of V is defined as the frontier of a small regular neighbourhood of
V . It is often useful to think of vertex links as triangulated 2-dimensional surfaces, formed by inserting a small
triangle into each corner of each tetrahedron, and then joining together triangles from adjacent tetrahedra along
their edges. This mirrors the traditional concept of a link in a simplicial complex, but is modified to support the
generalised triangulations that we use in Regina.

The triangulation above of RP 3 is a closed triangulation, because it represents a closed 3-manifold; in a closed
triangulation, every vertex link is a 2-sphere. Regina can also work with bounded triangulations, where one
or more tetrahedron faces are not glued to anything; these unglued faces together form the boundary of the
resulting 3-manifold. In a bounded triangulation, every vertex link is either a 2-sphere or a disc. The following
table describes a one-tetrahedron triangulation of the solid torus B2 × S1, whose boundary consists of two
triangles (faces 023 and 123 of tetrahedron 0) that together form a 2-dimensional torus:

Tetrahedron Face 012 Face 013 Face 023 Face 123
0 0 (301) 0 (120)

Regina can also work with ideal triangulations. These are triangulations in which vertex links can be higher-
genus closed surfaces (such as tori or Klein bottles). Ideal triangulations can represent non-compact 3-manifolds
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(by deleting the vertices), or compact bounded 3-manifolds (by truncating the vertices). The following table
shows Thurston’s famous ideal triangulation of the figure eight knot complement [24]; this triangulation has one
vertex, whose link is the torus surrounding the figure eight knot in S3.

Tetrahedron Face 012 Face 013 Face 023 Face 123
0 1 (210) 1 (031) 1 (231) 1 (302)
1 0 (210) 0 (031) 0 (231) 0 (302)

There are some triangulations that Regina cannot work with. It will not allow vertex links to be bounded
surfaces other than discs (so annulus or punctured torus links are bad, for instance), and it will not allow an
edge to be identified with itself in reverse. Any triangulation with such a feature will be marked as invalid.

Users may enter tetrahedron gluings directly; however, Regina can also create triangulations in other ways,
such as importing from SnapPea [27] or other file formats, building “pre-packaged” constructions such as layered
lens spaces or Seifert fibred spaces, or accessing large censuses that hold tens of thousands of triangulations of
various types.

Regina can also reconstruct triangulations from isomorphism signatures [5]. These are short pieces of text
that completely encode a triangulation; for instance, the example triangulation of RP 3 above is described by
the isomorphism signature cPcbbbahh. A feature of isomorphism signatures is that two triangulations are
combinatorially isomorphic (i.e., related by a relabelling of tetrahedra and/or their vertices) if and only if their
isomorphism signatures are the same. Note that, as a consequence, reconstructing a triangulation from its
isomorphism signature may yield a differently-labelled (but isomorphic) copy of the original.

There are many ways to study a 3-manifold triangulation using Regina. At a high level, Regina offers decom-
position and recognition routines, including: exact algorithms for 3-sphere recognition, 3-ball recognition and
connected sum decomposition (these are always conclusive and correct); heuristic combinatorial algorithms for
recognising much larger families of manifolds such as Seifert fibred spaces, surface bundles and graph manifolds
(these “recognise” the structure of the triangulation, and will often be inconclusive); and routines from the Snap-
Pea kernel [27] for computing volumes of hyperbolic manifolds. At a lower level, Regina can compute invariants
of the underlying 3-manifold (such as homology, fundamental group and Turaev-Viro invariants), as well as
combinatorial properties of the specific triangulation (such as computing the 0, 1 and 2-skeleta, or searching for
common combinatorial “building blocks” within a triangulation).

Regina can also modify triangulations. Operations include local moves such as bistellar flips and edge collapses,
and global operations such as barycentric subdivision, boundary coning and vertex truncation. A frequently-
used operation is simplification, in which Regina uses a range of heuristic techniques to retriangulate the given
3-manifold using as few tetrahedra as it can.

4 Normal surfaces

One of Regina’s core strengths is its ability to enumerate and work with normal surfaces. A normal surface in a
3-manifold triangulation T is a properly embedded surface in T that meets each tetrahedron of T in a (possibly
empty) collection of disjoint curvilinear triangles and quadrilaterals, as illustrated in Figure 2.

Figure 2: Normal triangles and quadrilaterals in a tetrahedron

Normal surfaces were introduced by Kneser [16] and developed by Haken for use in algorithms [11]. One
of their key benefits is that they give significant insights into the structure of the underlying 3-manifold. For
instance, any triangulation of RP 3 (as in Figure 1) will contain a normal one-sided projective plane, and any
triangulation of the solid torus (i.e., the unknot complement) will contain a normal non-separating compressing
disc.

Properties such as this make normal surfaces a powerful tool for high-level recognition and decomposition rou-
tines in 3-manifold topology and knot theory. For example, they are central to algorithms for unknot recognition
(where one searches for a normal disc that the unknot bounds) [11], connected sum decomposition (where one
searches for normal 2-spheres that separates prime factors) [14], 3-sphere recognition [22], Hakenness testing [13],
and many more.
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Let T be a 3-manifold triangulation with n tetrahedra. Any normal surface in T can be described as an integer
vector in R7n, whose elements count the number of triangles and quadrilaterals of each type in each tetrahedron.
Specifically, for each tetrahedron ∆ there are four triangle coordinates that count how many triangles sit within
each of the four corners of ∆, and three quadrilateral coordinates that count how many quadrilaterals pass through
∆ in each of the three possible directions. Figure 3 illustrates all seven types of triangle and quadrilateral in ∆.

Figure 3: The seven triangle and quadrilateral types within a tetrahedron

An integer vector x ∈ R7n represents a normal surface in T if and only if: (i) x ≥ 0; (ii) Ax = 0 for a sparse
matrix A of matching equations derived from T ; and (iii) x satisfies the quadrilateral constraints, which require
that at most one quadrilateral coordinate within each tetrahedron can be non-zero. Conditions (i) and (ii) map
out a polyhedral cone in R7n, called the normal surface solution cone; condition (iii) then maps out a (typically
non-convex) union of faces of this cone.

A normal surface whose vector lies on an extreme ray of the normal surface solution cone is called a vertex
normal surface, and a normal surface whose vector lies in the Hilbert basis of this cone is called a fundamental
normal surface. For many high-level algorithms (including all of those mentioned earlier), it can be shown that
important surfaces—if they exist—can be found as vertex normal surfaces (or for some more difficult algorithms,
fundamental normal surfaces). For instance, in any triangulation of a non-prime 3-manifold M, there is some
vertex normal 2-sphere that separates M into a connected sum of non-trivial factors. The basic procedure
then for a typical high-level algorithm is to enumerate all vertex normal surfaces (or for some problems, all
fundamental normal surfaces), and then run some problem-specific test or procedure over each.

Regina comes with heavily optimised algorithms for enumerating all vertex normal surfaces [3] or fundamental
normal surfaces [4] in a triangulation. It can enumerate and/or view surfaces in a number of coordinate systems,
including standard coordinates in R7n (as outlined above), quadrilateral coordinates in R3n [26] (where we consider
only the quadrilaterals in each tetrahedron), and edge weight space in Re (where we count the intersections with
each of the e edges of the triangulation). It can also work with octagonal almost normal surfaces [23] (used in
3-sphere recognition, where we allow a single octagonal piece), and spun normal surfaces [25] (used with ideal
triangulations, where we allow infinitely many triangles spinning in towards a vertex).

Regina offers several ways to analyse normal surfaces, both “at a glance” and in detail. It also supports the
key operations of cutting a triangulation open along a normal surface and retriangulating, or crushing a surface
to a point (in the Jaco-Rubinstein sense [14], where there may be additional changes in topology but which can
be controlled and detected).

5 Angle structures

In addition to normal surfaces, Regina can also enumerate and analyse angle structures on a triangulation. An
angle structure on a 3-manifold triangulation T assigns non-negative internal dihedral angles to each edge of
each tetrahedron of T , so that (i) opposite edges of a tetrahedron are assigned the same angle; (ii) all angles in
a tetrahedron sum to 2π; and (iii) all angles around any internal edge of T likewise sum to 2π (see Figure 4).
Such structures are often called semi-angle structures [15], to distinguish them from strict angle structures in
which all angles are strictly positive.

α

α
β

β

γ
γ

2α+ 2β + 2γ = 2π

∑
angles = 2π

Figure 4: The conditions for an angle structure on a triangulation

Angle structures were introduced by Casson and further developed by Lackenby and Rivin [17, 21], and are
a simpler (but weaker) combinatorial analogue of a complete hyperbolic structure. Some angle structures are
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of particular interest: these include taut angle structures in which every angle is precisely 0 or π (representing
“flattened” tetrahedra) [12, 18], and veering structures which are taut angle structures with powerful combina-
torial constraints [1, 12]. Veering structures, and in some settings taut angle structures, can yield strict angle
structures [12, 15], which in turn can point the way towards building a complete hyperbolic structure on T [10].

Regina can construct and analyse angle structures on a 3-manifold triangulation T . Specifically, conditions
(i)–(iii) map out a polytope in R3n, where n is the number of tetrahedra; the vertices of this polytope—called
vertex angle structures—then generate all possible angle structures on T . Regina can enumerate all vertex angle
structures, or (optionally) only taut angle structures, and can detect veering structures when they are present.

6 Scripting in Python

Regina offers a powerful scripting facility, whereby most of the C++ classes and functions in its mathematical
engine are made available through a dedicated Python module. Python is a popular scripting language that
is easy to write and easy to read, and the Python module in Regina makes it easy to quickly prototype new
algorithms, run tests over large bodies of census data, or perform complex tasks that would be cumbersome
through a point-and-click interface.

Users can access Regina’s Python module in two ways:

• by opening a Python console from within the graphical user interface, which allows users to directly study
and/or modify data in the current working file;

• by starting the command-line program regina-python, which brings up a standalone Python prompt.

Users can also run their own Python scripts directly via regina-python, embed scripts within data files as
script packets, or write their own libraries of frequently-used routines that will be loaded automatically each time
a Regina Python session is started.

The following sample Python session constructs the triangulation of RP 3 from Section 3, prints its first
homology group, enumerates all vertex normal surfaces, and then locates and prints the coordinates of the
vectors that represent vertex normal projective planes.

bab@rosemary:~$ regina-python
Regina 4.92
Software for 3-manifold topology and normal surface theory
Copyright (c) 1999-2012, The Regina development team
>>> tri = NTriangulation()
>>> t0 = tri.newTetrahedron()
>>> t1 = tri.newTetrahedron()
>>> t0.joinTo(0, t1, NPerm4(1,0,3,2)) # Glues 0 (123) -> 1 (032)
>>> t0.joinTo(1, t1, NPerm4(1,0,3,2)) # Glues 0 (023) -> 1 (132)
>>> t0.joinTo(2, t1, NPerm4(0,1,2,3)) # Glues 0 (013) -> 1 (013)
>>> t0.joinTo(3, t1, NPerm4(0,1,2,3)) # Glues 0 (012) -> 1 (012)
>>> print tri.getHomologyH1()
Z_2
>>> s = NNormalSurfaceList.enumerate(tri, NNormalSurfaceList.STANDARD, 1)
>>> print s
5 vertex normal surfaces (Standard normal (tri-quad))
>>> for i in range(s.getNumberOfSurfaces()):
... if s.getSurface(i).getEulerCharacteristic() == 1:
... print s.getSurface(i)
...
0 0 0 0 ; 0 1 0 || 0 0 0 0 ; 0 1 0
0 0 0 0 ; 0 0 1 || 0 0 0 0 ; 0 0 1
>>>

7 Future development

Regina continues to enjoy active development and regular releases. The developers are currently working towards
a major version 5.0 release, which will also work with triangulated 4-manifolds and normal hypersurfaces (much
of this code is already running and well-tested in the development repository).
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Users are encouraged to contribute code and offer feedback. For information on new releases, interested parties
are welcome to subscribe to the low-traffic mailing list regina-announce@lists.sourceforge.net.
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The Open Graph Drawing Framework (OGDF)

Carsten Gutwenger∗

1 Introduction

We present the Open Graph Drawing Framework (OGDF), a C++ library of algorithms and data structures for
graph drawing. The ultimate goal of the OGDF is to help bridge the gap between theory and practice in the
field of automatic graph drawing. The library offers a wide variety of algorithms and data structures, some of
them requiring complex and involved implementations, e.g., algorithms for planarity testing and planarization,
or data structures for graph decomposition. A substantial part of these algorithms and data structures are
building blocks of graph drawing algorithms, and the OGDF aims at providing such functionality in a reusable
form, thus also providing a powerful platform for implementing new algorithms. The OGDF can be obtained
from its website at http://www.ogdf.net. The source code is available under the GNU General Public License
(GPL v2 and v3).

2 Major Design Concepts

Many sophisticated graph drawing algorithms build upon complex data structures and algorithms, thus making
new implementations from scratch cumbersome and time-consuming. Obviously, graph drawing libraries can
ease the implementation of new algorithms a lot. E.g., the AGD library [1], OGDF’s predecessor, was very
popular in the past, since it covered a wide range of graph drawing algorithms and—together with the LEDA
library [23]—data structures. However, the lack of publicly available source-code restricted the portability and
extendability, not to mention the understanding of the particular implementations. Other currently available
graph drawing libraries suffer from similar problems, or are even only commercially available or limited to some
particular graph layout methods.

Our goals for the OGDF were to transfer essential design concepts of AGD and to overcome AGD’s main
deficiencies for use in academic research. Our main design concepts and goals are the following:

• Provide a wide range of graph drawing algorithms that allow a user to reuse and replace particular algorithm
phases by using a dedicated module mechanism.

• Include sophisticated data structures that are commonly used in graph drawing, equipped with rich public
interfaces.

• A self-contained source code that does not require additional libraries (except for some optional LP-/ILP-
based algorithms).

• Portable C++-code that supports the most important compilers for the major operating systems (Linux,
MacOS, and Windows) and that is available under an open source license (GPL).

2.1 Modularization

In the OGDF, an algorithm (e.g., a graph drawing algorithm or an algorithm that can be used as building
block for graph drawing algorithms) is represented as a class derived from a base class defining its interface.
Such algorithm classes are also called modules and their base classes module types. E.g., general graph layout
algorithms are derived from the module type LayoutModule, which defines as interface a call method whose
parameters provide all the relevant information for the layout algorithm: the graph structure (Graph) and its
graphical representation like node sizes and coordinates (GraphAttributes). The algorithm then obtains this
information and stores the computed layout in the GraphAttributes.

∗Departement of Computer Science, TU Dortmund, Germany, carsten.gutwenger@tu-dortmund.de
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Using common interface classes for algorithms allows us to make algorithms exchangeable. We can write an
implementation that utilizes several modules, but each module is used only through the interface defined by its
module type. Then, we can exchange a module by a different module implementing the same module type. The
OGDF provides a mechanism called module options that even makes it possible to exchange modules at runtime.
Suppose an algorithm A defines a module option M of a certain type T representing a particular phase of the
algorithm, and adds a set-method for this option. A module option is simply a pointer to an instance of type
T , which is set to a useful default value in A’s constructor and called for executing this particular phase of the
algorithm. Using the set-method, this implementation can be changed to any implementation implementing the
module type T , even new implementations not contained in the OGDF itself.

Module options are the key concept for modularizing algorithm frameworks, thus allowing users to experiment
with different implementations for particular phases of the algorithm, or to evaluate new implementations for
phases without having to implement the whole framework from scratch.

2.2 Self-contained and Portable Source Code

It was important for us to create a library that runs on all important systems, and whose core part can be built
without installing any further libraries. Therefore, all required basic data structures are contained in the library,
and only a few modules based on linear programming require additional libraries: COIN-OR [22] as LP-solver
and ABACUS [19] as branch-and-cut framework.

For reasons of portability and generality, the library provides only the drawing algorithms themselves and
not any graphical display elements. Such graphical display would force us to use very system-dependent GUI
or drawing frameworks, or to have the whole library based on some cross-platform toolkit. Instead of this, the
OGDF simply computes basic layout information like coordinates of nodes or bend points, and an application
that uses the OGDF can create the required graphical display by using the GUI framework of its choice. For
creating graphics in common image formats, the OGDF project provides the command line utility gml2pic1.
This utility converts graph layouts stored in GML or OGML file formats into images (e.g., PNG, JPEG, EPS,
PDF, SVG).

3 Algorithms and Data Structures

Apart form many basic data structures and algorithms, OGDF contains the following sophisticated algorithms
and data structures.

3.1 General Graph Algorithms

Augmentation and Subgraph Algorithms. Several augmentation modules are currently available in the library
for adding edges to a graph to achieve biconnectivity. This can be done either by disregarding the planarity of
the graph or by taking care not to introduce non-planar subgraphs.

There are two algorithms for augmenting a planar graph to a planar biconnected graph: The module Planar-
Augmentation implements the Fialko-Mutzel augmentation algorithm [8], which performs very good in practice,
and DfsMakeBiconnected is a simple, DFS-based algorithm. A special variant of the planar augmentation
problem is solved by the PlanarAugmentationFix module. Here, a planar graph with a fixed planar embedding
is given, and this embedding shall be extended such that the graph becomes biconnected. PlanarAugmenta-
tionFix implements the optimal, linear-time algorithm by Gutwenger, Mutzel, and Zey [15].

Two modules are available to compute acyclic subgraphs of a digraph. DfsAcyclicSubgraph computes an
acyclic subgraph in linear time by removing all back arcs in a depth-first-search tree of G. On the other hand,
GreedyCycleRemoval implements the linear-time greedy algorithm by Eades and Lin [7]. If G = (V,A) is
connected and has no two-cycles, the algorithm guarantees that the number of non-feedback arcs is at least
|A|/2− |V |/6.

Graph Decomposition. Besides the basic algorithms for computing the biconnected components of a graph [25,
18], the OGDF provides further powerful data structures for graph decomposition. BCTree represents the decom-
position of a graph into its biconnected components as a BC-tree and StaticSPQRTree represents the decompo-
sition of a biconnected graph into its triconnected components as an SPQR-tree [5]. Both data structures can
be build in linear time; the latter constructs the SPQR-tree by applying the corrected version [14] of Hopcroft

1available at http://www.ogdf.net/doku.php/project:gml2pic
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Figure 1: A triconnected planar graph drawn with PlanarStraightLayout, PlanarDrawLayout, and Mixed-
ModelLayout (from left to right).

and Tarjan’s algorithm [17] for decomposing a graph into its triconnected components. The OGDF is one of the
few places where one can find a correct implementation of this complex and involved algorithm.

Planarity and Planarization. The OGDF provides a unique collection of algorithms for planar graphs, including
algorithms for planarity testing and planar embedding, computation of planar subgraphs, and edge reinsertion.
These algorithms can be combined using the planarization approach, yielding excellent crossing minimization
heuristics. The planarization approach for crossing minimization is realized by the module SubgraphPlanarizer,
and the two layout algorithms PlanarizationLayout and PlanarizationGridLayout implement a complete
framework for planarization and layout.

3.2 Graph Drawing Algorithms

Graph drawing algorithms form the heart of the library. The OGDF provides flexible frameworks with inter-
changeable modules for various drawing paradigms, including the planarization approach for drawing general,
non-planar graphs, the Sugiyama framework for drawing hierarchical graphs, and the multilevel-mixer, which is
a general framework for multilevel, energy-based graph layout.

Planar Drawing Algorithms. The class PlanarStraightLayout implements planar straight-line drawing algo-
rithms based on a shelling order of the nodes. For a graph with n nodes, the algorithm guarantees to produce
a drawing on a (2n − 4) × (n − 2) grid, with convex faces if the graph is triconnected. An improved version
of PlanarStraightLayout is PlanarDrawLayout. It guarantees a smaller grid size of (n − 2) × (n − 2). Some
sample drawings of a triconnected graph are shown in Fig. 1.

In mixed-model layouts, each edge is drawn in an orthogonal fashion, except for a small area around its
endpoints. The class MixedModelLayout represents the layout algorithm by Gutwenger and Mutzel [13], which
is based upon ideas by Kant [21] and also uses a shelling order. This algorithm draws a d-planar graph G on
a grid such that every edge has at most three bends and the minimum angle between two edges is at least 2

d
radians. The grid size is at most (2n− 6)× (3

2
n− 7

2
). See Fig. 1 for an example.

Orthogonal drawings represent edges as sequences of horizontal and vertical line segments. Bends occur where
these segments change directions. The OGDF provides orthogonal layout algorithms for graphs without degree
restrictions; these are embedded in the planarization approach realized by PlanarizationLayout.

Hierarchical Drawing Algorithms. The OGDF provides a flexible implementation of Sugiyama’s framework [24]
for drawing directed graphs in a hierarchical fashion; see Fig. 2. This framework basically consists of three phases,
and for each phase various methods and variations have been proposed in the literature. The corresponding
OGDF implementation SugiyamaLayout provides a module option for each of the three phases; optionally, a
packing module can be used to pack multiple connected components of the graph.

Though the commonly applied approach for hierarchical graph drawing is based on the Sugiyama framework,
there is a much better alternative that produces substantially less edge crossings: the upward planarization
approach [3] adapts the crossing minimization procedure known from the planarization approach. The OGDF
contains a modularized framework for upward planarization as well, however there is currently only a single
implementation for each phase.
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Figure 2: Sugiyama’s framework for hierarchical graph layout in the OGDF.

Energy-based Drawing Algorithms. Energy-based drawing algorithms constitute the most common drawing
approach for undirected graphs. They are reasonably fast for medium sized graphs, intuitive to understand, and
easy to implement—at least in their basic versions. The fundamental underlying idea of energy-based methods
is to model the graph as a system of interacting objects that contribute to the overall energy of the system, such
that an energy-minimized state of the system corresponds to a nice drawing of the graph. In order to achieve
such an optimum, an energy or cost function is minimized. There are various models and realizations for this
approach, and the flexibility in the definition of both the energy model and the objective function enables a wide
range of optimization methods and applications.

The OGDF provides implementations for several classical algorithms, such as the force-directed spring em-
bedder algorithm [6], the grid-variant of Fruchterman and Reingold [10], the simulated annealing approach by
Davidson and Harel [4], the algorithm by Kamada and Kawai [20], which uses the shortest graph-theoretic
distances as ideal pairwise distance values, as well as the GEM algorithm [9] and Tutte’s barycenter method [26].

In addition to these single level algorithms, the OGDF provides a generic framework for the implementation of
multilevel algorithms. Multilevel approaches can help to overcome local minima and slow convergence problems
of single level algorithms. Their result does not depend on the quality of an initial layout, and they are well
suited also for large graphs with up to tens or even hundreds of thousands of nodes. The multilevel framework
allows us to obtain results similar to those of many different multilevel layout realizations [27, 11, 16]. Instead
of implementing these versions from scratch, only the main algorithmic phases— coarsening, placement, and
single level layout—have to be implemented or reused from existing realizations. The module concept allows us
to plug in these implementations into the framework, enabling also a comparison of different combinations as
demonstrated in [2]. Fig. 3 shows two example drawings of large graphs.

On the one hand, the multilevel framework provides high flexibility for composing multilevel approaches out of
a variety of realizations for the different layout steps. On the other hand, this modularity prohibits fine-tuning
of specific combinations by adjusting the different phases to each other. Therefore the OGDF also contains
a dedicated implementation of the fast multipole multilevel method by Hachul and Jünger [16], as well as an
engineered and optimized version of this algorithm supporting multicore hardware [12].
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An Introduction to polymake 2.12

Michael Joswig∗

Abstract

polymake is is a tool to study the combinatorics and the geometry of convex polytopes and polyhedra.
It is also capable of dealing with simplicial complexes, matroids, polyhedral fans, graphs, some objects from
tropical geometry, and more.

1 Introduction

This text is meant as a short introduction to the system. It refers to features of the version 2.12, released March
19, 2012. While polymake is capable of dealing with a number of different mathematical objects the bulk of the
code still deals with convex polytopes. Therefore we begin with polytopes, that is, convex hulls of finitely many
points in Euclidean space. The idea is to show a typical use case.

The following people contributed to this version of polymake: Benjamin Assarf, Ewgenij Gawrilow, Katrin
Herr, Sven Herrmann, Lars Kastner, Benjamin Lorenz, Silke Möser, Andreas Paffenholz, Thomas Rehn, Thilo
Rörig, Benjamin Schröter.

2 An Example Session

In the following commands in the polymake shell are preceded with a ‘>’ symbol. the language is a dialect of
Perl. We start by producing a polytope which is the Cartesian product of a pentagon and a heptagon (both
regular), and we want to know the f -vector, which records the number of faces per dimension.

> $p57=product(n_gon(5),n_gon(7));
> print $p57->F_VECTOR;
35 70 47 12

This means that our polytope called $p57 has 35 vertices, 70 edges, 47 two-dimensional faces and twelve
three-dimensional faces. The latter are the facets of $p57.

A key concept in polymake is that mathematical objects, such as our polytope $p57$, have properties which
the user is interested in. In the example above the user wants to learn about the property F_VECTOR. For basic
usage the user can deal with objects and properties in a naive way: If a user asks for a specific property the
system decides how to compute it and tells the result. Relevant intermediate information is kept and does not
need to be re-computed if requested later. The list of available properties depends on the type of the object as
well as on the individual user’s installation. The latter holds since polymake can be extended in ways which are
transparent to the user.

We proceed with the example from above. By construction the polytope $p57 has a great deal of symmetry,
and this is what we want to exhibit in the next few commands. The group of combinatorial automorphisms is
the automorphism of the face lattice. In this case it is generated by four elements, each of which is written as a
pair of permutations. The first in each pair gives the action on the twelve facets, numbered from 0 to 11, while
the second gives the action on the 35 vertices. Each line of the output is truncated slightly.

> $Aut=automorphisms($p57->VERTICES_IN_FACETS);
> print $Aut;
(<7 6 2 3 4 5 1 0 9 8 10 11> <0 6 5 ...>)
(<0 1 2 5 4 3 6 7 8 9 11 10> <0 1 2 ...>)
(<1 2 6 3 4 5 7 8 9 0 10 11> <1 2 3 ...>)
(<0 1 2 4 5 10 6 7 8 9 11 3> <7 8 9 ...>)
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It is a new feature of version 2.12 that, via an interface to permlib [2], polymake can treat finite permutation
groups as objects.

> $G=new group::Group(GENERATORS=>[map { $_->first } @$Aut]);
> print $G->ORDER;
140

The whole polymake project is subdivided into applications which center around one (or slightly more than
one) kind of object. We dealt with the application polytope so far, and now we do a context switch to the
application for groups. This way we can access functions from that application without the need to qualify the
application such as in group::Group above.

> application ’group’;
> $orbits=compute_domain_orbits($G);
> print $orbits;
{0 1 2 6 7 8 9}
{3 4 5 10 11}

This is the orbit structure on the facets. So we got two types (namely, prisms over pentagons and prisms
over heptagons). The indices refer to the implicit numbering of the facets in the object $p57; this can be made
explicit as follows.

> print rows_numbered(convert_to<Float>($p57->FACETS));
0:4.0489173395223 0 0 -1 -4.38128626753482
1:1.44504186791263 0 0 1 -1.2539603376627
2:1 0 0 1.10991626417474 0
3:2.6180339887499 1 -3.07768353717525 0 0
4:1 1.23606797749979 0 0 0
5:2.6180339887499 1 3.07768353717525 0 0
6:1.44504186791263 0 0 1 1.2539603376627
7:4.0489173395223 0 0 -1 4.38128626753482
8:2.07652139657234 0 0 -2.07652139657234 1
9:2.07652139657234 0 0 -2.07652139657234 -1
10:1.37638192047117 -1.37638192047117 1 0 0
11:1.37638192047117 -1.37638192047117 -1 0 0

Let us create a picture. The dual graph of a polytope is the abstract graph whose nodes are the facets
(that is, the faces of codimension one) and whose edges correspond to the faces codimension two shared by two
facets. Nodes corresponding to facets in the same orbit receive the same color. polymake uses a spring embedding
algorithm to draw this graph without making use of geometric information. This way the combinatorial symmetry
is automatically reflected, as shown in Figure 1.

> @color = map {
$orbits->[0]->contains($_) ? "red" : "blue"

} 0..($p57->N_FACETS-1);
> $p57->VISUAL_DUAL_GRAPH(NodeColor=>\@color);

3 Getting polymake

polymake runs in a UNIX like environment. A C++ compiler (preferably gcc 4.6.x) and a Perl interpreter are
necessary in order to run the system. Java support is necessary for most visualization features. Notice that a
C++ compiler is required even if you do not write C++ code yourself. Ubuntu 11.10 is recommended, but all
other recent Linux versions should work, too. FreeBSD is supported as well. The new C++ compiler project
clang is not supported yet but will be in the near future.

It is recommended to download the polymake tar ball from http://polymake.org/doku.php/download/start
and to install it via
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Figure 1: Dual graph of the product of a pentagon and a heptagon

> ./configure
> make
> make install

Installation on MacOS X from scratch is slightly more involved, hence we recommend the bundle (polymake
2.12 versions available for Mac OS 10.6 and 10.7).

For those with a Intel based machine but without any of the operating systems mentioned above there is a
live CD version based on Linux Mint 12 LXDE (probably too large for one CD) and another smaller one based
on Ubuntu Mini Remix 11.10.

Recent versions of Cygwin on various flavors of Windows might be able to run some portions of polymake but
will invariably crash upon hitting the first exception (frequently used in polymake, and not properly supported
in Cygwin).
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KINARI-Lib: A C++ library for mechanical modeling and
pebble game rigidity analysis

Naomi Fox∗ Filip Jagodzinski† Ileana Streinu ‡

1 Introduction

KINARI (KINematics And RIgidity, http://kinari.cs.umass.edu) is a software project focused on data struc-
tures and algorithms for rigidity analysis, as applied to mechanical structures, abstract sparse graphs and
molecules. Designed and developed in the last author’s research group at Smith College and the University
of Massachusetts Amherst (LinkageLab http://linkage.cs.umass.edu), KINARI’s first application, KINARI-
Web [1], was released in 2011 as a web server for protein rigidity and flexibility analysis. An example of
KINARI-Web’s output, shown in Fig. 1(a), is the rigid cluster decomposition of a protein retrieved from the
Protein Data Bank (PDB).

In this abstract we describe KINARI-Lib V1.0, the first public release of the underlying core library. Written
in C++, KINARI-Lib implements the pebble game algorithm and provides support for body-bar-hinge and bar-
joint mechanical models (illustrated in Figs. 1(b),1(c)). Links to documentation, compiled library downloads,
and to the KINARI-Web server, are available from the KINARI project website.

(a) Protein. (b) 2D bar-and-joint frameworks. (c) 3D body-bar-hinge.

Figure 1: (a) Rigid cluster decomposition of the human insulin protein (PDB 1TRZ), as calculated by the
KINARI-Web application. Only the 4 largest clusters are shown. (b) Flexible and rigid 2D bar-and-joint
frameworks. (c) A 3D body-bar-hinge mechanical model.

Rigidity theory is a well-established mathematical area with applications in engineering, sensor networks,
chemistry, molecular biology and CAD. It aims at finding combinatorial properties of mechanical models, or
frameworks, in order to efficiently describe and compute their rigidity and flexibility properties. The two best-
studied classes of frameworks, bar-and-joint and body-bar-hinge, have well-understood combinatorial properties.
They are studied using associated graphs, where vertices represent rigid parts and the edges correspond to fixed-
length bars whose presence removes degrees of freedom. The pebble game algorithm efficiently examines such
graphs, and determines, in O(n2)-time, the total number of degrees of freedom, maximal rigid components, and
over-constrained regions in a generic framework.

KINARI-Lib contains classes for the pebble game algorithm, the body-bar-hinge framework mechanical model,
and special graphs on which the pebble game operates. Classes for reading from and writing to XML-formatted
files are also provided for the body-bar-hinge framework and for graphs.

After some preliminaries from rigidity theory, we give an overview of the software architecture. To demonstrate
its functionality, we also include two code examples for building executables: the first, for running the pebble
game on graphs and the second for analyzing rigidity of body-bar-hinge frameworks.

∗Department of Computer Science, University of Massachusetts, Amherst, MA, USA, fox@cs.umass.edu
†Department of Computer Science, University of Massachusetts, Amherst, MA, USA, filip@cs.umass.edu
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This is an abstract related to a tutorial or demo given at GTS 2012. It has been made public for the benefit of the community and should be considered
a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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Figure 2: Rigidity analysis applied to a generic body-bar-hinge framework.

2 Background

A mechanical model, or framework, is composed of rigid pieces held together by hard constraints. The number
of degrees of freedom (dofs) is the number of independent variables required to describe the position and configu-
ration of the framework in 3D. Two well understood classes of frameworks are bar-and-joint and body-bar-hinge.
A bar-and-joint framework is composed of points with distance constraints between them. Fig. 1(b) shows two
bar-and-joint frameworks in the plane: one is flexible and one is rigid. A rigid framework in 2D has zero internal
dofs and 3 trivial ones, which correspond to rigid motions in the plane. In 2D, the rigidity of generic bar-and-joint
frameworks is completely characterized by Lamans’s theorem [2].

Theorem 1 Laman’s Theorem 2D bar-and-joint:
A graph G with n vertices and m edges is a graph of a generically minimally rigid bar-and-joint framework iff
each subgraph G′ with n′ vertices spans at most m′ ≤ 2n′ − 3 edges, and m = 2n− 3.

Unfortunately, no such characterization is known in higher dimensions for bar-joint frameworks. A somewhat
less general model that still lends itself well to the modeling of molecules, and which has a Laman-type char-
acterization in 3D and higher dimensions, is the body-bar-hinge model. Such a framework is made from rigid
bodies connected along hinge axes allowing only rotation around the hinge, or by fixed length bars connected at
universal joints. Body-bar-hinge frameworks have associated multigraphs with one vertex for each body, 5 edges
for each hinge, and 1 edge for each bar. Tay’s theorem characterizes the rigidity of such generic frameworks
through similar sparsity conditions on this graph [5].

Theorem 2 Tay’s Theorem for 3D body-bar-hinge:
A multigraph G with n vertices and m edges is a graph of a generically minimally rigid body-bar-hinge framework
iff each subgraph G′ with n′ vertices spans at most m′ ≤ 6n′ − 6 edges, and m = 6n− 6.

These theorems lead to exponential-time recognition algorithms, but better methods, based on matroid par-
titioning and network flow, are known. Particularly convenient is the pebble game algorithm, valid for a larger
class of (k, *) graph sparsity conditions [3]. The algorithm starts with k pebbles placed on each vertex. Edges
are considered one at a time, and accepted if they have a total of at least * pebbles on their two endpoints, or
when this many pebbles can be gathered through a graph search procedure. When pebbles can’t be gathered,
the edge is rejected. The pebbles remaining at the end represent the degrees of freedom remaining in the system.

KINARI-Lib contains an implementation of the “component pebble game algorithm”, which does more than just
calculating degrees of freedom: it determines the over-constraints, dofs, and rigid components (maximal subsets
of vertices satisfying the sparsity condition with equality). The correctness of the pebble game calculations is
guaranteed for (k, *) values with k > 0 and l ∈ [0, 2k) [3]. The values needed for applying Laman’s and Tay’s
theorems, (2, 3) and (6, 6), fall within this range.

Tay’s theorem has guarantees only for generic body-bar-hinge frameworks. The software does not check for
genericity of the coordinate set, but we have provided some checks that certain combinatorial degeneracies not
occur. For example, every bar endpoint must lie in one and exactly one body.

For further background on rigidity theory and the pebble game algorithm, the LinkageLab hosts an educational
website (http://linkage.cs.umass.edu/pg/) with interactive java applets and a tutorial video [4].
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Figure 3: Overview of selected classes from KINARI-Lib.

3 KINARI-Lib software architecture

KINARI-Lib has classes for pebble games and for 3D body-bar-hinge framework mechanical modeling. To
support this functionality, KINARI-Lib also provides classes for representing graphs, calculating some statistics
on the body-bar-hinge frameworks, and for reading and writing each data structure in XML. A brief description
of the key classes is included below and in Fig. 3. Complete documentation is distributed with the software.

PebbleGame. This class contains an implementation of the component pebble game, described in [3]. The
constructor runs it by default, and requires the (k, *) sparsity parameters and a (multi)graph as input. Functions
are provided to retrieve the number of degrees of freedom, the maximal (rigid) components, and to identify
over-constrained edges. The class contains one PebbleGraph object as a member variable. A PebbleGraph is
a special extension of a directed multigraph, on which the pebble game is played.

BodyBarHingeFramework. This class contains lists of nodes, bodies, bars, and hinges. The nodes are a
discrete set of points used to define the bodies, bars, and hinges. The Node class represents a point, which can
(optionally) have coordinates associated with it. The Body class contains a set of nodes. The Bar represents
the bar connection between two Body objects at two Node endpoints. A Hinge connects at least two bodies,
at two nodes defining the hinge axis. The BodyBarHingeFramework::validBodyBarHingeFramework()
function can be called to check a number of conditions that are described in the API documentation.

BodyBarHingeFrameworkPebbleGame. This class provides special functionality applicable to the peb-
ble game on body-bar-hinge frameworks. The input to this is an object of the BBHFwkAssociatedGraph
class. The BBHFwkAssociatedGraph a special undirected graph associated with a body-bar-hinge frame-
work. Each vertex points to one (or more) bodies, and the edges have bars or hinges associated with them. In
this way, the post-pebble-game body-bar-hinge framework can be built. The BodyBarHingeFrameworkPeb-
bleGame::getConsolidatedGraph() function is provided to output an edge-contracted graph, where each
component has been consolidated into a single vertex. Because this graph is of type BBHFwkAssociatedGraph,
it contains all the information necessary to build the simplified BodyBarHingeFramework, where each rigid body
is maximal.

4 Code examples

We include two short examples illustrating how the KINARI-Lib functionality can be incorporated into a C++
program. The first example runs the pebble game on graphs. The second one analyzes the rigidity of 3D
body-bar-hinge frameworks. The library distribution includes extended versions of the two examples.

General graph pebble game. It performs the following steps:
Step 1: Read a graph from file.
Step 2: Run the pebble game on the graph, with user-specified (k, *) values
Step 3: Write an XML file containing the components, dofs, and over-constraints calculated by the pebble game.

This example also demonstrates the error handling utilities inside the KINARI code. Here, the PebbleGame
constructor will throw a KinariException if the (k, *) values are not in the acceptable range.
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#include "PebbleGame.h"
#include "GraphXMLFileIO.h"
#include "ComponentsXMLWriter.h"
using namespace Kinari;
int main( int argc, char **argv ) {
// Command line parameters:
std::string graphfilename(argv[1]); // 1. The name of the XML file containing the input graph
int k = atoi(argv[2]); // 2. k in the (k,l) values required to configure the pebble game
int l = atoi(argv[3]); // 3. l in the (k,l) values required to configure the pebble game
std::string componentfilename(argv[4]); // 4. The output file to write the components to
try {

GraphXMLFileIO graphReader(graphfilename);
UndirectedGraph* ugraph = graphReader.extractGraph();
PebbleGame pg(k,l, ugraph);
ComponentsXMLWriter::writePebGameResultsFile(pg, componentfilename);

} catch (KinariException e) {
std::cerr << e.toString() << std::endl; }}

Rigidity analysis of Body-Bar-Hinge Frameworks. The following commented code example shows the KINARI
classes and syntax for analyzing a body-bar-hinge framework using the BodyBarHingeFrameworkPebbleGame class. The
steps performed mirror those shown in Fig. 2.

#include "BBHFwkXMLFileIO.h"
#include "GraphXMLFileIO.h"
#include "BodyBarHingeFrameworkPebbleGame.h"
using namespace Kinari;
int main( int argc, char **argv ) {
// Read a body-bar-hinge framework from an XML file
BBHFwkXMLFileIO bbhXMLReader("bbh.xml");
BodyBarHingeFramework* bbh = bbhXMLReader.extractBBH();
// Create an associated graph
BBHFrameworkAssociatedGraph bodyGraph(bbh);
//Play pebble game and get the output graph with edge contractions
BodyBarHingeFrameworkPebbleGame pg(&bodyGraph);
BBHFrameworkAssociatedGraph* edgeContractedBBHGraph = pg.getConsolidatedGraph();
GraphXMLFileIO::writeOutGraph(*edgeContractedBBHGraph, "edgeContractedBBHGraph.xml");
// Retrieve minimized body-bar-hinge and write to file
BodyBarHingeFramework* consolidatedBBH = edgeContractedBBHGraph->makeBBH();
BBHFwkXMLFileIO::writeXMLToFile(*consolidatedBBH,"postPG_BBH.xml");}

5 Conclusion

Because it is computationally inexpensive compared with molecular simulations, rigidity analysis is a powerful tool for
the study of protein flexibility. Indeed, the main application of KINARI-Lib, deployed in our publicly available server
KINARI-Web, has been in this area. This release is anticipated to facilitate our library’s integration into new applications.

Acknowledgment. The development of the software described in this abstract was funded by grant DMS-0714934 as part
of the Joint program in mathematical biology supported by the Directorate for Mathematical and Physical Sciences of the
National Science Foundation and the National Institute of General Medical Sciences of the National Institutes of Health,
and by the Defense Advanced Research Projects Agency (DARPA “23 Mathematical Challenges", under “Algorithmic
Origami and Biology").
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Solving problems with Cgal:
an example using the 2D Apollonius package

Menelaos I. Karavelas∗,†

1 Introduction

The Cgal project [3] is an open source project that aims at providing “easy access to efficient and reliable
geometric algorithms in the form of a C++ library”, as it is stated on the project’s web site. The development
of the library started in 1995 and was initially funded by two Esprit LTR European projects. As of November
2003 it has been an open source project, while as of its latest public release 4.0, Cgal is distributed under the
LGPL/GPL v3+ licenses. Cgal currently consists of more that 500K lines of C++ code, and supports several
development platforms.

One of the major goals of Cgal is to provide robust construction of geometric entities, while at the same
time strive for efficiency and genericity. These goals have influenced the library’s design since the beginning of
its existence. Genericity has been achieved by employing generic programming techniques and by following the
concept/model development paradigm. Algorithms in Cgal depend on concepts, and at least one model per
concept is provided by the library. Components are interchangeable as long as they satisfy the proper concept
requirements, a feature that makes Cgal a sound basis for experimentation, as well as for the development of
prototype or mature codes for academic and industrial uses.

The development of Cgal is characterized by the clear separation between algorithms and data structures
(i.e., the combinatorial parts of a geometric algorithm) and the geometric predicates and constructions (this is
the numerical part of the geometric algorithms). Predicates and constructions are encapsulated in kernels or
traits classes, and they guarantee robustness by means of the Exact Geometric Computation (EGC) paradigm
[10] that the library follows. Efficiency on the other hand is achieved by employing filtering techniques (for
example, cf. [2]), either at the arithmetic or the geometric level.

The library is divided in four major parts: the arithmetic and algebra layer, the geometry kernels, the various
packages and the support library. The arithmetic and algebra layer offers the framework for utilizing different
number types, for providing polynomials, and, in more general terms, for supporting the various kernels and
packages that apply to (non-)linear geometric objects. There are currently three distinct linear kernel concepts
in Cgal, and at least one model for each such concept: the 2D kernel, 3D kernel and the dD kernel1. The
support library offers, among others, STL extensions of the library, interfaces between Cgal and BGL [1]
and geometric objects’ generators. The bulk of the library lies, however, in its packages: there are packages for
computing: arrangements, convex hulls, triangulations, Voronoi diagrams, and meshes, for performing: geometric
optimization, geometry processing, and spatial searching, as well as support for: kinetic data structures and
operations on cell complexes and polyhedra. The interested reader or prospective user of Cgal may consult the
User and Reference Manual of the library [9].

2 2D Triangulations and Apollonius graphs in Cgal

In this abstract we focus on 2D triangulations and 2D Delaunay graphs in Cgal, and, in particular, 2D Apollonius
graphs. Voronoi diagrams in Cgal are computed implicitly via their dual compactified Delaunay graphs; there
is support for point and segment Euclidean Voronoi diagrams [11, 5], power diagrams [11], as well as Apollonius
diagrams (a.k.a., additively-weighted Voronoi diagrams) [6]. Their dual graphs are represented via the 2D
Triangulation Data Structure (TDS) [8], which can actually handle any orientable triangulated surface without
boundary. The data structure has containers for triangular faces and vertices, while edges are represented
implicitly. Each face has pointers to its three neighbors and vertices, and each vertex points to one of its incident
faces. The user has the ability to plug-in his/her own custom vertex and face class, which are then recovered by

∗Department of Applied Mathematics, University of Crete, Greece, mkaravel@tem.uoc.gr
†Foundation for Research and Technology - Hellas, Greece
1In fact, the models of the 2D kernel are so far also models for the 3D kernel, so at the model level, the 2D and 3D kernels are
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This is an abstract related to a tutorial or demo given at GTS 2012. It has been made public for the benefit of the community and should be considered
a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

33



Minisymposium on Publicly Available Geometric/Topological Software, 2012

(a) (b)

Figure 1: (a) Schematic of the design of 2D Triangulations in Cgal. (b) An instance of the 2D Apollonius
diagram.

the TDS via a rebind mechanism. The TDS is of purely combinatorial nature; geometry is added at a higher
level, where also the traits classes computing the various types of Delaunay graphs are introduced; see also
Fig. 1(a) for a schematic of the design of the Cgal 2D Triangulation package. From the user’s perspective,
vertices and faces are seen abstractly as handles. The user has the ability to traverse the triangulation in many
different ways via iterators and circulators: there are iterators for iterating over the vertices, edges or faces of the
triangulation, and circulators for going around the vertices, edges and faces incident to a specific vertex. Last,
but not least, point location in the Voronoi diagram, or equivalently nearest neighbor queries, is offered by all
Delaunay graph classes in Cgal, while all algorithms offer incremental construction of the Delaunay graph, and,
in most cases, allow for dynamic site deletion.

In the Apollonius diagram the distance of a point p from a weighted point (or site) S = (c, w) is defined as
d(p, S) = ‖p − c‖2 − w. A site can be interpreted geometrically as a disk centered at c with radius w. The
Apollonius diagram has several major differences with respect to its point counterpart: sites may have empty
Voronoi cells, the 1-skeleton may be disconnected (although its compactified version is connected via the site
at infinity), two sites may be connected by more than one Delaunay edge, and two faces (i.e., combinatorial
triangles in the Delaunay graph) may have up to two edges in common. All these characteristics are apparent
in the Apollonius diagram in Fig. 1(b). The 2D Apollonius graphs in Cgal follow the same design as 2D
triangulations. The user can plug-in his/her own vertex and face, has access to vertices, edges and faces via
circulators and iterators, can ask for the number of the connected components of the 1-skeleton of the Apollonius
diagram, and can perform nearest neighbor location queries.

3 An example application

Suppose we are given a set D of n disks D1, D2, . . . , Dn on the plane, and we want to build a data structure that
supports the following type of queries:

Given two disks Di and Dj in D, do they belong to the same connected component of the union ∪n
k=1Dk?

Another way to pose the same problem is the following: Let ID be the intersection graph of D. Given two disks
in D, do they belong to the same connected component of ID? For simplicity, we will assume below that there is
no disk in D that is contained fully inside another one: the general scenario where we allow disks to be contained
in other disks can also be handled, in a slightly more complicated way.

Our practical solution to this problem will be to use the 2D Apollonius graph package of Cgal [6]. Under
the assumption mentioned above that there is no disk in D that is contained inside another disk, the disks in D
correspond to vertices of the 2D Apollonius graph AG(D) of D, and, more importantly, there exists a subgraph
G of AG(D) having the same connected components as the intersection graph of D (in fact, we will compute G
to be a spanning forest of ID). We will exploit this fact, and show how to build a mini-application on top of
the 2D Apollonius graph, that also supports same-connected-component queries in O(1) time. Our solution is
static, in the sense that it assumes that all disks in D are known in advance.
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The idea is to build a spanning forest FD of ID on top of AG(D). We will do so as follows:

1. We will modify the Apollonius graph vertex base class by adding fields for supporting a tree-like structure.
This will give us an in-place implementation of the spanning forest FD of ID.

2. We will create a new traits class that enriches the 2D Apollonius graph traits class with the additional
predicates that are required for the computation of FD.

3. We will implement the high-level class, called Disk_intersection_subgraph_2, that:

• will be responsible for computing FD,
• will provide access to the connected components of FD via iterators,
• will support the same-connected-component queries.

3.1 The vertex class

In the new vertex base class for the Apollonius graph, we are going to add three new fields: two that will be
used for representing the in-place forest, understood a collection of rooted trees, and one for storing a vertex of
FD that will be unique for each tree in FD, and thus will act a representative for each tree in FD (in fact this
representative node will be the root of each tree in FD). The first two fields will be: (1) a vertex to the parent
node in the tree of FD that our vertex belongs to, and (2) the set of children of the current vertex in the tree it
belongs to. The set of children will be implemented as a std::set, so as to be able to efficiently determine if a
vertex is a child of another vertex in some rooted tree of FD. The representative vertex, which will be the third
added field, will eventually be used for answering the same-connected-component query of two vertices in FD,
by simply comparing their representative vertices.

For implementing the vertex class of the Disk_intersection_subgraph_2 class, named Disk_intersection_-
subgraph_vertex_base_2, we will derive from the Apollonius_graph_vertex_base_2 class. Since the Disk_-
intersection_subgraph_2 requires as traits class a superset of the traits class for computing the 2D Apollonius
graph, we will pass this superset traits class as a template parameter. Last, but not least, due to the circular
dependency between vertices and faces of the triangulation data structure, will also need to implement the rebind
mechanism in order for the triangulation data structure to know the correct type of the vertex base class used.

In the code fragment below we see most of the implementation of the Disk_intersection_subgraph_vertex_-
base_2 class. The implementation of some member methods is obvious and is omitted.

template<class Gt, bool StoreHidden = false,
class Vb = Apollonius_graph_vertex_base_2<Gt,StoreHidden> >

class Disk_intersection_subgraph_vertex_base_2 : public Vb {
private:
typedef Vb Base;

public:
// public types (required by the ApolloniusGraphVertexBase_2 concept)
typedef typename Base::Geom_traits Geom_traits;
typedef typename Base::Site_2 Site_2;
typedef typename Base::Apollonius_graph_data_structure_2 Apollonius_graph_data_structure_2;
typedef typename Base::Face_handle Face_handle;
typedef typename Base::Vertex_handle Vertex_handle;

static const bool Store_hidden = StoreHidden;

// the rebind mechanism
template < typename AGDS2 >
struct Rebind_TDS {

typedef typename Vb::template Rebind_TDS<AGDS2>::Other Vb2;
typedef Disk_intersection_subgraph_vertex_base_2<Gt,Store_hidden,Vb2> Other;

};

private:
// the comparator functor that will be used in the std::set; it uses the Compare_site_2 predicate
// which is a new predicate (it is not provided by the model of the ApolloniusGraphTraits_2 concept)
struct Vertex_less { ... };

// type for the set of children nodes
typedef std::set<Vertex_handle,Vertex_less> Children_set;
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// the representative vertex, the parent vertex and the set of children
Vertex_handle rep_vertex, v_parent;
Children_set children;

public:
// type for the iterator on the childred
typedef typename Children_set::const_iterator Children_iterator;

// constructors
Disk_intersection_subgraph_vertex_base_2() : Base(), rep_vertex(), v_parent() {}
Disk_intersection_subgraph_vertex_base_2(const Site_2& p) : Base(p), rep_vertex(), v_parent() {}
Disk_intersection_subgraph_vertex_base_2(const Site_2& p, Face_handle f)

: Base(p, f), rep_vertex(), v_parent() {}

// set/get the representative vertex
inline void representative(Vertex_handle rep) { rep_vertex = rep; }
inline Vertex_handle representative() const { return rep_vertex; }

// set/get the parent vertex
inline void parent(Vertex_handle vp) { v_parent = vp; }
inline Vertex_handle parent() const { return v_parent; }

// add a new child
inline void add_child(Vertex_handle n) { children.insert(n); }

// test if v is a child of *this vertex
inline bool has_child(Vertex_handle v) const { return children.find(v) != children.end(); }

// iterators for children
inline Children_iterator children_begin() const { return children.begin(); }
inline Children_iterator children_end() const { return children.end(); }

// the number of children
inline typename Children_set::size_type number_of_children() const { return children.size(); }

// clear the container of the child nodes
inline void clear_children_container() { children.clear(); }

};

3.2 Augmenting the 2D Apollonius graph traits

For computing the forest FD we need two new predicates:

1. A functor that compares two disks and returns a Comparison_result. This comparison functor must
produce a total ordering of the sites in D. It is needed for constructing the set of children in each vertex of
the forest (see previous subsection).

2. A functor that takes two disks and returns true if the two disks intersect and false otherwise.

One way to produce a total ordering for the disks is to first compare their centers lexicographically, and in
case of equality, their radii; we are going to call the corresponding functor Compare_site_2 (the code for this
predicate is omitted). To implement the disk intersection predicate, we simply notice that, if Di = (ci, ri),
ci = (xi, yi), i = 1, 2 are the two input disks of the predicate, they intersect if and only if the sign of the quality
(x1 − x2)2 + (y1 − y2)2 − (r1 − r2)2 is not positive. We are going to call this predicate Do_intersect_2, and
its implementation may be found below. The template parameter Gt here stands for the Disk_intersection_-
subgraph_traits_2 class (defined below).

template<class Gt>
class Do_intersect_2 {
protected:
typedef Gt Geom_traits;
typedef typename Geom_traits::Site_2 Site_2;

// functor, taken from the CGAL kernel, that computes the squared distance of two 2D points
typedef typename Geom_traits::Kernel::Compute_squared_distance_2 D2;
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public:
// returns true if the (closures of the) disks s and t have non-empty intersection, false otherwise
inline bool operator()(const Site_2& s, const Site_2& t) const {

return CGAL::compare( CGAL::square(s.weight()+t.weight()), D2()(s.point(), t.point()) ) != SMALLER;
}

};

Implementing the Disk_intersection_subgraph_traits_2 class is now straightforward. We simply need to
derive from the Apollonius_graph_traits_2<K> class, where K is a model of the Cgal 2D kernel, and add the
two additional predicates.

template<class K>
class Disk_intersection_subgraph_traits_2 : public Apollonius_graph_traits_2<K> {
typedef Disk_intersection_subgraph_traits_2<K> Self;

// some lines of code omitted...
public:
// typedef for the template parameter that must be a model of the 2D CGAL kernel
typedef K Kernel;

// types for the two new predicates
typedef CGAL::Do_intersect_2<Self> Do_intersect_2;
typedef CGAL::Compare_site_2<Self> Compare_site_2;

};

Implementing a traits class that supports arithmetic filtering is straightforward. However, this is a purely
technical issue, that goes slightly beyond the scope of this abstract.

3.3 Implementing the high-level class

Having described how to modify the vertex base class, and how to augment the Apollonius_graph_traits_2,
so as to provide the additional predicates needed for the computation of the disk intersection subgraph, we
can now implement our high-level class that is responsible for the (static) computation of the disk intersection
subgraph. At this point there are quite a few design choices that may be adopted. In the code extract below,
we have chosen to derive, in a protected manner, from the Apollonius_graph_2 class, instantiated with: (i)
the Triangulation_data_structure_2 class using our own vertex base, and (ii) our augmented traits class.
We also show below the constructors provided for the Disk_intersection_subgraph_2, as well as the trivially
implemented query for determining whether two disks belong to the same connected component of the union of
the set of disks passed via the iterator range in the corresponding constructor.

The bulk of the work, however, is performed in the two compute_intersection_subgraph methods (cf. code
extract below), which implement a DFS-like search on the computed Apollonius graph (the implementation is
not shown here). In the first such method, we iterate over all vertices of the Apollonius graph; for each vertex
v whose representative site has not been initialized, we initialize it (by setting its representative vertex to be
the vertex itself), we insert it in an empty queue Q, and we start the DFS-like search by calling the second
compute_intersection_subgraph method using as arguments the queue Q and the vertex v. In the second
method, and while the queue is not empty, we pop the first element from the queue, say v, and look at its
neighbors in the Apollonius graph. If a neighbor u of v has not been initialized and the disks corresponding to u
and v intersect, we add u as a child of v in the same tree that v belongs to and we set the representative vertex
of u to be the same as that of v. Finally, we push u at the end of the queue. Clearly, nothing has to be done if
either u has already been assigned to a tree, or if u and v do not intersect.

template<class Gt>
class Disk_intersection_subgraph_2 : protected Apollonius_graph_2<Gt, Triangulation_data_structure_2<

Disk_intersection_subgraph_vertex_base_2<Gt,false>,
Triangulation_face_base_2<Gt> > >

{
typedef Apollonius_graph_2<Gt, Triangulation_data_structure_2<

Disk_intersection_subgraph_vertex_base_2<Gt,false>,
Triangulation_face_base_2<Gt> > > Base;

public:
// type definitions omitted ...
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typedef typename Base::Vertex_handle Vertex_handle;
typedef typename Base::Geom_traits Geom_traits;

protected:
typedef std::queue<Vertex_handle> Queue;

void compute_intersection_subgraph();
void compute_intersection_subgraph(Queue& q, Vertex_handle v_rep);

public:
// constructors
Disk_intersection_subgraph_2(const Geom_traits& gt = Geom_traits()) : Base(gt) {}

template<class Input_iterator>
Disk_intersection_subgraph_2(Input_iterator first, Input_iterator beyond,

const Geom_traits& gt = Geom_traits()) : Base(first, beyond, gt)
{ compute_intersection_subgraph(); }

inline bool in_same_connected_component(Vertex_handle v1, Vertex_handle v2) const
{ return v1->representative() == v2->representative(); }

// code omitted ...
};

3.4 Going one step further

In our model implementation, we also provide methods for the number of connected components, as well as for
the number of disks in each connected component. We have also implemented two types of iterators: one for
iterating over the connected components of the intersection subgraph, and one for iterating over the vertices
per connected components. In both cases we have used the Filter_iterator class provided in Cgal’s STL
extensions [4]. It should not be too complicated to adapt our approach above to a purely incremental one. Instead
of building the spanning forest on top of the Apollonius graph, we should use the Union-Find data structure to
incrementally compute the spanning subgraph. An implementation of Union-Find is already available within the
Support Library of Cgal [7].

Acknowledgments. The work in this paper has been partially supported by the FP7-REGPOT-2009-1 project “Archime-
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M4G: Manifolds for GPUs Library

André Maximo∗ Luiz Velho∗

Abstract

The Manifolds for GPUs library — M4G — is a compendium of tools to build an atlas structure from
a dense-polygon mesh to represent a surface in multiresolution in the GPU. The library is divided in two
main parts: the first defines a halfedge-based mesh with stellar operators and

√

2-subdivision adaptivity; the
second provides a set of applications to build a regular atlas-based representation of a given mesh. Both
functionalities complement other publicly available libraries, placing the M4G library on an ideal position to
construct a manifold-based representation of a mesh better suitable for GPUs.

1 Introduction

Recent advances in modeling, graphics and image processing allow us to envision a system where these three
areas are joined together. The many mathematical theories underpinning the discrete geometry of meshes point
to a convergence between geometry and image processing, while the fast pace of graphics-hardware processing
power increasingly support this convergence. The main barrier for the convergence to happen is that the leading
publicly available geometric softwares, such as MeshLab [3] and ParaView [6], and libraries, such as OpenMesh [5]
and CGAL [7], do not yet combine all these different concepts.

A fundamental problem in geometry processing is the one of converting a surface representation form into
another. This problem occurs whenever the surface data is generated or acquired in a representation that cannot
be handled by the intended application, or the representation is not the more appropriate one. Here we present
a library and a set of tools to convert from the traditional surface representation, namely a triangulated two-
manifold mesh, to an atlas-based representation suitable for applications in graphics processing units (GPUs).
The key features of our representation are two-fold. First, it allows adaptivity control of large and complex
surface models. Second, it offers a “minimum” interface that should be general enough for supporting conversion
from most representation forms. Both features were made possible by the combination of two well-established
notions in geometry processing: an atlas and a mesh subdivision scheme.

An atlas, A = {(Ui,ϕi)}i∈I , on a surface S ⊂ R3 is a collection of charts, (Ui,ϕi), where Ui is a subset of S,
called the chart domain, and ϕi : Ui → ϕi(Ui) ⊆ R2 is a bijective map, called the chart map, that maps Ui onto
a subset, ϕi(Ui), of R2. The chart domains “cover” S, i.e., S =

⋃

i∈I Ui, and two or more of them may overlap
at the same point in S.

From a given atlas A on S, we build a polygonal mesh representation of S. Our construction is based on an
adaptive subdivision scheme [22], which can be controlled by the CPU, and a dynamic tessellation, which can be
done by the GPU, aiming at representing any mesh property with multiresolution. The resulting representation
is a dynamic adaptive surface representation appropriate for GPU processing.

In this work we present a library dedicated to represent a discrete mesh in the computational perspective of
GPUs. Our Manifolds for GPUs library — M4G — provides an adaptive representation of a mesh in the CPU,
using charts in an atlas structure, that can be used to further tessellate regions of the same mesh in the GPU,
on each chart domain. The M4G library also provides a number of useful applications to promote a GPU-based
geometric system: different conversion algorithms from triangular to quadrangular (tri2quad) mesh based on
recent articles [9, 21]; mesh simplification using CGAL [7] to create base meshes from dense-polygon meshes; fast
geodesics curves computation [1, 20] for each edge of a base mesh; mesh parameterization also using CGAL [7]
to build chart domains for each face of a base mesh; and a samplify procedure to create regularly sampled charts
based on triangle rasterization using ordinary scan conversion from OpenGL [4]. In summary our library is a
compendium of source codes and applications to aid the development of a fully integrated geometric system.
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2 Related Work

The concept of atlas generalizes the one of parameterization, and it has been used in the context of texture
mapping [15], remeshing [17], and geometry encoding [18]. In all cases, the surface S was assumed to be
represented by a polygonal mesh. Here, we employ the notion of atlas without assuming any particular
representation form for S. Instead, we assume that the atlas A is described by a network of curves, e.g. geodesics,
on S which defines the chart domain boundaries. Figure 1 details this concept in our library, a dense-polygon
mesh is simplified to a base mesh and a set of geodesic curves are computed for each edge of the base mesh.

(a) (b) (c)

Figure 1: Example of the Bimba dataset, showing the original dense mesh (a), the base mesh (b) and the
geodesics curves associated with the edges of the base mesh (c). The rendering was done using ParaView [6].

The adaptive multiresolution feature of the representation provided by our M4G library is particularly suited for
progressive visualization [12]. The ability to separate the mesh into parts that must be sampled densely and parts
that can be represented by coarse geometry is also useful for reducing the bandwidth required for transmitting
a surface between different computational domains (e.g. hard-disk, main memory and GPU memory).

Perhaps the most powerful concept behind the manifold representation is that it enable us to work locally
on a surface similarly to the two-dimensional Euclidean space. This is achieved through a parameterization,
that establishes a mapping of the surface embedded in 3D to a region of the plane. The parameterization also
defines a coordinate system on the surface. But since this mapping is essentially flattening a curved surface,
inevitably it will cause geometric distortions. Parameterization methods try to reduce these distortions in order
to preserve certain properties, such as angles, distances and areas [11]. Also, depending on how this mapping is
computed, it can be designed to conform to a canonical region, such as a regular polygon (therefore constraining
the boundary) or to leave the boundary free as an additional degree of freedom for distortion minimization [10].
One of the tools of our M4G library is a parameterization tool allowing the exploration of methods and border
constraints to construct charts for a given mesh based on CGAL [7].

Surface parameterization also depends on the topology of the surface. Since the topology is, in general,
different from the plane it is not possible to map the entire surface without cutting it open. In that respect,
the parameterization methods can be classified into local and global, that respectively compute the mapping for
small surface patches or the entire surface [17].

The atlas structure we consider relies on a network of curves on the surface. Based on the assumption that
we can compute curves across chart domains, as well as subdivide their boundary curves, we can define an
intrinsic, curve-based parametrization of each chart. This kind of parametrization is particularly useful because
it naturally yields a chart map, and allows for a good control of both the map and the boundary of the region. An
example of this concept is the Multiresolution Adaptive Parameterization of Surfaces (MAPS) [13]. In addition,
it has been successfully used before for computing geodesic distances in the context of mesh parametrization [14]
and remeshing [19]. Finally, the collection of individual charts, i.e. the domains and their associated maps, is a
piecewise parametrization for the whole surface.
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Independently of the surface representation, very often for compatibility reasons, it becomes necessary to
convert to a polygonal approximation in order to perform certain tasks, such as visualization. In these situations,
it is desirable to have a mechanism to produce an adaptive mesh. Examples of such strategies are the progressive
meshes [12] and the stellar 4-k meshes [24]. Here we adopt the 4-8 adaptation scheme [23], which is a variant of
the stellar 4-k mesh, in our base data structure inside our library.

3 The M4G Library

Our library is divided in eight repositories, publicly available in our institution gitorious server (http://
gitorious.impa.br/about) under the GNU GPL 3 License [2]. The first repository contains our main
contribution and it is called adaptive 4-8 mesh (a48 ) based on [25] and extending [23]. The a48 repository (at
$ git clone git://gitorious.impa.br/a48/a48.git) hosts an efficient implementation of a polygon mesh data
structure, using half-edge [16] (cf. class MeshT in figure 2); a powerful set of operators based on Stellar Theory,
named stellar operators, for mesh manipulation (cf. class StellarMeshT); and an adaptive mesh representation
with simplification and refinement strategies (cf. class AdaptiveMeshT). The next two repositories, called mesh
(/a48/mesh.git1) and stellar (/a48/stellar.git1), are subsets of the first repository, hosting all codes related
to MeshT and StellarMeshT, made available for teaching purposes. The top block of figure 2 summarizes
our first repository structure (for a more in-depth documentation refer to www.impa.br/~andmax/a48).

Figure 2: M4G library overview: (top) the classes and policies to manipulate and represent a meshed surface;
(bottom) the applications toward a GPU-based geometric system.

The last five repositories host five different applications constructed to support a manifold-based representation
of a mesh on the GPU. The first is called simplify (at $ git clone git://gitorious.impa.br/m4g/simplify.git)
and contains a command-line software to expose CGAL’s simplification process [7] to build base meshes from
dense-polygon meshes (cf. application Simplify in figure 2). The second is called matching (/m4g/matching.
git1) and uses Lemon [8] to implement a triangular-to-quadrangular application based on a 2-matching graph-
based algorithm [9] on the triangular mesh dual (cf. Matching). Two other algorithms for triangular-to-
quadrangular conversion [21, 25] can be used from the tri2quad application in the first a48 repository. These
three tri2quad conversion algorithms were carefully implemented and return better and correct results where
MeshLab [3] fails.

The next repository is called geodesic (/m4g/geodesic.git1) and contains another command-line software
to expose geodesic curves computation [1] (cf. application Geodesic) using the implementation made available
with the Fast exact and approximate geodesics on meshes algorithm [20]. Each geodesic is computed in parallel
(using as many CPU cores as available) over a dense mesh connecting vertices of each corresponding base-mesh
edge. The fourth repository is called parameterize (/m4g/parameterize.git1) and uses CGAL [7] to unveil
several local parameterization algorithms with different border types (cf. application Parameterize). The last
application repository is called samplify (/m4g/samplify.git1) and uses OpenGL [4] to rasterize a surface patch
generating a regularly sampled chart from a parameter domain (cf. application Samplify). The bottom block
of figure 2 summarizes our application repositories.

The repositories of the M4G library are separate on purpose to facilitate its different usages. Each repository
is a module with its own dependancies, making it easier for a subset utilization (e.g. an input triangular mesh
enhanced with stellar operations and tri2quad functions can be used to develop a new simplification process not
possible using only CGAL [7]). All eight repositories have user instructions (in a read-me file) with simple usage
examples and sample models.

1For the full repository include: git://gitorious.impa.br before each address.
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GAP persistence – a computational topology package for GAP

Mikael Vejdemo-Johansson∗

Abstract

We introduce a recently built package for computing persistent homology within the computer algebra
system gap. A native gap implementation of the persistent homology algorithm allows for easier access to
the group-theoretic primitives in gap while simultaneously working on computational topology questions –
enabling for instance the use of symmetry groups to study symmetric point clouds. The strongest innovation
here is in the combination of persistent homology and point cloud algorithms with the group theoretic tools
in gap.

This package is different from the several existing homological algebra and simplicial topology packages
already in gap: simpcomp, homalg, Hap, et c., in that the focus here is on point cloud topology, and not
combinatorial complexes or homological algebra.

1 Introduction

We introduce a new package for persistent homology, written entirely in native gap. The chosen platform has
several advantages over the spectrum of available package for persistent homology and topological data analysis:

• gap has an old, strong, and productive user base within group theory and its various applications – with
many uses within research into group representation theory, crystallography, et c.

• gap is a full-scaled computational algebra package, with strong support for combinatorics and group theory.
This enables future projects that use symmetry groups to draw on inherent symmetries in point clouds,
and enables persistence methods for studying objects in pure mathematics.

• The package has been developed in the project hpc-gap, and is part of an effort to produce comfortable
parallelism primitives in gap. As such, the platform choice serves as a foundation for a future implemen-
tation of the parallelism proposed by Lipsky, Skraba and Vejdemo-Johansson in [2].

This package is a genuine new addition to the computational topology landscape. The fundamental novelty is
the implementation of persistent homology routines on a platform strongly optimized for computational group
theoretic investigations. The platform choice is the strongest distinguishing feature – most strong persistent
homology packages are not as tightly integrated in a full-scale computational algebra system; and the computa-
tional topology packages in gap– notably simpcomp, Hap, and homalg are all concerned with different aspects of
topology and homological algebra than our focus.

2 Current capabilities: nearest neighbours and topology

The currently available version of the package is focused on implementing methods from point cloud topology.
While the capabilities of the system are ever increasing, the current implemented code is driven by immediate
research requirements.

The implemented software can be divided into three main parts:

2.1 Metric geometry

gap persistence comes with support for enumerating the k nearest neighbours of a point using an arbitrary
metric – the Euclidean metric is provided as a helper function – and for enumerating all points in a particular
ε-ball around a given center point, again using an arbitrary metric, though the Euclidean metric is provided.

In its current shape, the code uses brute force searches for these enumerations. While there are many much
faster methods available in low ambient dimensions – using spatial trees for speeding up lookups, there do not
seem to be fast methods that scale well with ambient dimension.
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Figure 1: Runtimes in seconds against simplex
counts for javaPlex and for gap persistence.
Up to about several hundred thousand simplices,
gap persistence stays about 3x-5x the time
needed for javaPlex for comparable computa-
tions, while for a few million simplices, the run-
time needed for gap persistence increases over
the corresponding javaPlex computation with up
to a few orders of magnitude.

2.2 Neighbourhood graphs

The gap persistence package also provides some graph theoretic primitives – capable of creating graphs with
both vertex and edge decorations. These come with functionality that relies on the metric geometry above to
generate neighbourhood graphs from point clouds.

Internally, given the needs of clique finding algorithms and persistent homology as a main use case, the package
uses a neighbourhood list representation of graphs.

2.3 Persistent homology

The package includes a full implementation of the Incremental method for clique complex construction described
by Zomorodian in [3], and a full implementation of the persistence algorithm as described by Edelsbrunner–
Letscher–Zomorodian and by Zomorodian-Carlsson [1, 4], both with and without retention of representative
cycles for homology classes.

3 Performance comparisons

The package is implemented entirely in native gap, with the only crucial external dependency being on the
high-speed hash table implementations used in the gap package orb, included in standard gap distributions.
We have performed comparative benchmarks with the performance of gap persistence as compared to that
of javaPlex, and present some of these results in Figure 1. We would like to draw the reader’s attention to
the fact that while an entirely interpreted language, gap stays within about one order of magnitude slowdown
compared to javaPlex until we reach about a million simplices. At this point, asymptotic complexity overtakes
gap’s performance, yielding a slowdown of several orders of magnitude for problems on a few million simplices.

While gap persistence is slower than javaPlex, something that is understandable given that it is written
in an entirely interpreted language, the package shows usable performance characteristics. The real power in
the comparison comes in memory usage – gap persistence stays very lean compared to javaPlex. Due to
difficulties in accurately monitoring memory usage on two different platforms, both with significant internal
memory managment, we show no data for this – but observations during benchmarks would regularly show
javaPlex significantly below 1G of consumed memory, even for problem sizes of several hundred thousand
simplices, while javaPlex would comfortably use up to 4-5G for corresponding computations.

4 Usage example

See Example 4.1 for the gap session described here. The language is interpreted – and the intermediate stages
can be observed to get rough estimates of the computational complexity.
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As an example of how to use the package, we use gap to generate an orbit of a group action with non-trivial
topology. The dihedral group D2k, generated by an element c of order k and an element r of order 2, acts on R3

by rotation by 2π/k around the z-axis for the action of c and reflection through the xy-plane for the action of r.
Any non-zero point p ∈ R3 will have an orbit consisting of the vertices of a prism of a k-gon. If p is close to

the xy-plane, the resulting point cloud will be close to a single circle. If p is close to the z-axis, the point cloud
will be close to a pair of clusters. Otherwise, p will trace out a pair of circles – corresponding to the top and the
bottom k-gons.

We do this computation for k = 1000, starting with the point (1, 1, 1) to get two circles – each with 1000
points. We compute persistent homology up to ambient dimension, and filter the resulting barcode to highlight
the interesting parts of the barcode. Since we compute with a 3-skeleton, we can expect significant noise in H3

since the 4-simplices that could kill homology classes will not show up. We filter these classes away together
with shortlived classes.

Starting instead with the point (1, 1, 0.001), we get a point cloud that is almost indistinguishable from a single
circle. The barcode brings up one generator each of H0 and H1.

Timing prints are in milli-seconds for the entire log file.

Example 4.1 A session with gap and the persistence package

Lachesis% gap.dev -b
#I Package ‘‘nq’’: The executable program is not available
gap> LoadPackage("persistence");
true
gap> r := RealPart(E(1000));;
gap> i := ImaginaryPart(E(1000));;
gap> m1 := [[1,0,0],[0,1,0],[0,0,-1]];;
gap> m2 := [[r,i,0],[-i,r,0],[0,0,1]];;
gap> d2000 := Group(m1,m2);;
gap> Length(Elements(d2000)); # Size will test for finiteness first; slower.
2000
gap> cPts := Orbit(d2000, [1,1,1], OnRight);;
gap> pts := List(cPts, v -> List(v, Float));;
gap> eps := 0.01;;
gap> vr := VietorisRips(pts, eps, 3);; time;
29910
gap> int := PersistentHomology(vr, GF(3));; time;
44
gap> FilteredBarcode(int, 2, 0.005); time;
[ [ 0, 0., infinity ], [ 0, 0., infinity ], [ 1, 7.89566e-05, infinity ],
[ 1, 7.89566e-05, infinity ] ]

2
gap> cPts := Orbit(d2000, [1,1,1/1000], OnRight);;
gap> pts := List(cPts, v -> List(v, Float));;
gap> eps := 0.01;;
gap> vr := VietorisRips(pts, eps, 3);; time;
29239
gap> int := PersistentHomology(vr, GF(3));; time;
278
gap> FilteredBarcode(int, 2, 0.005); time;
[ [ 0, 0., infinity ], [ 1, 7.89566e-05, infinity ] ]
4

The resulting barcode is a list of triples with the format [dimension, birth, death]. It is worth noticing
that the datastructure vr is consumed during the process, and thus should be reconstructed from vrg and vrc
for each renewed or halfway aborted run of the algorithm. Not surprisingly, given the input, the computation
does recover the topology of the two circles.

The package comes with the capacity to load comma-separated values from a file, allowing the separation of
data generation and analysis. Furthermore, one can work in the group representation theory setting of gap and

45



Minisymposium on Publicly Available Geometric/Topological Software, 2012

use the command Float to convert vectors of rationals into vectors of machine float acceptable to the homology
computation framework at the last moment. For cyclotomics, the Float command will be adapted in the future
in all of gap: in the meantime, we are providing a command in the library to deal with conversions from
cyclotomic integers to floating point values.1
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