121 research outputs found

    A new approach to spatial data interpolation using higher-order statistics

    Get PDF
    Interpolation techniques for spatial data have been applied frequently in various fields of geosciences. Although most conventional interpolation methods assume that it is sufficient to use first- and second-order statistics to characterize random fields, researchers have now realized that these methods cannot always provide reliable interpolation results, since geological and environmental phenomena tend to be very complex, presenting non-Gaussian distribution and/or non-linear inter-variable relationship. This paper proposes a new approach to the interpolation of spatial data, which can be applied with great flexibility. Suitable cross-variable higher-order spatial statistics are developed to measure the spatial relationship between the random variable at an unsampled location and those in its neighbourhood. Given the computed cross-variable higher-order spatial statistics, the conditional probability density function is approximated via polynomial expansions, which is then utilized to determine the interpolated value at the unsampled location as an expectation. In addition, the uncertainty associated with the interpolation is quantified by constructing prediction intervals of interpolated values. The proposed method is applied to a mineral deposit dataset, and the results demonstrate that it outperforms kriging methods in uncertainty quantification. The introduction of the cross-variable higher-order spatial statistics noticeably improves the quality of the interpolation since it enriches the information that can be extracted from the observed data, and this benefit is substantial when working with data that are sparse or have non-trivial dependence structures

    Using third-order cumulants to investigate spatial variation: a case study on the porosity of the Bunter Sandstone

    Get PDF
    The multivariate cumulants characterize aspects of the spatial variability of a regionalized variable. A centred multivariate Gaussian random variable, for example, has zero third-order cumulants. In this paper it is shown how the third-order cumulants can be used to test the plausibility of the assumption of multivariate normality for the porosity of an important formation, the Bunter Sandstone in the North Sea. The results suggest that the spatial variability of this variable deviates from multivariate normality, and that this assumption may lead to misleading inferences about, for example, the uncertainty attached to kriging predictions

    Temporal moments of a tracer pulse in a perfectly parallel flow system

    Get PDF
    Perfectly parallel groundwater transport models partition water flow into isolated one-dimensional stream tubes which maintain total spatial correlation of all properties in the direction of flow. The case is considered of the temporal moments of a conservative tracer pulse released simultaneously into N stream tubes with arbitrarily different advective–dispersive transport and steady flow speeds in each of the stream tubes. No assumptions are made about the form of the individual stream tube arrival-time distributions or about the nature of the between-stream tube variation of hydraulic conductivity and flow speeds. The tracer arrival-time distribution g(t,x) is an N-component finite-mixture distribution, with the mean and variance of each component distribution increasing in proportion to tracer travel distance x. By utilising moment relations of finite mixture distributions, it is shown (to r=4) that the rth central moment of g(t,x) is an rth order polynomial function of x or φ, where φ is mean arrival time. In particular, the variance of g(t,x) is a positive quadratic function of x or φ. This generalises the well-known quadratic variance increase for purely advective flow in parallel flow systems and allows a simple means of regression estimation of the large-distance coefficient of variation of g(t,x). The polynomial central moment relation extends to the purely advective transport case which arises as a large-distance limit of advective–dispersive transport in parallel flow models. The associated limit g(t,x) distributions are of N-modal form and maintain constant shapes independent of travel distance. The finite-mixture framework for moment evaluation is also a potentially useful device for forecasting g(t,x) distributions, which may include multimodal forms. A synthetic example illustrates g(t,x) forecasting using a mixture of normal distributions

    Development of a Grade Control Technique Optimizing Dilution and Ore Loss Trade-off in Lateritic Bauxite Deposits

    Get PDF
    This thesis focusses on the development of new techniques to improve the resource estimation of laterite-type bauxite deposits. Contributions of the thesis include (1) a methodology to variogram-free modelling of the ore boundaries using multiple-point statistics, (2) an approach to automate the parameter tuning process for multiple-point statistical algorithms and (3) a grade control technique to minimise the economic losses due to dilution and ore loss

    A Novel Pixel-based Multiple-Point Geostatistical Simulation Method for Stochastic Modeling of Earth Resources

    Get PDF
    Uncertainty is an integral part of modeling Earth\u27s resources and environmental processes. Geostatistical simulation technique is a well-established tool for uncertainty quantification of earth systems modeling. Multiple-point statistical (MPS) algorithms are specifically advantageous when dealing with the complexity and heterogeneity of geological data. MPS algorithms take advantage of using training images to mimic physical reality. This research presents a novel and efficient pixel-based multiple-point geostatistical simulation method for mineral resource modeling. Pixel-based simulation implies the sequential modeling of individual points on the simulation grid by borrowing spatial information from the training image and honoring conditioning data points. The developed method borrows information by integrating multiple machine learning algorithms, including Principal Component Analysis (PCA), t-Distributed Stochastic Neighbor Embedding (t-SNE), and Density-based Spatial Clustering of Applications with Noise (DBSCAN) algorithms. For automation and to ensure high-quality realizations, multiple optimizations, and parameter tuning strategies were introduced. The proposed methodology proved its applicability by accurate reproduction of complex geological features honoring conditioning data while maintaining reasonable computational time. The model is validated by simulating a variety of categorical and continuous variables for both two and three-dimensional cases and conditional and unconditional simulations. As a three-dimensional case study for categorical stochastic modeling, the proposed method is applied to a gold deposit for orebody modeling. The proposed algorithm can be applied to a variety of contexts, including but not limited to petroleum reservoir characterization, seismic inversion, mineral resources modeling, gap-filling in remote sensing, and climate modeling. The developed model can be extended for spatio-temporal modeling, multivariate simulation, non-stationary modeling, and super-resolution realizations

    Hyperspectral Image Classification With Independent Component Discriminant Analysis

    Full text link

    A new computational model of high-order stochastic simulation based on spatial Legendre moments

    Get PDF
    Multiple-point simulations have been introduced over the past decade to overcome the limitations of second-order stochastic simulations in dealing with geologic complexity, curvilinear patterns, and non-Gaussianity. However, a limitation is that they sometimes fail to generate results that comply with the statistics of the available data while maintaining the consistency of high-order spatial statistics. As an alternative, high-order stochastic simulations based on spatial cumulants or spatial moments have been proposed; however, they are also computationally demanding, which limits their applicability. The present work derives a new computational model to numerically approximate the conditional probability density function (cpdf) as a multivariate Legendre polynomial series based on the concept of spatial Legendre moments. The advantage of this method is that no explicit computations of moments (or cumulants) are needed in the model. The approximation of the cpdf is simplified to the computation of a unified empirical function. Moreover, the new computational model computes the cpdfs within a local neighborhood without storing the high-order spatial statistics through a predefined template. With this computational model, the algorithm for the estimation of the cpdf is developed in such a way that the conditional cumulative distribution function (ccdf) can be computed conveniently through another recursive algorithm. In addition to the significant reduction of computational cost, the new algorithm maintains higher numerical precision compared to the original version of the high-order simulation. A new method is also proposed to deal with the replicates in the simulation algorithm, reducing the impacts of conflicting statistics between the sample data and the training image (TI). A brief description of implementation is provided and, for comparison and verification, a set of case studies is conducted and compared with the results of the well-established multi-point simulation algorithm, filtersim. This comparison demonstrates that the proposed high-order simulation algorithm can generate spatially complex geological patterns while also reproducing the high-order spatial statistics from the sample data

    Developing New High-Order Sequential Simulation Methods Based on Learning-Oriented Kernels

    Get PDF
    RÉSUMÉ: La quantification de l’incertitude joue un rĂŽle essentiel dans la gestion du risque technique de l’exploitation durable des ressources naturelles. Les modĂšles de champs alĂ©atoires sont utilisĂ©s pour modĂ©liser les attributs naturels d’intĂ©rĂȘt, parmi lesquels les attributs Ă  diffĂ©rents endroits sont reprĂ©sentĂ©s comme des variables alĂ©atoires comprenant une distribution de probabilitĂ© conjointe. Les statistiques spatiales, qui varient selon diffĂ©rents modĂšles de champs alĂ©atoires, dĂ©crivent mathĂ©matiquement les structures spatiales. Les mĂ©thodes de simulation stochastique gĂ©nĂšrent des rĂ©alisations multiples basĂ©es sur certains modĂšles de champs alĂ©atoires afin de reprĂ©senter les rĂ©sultats possibles des attributs naturels considĂ©rĂ©s. Elles visent Ă  reproduire les statistiques spatiales des donnĂ©es perçues, fournissant ainsi des outils utiles pour quantifier l’incertitude spatiale des attributs cibles. Dans le contexte des applications miniĂšres, la reproduction de structures spatiales, Ă  partir des donnĂ©esĂ©chantillons, a un impact significatif sur la gestion des risques liĂ©s aux dĂ©cisions de planification miniĂšre. Plus prĂ©cisĂ©ment, la valeur actualisĂ©e nette (VAN) d’un gisement minĂ©ral, compte tenu d’un calendrier de planification miniĂšre donnĂ©, dĂ©pend des revenus gĂ©nĂ©rĂ©s par les sĂ©quences d’extraction des matĂ©riaux souterrains, les flux de trĂ©sorerie Ă©tant actualisĂ©s en fonction des pĂ©riodes d’exploitation. Les sĂ©quences d’extraction des matĂ©riaux, Ă  leur tour, sont dĂ©terminĂ©es par la distribution spatiale des teneurs en mĂ©taux, en particulier la continuitĂ© spatiale des Ă©lĂ©ments mĂ©talliques enrichis. Les mĂ©thodes de simulation stochastique d’ordre Ă©levĂ© ne prĂ©supposent aucune distribution de probabilitĂ© spĂ©cifique sur les modĂšles de champs alĂ©atoires, Ă©vitant ainsi les limites des modĂšles de champs alĂ©atoires gaussiens traditionnels. De plus, ces mĂ©thodes tiennent compte des statistiques spatiales d’ordre Ă©levĂ© qui caractĂ©risent les interactions statistiques entre les attributs alĂ©atoires en de multiples endroits et elles ont donc l’avantage de reproduire des structures spatiales complexes. Par consĂ©quent, cette thĂšse dĂ©veloppe de nouvelles mĂ©thodes de simulation stochastique d’ordre Ă©levĂ© basĂ©es sur un cadre proposĂ© d’apprentissage statistique et de noyaux orientĂ©s sur l’apprentissage, visant Ă  faire progresser les aspects thĂ©oriques des mĂ©thodes de simulation stochastique ainsi que les aspects pratiques des dĂ©cisions miniĂšres sous incertitude. Le paradigme gĂ©nĂ©ral de la simulation sĂ©quentielle est adoptĂ© dans cette thĂšse afin de gĂ©nĂ©rer des rĂ©alisations Ă  partir de modĂšles de champs alĂ©atoires, ce qui dĂ©compose les distributions de probabilitĂ©s conjointes en une sĂ©quence de distributions de probabilitĂ©s conditionnelles. La mĂ©thode originale de simulation d’ordre Ă©levĂ© utilise la sĂ©rie d’expansions du polynĂŽme de Legendre pour l’approximation des distributions de probabilitĂ©s conjointes des champs alĂ©atoires. Les coefficients de la sĂ©rie d’expansion du polynĂŽme sont dĂ©rivĂ©s du calcul de ce que l’on appelle les cumulants spatiaux qui doivent ĂȘtre stockĂ©s dans une structure arborescente en mĂ©moire et certains termes de la sĂ©rie du polynĂŽme sont abandonnĂ©s compte tenu de la complexitĂ© du calcul. À titre de premiĂšre contribution, un nouveau modĂšle de calcul de simulation d’ordre Ă©levĂ© est ici proposĂ©, Ă©vitant le calcul explicite des cumulants spatiaux et le stockage des rĂ©sultats calculĂ©s. Une fonction unifiĂ©e est dĂ©rivĂ©e comme une forme d’équivalence Ă  la sĂ©rie d’expansions du polynĂŽme de Legendre sans abandonner aucun terme, tout en simplifiant les calculs en temps polynomial. La mĂ©thode de simulation proposĂ©e conduit Ă  un algorithme rĂ©cursif de dĂ©rivation de la distribution de probabilitĂ©s conditionnelles. À titre de deuxiĂšme contribution, une nouvelle fonction du noyau, ce qu’on appelle le noyau spatial du moment de Legendre, est proposĂ©e pour intĂ©grer des statistiques spatiales d’ordre Ă©levĂ© des donnĂ©es originales dans le nouvel espace du noyau. Un cadre d’apprentissage statistique est proposĂ© pour dĂ©couvrir la distribution de probabilitĂ© cible du champ alĂ©atoire en la faisant correspondre aux statistiques spatiales d’ordre Ă©levĂ© observĂ©es dans les donnĂ©es disponibles grĂące Ă  un algorithme Ă  noyau. Le nouveau cadre d’apprentissage statistique pour la simulation d’ordre Ă©levĂ© a la capacitĂ© de gĂ©nĂ©ralisation nĂ©cessaire pour attĂ©nuer les conflits statistiques entre les donnĂ©es-Ă©chantillons et l’image d’entraĂźnement, comme le confirment les Ă©tudes de cas avec des donnĂ©es synthĂ©tiques. Un gisement d’or tridimensionnel est rĂ©alisĂ© pour montrer ses aspects pratiques dans une mine rĂ©elle, en dĂ©montrant la reproduction de statistiques spatiales d’ordre Ă©levĂ© Ă  partir des donnĂ©es-Ă©chantillons de forage. Pour Ă©viter l’impact d’éventuels conflits statistiques avec les donnĂ©es-Ă©chantillons en utilisant une image d’entraĂźnement, une mĂ©thode de simulation d’ordre Ă©levĂ© sans image d’entraĂźnement est dĂ©veloppĂ©e en se basant sur le cadre d’apprentissage statistique ci-dessus. Une nouvelle approche d’agrĂ©gation de noyaux est proposĂ©e afin de permettre la dĂ©couverte de donnĂ©es Ă©parses. Les Ă©vĂ©nements de donnĂ©es, comme les donnĂ©es de conditionnement, correspondent aux valeurs d’attribut associĂ©es aux modĂšles spatiaux de diverses configurations gĂ©omĂ©triques. L’agrĂ©gation de noyaux combine l’ensemble des Ă©lĂ©ments dans diffĂ©rents sousespaces du noyau pour l’infĂ©rence statistique, en utilisant efficacement les informations incomplĂštes des rĂ©pliques qui correspondent partiellement au modĂšle spatial d’un Ă©vĂ©nement de donnĂ©es spĂ©cifique. L’étude de cas montre une bonne reproduction des statistiques spatiales d’ordre Ă©levĂ© des donnĂ©es-Ă©chantillons sans utiliser les images d’entraĂźnement. Notre derniĂšre contribution vise Ă  atteindre la distribution de probabilitĂ© cible des modĂšles de champs alĂ©atoires en apprenant des informations spatiales d’ordre Ă©levĂ© provenant de diffĂ©rentes sources Ă  diffĂ©rentes Ă©chelles. Plus prĂ©cisĂ©ment, l’agrĂ©gation de noyaux est proposĂ©e pour incorporer les statistiques spatiales d’ordre Ă©levĂ© Ă  une Ă©chelle grossiĂšre Ă  partir des donnĂ©es-Ă©chantillons et pour complĂ©ter les statistiques spatiales d’ordre Ă©levĂ© Ă  petite Ă©chelle Ă  partir de l’image d’entraĂźnement. De plus, un logiciel est dĂ©veloppĂ© et dĂ©crit pour faciliter les applications. Des Ă©tudes de cas, dans un gisement d’or et avec un ensemble de donnĂ©es synthĂ©tique, sont menĂ©es respectivement afin de tester la mĂ©thode et le programme dĂ©veloppĂ©.----------ABSTRACT:Uncertainty quantification plays a vital role in managing the technical risk of the sustainable exploitation of natural resources. Random field models are utilized to model the natural attributes of interest, within which the attributes at different locations are represented as random variables comprising a joint probability distribution. Spatial statistics, varied with different random field models, mathematically describe the spatial patterns. Stochastic simulation methods generate multiple realizations based on certain random field models to represent the possible outcomes of natural attributes under consideration. They aim to reproduce spatial statistics of the perceived data, thus providing useful tools to quantify the spatial uncertainty of the target attributes. In the context of mining applications, reproducing spatial patterns from the sample data has a significant impact on managing the risks of mine planning decisions. Specifically, the net present value (NPV) regarding a certain mine planning schedule of a mineral deposit depends on the revenue generated by the extraction sequences of the underground materials, as the cash flows are discounted by the mining periods. The extraction sequences of the materials, in turn, are driven by the spatial distributions of metal grades, especially the spatial continuity of enriched metal elements. High-order stochastic simulation methods make no assumption of any specific probability distribution on the random field models, avoiding the limitation of traditional Gaussian random field models. In addition, the methods account for the high-order spatial statistics that characterize the statistical interactions among random attributes at multiple locations and thus have the advantage of reproducing complex spatial patterns. Therefore, this thesis develops new high-order stochastic simulation methods based on a proposed framework of statistical learning and learning-oriented kernels, aiming to advance the theoretical aspects of the stochastic simulation methods, as well as the practical aspects of mining decisions under uncertainty. The general paradigm of sequential simulation is adopted in this thesis to generate realizations from the random field models, which decomposes the joint probability distributions into a sequence of conditional probability distributions. The original high-order simulation method uses the Legendre polynomial expansion series for the approximation of the joint probability distributions of the random fields. The coefficients of the polynomial expansion series are derived from the computation of so-called spatial cumulants, which have to be stored in a tree structure in memory. In addition, some terms from the polynomial series are dropped considering the computational complexity. As a first contribution, a new computational model of high-order simulation is proposed herein,which avoids the explicit computation of spatial cumulants and the storage of the computed results. A unified function is derived as the equivalency form to the Legendre polynomial expansion series without dropping out any terms, while simplifying the computations to polynomial time. The proposed simulation method leads to a recursive algorithm of deriving the conditional probability distribution. As a second contribution, a new kernel function, the so-termed spatial Legendre moment kernel, is proposed to embed high-order spatial statistics of the original data into the new kernel space. A statistical learning framework is proposed to learn the target probability distribution of the random field by matching the expected high-order spatial statistics with regard to the target distribution to the observed high-order spatial statistics of the available data through a kernelized algorithm. The new statistical learning framework for high-order simulation has the generalization capacity to mitigate the statistical conflicts between the sample data and the training image, as confirmed by the case studies with a synthetic data set. Case study at a three-dimensional gold deposit shows the practical aspects of the proposed method in a real-life mine, demonstrating the reproduction of high-order spatial statistics from the drill-hole sample data. To avoid the impact of potential statistical conflicts with the sample data by using a training image, a training-image free high-order simulation method is developed based on the above statistical learning framework. A new concept of aggregated kernel statistics is proposed to enable sparse data learning. The data events, as the conditioning data, correspond to the attribute values associated with the so-called spatial templates of various geometric configurations. The aggregated kernel statistics combine the ensemble of the elements in different kernel subspaces for statistical inference, efficiently utilizing the incomplete information from the replicates, which partially match to the spatial template of a given data event. The case study shows an effective reproduction of the high-order spatial statistics of the sample data without using the TI. Our last contribution aims to achieve the target probability distributions of the random field models by learning high-order spatial information from different sources at multiple scales. Specifically, the aggregated kernel statistics is proposed to incorporate the high-order spatial statistics at coarse-scale from the sample data and to complement the high-order spatial statistics at fine-scale from the TI. In addition, a software is developed and described to facilitate the applications. Case studies with a synthetic data set and at a gold deposit are conducted respectively to test the method and the developed program

    Stochastic Inverse Methods to Identify non-Gaussian Model Parameters in Heterogeneous Aquifers

    Full text link
    La modelaciĂłn numĂ©rica del flujo de agua subterrĂĄnea y del transporte de masa se estĂĄ convirtiendo en un criterio de referencia en la actualidad para la evaluaciĂłn de recursos hĂ­dricos y la protecciĂłn del medio ambiente. Para que las predicciones de los modelos sean fiables, estos deben de estar lo mĂĄs prĂłximo a la realidad que sea posible. Esta proximidad se adquiere con los mĂ©todos inversos, que persiguen la integraciĂłn de los parĂĄmetros medidos y de los estados del sistema observados en la caracterizaciĂłn del acuĂ­fero. Se han propuesto varios mĂ©todos para resolver el problema inverso en las Ășltimas dĂ©cadas que se discuten en la tesis. El punto principal de esta tesis es proponer dos mĂ©todos inversos estocĂĄsticos para la estimaciĂłn de los parĂĄmetros del modelo, cuando estos no se puede describir con una distribuciĂłn gausiana, por ejemplo, las conductividades hidrĂĄulicas mediante la integraciĂłn de observaciones del estado del sistema, que, en general, tendrĂĄn una relaciĂłn no lineal con los parĂĄmetros, por ejemplo, las alturas piezomĂ©tricas. El primer mĂ©todo es el filtro de Kalman de conjuntos con transformaciĂłn normal (NS-EnKF) construido sobre la base del filtro de Kalman de conjuntos estĂĄndar (EnKF). El EnKF es muy utilizado como una tĂ©cnica de asimilaciĂłn de datos en tiempo real debido a sus ventajas, como son la eficiencia y la capacidad de cĂłmputo para evaluar la incertidumbre del modelo. Sin embargo, se sabe que este filtro sĂłlo trabaja de manera Ăłptima cuĂĄndo los parĂĄmetros del modelo y las variables de estado siguen distribuciones multigausianas. Para ampliar la aplicaciĂłn del EnKF a vectores de estado no gausianos, tales como los de los acuĂ­feros en formaciones fluvio-deltaicas, el NSEnKF propone aplicar una transformaciĂłn gausiana univariada. El vector de estado aumentado formado por los parĂĄmetros del modelo y las variables de estado se transforman en variables con una distribuciĂłn marginal gausiana.Zhou ., H. (2011). Stochastic Inverse Methods to Identify non-Gaussian Model Parameters in Heterogeneous Aquifers [Tesis doctoral no publicada]. Universitat PolitĂšcnica de ValĂšncia. https://doi.org/10.4995/Thesis/10251/12267Palanci
    • 

    corecore