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Abstract 

 

Perfectly parallel groundwater transport models partition water flow into isolated one-dimensional 

stream tubes which maintain total spatial correlation of all properties in the direction of flow. The 

case is considered of the temporal moments of a conservative tracer pulse released simultaneously 

into N stream tubes with arbitrarily different advective-dispersive transport and steady flow speeds in 

each of the stream tubes. No assumptions are made about the form of the individual stream tube 

arrival-time distributions or about the nature of the between-stream tube variation of hydraulic 

conductivity and flow speeds. The tracer arrival-time distribution ( , )g t x  is an N -component finite-

mixture distribution, with the mean and variance of each component distribution increasing in 

proportion to tracer travel distance x . By utilising moment relations of finite mixture distributions, it 

is shown (to r = 4) that the rth central moment of ( , )g t x is an rth order polynomial function of x  or 

, where  is mean arrival time. In particular, the variance of ( , )g t x  is a positive quadratic function 

of x  or . This generalises the well-known quadratic variance increase for purely advective flow in 

parallel flow systems and allows a simple means of regression estimation of the large-distance 

coefficient of variation of ( , )g t x . The polynomial central moment relation extends to the purely 

advective transport case which arises as a large-distance limit of advective-dispersive transport in 

parallel flow models. The associated limit ( , )g t x  distributions are of N-modal form and maintain 

constant shapes independent of travel distance. The finite-mixture framework for moment evaluation 

is also a potentially useful device for forecasting ( , )g t x  distributions, which may include 

multimodal forms. A synthetic example illustrates ( , )g t x  forecasting using a mixture of normal 

distributions. 

 

Key words: Stratified aquifer; Moments; Advection-dispersion; Mixed distribution 
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1. Introduction 

Parallel flow models provide a convenient representation of one-dimensional tracer dispersion by 

groundwater movement in aquifers with significant stratification, or with preferential flow paths in 

the direction of flow. The concept of parallel groundwater flow systems dates at least to the work of 

Marle [19] and Mercado [21], the latter utilising a perfectly stratified aquifer model as a visualisation 

of purely advective tracer dispersion. Parallel flow models have also been used for some time as 

special cases of discrete fracture networks [24, 30]. More recently, parallel models have been 

employed as multiple stream tube models for the theoretical study of reactive processes in 

heterogeneous aquifers [5], for developing crack-flow dispersion models for radioactive wastes [4, 

17], in bioremediation studies [25], and as a framework for evaluating analytical approximations in 

groundwater flow theory [18]. 

 

The individual flow tubes in the parallel flow model have been referred to as “channels” for fracture-

flow and “layers” in the context of perfectly stratified aquifer models. The more general term “stream 

tube” will be used here in recognition of the essential one-dimensional nature of parallel groundwater 

flow systems. The term “perfectly parallel” is used here to emphasise that no exchange takes place 

between the individual stream tubes. 

 

Tracer transport in parallel systems provides a non-diffusive mechanism contributing to dispersion 

[21, 20, 12, 28, 13, 15, 35]. This stream-tube dispersion effect has been referred to as a “convective 

dispersive” process [33, 16], causing tracer arrival-time variance to increase as a quadratic function 

of travel distance for advective flow. This quadratic relation has been derived under specific 

conditions with respect to tracer transport in both perfectly parallel systems and imperfectly parallel 

systems in the vicinity of the tracer origin [21, 30, 24; 32, 22, 11, 33]. 

 

The use of variances and other distribution moment measures in dispersion studies serve the useful 

purpose of avoiding detailed physical models requiring full distribution parameterisation [38]. 

However, past investigations dealing with moments and other aspects of parallel or partially-parallel 

flow systems tend to have been restricted to special cases. For example, specification of normal 

distributions of flow velocities between the stream tubes [21], pure advective flow within the stream 

tubes [21, 30, 24], normal or lognormal arrival times [11, 33], lognormal distributions of hydraulic 

conductivities [7], and other various specified forms of hydraulic conductivity distribution [8, 13]. 
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There appears to have been no derivation to date of general temporal moment expressions for parallel 

flow systems, where the expressions are both explicit and sufficiently general to allow arbitrarily 

different advective-dispersive transport in the different stream tubes. Currently available temporal 

moment expressions tend to be complex and sometimes require the specification of particular sub-

expressions [32, 22, 14]. 

 

The purpose of this paper is to show that for perfectly parallel systems with steady flow, the arrival-

time moments are simple polynomial functions of tracer travel distance x, all other terms being 

constants. Specifically, it is shown, to  r = 4, that the rth temporal central moment of a conservative 

tracer pulse is an rth order polynomial function of tracer travel distance alone. This polynomial 

relation holds for both advective-dispersive stream tube transport and pure advective transport. The 

well known quadratic increase of arrival-time variance for pure advective flow in parallel systems is 

therefore a special case of a more general relation for parallel flow models. The polynomial relation 

is robust to the extent that each stream tube is permitted arbitrary independent advective-dispersive 

transport and the arrival-time distributions can be of arbitrary multimodal form. Also, there is no 

requirement for any specific distribution of hydraulic conductivity and flow speeds between the 

stream tubes.  

 

The focus here on temporal rather than spatial moments was made because arrival-time data have 

application to forecasting environmental impacts of migrating contaminant plumes and have 

sometimes been incorporated in licensing criteria [23, 9]. Also, arrival-time data have the advantage 

of being relatively easy to collect at a few specific observation points in field or laboratory column 

investigations [31, 36, 37]. 

 

 

2. The perfectly parallel flow model 

 

The parallel flow model utilised here for temporal moment derivations follows along the lines of the 

advective-dispersive multiple stream tube model described by [5]. As illustrated in Fig. 1, the utilised 

model is a linear system comprised of an ensemble of an arbitrary number of ( 2N ) independent 

one-dimensional stream tubes of equal length x. Each stream tube has arbitrary and independent 

hydraulic properties, but with perfect spatial correlation of all properties along each stream tube. This 



 5 

configuration has been referred to as the “basic” parallel flow unit in the context of a fracture 

network [30]. 

 

The stream tubes originate from a conceptual mixing plane perpendicular to the stream tubes. This 

plane generates a brief pulse of conservative tracer particles simultaneously into all stream tubes, 

with equal numbers of particles entering each stream tube at time zero. All the tracer particles are 

deemed identical, so partitioning of the tracer pulse into the N stream tubes can be viewed 

equivalently in terms of equal particle numbers or equal mass fractions. 

 

 

 

 

 

 

 

 

 

Fig. 1 Schematic of parallel flow model, after [30]. 

 

It may seem unnecessarily restrictive to require exactly equal numbers of particles to enter each 

stream tube. However, no loss of generality is involved because for any unequal parallel flow system 

there are mathematically equivalent parallel systems with equal numbers of tracer particles per 

stream tube. For example, suppose N = 2 in an unequal model, with one third of the total tracer 

particle pulse entering one stream tube and two-thirds entering the other. An equivalent equal model 

could then be set up with N = 3, where the dominant stream tube is replaced by two stream tubes each 

transporting 1/3 of the total tracer pulse. 

 

Within each stream tube the tracer particles undergo arbitrarily different and independent advective-

dispersive transport as a consequence of (different) steady one-dimensional flow per stream tube. 

That is, the tracer arrival-time mean and variance always increase linearly with travel distance in 

each stream tube, but the rates of increase are arbitrarily different between stream tubes. Following 
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[20] and [29], the advective-dispersive process is viewed here as Brownian motion with drift, where 

the Brownian motion is taken to incorporate all hydrodynamic dispersion effects  

 

The stream tubes terminate at a conceptual outflow mixing surface, which may be an observation 

well, at distance x  from the input plane. Tracer concentrations are visualised as being recorded over 

time at the outflow surface where the tracer contributions of all stream tubes are mixed. This tracer 

concentration time series defines the arrival-time distribution ( , )g t x , for travel distance x. Arrival-

time distributions of this type are flux-weighted by definition [7]. That is, ( , )g t x is a flux-weighted 

integration over all stream tubes for any given t . 

 

Thus defined, the arrival-time distribution ( , )g t x  will evidently be an N-component finite-mixture 

probability density function with equal weight 1N  on each of the component distributions, 

symbolised as: 

 

1

1

( , ) ( , )
N

i

i

g t x N f t x          (1) 

 

The component ( , )if t x  distributions here are the arrival-time distributions specific to the respective 

stream tubes. The required temporal moment expressions can therefore be obtained as the moments 

of the finite mixture distribution given by Eq. (1), utilising the temporal moments of the component 

distributions. This a more direct approach than deriving temporal moments via the Aris method [1] 

from a specified set of boundary conditions. The finite mixture approach was also utilised by [30] in 

an advection flow parallel model with unequal component distribution weights. 

 

The pure advection special case of ( , )g t x  arises when all the ( , )if t x  variances remain zero. The 

shapes of the ( , )g t x  distribution then remain unchanged with travel distance x. This is simply a 

consequence of the progressive linear increase in the time-separation between the consecutive 

component pulses from the different stream tubes transporting the brief tracer pulse. 
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3. Derivations 

 

The cumulant ratios of the component ( , )if t x  distributions will remain constant and independent of 

x. This is a basic property of the cumulants of sums of independent and identically distributed 

random variables. For example, distribution mean and variance are both cumulants so doubling x 

doubles both the mean and variance of the ( , )if t x  distributions, while their respective mean/variance 

ratios remaining unchanged. A formal definition of distribution cumulants can be found in statistical 

texts – see also [30]. A listing of cumulant expressions in terms of distribution moments is given by 

[34, p.87-88]. 

 

 

Omitting the i subscript for now, define the set of cumulant ratios rZ  of a single ( , )f t x  distribution 

as: 

 

1 1/ / 2r r rZ r         (2) 

 

where 
1
 is the first moment about zero (distribution mean), and r  is the rth cumulant of the 

component distribution concerned. Because the rZ  values are constant cumulant ratios, they are 

independent of 
1
 and hence are independent of tracer travel distance x . 

 

In general, any distribution’s rth moment about zero (
r
) can be written as a function of the 

distribution cumulants. For the second, third, and fourth moments about zero, these expressions are, 

respectively, [34, p.86]:  

 

2

2 2 1
           (3) 

3

3 3 2 1 1
3           (4) 

2 2 4

4 4 3 1 2 2 1 1
4 3 6         (5) 
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The corresponding expressions in terms of rZ  and 
1
 are obtained from Eqs. (3), (4), and (5) by 

substituting r with 
1rZ  (for 2r ), and substituting 

1
 with 

1
, giving: 

 

2

2 2 1 1
Z            (6) 

2 3

3 3 1 2 1 1
3Z Z           (7) 

2 2 3 4

4 4 1 3 2 1 2 1 1
(4 3 ) 6Z Z Z Z        (8) 

 

In the context of a given ( , )f t x  distribution, it is evident from Eqs. (6), (7), and (8) that the 

distribution moments about zero are evidently polynomial functions of 
1
, and therefore of x. 

 

Turning now to the parallel flow system as a whole and reintroducing the i subscript, define and i  

respectively as random variables generated from ( , )g t x  and ( , )if t x , and define: 

 

( )E             (9) 

1
( )i ii E            (10) 

 

where the i values in Eq. (10) are constants independent of x . This constancy of the i values 

arises because each stream tube has its own constant flow speed, causing each ( )iE  to remain in 

constant ratio with ( )E . 

 

Define 
r i

,
r i

, and 
r i

 , respectively, as the rth moment about zero, rth central moment, and rth 

cumulant, of ( , )if t x . Similarly, 
r

and 
r
 are the rth moment about zero and rth central moment 

of ( , )g t x . The ( , )if t x  and ( , )g t x moments have been referred to respectively as “local temporal 

moments” and “integrated temporal moments” [6]. The symbolism adopted in this paper serves to 

make the same distinction. 
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As noted in Eq. (2), the cumulant ratios specific to each ( , )if t x  are defined: 

1
/ 2r i r i iZ r         (11) 

and the rth moment about zero of ( , )g t x is the mean of the component distribution moments about 

zero: 

1

1

N

r r i

i

N            (12) 

It follows from Eqs. (6)-(8) that the corresponding moments of ( , )g t x about zero can be expressed 

(omitting the summation range for brevity): 

 

1 2 2

2 2 i ii
ZN          (13) 

 

1 2 2 3 3

3 3 2
3

i i iii
Z ZN       (14) 

 

1 2 2 2 3 3 4 4

4 4 3 2 2
(4 3 ) 6

i i i i i i ii
Z Z Z ZN    (15) 

 

The corresponding central moments of ( , )g t x can now be obtained by substituting the ( , )g t x  

moments (13)-(15) into the standard statistical expressions giving distribution central moments as 

functions of moments about zero. This yields the central moments of ( , )g t x  as simple polynomial 

functions of mean travel time : 

 

1 2 1 2

2 2
1

i ii
N Z N         (16) 

 

1 2 1 2 3 1 3 2

3 3 2 2
3 3 2

i i i i ii ii
N Z N Z Z N N  (17) 

 

1 2 1 2 2 2

4 4 3 2 3

3 1 3 2 4 1 4 3 2

2 2 2

4 3 4

6 2 4 6 3

i i i i ii i i

i i i i i ii i i

N Z N Z Z Z

N Z Z Z N N

             (18) 
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where Eqs. (16), (17), and (18) are respectively the second, third and fourth central moment of 

( , )g t x . Gathering constants, the above expressions can be compactly represented as: 

 

1

r
n

r n

n

           (19) 

where the n  terms are constants. This polynomial relation presumably holds for all positive r, 

subject to the existence of the Z ratios.  

 

The Z ratios reduce to zero for the special case of purely advective transport because the associated 

cumulant values are then zero. Therefore, for purely advective transport in the respective stream 

tubes the central moment expressions are the last terms in Eqs. (16)-(18) and Eq. (19) simplifies to: 

 

r

r
r             (20) 

 

From Eq. 20, the pure advection ( , )g t x  moment measures of skewness and kurtosis are the constant 

terms 3/ 2

3 2/  and 2

4 2/ , respectively. This indicates that as  increases all ( , )g t x  distributions 

will tend toward a stable shape because the last terms in Eqs. (16)-(18) will dominate when  is 

large, leading to a pure advection situation. There is no universal limit ( , )g t x  shape, however, and 

different ( , )g t x  distributions will tend toward different limiting forms. The coefficients of variation 

of the individual ( , )if t x  distributions tend toward zero with increasing travel time (or distance). All 

limit ( , )g t x  distributions will be therefore be N-modal with probability densities concentrated on N 

specific time points. 

 

A consequence of Eq. (20) is that for pure advective flow the / r

r ratios will be constants 

independent of travel distance x. This has been noted previously in the literature for the special case 

of 
2

2 / , which is the square of the coefficient of variation of ( , )g t x  [24]. However, to the author’s 

knowledge the more general expressions (19) and (20) have not appeared previously in the 

groundwater literature of contaminant dispersion in parallel flow systems. 
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Because  is proportional to tracer travel distance x , it is evident from Eq. (19) that the rth central 

moment of ( , )g t x  varies as an rth order polynomial function of both x  and . This result is general 

for perfectly parallel flow systems in that it holds for any 2N , for any arbitrary set of ( , )if t x  

distributions which possess finite moments, and for arbitrary independent advective-dispersive 

transport in the respective stream tubes. 

 

The variance of ( , )g t x is an increasing quadratic function of travel distance because the last term in 

Eq. (16) is always positive. The latter follows from Jensen’s inequality [39, p. 579], noting that 

1 1iN . The situation is more complex for the higher central moments because higher-order 

polynomials have an increased degree of flexibility when there are possibilities for sign changes in 

the coefficients. In particular, there may be sign changes in the skewness of ( , )g t x  for small travel 

times and distances when  is not yet large enough to allow the dominance of the last term in Eq. 

(17). Similarly, over small travel times and distances there may be fluctuations in the magnitude of 

the fourth central moment given by Eq. (18), causing kurtosis to change unpredictably. 

 

 

4. Discussion 

 

This paper has been concerned with establishing the distribution-free generality of the polynomial 

moment relations for parallel flow systems, as opposed to reviewing existing data analyses and field 

experiments. However, some of the parameterisations given here suggest specific analysis methods 

for practical use when observed arrival-time variances show a quadratic increase with tracer travel 

distance. Two potential areas of application are outlined briefly below 

 

4.1 Estimating the large-distance g(t,x) coefficient of variation 

 

The coefficient or variation (or its square) has been noted from time to time as a useful quantifier of 

tracer dispersion characteristics [27, 2, 33]. The coefficient of variation is particularly relevant for 

parallel systems because it is a distance-invariant constant when x is sufficently large for advective 
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effects to dominate, as noted in Section 3. That is, a large value of x implies  is large and the first 

term in Eq. (16) can be neglected, giving the large-distance coefficient of variation as: 

 

1 2

2 / 1iN           (21) 

 

A simple regression-based estimate of the coefficient of variation (21) is suggested after dividing 

both sides of Eq. (16) by  to give the variance/mean ratio 2 /  as a linear function of :  

 

1 1 2

2 2
/ 1

i ii
N Z N         (22) 

 

where the function gradient corresponds to the square of Eq. (21). An estimate of the large-distance 

coefficent of variation can therefore be obtained as the square root of the gradient of a linear function 

fitted through sample estimates of 2 /  plotted against . 

 

The estimation procedure is illustrated in Fig 2 by application to two simulated data sets which have 

been previously noted as exhibiting a quadratic variance increase with travel distance [26]. When 

plotted as variance/mean ratios against mean travel time, the two data sets both illustrate a high 

degree of linearity to yield dimensionless least-squares gradient values of 0.503 and 0.133. The 

corresponding square root values of 0.709 and 0.365 give the respective estimates of the large-

distance coefficients of variation of the respective arrival times. 

 

The required travel distances for these simulated data sets did not in fact have to be very “large” 

because the evident near-zero vertical intercepts of the fitted linear functions are consistent with the 

data being derived from purely advective motion in a parallel system. This is also supported by the 

evident constancy of form of the simulated arrival time distributions in [26]. Interestingly, however, 

the simulated data was generated using fractional Brownian motion rather than a parallel flow model. 

The possibility is thus raised that some fractal heterogeneity models may have an approximate 

mathematical equivalence to pure advective transport in parallel flow systems. Parallel flow models 

might therefore have wider practical application than just physical settings with evident geological 

stratification or preferential flow paths. 



 13 

 

 

     

 

Fig. 2. Plots of variance/mean ratios against mean arrival time for simulated data used by [26]. The b values are the 

gradients of the best fit lines and (a) and (b) respectively correspond to the data sets designated L=400 and L=50 in Fig. 5 

of [26]. All quantities are in arbitrary units. 
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4.2 Modeling arrival-time distributions 

 

The finite-mixture model given by Eq. (1) provided a useful starting point for developing the 

polynomial moment relations presented here. However, a suitably parameterised version of (1) could 

also serve as a model in itself for describing the evolving form of complete ( , )g t x  distributions. This 

may be particularly useful for the case where ( , )g t x  is multimodal, which restricts the amount of 

distributional information contained in the first few moments [14]. As noted earlier, a feature of 

distributions related to Eq. (1) is that there will be an increasing tendency toward multimodality of 

( , )g t x  as x increases, with an N-mode limit distribution as x → . Multiple modes of ( , )g t x  will 

become evident most rapidly when both N and the ( , )if t x  coefficients of variation are small. For 

example, ( , )g t x  bimodality has been demonstrated from numerical simulations with N=2 [10]. 

 

This section describes a specific mixed distribution model which may be useful as a descriptor for the 

distance evolution of (possibly multimodal) arrival-time distributions with evident quadratic variance 

increase with travel distance x. 

 

Converting Eq. (1) to an expression for practical application requires specification of both N and the 

component ( , )if t x distributions. Also, the practicalities of having N no larger than necessary requires 

that the equal weighting in Eq. (1) be replaced with unequal weights. It is well known that the 

( , )if t x  distributions tend toward normal distributions for homogeneous advective-dispersive 

transport over large distances [3], suggesting that a potentially useful ( , )g t x  finite-mixture model 

could be created from N different normal ( , )if t x  distributions with different associated weights. In 

keeping with the advective-dispersive process, the ( , )if t x  distributions should be parameterised such 

that their respective means and variances increase linearly with travel distance. Lumping parameters 

and noting the constancy of the ( , )if t x  variance/mean ratios 
2 i

Z , a normal finite-mixture model for 

application to advective-dispersive arrival-time data can be written: 

 

2

1/ 2

2 2

21

( )
( , ) ( ) exp , , 0

2

i

i ii i

ii

N

i i
i

t a x
h t x Z a x a Z

Z a x
w w   (23) 
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where i ia x .The weights iw  need not sum to unity in this case because they incorporate a scale 

parameter relating to the units of tracer concentration measurement. The interpretation of the iw  

values is that they are proportional to the amount of tracer transported in each stream tube. 

 

A suitable value of N would have to be determined by trial and error. However, it is likely that 

different values of N could serve equally well in many situations. For a given value of N, fitting Eq. 

(23) to arrival-time data will require non-linear estimation of a total of 3N  parameter values, 

consisting of equal numbers of 
2 i

Z  , ia , and iw  terms. This can be specified in a least-squares sense 

as finding the 3N  parameter values which minimise: 

 

2

1 1

( )

, ,[ ( , ) ( , )]
V mM

m v
m v m m v mh t x c t x        (24) 

 

where M represents the number of different arrival-time measurements sites of flux-weighted tracer 

concentration along the line of travel from source, V(m) is the number of concentration measurements 

taken over time at the mth measurement site, mx  is the distance between the mth site and the tracer 

input point, ,m vt  is the time of the vth concentration measurement at the mth site, and 
,

( , )
m v m

c t x  is 

the vth concentration measurement at the mth site. 

 

The usual numerical precautions need to be followed to reduce the effect of multiple solutions when 

minimising Eq. (24) using some suitable routine. In particular, upper bounds should be placed on all 

2 i
Z  values to ensure that a zero weighting is achieved by the iw  value concerned going to zero, 

rather than the associated 
2 i

Z  value becoming very large. Also there should be a prior specification 

of a rank order for all the ia  values with some fixed minimum small difference between consecutive 

ia  values. 

 

Fig. 3 shows an example application of fitting the normal mixture model given by Eq. (23). The 

synthetic tracer concentration data (Table 1) was generated for three different travel distances using a 
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two-component inverse Gaussian finite mixture distribution parameterised to have variance 

increasing as a quadratic function of travel distance. Both inverse Gaussian component distributions 

were given a skewed form to avoid fortuitous fitting using the normal mixture model. Six normal 

distributions were utilised, creating a total of 18 unknown parameters to be estimated from the fitting 

process. It is possible that an N value less than six could serve equally well in this example.  

 

 

t C(t,30)   t C(t,50)   t C(t,100) 

1 0.009   3 0.010   1 0.000 

3 0.635   5 0.123   10 0.003 

4 0.850   8 0.364   20 0.107 

6 0.926   14 0.508   30 0.234 

8 0.828   17 0.478   40 0.265 

12 0.587   20 0.430   50 0.236 

20 0.295   30 0.269   60 0.190 

30 0.151   40 0.163   80 0.108 

35 0.137   50 0.101   100 0.057 

40 0.151   60 0.071   120 0.029 

50 0.191   80 0.110   140 0.020 

60 0.170   90 0.132   170 0.058 

70 0.112   100 0.124   200 0.082 

80 0.060   120 0.062   220 0.056 

90 0.029   140 0.019   250 0.017 

100 0.013   170 0.002   300 0.001 

 

Table 1. Simulated data: tracer concentration arrival times at distances of 30, 50, and 100 units from tracer release point. 

 

Initial parameter estimates were obtained by manually adjusting the parameters for each distribution 

in turn to obtain an approximate fit of Eq. (23) to the combined data set of x = 30 and x = 50. The 

Excel Solver routine was then used to find a minimum of Eq. 24 which yielded the 18 fitted 

parameter estimates listed in Table 2. The data for x = 100 was not used in the fitting process. Fig 3 

(a, b) indicates that a good data fit was achieved, as expected from the flexibility of the multi-

parameter normal mixture. It is probable that the highly non-linear nature of normal mixtures will 

give rise to different parameter combinations which could fit the same data equally well. Although 
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individual parameter values may thus have little meaning, the fitting process could still provide a 

pragmatic tool for ( , )g t x  forecasting.  
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(a)    x = 30
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(b)    x = 50
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(c)    x = 100

 

Fig. 3 Fitted and forecast tracer arrival-times using 

simulated data (solid points). The continuous lines in 

(a) and (b) are from a collective fit of Eq. (23) to these 

two data sets. The resulting fitted parameter values 

(Table 2) give the tracer concentration forecast in (c) 

when x is set to 100. 
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Distribution:   1 2 3 4 5 6 

ai 0.16 0.31 0.62 1.30 1.79 2.26 

Z 2,i 0.67 1.17 3.73 1.44 1.55 3.07 

wi 1.01 1.94 2.55 0.62 1.19 1.21 

 

Table 2 Optimised values of the 18 parameters obtained from fitting Eq. 23 (for N = 6) to the combined data of Table 1 

for x = 30 and x = 50. 

 

An example forecast is shown as the continuous line in Fig. 3c, obtained from Eq. 23 using the Table 

2 parameter values and setting x to 100. The general bimodal form of the data is anticipated by the 

tracer concentration forecast. However, the forecast function is already showing the initial stages of 

decomposition into its limit 6-mode form. The forecasts here were made on the basis of fitting just 

two data sets at different distances because it was already known that the simulated data had variance 

increasing as a quadratic function of travel distance. A minimum of three different tracer recording 

sites would be required in field experiments to first determine whether the quadratic model is 

appropriate. 

 

 

5. Conclusion 

 

A simple general polynomial relation provides a useful summary statement of temporal central 

moment variation as a function of the travel distance of a conservative tracer pulse in a perfectly 

parallel flow system. That is, the rth temporal central moment was shown to be an rth order 

polynomial function of tracer travel distance, independent of considerations of arrival-time 

distributions and hydraulic conductivity variations between stream tubes. The relation confirms the 

well-known quadratic variance increase for pure advective flow in parallel systems, which is 

generalised to include arbitrarily different advective-dispersive transport (linear variance increase) in 

the different stream tubes. The polynomial relations anticipate that advective-dispersive transport 

processes could cause arrival-time skewness and kurtosis to fluctuate unpredictably near tracer 

source. However, pure advection plays an increasingly dominant role with increasing travel distance, 

causing the arrival-time distribution to tend toward some fixed form with distance-invariant skewness 

and kurtosis. 
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While the polynomial relation is general within the framework of the perfectly parallel flow model, 

the parallel model is itself is a somewhat idealised concept as an approximation to realty. It might be 

expected, for example, that the inevitable component of transverse mixing will cause the parallel 

model to break down with increasing travel distance in field situations. However, analysis of parallel 

systems with partial mixing suggest that these effects impact only slowly with tracer travel distance 

[12]. A pragmatic check for the parallel model applicability would be to observe whether arrival-time 

variance increases as an approximately quadratic function of travel distance in a given field situation. 

Evident non-quadratic variance increases would cause rejection of the parallel model and the 

associated polynomial moment relations. 

 

Some generalisation of the polynomial moment model should be possible as part of further 

development. In particular, it would be interesting to establish whether polynomial expressions also 

apply for the temporal moments of reactive tracers when combined with arbitrary tracer input rates 

over some specified time duration. 
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