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Abstract 

Uncertainty is an integral part of modeling Earth's resources and environmental processes. 

Geostatistical simulation technique is a well-established tool for uncertainty quantification 

of earth systems modeling. Multiple-point statistical (MPS) algorithms are specifically 

advantageous when dealing with the complexity and heterogeneity of geological data. MPS 

algorithms take advantage of using training images to mimic physical reality. This research 

presents a novel and efficient pixel-based multiple-point geostatistical simulation method 

for mineral resource modeling. Pixel-based simulation implies the sequential modeling of 

individual points on the simulation grid by borrowing spatial information from the training 

image and honoring conditioning data points. The developed method borrows information 

by integrating multiple machine learning algorithms, including Principal Component 

Analysis (PCA), t-Distributed Stochastic Neighbor Embedding (t-SNE), and Density-

based Spatial Clustering of Applications with Noise (DBSCAN) algorithms. For 

automation and to ensure high-quality realizations, multiple optimizations, and parameter 

tuning strategies were introduced. The proposed methodology proved its applicability by 

accurate reproduction of complex geological features honoring conditioning data while 

maintaining reasonable computational time. The model is validated by simulating a variety 

of categorical and continuous variables for both two and three-dimensional cases and 

conditional and unconditional simulations. As a three-dimensional case study for 

categorical stochastic modeling, the proposed method is applied to a gold deposit for 

orebody modeling. The proposed algorithm can be applied to a variety of contexts, 

including but not limited to petroleum reservoir characterization, seismic inversion, 

mineral resources modeling, gap-filling in remote sensing, and climate modeling. The 

developed model can be extended for spatio-temporal modeling, multivariate simulation, 

non-stationary modeling, and super-resolution realizations. 
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1. Introduction 

1.1. Overview 

Modeling subsurface geological features has been been an important topic in mathematical 

geosciences. The   geostatistical simulation is a useful tool in stochastic  modeling of Earth 

systems by providing equiprobable realizations. Geostatistics can be used to analyze the 

data effectively, and it has also opened its way to many other fields of studies for spatial 

modeling. Lack of data is an issue in the geoscience applications, which causes significant 

uncertainty in these problems. Kriging, as one of the most used conventional geostatistical 

tools, was developed to encounter such spatial modeling applications. Traditional 

variogram-based simulation of spatial patterns, e.g. Kriging, as a two-point statistical 

simulation method, has been criticized by its misrepresentation of geological information. 

The main drawback of the two-point based geostatistical simulations is their weakness in 

reproducing complex and heterogeneous spatial structures. In particular, these methods 

cannot convey connectivity and variability when the considered phenomenon contains 

definite patterns or structures. Increasing the number of points can help in reproducing the 

connectivity and complex features (Tahmasebi, 2018). 

In the multiple-point statistical (MPS) methods, the statistics of data structures are not 

extracted via variograms or covariance matrices, but a conceptual tool named training 

image (TI), which is an example of the spatial structure isreproduced. These methods have 

proven their applicability in producing accurate simulations of geological domain with high 

complexity. The main reason for the use of training image as the expected formation to be 

simulated is to deal with the lack of available measurement data (Strebelle, 2012). The 

training images should represent all possible patterns and shapes of the formation. Thus, 

providing a representative TI, or a set of TIs, is one the most critical steps in the MPS 

simulations. The best and fastest way to generate training images is to perform 

unconditional reconstruction by object-based models (Strebelle, 2012). In general, TIs can 

be generated using the physics derived from process-based methods or statistical methods 
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or by using the extracted and observed rules for each geological system. In a broader sense, 

TI can be constructed based on traditional statistical methods. These outcomes, however, 

do not represent the deterministic aspects of geological models, as they usually tend to 

signify the randomness, and thus, most of the images represent some degree of complexity 

and uniqueness in term of spatial patterns. The TI can be an image of statistical properties 

in space and time, and the subsequent MPS analyses can be performed both spatially and 

temporally (Tahmasebi, 2018).  

The MPS algorithms can be classified into two groups: pattern-based and pixel-based 

simulationseach of which has its own advantages and disadvantages. In general, selecting 

the best geostatistical method would be based on the balance between making good 

physical realism, computational efficiency, and honoring conditioning data (Mariethoz and 

Caers, 2015). The pixel-based MPS algorithms are generally considered as 

computationally demanding methods (Tahmasebi et al., 2014). The pattern-based 

algorithms are recognized for better reproduction of large-scale features, but  having 

limitation in honoring conditioning data. The pattern-based methods simulate a group of 

points at a time, while the pixel-based methods work with simulating every single point on 

the simulation grid by considering its surroundings. 

Currently, the available MPS algorithms can be grouped based on their computational 

efficiency. Some of the fast methods include SNESIM (Strebelle, 2002), IMPALA 

(Straubhaar et al., 2013), HOSIM (Mustapha and Dimitrakopoulos, 2011), DISPAT 

(Honarkhah and Caers, 2010), CCSIM (Tahmasebi et al., 2012; Tahmasebi and Sahimi, 

2015) and Image Quilting (Efros and Freeman, 2001; Mahmud et al., 2014). Medium-speed 

methods include WAVESIM (Chatterjee et al., 2012), FILTERSIM (Zhang et al., 2006), 

and Direct Sampling (Mariethoz et al., 2010). ENESIM (Guardiano and Srivastava, 1993), 

SIMPAT (Arpat and Caers, 2007), and Simulated Annealing (Peredo and Ortiz, 2011) 

could be named as relatively slow MPS algorithms (Mariethoz and Caers, 2015). Due to 

the high interest and need in using MPS algorithms in various disciplines to solve different 

problems, the MPS methods are under great developments, and many MPS algorithms and 

versions have already introduced. 
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1.2. Objectives 

One of the important aspects of multiple-point geostatistical modeling is to encounter the 

analysis of high-dimensional data. In the past, some algorithms have been proposed to 

reduce the dimensionality of the MPS patterns database (Zhang et al., 2006; Wu et al., 

2008; Honarkhah and Caers, 2010; Chatterjee et al., 2012). However, some of them are 

computationally expensive, and some do not maintain the original diversity and distance 

after dimensionality reduction.  

Another major step in some MPS models was introduced by clustering patterns database 

extracted from the training image. Many MPS models have used clustering algorithms as 

unsupervised machine learning techniques for reducing the number of members within the 

patterns database to a reasonable amount. For instance, one of the most famous and widely 

used ones is the k-means clustering algorithm, which is an unsupervised learning 

algorithm. It is a simple fast and distance-based clustering technique. However, the limiting 

criterion of this algorithm is that users need to decide the number of clusters in advance to 

provide it to the method. It is not viable to decide on the number of clusters of image 

patterns within the training image is a certain way. 

The main goal of this research is to address the two mentioned limitations above by the 

implementation of advanced machine learning algorithms within the MPS algorithms. In 

this study, I present a novel, high-speed, pixel-based MPS method thatrepresents the 

structures of the training images in realizations while honoring the hard data in 

reconstructions. The main idea of this research is to use a dimensionality reduction 

technique, named t-Distributed Stochastic Neighbor Embedding (t-SNE), and subsequent 

unsupervised clustering of the data using Density-based Clustering of Applications with 

Noise algorithm (DBSCAN). The t-SNE algorithm is a widely used dimensionality 

reduction method for visualization and mapping of high-dimensional data. The patterns 

from the database are mapped on a two-dimensional Cartesian environment for subsequent 

application of DBSCAN for clustering. This thesis utilizes DBSCAN for the purpose of 

clustering the patterns database. In addition,  this research proposes  a method to automate 
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the input parameters selection for the  MPS method. The proposed methodology is 

validated and applied to different scenarios In addition, a three-dimensional case-study of 

resource modeling using the proposed methodology is provided. 

1.3. Outline 

The thesis is organized in the following manner: 

Chapter 1: An overview of the multiple-point geostatistics and its latest simulation methods 

are presented in this chapter, and some details and limitations of the previously proposed 

methods are discussed. 

Chapter 2: A novel pixel-based multiple-point geostatistical simulation is presented and 

validated via different training images. A three-dimensional case study is also presented as 

a validation and application of the proposed method. 

Chapter 3: Overall conclusions and recommendations for future work are presented. 
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2. Stochastic Embedding and Density-based Clustering of Image 

Patterns for Pixel-based Multiple-Point Geostatistical Simulation 

Adel Asadi 1, Snehamoy Chatterjee 1 

1 Geological and Mining Engineering and Sciences Department, Michigan Technological 

University, 1400 Townsend Drive, Houghton, MI 49931, USA. 

(The material contained in this chapter is submitted for review and possible 

publication in Mathematical Geosciences Journal – Springer Publications) 

 Abstract 

Multiple-point simulation (MPS) algorithms are established tools for uncertainty 

quantification of earth systems modeling, particularly when dealing with the complexity 

and heterogeneity of geological settings. This study presents a novel pixel-based MPS 

method for modeling spatial data using advanced machine learning algorithms.The pixel-

based multiple-point simulation implies the sequential modeling of individual points on 

the simulation grid, one by one, by borrowing spatial information from the training image 

and honoring hard data points. The developed methodology is based on the mapping of the 

database of training image patterns using the t-Distributed Stochastic Neighbor Embedding 

(t-SNE) algorithm for dimensionality reduction. Then,the clustering of the patterns will be 

done by applying Density-based Spatial Clustering of Applications with Noise (DBSCAN) 

algorithm, as an efficient unsupervised classification technique. For automation, 

optimization, and input parameters tuning, we have implemented multiple stages to ensure 

the proposed method does not require the user's interference. Theynclude entropy-based 

determination of template size, and k-nearest neighbors search for clustering parameter 

selection.  he proposed model, which shows acceptable accuracy and speed in the stochastic 

simulation, is validated using synthetic two- and three-dimensional data sets, both for 

conditional and unconditional simulations. Finally, the proposed method is applied to a 
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case study gold mine for stochastic orebody modeling. The runtime information are also 

provided for all synthetic data sets and the gold mine case study. 

Keywords 

Multiple-Point Geostatistics; Pixel-based Simulation; Dimensionality Reduction; Image 

Patterns Clustering; Parameters Tuning 

2.1.  Introduction 

Since its introduction to the scientific community, geostatistical modeling has been 

significantly helpful in the stochastic simulation of geological systems by making 

realizations of the systems based on the conditional probability concept. Traditional 

variogram-based simulation of spatial patterns, which considers two-point statistics, has 

limitations in representing the complex and heterogeneous spatial structures present in the 

geological formations. Multiple-point statistics (MPS) algorithms can reproduce the 

connectivity and complex features by incorporating higher-order statistics through a 

multiple-point framework (Guardiano and Srivastava, 1993). In the MPS methods, the 

statistics of data structures are extracted from a training image (TI), which is an example 

of the spatial structures to be reproduced. The training image provides useful information 

to include physical reality while stochastic modeling (Strebelle, 2012; Mariethoz and 

Caers, 2015).  

The MPS algorithms can be categorized into two distinct classes: the pattern-based and the 

pixel-based simulation methods. Each of them has its own advantages and limitations. The 

applicability of MPS algorithms is measured tthrough (a) accurate reproduction of complex 

geological features; (b) honoring conditional data; and (c) the computational efficiency. 

Thus, selecting the best geostatistical method would be based on the balance between the 

three mentioned criteria (Mariethoz and Caers, 2015). The pattern-based methods simulate 

a group of points at a time, while pixel-based methods sequentially simulate every single 

point on the simulation grid, considering its surroundings. Pattern-based algorithms are 

recognized for better reproduction of large-scale features, but with biased simulation when 
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conditioned to hard data (Tahmasebi, 2018). Although,  pattern-based approaches (Efros 

and Freeman, 2001; Arpat, 2004; Arpat and Caers, 2004; Zhang et al., 2004 & 2006; Wu 

et al., 2008; Honarkhah and Caers, 2010; Chatterjee et al., 2012; Mahmud et al., 2014; 

Tahmasebi et al., 2014; Tahmasebi et al., 2012; Tahmasebi and Sahimi, 2015; 

Abdollahifard, 2016; Li et al., 2016; Parra and Ortiz, 2011; Rezaee et al., 2015) are drawing 

attention for being fast,their general drawback is the lack of variability due to the verbatim 

copy of large areas from training image to the simulation grid (Mustapha and 

Dimitrakopoulos, 2010 & 2011). Furthermore, the pattern-based methods suffer from 

inefficiency in handling hard data, and they are generally difficult to apply when dense 

conditioning data are available to the model, particularly in mining. 

Pixel-based MPS algorithms (Guardiano and Srivastava, 1993; Strebelle, 2002; Boucher, 

2009; Mariethoz et al., 2010; Mustapha and Dimitrakopoulos, 2010 & 2011; Huysmans 

and Dassargues, 2011; Straubhaar et al. 2011; Abdollahifard and Faez, 2014; Mariethoz et 

al., 2015;  Minniakhmetov et al., 2018; Yao et al., 2018; Gravey and Mariethoz, 2019) are 

generally considered to be computationally inexpensive while having limitations in 

reproducing connectivity of complex patterns. Their have advantages include the 

generation of more realistic simulations, no need for fusion of the patches, and flexibility 

in handling conditioning data (Gravey and Mariethoz, 2019). Guardiano and Srivastava 

(1993) introduced ENESIM as the first pixel-based MPS algorithm, in which the 

conditional distribution of simulation node is estimated based on all matches searched 

through the TI from which a value is sampled. Their approach is computationally 

expensive. Strebelle (2002) introduced a faster version, named SNESIM, by developing an 

approach using in advance storage of conditional probabilities in a tree structure. SNESIM 

also uses the concept of multi-grid for MPS simulation to improve the connectivity of 

complex structures. Straubhaar et al. (2011) introduced another extension, named 

IMPALA, by proposing a reduction in memory usage where the information is stored in 

lists instead of trees. Lists are sequences of data points, thus, visiting their nodes takes a 

longer time compared to trees. Straubhaar et al. (2013) pursued the same goal by using list 

and tree structures. For the same purpose, Direct Sampling (DS) method (Mariethoz et al., 
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2010), samples directly from the TI instead of a conditional probability distribution to 

decrease the memory requirement. Mustapha and Dimitrakopoulos (2010 & 2011) 

introduced the high-order simulation (HOSIM) algorithm for the simulation of complex 

nonlinear non-Gaussian systems. Their sequential simulation method works based on high-

order spatial connectivity criteria, named as spatial cumulants. The local conditional 

distributions in the HOSIM algorithm are generated using high-order Legendre 

polynomials with the coefficients calculated from the cumulants population. Yao et al. 

(2018) provided an extension of the method, where the numerical approximation of the 

conditional probability density function (cpdf) was calculated from the spatial Legendre 

moments. To decrease the computational expense of their method, they limited the cpdf 

approximation to the computation of a unified empirical function within a local 

neighborhood. Minniakhmetov et al. (2018) developed another extension, where the cpdf 

is approximated using Legendre-like orthogonal splines, and the coefficients of spline 

approximation are derived from high order spatial statistics inferred from hard data and 

training image. However, with so much effort, the pixel-based algorithms are still 

computationally intensive. 

To improve the performance of the pixel-based MPS algorithms, researchers have followed 

several strategies. One of the important aspects of a multiple-point geostatistical model is 

to encounter high-dimensional data, which, especially in pixel-based models, is a limiting 

criterion. In the past, some algorithms have been proposed to reduce the dimensionality of 

the MPS patterns database (Zhang et al., 2006; Wu et al., 2008; Honarkhah and Caers, 

2010; Chatterjee et al., 2012). Zhang et al. (2006) used filter scores to reduce the 

dimensionality of the patterns database. Their selected filter statistics are specific linear 

combinations of each pattern's pixel values that represent directional mean, gradient, and 

curvature properties. Their proposed algorithm (FILTERSIM) reduces the dimensionality 

to 6 and 9 for two- and three-dimensional simulations, respectively. Wu et al. (2008) 

developed an extension of FILTERSIM by replacing the pixel-wise similarity detection 

between patterns and comparingtheir filter scores as their representatives. However, using 

only a few filter scores is not always possible to capture the complexity present in the 
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available patterns, resulting in possible similar filter scores for different patterns. Chatterjee 

et al. (2012) extracted wavelet approximate sub-band coefficients of the patterns as their 

low-dimensional representation. Although wavelet decomposition is a computationally 

demanding technique, their WAVESIM method  provides faster implementation and 

realizations that better represent the training image structures compared to FILTERSIM. 

The WAVESIM algorithm can also be sensitive to the number of the extracted wavelet 

coefficients.If the number of coefficients are high for a specific training image, the 

dimensionality may still remain high. Honarkhah and Caers (2010) used a multi-

dimensional scaling (MDS) algorithm to map database of patterns on a two-dimensional 

Cartesian space for subsequent clustering. However, MDS is a pairwise distance-based 

technique with a slow computational performance on cases with a high number of patterns. 

In addition, it works only on local pairs of data. When high-dimensional data are located 

on a low-dimensional nonlinear manifold, the job of keeping very similar points near each 

other is very difficult with a linear method like MDS (Mead, 1992; van der Maaten and 

Hinton, 2008). 

Another major step in decreasing the pixel-based methods' computational expense, 

implemented in some MPS models, is the clustering of patterns database extracted from 

the training image (Chatterjee et al., 2012a & 2012b; Honarkhah and Caers, 2010; 

Mustapha et al., 2014; Li and Aguilera, 2018). There are numerous clustering techniques 

provided by computer and data scientists, including hierarchical clustering, expectation-

maximization, fuzzy c-means, and mean-shift clustering (Jain, 2010). Still, one of the most 

famous and widely used clustering methods in MPS methods is the k-means clustering 

(Zhang et al., 2004 & 2006; Wu et al., 2008; Honarkhah and Caers, 2010; Chatterjee et al., 

2012-a & 2012-b), which is an unsupervised learning algorithm (MacQueen, 1967). It is a 

distance-based clustering technique that has the advantages of non-complexity and fast 

computation. However, the main drawback of this algorithm, especially in geostatistical 

simulations, is the fact that it  requires the number of clusters as an input to run the method 

on data. This information is not known apriori, and there is no reliable way to determine 

that. Thus, this algorithm for clustering patterns requires performing a sensitivity analysis 
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of the cluster number to achieve the best results. The other flaw of the k-means clustering 

method is its inability to detect dense areas of data, as it works on the distance between the 

points that can lead to wrong cluster detections by the algorithm in some cases and the 

efficiency of the method can be questioned. 

On the implementation side of the MPS methods, there are some key parameters that users 

need to select. The success of the MPS methods is highly dependent on the parameter 

selection. In the past, a number of optimization methods have been proposed for tuning the 

parameters of MPS algorithms. Yang et al. (2016) introduced an optimization-based MPS 

method by applying the Expectation-Maximization algorithm. Melnikova et al. (2015) 

proposed an algorithm to compare the training image and realizations of MPS in a 

quantitative manner. Dagasan et al. (2018) employed this methodology for the parameter 

tuning of the DS algorithm (Mariethoz et al. 2010; Abdollahifard and Faez, 2014), using 

Jensen-Shannon Divergence as the objective function that is optimized by simulated 

annealing (SA) algorithm. Abollahifard et al. (2019) also introduced a quantitative MPS 

results evaluation method by estimating the coherence map using keypoint detection and 

matching. 

In this study, we present a novel, computationally efficient, pixel-based MPS method, 

which can preserve the complexity and continuity of the training images in simulations 

while honoring the conditioning data in generating realizations. The proposed research uses 

t-Distributed Stochastic Neighbor Embedding (t-SNE) for dimensional reduction of pattern 

database, and subsequent clustering of the patterns using an unsupervised classification 

technique, named Density-based Clustering of Applications with Noise algorithm 

(DBSCAN). The t-SNE algorithm is implemented as an efficient dimensionality reduction 

technique to map and visualize database of patterns on a two-dimensional Cartesian 

environment based on their joint-probabilities. The main advantage of t-SNE, as a 

nonlinear method, over linear algorithms such as multi-dimensional scaling (MDS) and 

principal component analysis (PCA), is the ability to preserve global and local data 

structures at the same time (van der Maaten and Hinton, 2008). The DBSCAN algorithm 

maps the patterns database using the output from the t-SNE algorithm. It is specifically 
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more efficient on low dimensional data and has the main advantages of discovering 

arbitrarily shaped clusters, robust outlier removal and no need for cluster number selection 

(Ester et al., 1996). These methods are applied to reduce memory requirement for storing 

the training image configurations, and for reduction of computations. In order to automize 

and to optimize parameter selection for the proposed method, we have implemented 

different optimization methods to minimize the user's inputs. The proposed methodology 

is validated and tested using different synthetic datasets and applied in a three-dimensional 

case-study gold mine for simulating orebody model. 

2.2. Materials and Methods 

In this section, we illustrate the methodology by explaining the general idea of the pixel-

based MPS simulation using training images and the patterns database generation in the 

first subsection.Then, the details of the machine learning algorithms implemented in our 

methodology and mathematics behind them are provided. Then, we illustrate the pixel-

based stochastic simulation process designed in our methodology in the fourth subsection, 

and the last subsection brings a summary of our proposed algorithm in a step-by-step 

manner. The flow chart of the proposed MPS method is also presented in Fig. 1. 
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Figure 1. Flow chart of the proposed pixel-based MPS method. 

 



13 

2.2.1. Patterns Extraction and Multiple-Point Statistics 

The training image is the main source of information to borrow multiple-point statistics in 

the MPS modeling. To borrow the multiple-point information from a training image, the 

patterns are extracted and stored in a pattern database. The selection of the template size to 

extract patterns is the key decision for extracting multiple-point information. However, it 

would be a crucial part of the algorithm, as this template size can significantly impact the 

reconstruction process, and the quality of realizations depends on this size (Journel, 

2003).The sensitivity analysis to template size has been the main part of many studies 

(Honarkhah and Caers, 2010). The template size should be as small as possible to reduce 

the computational time, and as large as necessary to represent the features of a specific 

training image. In this study, we use the method proposed by Honarkhah and Caers (2010), 

which uses the concept of entropy to determine the size of the template for scanning the 

training image. The algorithm for optimal template selection starts by scanning through the 

training image with different template sizes. The maximum log-likelihood profile is used 

to automatically detect the optimal value of the template size. 

Define TI(ui) as a value of the training image TI where u∈GTI, and GTI is the regular 

Cartesian grid discretizing the training image, and di indicates a specific multiple-point 

vector of TI(ui) within a template t centered at node ui, that is: 

𝐝𝐝𝐢𝐢 = {𝐓𝐓𝐓𝐓(𝑢𝑢𝑖𝑖 + 𝐡𝐡1),𝐓𝐓𝐓𝐓(𝑢𝑢𝑖𝑖 + 𝐡𝐡2), . . . ,𝐓𝐓𝐓𝐓(𝑢𝑢𝑖𝑖 + 𝐡𝐡𝑛𝑛×𝑛𝑛 )}                         (1) 

where, hi is the indicator of the vector of pixel addresses around the central node, ui, using 

template size of t={n×n}.  

After extracting the pattern vector {𝐝𝐝𝐢𝐢; i ∈ 1, … ,𝑚𝑚}, where m is the number of extracted 

patterns from the training image using the optimal template size t, we store them in a 

patterns database, Dm×nn, which includes m number of rows each of whichrepresents a 

unique pattern. The middle node of each multiple-point vector will be the central node (ui) 

of the extracted pattern. 
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The multiple‐point statistics are expressed as the cumulative density functions (ccdf) for 

the random variable Z(ui) conditioned to local data events Ei = {Z(ui+h1), Z(ui+h2), …, 

Z(ui+hnn)} on the simulation grid (SG): 

F(z,𝑢𝑢i,𝐄𝐄i) = Prob{Z(𝑢𝑢i) ≤ z|𝐄𝐄i}                                       (2) 

Simulations based on multiple‐point statistics proceed sequentially. At each successive 

location, the conditional cumulative distribution function (ccdf) of F(z, ui , Ei) is 

conditioned to both the previously simulated nodes and the actual data. A value for Z(ui) 

is drawn from the ccfd, and the algorithm proceeds to the next location. Since F(z, ui, Ei) 

depends on the respective values and relative positions of all the neighbors of ui 

simultaneously, it is very rich in terms of information content (Mariethoz et al., 2010). 

However, in this study, the calculation and usage of ccdf is limited to the visited clusters 

of patterns with a high number of members. The reason behind this is the less 

computational expense of the pixel-based simulation because there is a possibility for the 

algorithm to search among many patterns within a populous cluster to simulate a single 

node. Instead of using ccdf for all clusters, we perform the second step of similarity 

measurement within a cluster, which has a limited number of patterns, and therefore,the 

ccdf might be unstable. 

 

2.2.2. Dimensionality Reduction and Mapping by t-SNE 

Generally, the patterns database, Dm×nn, can be a very high dimensional matrix, and the 

clustering of patterns can be considered a difficult task for such a large dataset of patterns. 

In order to solve such a problem, we apply the t-Distributed Stochastic Neighbor 

Embedding (t-SNE) algorithm. However, for the sake of optimization of the algorithm, and 

ease of computation, it is recommended to apply the Principal Component Analysis (PCA) 

algorithm (Hotelling, 1933; Jolliffe, 2002) to the data when the number of features 

(template size) is relatively large, to reduce the dimensionality to a reasonable number, 

e.g., 50 (van der Maaten and Hinton, 2008; van der Maaten, 2009). This will suppress some 
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noise and speed up the computation of pairwise distances between samples. The PCA 

algorithm works with eigenvalues to investigate the variance in the dataset to select the 

features that are responsible for the highest variance. The number of principal components 

is as large as the original datasets, as each component is built by projecting all of the other 

observations on its axis. However, the first few principal components constitute most of 

the variance among all (Jolliffe, 2002). 

After decreasing the number of dimensions to a reasonable size (p), we go through a two-

dimensional stochastic mapping. In our method, t-SNE models each high-dimensional 

multiple-point pattern vector, 𝐝𝐝𝐢𝐢, by a two-dimensional point yi in such a way that similar 

patterns are modeled by nearby points, and dissimilar patterns are modeled by distant 

points with high probability. The algorithm firstly constructs a probability distribution, Pi, 

over pairs of high-dimensional objects. Then, t-SNE defines a similar probability 

distribution over the points in the low-dimensional map, and it minimizes the Kullback–

Leibler divergence between the two distributions with respect to the locations of the points 

in the map. The algorithm takes the following steps to embed the data in low dimensions 

(van der Maaten and Hinton, 2008; van der Maaten, 2009; van der Maaten, 2014): 

1. The standardization of the patterns database to create 𝑫𝑫�m×nn is performed by 

subtracting Dm×nn by the mean vector {𝒎𝒎𝒋𝒋; j ∈ 1, … , nn}, and dividing by the standard 

deviation vector {𝝈𝝈𝐣𝐣; j ∈ 1, … , nn}. 

2. The standardized pattern database, 𝑫𝑫�m×nn, is mapped by Principal Component Analysis 

(PCA), and first p PCs for each row of the dataset in 𝑫𝑫�m×nn, and creating the 𝑫𝑫�m×p, for 

cases where nn is higher than p as a reasonable dimensionality before mapping by t-

SNE. 

3. The pairwise Euclidean distances (dist) between each row vector 𝒅𝒅�𝑖𝑖, i ∈ 1, … ,𝑚𝑚, in 

𝑫𝑫�m×p were calculated. 

4. The standard deviation σi for each high-dimensional point 𝒅𝒅�𝑖𝑖 were calculated, so that 

the perplexity of each point is at a predetermined level. Perplexity is the effective 

number of local neighbors of each point. Typical values for perplexity are proposed 

https://en.wikipedia.org/wiki/Probability_distribution
https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence
https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence
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to be between 5 and 50, and we have used the suggested trade-off value of 30. The 

performance of t-SNE is fairly robust under different settings of the perplexity (van 

der Maaten, 2009). 

5. The conditional probability of each point 𝒅𝒅�𝑗𝑗  given 𝒅𝒅�𝑖𝑖 was defined via Eq. 3: 

𝑃𝑃𝑗𝑗|𝑖𝑖 =
exp (

−𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖�𝒅𝒅�𝑖𝑖,𝒅𝒅�𝑗𝑗�
2

2 𝜎𝜎𝑖𝑖
2 )

∑ exp (
−𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖�𝒅𝒅�𝑖𝑖,𝒅𝒅�𝑘𝑘�

2

2 𝜎𝜎𝑖𝑖
2 )𝑘𝑘≠𝑖𝑖

                                              (3) 

Conditional probability 𝑃𝑃𝑗𝑗|𝑖𝑖 is the measure of similarity between data points 𝒅𝒅�𝑖𝑖 and 𝒅𝒅�𝑗𝑗 , 

and they would be considered neighbors based on their probability density under a 

Gaussian centered at 𝒅𝒅�𝑖𝑖. Thus, 𝑃𝑃𝑗𝑗|𝑖𝑖 is higher for nearby data points, and almost 

negligible for very far points, when the variance of the Gaussian, σi, has a reasonable 

value (van der Maaten and Hinton, 2008). 

6. The similarity matrix was calculated, which is the joint probability distribution of 𝑫𝑫�m×p 

using Eq. 4: 

𝐏𝐏𝑖𝑖𝑗𝑗 = 𝑃𝑃𝑖𝑖|𝑗𝑗+𝑃𝑃𝑗𝑗|𝑖𝑖

2𝑚𝑚
   ,   (Pii = 0)                                             (4) 

7. An initial set of low-dimensional points (in our case, two-dimensional), Ym×2, as 

initialization of the embedding process was created for high-dimensional dataset 𝑫𝑫�m×p.  

8. The Kullback-Leibler divergence between the model Gaussian distribution of the 

vectors in 𝑫𝑫�m×p and a Student t-distribution of points Ym×2 in the low-dimensional 

space was maximized. The probability model qij of the distribution of the distances 

between points yi and yj is provided via: 

  𝑞𝑞𝑖𝑖𝑗𝑗 =
�1+(||𝐲𝐲𝑖𝑖−𝐲𝐲𝑗𝑗||)2�

−1

∑ ∑ (1+(||𝐲𝐲𝑘𝑘−𝐲𝐲𝑙𝑙||)2)−1𝑙𝑙≠𝑘𝑘𝑘𝑘
    ,    (qii = 0)                               (5) 

9. The Kullback-Leibler divergence between the joint-distribution P and Q will be the 

following term, which needs to be minimized: 
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𝐊𝐊𝐊𝐊(𝐏𝐏||𝐐𝐐) = ∑ ∑ 𝑃𝑃𝑖𝑖𝑗𝑗  log 𝑃𝑃𝑖𝑖𝑗𝑗
𝑞𝑞𝑖𝑖𝑗𝑗𝑖𝑖≠𝑗𝑗𝑗𝑗                                               (6) 

10. The low-dimensional points were iteratively updating to apply the Barnes-Hut 

algorithm as an approximate optimizer, which groups nearby points in the low-

dimensional space, and performs an approximate gradient descent based on these 

groups. The idea is that the gradient is similar for nearby points, so the computations 

of decreasing the divergence between high- and low-dimensional distributions can be 

simplified. The minimization of the KL divergence leads the initial embedded data 

sets to the optimized Ym×2 set. 

The optimization procedure explained in step 10 is the most time-consuming part of the 

algorithm. The t-SNE optimization can also be implemented via the exact but expensive 

algorithm, which optimizes the Kullback-Leibler divergence of distributions between the 

original space and the embedded space. However, we perform the Barnes-Hut 

approximations that are more efficient to speed up and cut memory usage of the program. 

The idea is that the gradient is similar for nearby points so that the computations can be 

simplified (van der Maaten and Hinton, 2008; van der Maaten, 2013). 

 

2.2.3. DBSCAN Clustering and Prototypes Generation 

DBSCAN clustering works based on the density of the pattern database, as opposed to 

distance. The advantage of DBSCAN is that, unlike k-means clustering, it does not require 

the cluster number as an input parameter to perform clustering. DBSCAN is a non-

parametric density-based clustering algorithm, which groups together points that are 

closely packed together in space (points with many nearby neighbors). Itmarkes points that 

lie alone in low-density regions as outliers, whose nearest neighbors are too far away (Ester 

et al., 1996, Schubert et al., 2017). 

The algorithm requires two user-defined input parameters: ε (EPS) as the neighborhood 

distance, and the minimum number of points required to form a cluster (MinPts). It is 

suggested by the algorithm developers that a value of MinPts should be selected between 

https://en.wikipedia.org/wiki/Cluster_analysis#Density-based_clustering
https://en.wikipedia.org/wiki/Fixed-radius_near_neighbors
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the number of dimensions, d, and d×2, which has been widely used (e.g., Sander et al., 

1998). In our case of a two-dimensional environment, we selectthe MinPts=2, which 

generally results in a higher number of clustersand prototypes as a consequence. This will 

lead to a higher chance for better similarity detection results because the algorithm will be 

provided a higher number of prototypes for comparison to select as the best match during 

simulation of the nodes. Assigning MinPts equal to 3 for three-dimensional simulations 

can decrease the computational time by relatively decreasing the number of clusters. 

However, we prefer to use MinPts=2 for quality reconstructions in three-dimensional as 

well as two-dimensional simulations. 

In our study, we use a method proposed by Akbari and Unland (2016) to define the EPS 

parameter. For each mapped point yi, firstly, the MinPts nearest neighbors using the k-

nearest neighbor search algorithm (Friedman et al., 1977) is found. Then, the matrix of 

distances of nearest neighbors (K) is calculated using the Chebychev distance function. 

Then, the vector of distances of points to their second (MinPts=2) distant neighbors is 

extracted (v). The EPS value is then calculated by Eq. 7, using 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑆𝑆𝑆𝑆 as the mean 

and standard deviation of the values in v. 

EPS = (𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + (3 × 𝑆𝑆𝑆𝑆))                                                (7) 

DBSCAN algorithm forms clusters within the data in Ym×2 by performing the following 

steps (Ester et al. 1996): 

1. Selection of the first unlabeled (unvisited) observation yi as the arbitrary starting 

point (current point) from the embedded input data set, Ym×2, and assigning the first 

cluster label, l, to 1. 

2. Retrieval of the set of points within the EPS neighborhood of the current point. If 

the number of neighbors is less than MinPts, then labeling the current point as an 

outlier point (noise) by assigning l=0. Otherwise, label the current point as a core 

point belonging to the existing cluster l=1. The noise point might later be found in 

a sufficiently sized ε-environment of a different point and hence be made part of a 

cluster. 
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3. Iteration over each neighbor (new current point) and repeating step 2 until no new 

neighbors are found that can be labeled as belonging to the current cluster l. This 

process continues until the density-connected cluster is completely found. 

4. Selection of the next unlabeled point in Ym×2 as the current point, and increasing 

the cluster count by 1 to form new clusters or to detect a new outlier. 

5. Repeating steps 2–4 until all points in Ym×2 are labeled, and generation of the idxm×1 

vector of cluster numbers for all the points of Ym×2.  

After termination of clustering, we have a vector of numerical integers, idxm×1, showing 

that each row of our data (each embedded pattern) corresponds to a cluster number, and 

this clustering index is valid for the raw pattern database Dm×nn. 

 

2.2.4. Pixel-based Simulation 

After clustering the patterns, we produce a prototype for every cluster by pixel-wise 

averaging of the cluster members; so that we have a single pattern as a reference for every 

class. During the sequential simulation, we measure the distance between the data event in 

the simulation grid to the prototypes, and we find the best match. Then, we go to the best 

match class to find the best pattern member in that class using a second distance function. 

If the number of patterns in a class is large, we use ccdf to draw a random pattern. This 

way, during sequential simulation, the MPS algorithm just searches for similarity among a 

limited number of prototypes and patterns, not among all available patterns within patterns 

database, Dm×nn. After performing clustering and prototypes generations, we merge the 

clusters with exactly similar prototypes in order to improve the computational performance 

during similarity search. Although rare, this can save some computational time, especially 

for categorical variables. 

To optimize the simulation process by enhancing the quality of the realizations, we perform 

a multi-grid approach proposed by Arpat and Caers (2007). We use the multi-grid size of 

three to avoid high computational complexity by performing multi-level simulations, as 
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the three-level grids approach is still capable of optimizing the simulation process in a more 

efficient way. The coarse-medium-fine grids configuration of our simulation method is 

depicted in Fig. 2, in which a fine grid simulation example is provided as well. 

 

Figure 2. Three-level Coarse/Medium/Fine Multiple-Grid approach implemented. 

Consider SG as the simulation grid, in which all the pixels (nodes) are filled with a default 

value of, e.g., -999 as the indication of being empty (not yet simulated). In the case of 

conditional simulation, the hard data locations is filled by the sample values in the coarse 

to fine SGs. The simulation grid is sequentially filled based on a random path using the 

pixel-based approach, where only the central node of the matched pattern isassigned to the 

simulation node. The coarser grids are simulated before simulating the finer grids. This 

process is continued until visiting all nodes within the simulation grid, SG. 

We use a weight distribution in our methodology while measuring similarity in template 

matching. As our method is a pixel-based simulation method, there is a risk of mismatching 

due to the number of nodes that take part in similarity detection steps. It is likely that 

without assigning higher weights to the nodes near the simulation node, the selected pattern 

is not the best match for the data event. Thus, as shown in Fig. 3, we implement a weight 

distribution while measuring distances. Wee have chosen first order Minkowski distance 

(Manhattan distance), so the weights have their appropriate impact in the template 

matching process. The distance function is given by 



21 

   𝑑𝑑 = ∑ (𝑤𝑤𝑖𝑖 × |𝑥𝑥𝑖𝑖 − 𝑣𝑣𝑖𝑖|)𝑝𝑝𝑛𝑛𝑛𝑛
𝑖𝑖=1    ;   (p = 1)                                 (8) 

where, wi is the weight associated with the xi and vi, which are corresponding nodes of the 

data event and patterns/prototypes database, respectively, and nn is the length of the 

multiple-point vectors of data events and patterns. 

 

Figure 3. Plots of the weights distributions used while two- and three-dimensional 

template matching. 

The similarity comparison step is expensive when the template size is big, and all or a high 

number of corresponding nodes around the simulation node are known. This problem is 

intensified for three-dimensional simulations, as the computational complexity is higher. 

We do a second-step similarity detection within the clusters with 𝑐𝑐 <= 100 members to 

find the best match among the members. For the sake of increasing the speed of the 

simulation, we apply the ccdf function to draw random samples from the distribution only 

for highly populated clusters (𝑐𝑐 ≥ 100). Figure 4 shows a sample of the ccdf plot of a 

cluster with three classes (Class 0, 1, and 2) available in the central node. By generating a 

random number between 0 and 1, the probability of the dominating class is higher to be 

selected. For instance, in the provided example plot, the probability of selection of class 2 

is 14.75%. According to the example plot shown in Fig. 4, the generation of the random 

numbers of 0.15, 0.55, and 0.95 between 0 and 1 leads to the selection of classes of 0, 1, 
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and 2, respectively. For continuous variables, however, the second step similarity detection 

isperformed by using the distance function to find the best match within the cluster in all 

cases. 

 

Figure 5. Cumulative conditional distribution function (ccdf) plot for selecting random 

pattern by drawing a random sample from the probability distribution for highly crowded 

clusters. 

 

2.2.5. Summary of the Methodology 

Here, we provide a summary of the proposed methodology: 

1. Automatic determination of the template size t using an Entropy-based approach. 

2. Scan the training image TI using automatically determined template size t, and 

extracting all the patterns. 
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3. Reduce the dimensionality of the pattern database by PCA algorithm, if needed, and 

subsequent stochastic mapping to two-dimensional by the t-SNE algorithm. 

4. Clustering the patterns based on the two-dimensional map by DBSCAN algorithm. 

5. Calculate the class prototype using the point-wise averaging of all patterns within a 

class. 

6. In the case of conditional simulation, hard data will be assigned within the coarse to 

fine simulation grids, and the nodes will be marked as seen (sampled) points. 

7. Define a random path visiting once and only once all unseen nodes. 

8. Use the same template t at each unseen location to extract the data event on SG. 

9. Find the best match between class prototypes and data event in the simulation grid.  

10. Sampling a value of the central node from the best match class using either second-

stage distance function or ccdf. 

11. Assign the sampled value to the current simulating point. 

12. Continue until all grid points are filled with simulated value. 

Repeat steps 7 to 12 of the simulation process to generate different equiprobable 

realizations. 

 

2.3. Validation Results 

In this section, we demonstrate the performance of our model by visual and statistical 

comparison of the generated realizations with the continuous and categorical training 

images used in this study. In addition, the realizations produced by FILTERSIM algorithm 

are also provided for comparison of the simulation results. A total of four training images 

are used for validation and testing of the method, including one two-dimensional 

categorical TI, one two-dimensional continuous TI, one three-dimensional two-categorical 

TI, and a three-dimensional case-study of three-categorical data. The categorical 

(size=[101×101]) and continuous (size=[100×128]) two-dimensional TIs are shown in Fig. 

5. The binary training image in Fig. 5-a (Honarkhah and Caers 2010; Strebelle 2000) 

represents a deposit with complex channels. For the simulation of continuous data, an 
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exhaustive two-dimensional continuous horizontal slice (Fig. 5-b) is obtained from a three-

dimensional fluvial reservoir of the Stanford V Reservoir Dataset (Mao and Journel, 1999), 

and the channel configurations and orientation are complex in nature form one slice to 

another in the vertical direction. 

 

Figure 5. Categorical binary TI named channel (a), and continuous TI (b). 

We performed the automatic template size determination on our training images, based on 

the approach explained in Section 2.2.1. The mean Entropy, the variance Entropy, and the 

Log-likelihood profile of the Entropy plots of different template sizes for training images 

of Fig. 5 are shown in Fig. 6. The optimal value is calculated based on defining a threshold 

on the slope change of the curve, which detects the point of which the curve is going to 

flatten. From the Entropy plots, we achieved the optimal template size (t) for the 

categorical channel TI, t=[15 15], and the continuous TI shown in Fig. 5-b, t=[25 25]. 
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Figure 6. Entropy-based template size determination plots for the channel TI (top row) 

and continuous TI (bottom row) shown in Fig. 5. 

The stochastic embedding and clustering of pattern database, generated using the 

automatically selected template size, were performed. In a single run, the algorithm 

provided 206 and 1004 distinct clusters for patterns database of the categorical and 

continuous TIs, respectively. As an example, a visualized plot of the clustering for the 

patterns database of the channel TI after mapping high-dimensional patterns database is 

shown in Fig. 7. As explained in Section 2.2.2, for better t-SNE performance, we should 

decrease the dimensionality by PCA when applicable. Thus, based on the suggested value 

by the t-SNE algorithm developers and performing experimentation by varying numbers 

between 50 and 100, we chose the value of 80 as a cut-off for PCA implementation. This 

leads to a more robust embedding performance. We decreased the dimensionality of the 

patterns to 80 in case of having a higher dimensionality. However, we did not observe a 

tangible impact in the performance of the t-SNE within the 50-100 range. 
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Figure 7. DBSCAN Clustering on the embedded patterns database, for the original-

resolution channel TI shown in Fig. 5-a. 

To verify the combined impact of t-SNE mapping and the DBSCAN clustering algorithm, 

we inspected the patterns from clusters to see the results visually. To provide an example, 

all patterns which were formed as a cluster for categorical and continuous training image 

by our algorithm are depicted in Fig. 8, and the generated prototype of the cluster is also 

shown for each TI. As t-SNE works based on probability (not distance), measuring the 

Euclidean distance in high-dimensional space and the two-dimensional space will not help 

to understand the goodness of fit in embedding. Due to the stochastic manner of the 

algorithm, it is a good idea to run the algorithm a few times and save the results when the 

KL divergence is the lowest. In our cases, the algorithm provided acceptably small values 

of KL divergence in all runs, and we didn't recognize the need to run the t-SNE multiple 

times. 
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Figure 8. Members of randomly selected clusters (left) and their calculated prototypes 

(right), extracted from categorical channel (top) and continuous (bottom) training images. 
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2.3.1. Unconditional Simulation 

The results of unconditional simulation on the introduced categorical and continuous 

training images are presented herein. Generally, a minimum number of realizations should 

be generated to have an understanding of the uncertainty of the simulation (Journel, 2003). 

We generated 100 realizations for each TI shown in Fig. 5, in order to understand the 

uncertainty of the modeling. Three generated realizations of the channel TI (Fig. 5-a) 

provided by our proposed method are depicted in Fig. 9. In addition, the realizations 

provided by the FILTERSIM algorithm using the same template size are provided for a 

visual comparison. We used 200 as the number of clusters to perform the FILTERSIM 

algorithm. Our proposed method outperforms in terms of reconstruction of the TI patterns 

and the continuity of the channels compared to the FILTERSIM method. 

 

Figure 9. Categorical TI realizations of the proposed MPS method (top) versus 

FILTERSIM realizations (bottom). 
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It is observed that the continuity of the training image streams is reproduced well by our 

proposed method; however, FILTERSIM fails to maintain the continuity of the channels 

through the simulation process. The main differences of our proposed method to the 

FILTERSIM algorithm can be stated as two-dimensional mapping of the patterns database 

by t-SNE instead of using filter scores, and subsequent density-based clustering of the 

mapped data by DBSCAN, instead of using k-means clustering on the high-dimensional 

database. In addition, we use a pixel-based simulation approach, opposed to the pattern-

based simulation implemented in the FILTERSIM method. 

Statistical analysis was performed on the simulation results to show the efficiency of the 

methodology. Figure 10 shows a first order statistical comparison of the realizations and 

training images using the box and mean comparison plots. It can be inferred from the plots 

that the simulations tend to reproduce the one-point statistics of the training image, and 

there is almost no uncertainty regarding this criterion, as the mean plot shows no 

considerable deviations from the red line (TI average value) among the 100 realizations. 

Figure 11 shows variogram comparison as a measure of two-point statistics, the E-type 

(ensemble) and variance maps of the realizations. From the variogram comparison, a near-

perfect match is observed between the two-points statistics of the training image and the 

100 generated realizations.High quality in maintaining two-points statistical characteristics 

of the TI is achieved for all lag distances overall generated realizations. E-type and variance 

maps confirm that the stochastic nature of the simulation method is preserved in the 

unconditional simulation, as the simulations are not constrained by any hard data. The 

variability is almost high across the whole domain, and the channels are propagated in 

different locations within different realizations. Figure 12 depicts the third-order spatial 

cumulant maps (Mustapha and Dimitrakopoulos, 2010 & 2011) of the realization and 

training image for comparison as a higher-order validation method. From the cumulant 

maps, it can be inferred that for both small and large lag distances, the proposed algorithm 

is able to reproduce the third-order statistics of the channel TI well in unconditional 

categorical simulation. 
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Figure 10. Categorical boxplots (a) and mean comparison plot (b) of generated 100 

unconditional realizations simulated by categorical training image shown in Fig. (5-a). 



31 

 

Figure 11. Variograms of the TI (in red) and100 unconditional realizations (a), and E-

Type plots (b&c) of realizations of categorical channel training image shown in Fig. 5-a. 
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Figure 12. Cumulant maps of the categorical channel TI (b) and an unconditional 

simulation (c) plotted for higher-order validation of the proposed method. 

The results of performing the methodology on continuous training image (Fig. 5-b) also 

confirm the applicability of the proposed simulation method for continuous variable. 

Figure 13 compares the quality of realizations with the FILTERSIM algorithm. It is 

visually observed that the continuity of high-valued streams (channels) is reproduced better 

by our method, in comparison with FILTERSIM. Figure 14 shows the histogram and 

variogram comparison plots for validation. The complex bimodal histograms of the 

generated realizations match that of the training image according to Fig. 14-a, which 

confirms the acceptable performance of the method in reproducing first-order statistics of 
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the TI. The histogram of the TI (in red) falls in between those of the realizations, which 

means that realizations’ average values are almost near to training image pixel values. 

There can be seen higher deviations from the TI average on the two modes, although the 

values between the heads of the histogram are matching better to the TI. The mean plot 

provided via Fig. 14-c proves that there is little uncertainty about the reproduction of the 

first-order statistics of the continuous TI, as none of the 100 realizations has the mean value 

far from the TI, shown via the red line. In addition, the realizations were successful in 

reproducing variograms similar to that of TI according to Fig. 14-b. The two-points 

statistics of realizations are maintained similar to the continuous TI over different lag 

distances, and deviations from the red line (TI variogram) are observed for only a few of 

the realizations' variograms mostly in larger lag distances. Figure 15 shows the E-type and 

variance maps calculated using 100 realizations. Figure 15 also presents cumulant maps of 

the TI and a realization From the cumulant maps, in can be inferred that the proposed 

algorithm is able to reproduce the third-order statistics of the continuous TI in 

unconditional simulation, especially in small lag distances. For larger lag distances, a 

reasonable match is also observed in most of the areas within the maps. The variability 

shown in variance plot is almost high across the whole domain, and high-value channels 

are propagated in different locations within different realizations according to the E-type 

plot, which shows the unconditional simulation is performing well in generating 

equiprobable reconstructions of the TI. 



34 

 

Figure 13. Continuous TI realizations of the proposed MPS method (top) versus 

FILTERSIM realizations (bottom). 
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Figure 14. Histogram (a), variogram (b) and mean comparison (c) plots of the continuous 

training image shown in Fig. 5-b and the 100 generated unconditional realizations. 
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Figure 15. E-Type plots (a & b), and the cumulant maps of the continuous TI (d) and an 
unconditional simulation (e) for higher-order validation. 

 

2.3.1.1. Three-Dimensional TI 

Additionally, we tested our algorithm on a three-dimensional TI with a size of [69×69×39], 

shown in Fig. 16, accompanied by its cross-sectional views (middle row). We used a 

template size of t=[13×13×13], as concluded from the Entropy-based method for which 

the results are shown in Fig. 16 (bottom row). Figure 17 shows an unconditional simulation 

and its cross-sectional views to compare the training image with the realization and its 

structures. A realization is also depicted in Fig. 18, and compared to the realization by the 

FILTERSIM algorithm, for which the same template size was used. It can be seen that the 

method produced the desired shapes and continuities present in the three-dimensional TI 
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with reasonable accuracy. Figures 19 and 20 show the comparison of the simulations and 

TI in terms of first- and higher-order statistics. The boxplots in Fig. 19 show that the median 

values for the frequencies of simulated nodes related to each category are near the 

corresponding values of the training image (red circle), and the TI class frequencies are 

within the 50% boxes of realizations' categorical frequencies. The mean plot also confirms 

the similarity of the first-order statistics of the TI (red line) and realizations by comparing 

their average values. From the cumulant maps, a good match for different lag distances 

from small to large is observable; thus, the proposed algorithm is able to reproduce the 

third-order statistics of the categorical three-dimensional TI well in unconditional 

simulation. 

Looking at the realizations produced by the proposed method (Figs. 19 and 20), and 

comparing them to the TI (Fig. 16), it can be observed that continuity of the channels was 

reproduced within the simulation domain. The trapezoids available in the TI are very 

difficult to reproduce, even using pattern-based MPS simulation methods. The results show 

that those trapezoid-shaped structures are reproduced via unconditional simulations; 

however, as shown in Fig. 17, they are not precisely similar to the shapes available in the 

training image. 
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Figure 16. Three-dimensional training image (top) with three slice views (middle row) 

for checking textures and shapes, and the entropy-based determination of template size. 
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Figure 17. Unconditional three-dimensional simulation results and cross-sectional view. 

 

Figure 18. Three-dimensional realization generated by our proposed method (left) and 

realization generated by FILTERSIM algorithm (right). 
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Figure 19. Categorical boxplots (a) and mean comparison plot (b) for the three-
dimensional unconditional simulations, showing the comparison of the one-point 

statistics. 
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Figure 20. Cumulant maps of the categorical three-dimensional TI (b) and an 

unconditional simulation (c) plotted for higher-order validation of the proposed method. 

 

2.3.2. Conditional Simulation 

We tested our proposed method for the conditional simulation to check the accuracy of 

simulations in honoring hard data during the simulation process. Figure 21-a depicts 361 

points of the hard data used for conditional simulation of the channel training image, 

arranged in a way to form a dense area of points, in addition to the vertical discrete streams. 

The purpose is to analyze the impact on the E-type and variance maps (Figs. 21-d & 21-e), 
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in comparison with hard data plot (Fig. 21-a) and the unconditional simulations' E-type 

plots (Figs. 11-b & 11-c). Variance is very small in areas where the conditioning data are 

available. Among the hard dataset, 72 data (20%) are located in the center of the grid, 

forming a rectangular area, playing the role of a dense area of conditioning data. The other 

289 hard data are distributed with equal distances across the grid, as shown in Fig. 21-a. 

Two regions are marked by red rectangle and the red ellipsoid, which contain a few non-

channel-class hard data (in blue), not interrupted via channel-class points (in yellow). 

Those regions, as expected, show a low variance in simulations and non-channel-class 

dominance in the ensemble plot (Figs. 21-d & 21-e). The elliptical region contains an area 

of proportionally lower variance, which clearly shows how the algorithm honors the hard 

datasets, and how the variability increases as distance increases from the hard data. The 

conditioning data available in that area are all of the same class, so the other class has a 

little presence in that area (leading to low variance). The training image contains structures 

with "Y-like" shapes or shapes looking like "Y" partially. Thus, each local straight stream 

tends to turn right, left, or to both directions with certain angles after a certain length of 

vertical continuity. This can be inferred from the E-type plot of 100 realizations, shown in 

Fig. 21-d. The vertical streams were reconstructed with a reasonable accuracy according 

to the E-type plot, and the variability over those locations is less, even with such a small 

number of hard conditioning data points. The dense rectangular area of conditioning data 

of the same class is dominated by the opposite class in its left and right side in the E-type 

plot and in almost all of the realizations. It is an indicator of the ability of the model to 

respect the formation of channels. In fact, the width of original TI channels is honored in 

that area of dense conditioning data. The variability at above and bottom of the rectangular 

channel-class stream is high. It is due to the shapes that are present at the channel TI, as 

the channels maintain a straight path for a limited length, and after that, they tend to turn 

to other directions with certain angular deviations. The orange circle markes a single 

channel-class point, which is dominated by non-channel-class points as hard data. Looking 

at the E-type plot, it is observed that even this single point is honored by the algorithm, and 

it became a point where channels were passed through, mostly in two distinct directions. 

In addition, it is clear from the variance plot, that the variability increases gradually by 
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increased distance from the point marked by the orange circle. In fact, as a pixel-based 

method, our proposed algorithm has a higher potential for respecting conditioning data. 

Another visible matter is that in Fig. 21 on the left side, we have the conditioning data near 

the domain border, whereas the conditioning datasets have a higher distance from the 

border at the right side. By looking at the variance plot and comparing the two sides, a clear 

representation of the difference in the amount of variability (uncertainty) of the simulations 

by the proposed method with and without conditioning data points at the borders is seen. 

Figures 22 and 23 show the statistical validation results for 100 realizations of the 

conditional simulation for the channel TI, shown in Fig. 5-a. The first-, second- and third-

order statistical comparison of the realizations with the corresponding channel TI shows a 

good match. In addition,the uncertainty of conditional simulation of the categorical 

variable via the proposed algorithm seems to be low. The box plots imply that the TI has 

the frequencies of the classes almost similar to the medians of the frequencies over all the 

realizations. The variograms from realizations also show a good agreement with the 

variogram of TI over approximately all lag values. As shown in Fig. 23, the three-point 

statistical comparison of the training image with the conditional simulation shows a 

reasonable visual match. From the cumulant maps, it can be inferred that for both small 

and large lag distances, the proposed algorithm is able to reproduce the third-order statistics 

of the channel TI well by conditional simulation. 
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Figure 21. Conditioning data for the TI shown in Fig. 5-a (a), two conditional realizations 
(b & c), and the E-type plots of the 100 conditional simulations (d & e). 
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Figure 22. Variograms of the channel TI (in red) and the 100 conditional realizations 

(bottom), categorical boxplots (top row), and the mean comparison plot (middle). 
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Figure 23. Cumulant maps of the categorical channel TI (b) and a conditional simulation 

(c) plotted for higher-order validation of the proposed method. 

The quality of such realizations depends on maintaining the continuity and shape of the 

channels across the simulated images in the same manner as they are available in the 

training image. As the hard data are derived from the TI, the realizations should 

approximately match the TI in the sense of where specific textures are located, and how 

the statistical distribution is. In addition, the E-type map reflects the exhaustive training 

image when the number of hard data is high. We tested the algorithm on the channel TI via 

1000 randomly distributed hard data, as shown in Fig. 24-a, and the results presented in 

Fig. 24 confirmed this claim. According to the variance plot, the variability of the 100 
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simulation values over most of the image is low, resulting in minimal uncertainty in 

modeling, compared to the previous case with fewer available hard data (Fig. 21). A 

conditionally simulated realization is also provided in Fig. 24-b, which is similar to the 

categorical channel TI. Looking at the E-type plot (Fig. 24-c), channels with continuity 

over larger distances are visible, compared to the previous case (Fig. 21). Thus, the 

effectiveness of hard data conditioning on the quality of realizations produced by our 

method is confirmed. 

 

Figure 24. One thousand randomly distributed hard dataset (a), conditional realization 

(b), and the E-Type (c) and variance (d) maps for the channel TI. 



48 

For a conditional simulation of a continuous variable, 208 hard conditioning data were used 

(Fig. 25-a). The hard data are irregularly spaced and scattered all over the simulation grid 

domain. The two conditional simulation maps are shown in Figs. 25-b and 25-c. The visual 

comparison between training image and simulation maps confirm that the proposed method 

respect the hard data. The main channels' shapes and locations in the exhaustive continuous 

training image are well reproduced in the simulated images, especially at the top half of 

the image. The ensemble maps (E-type) are used to check how the realizations respect hard 

conditioning data. The E-type map is generated by 100 realizations. Looking at the green 

circular areas marked on in Fig. 25-a and 25-e, it can be seen that the lack of conditioning 

data lead to a higher uncertainty, and the simulations provide a high variance in areas with 

a sparse hard dataset. The areas highlighted by red ellipsoids were selected as the indicators 

of regions with low-value dominated hard data. Looking at those areas in the E-type and 

variance plots, it can be inferred that the algorithm respects the hard data by simulating the 

pixels within those regions with the majority of low values with low variability. On the 

other hand, within the area marked by the yellow rectangle, as the hard data were sampled 

from both heads of the bimodal distribution of the reference image, we can see a high 

variability among the realizations in the variance map. The white diamond in the 

conditioning data plot shows a single high-value pixel dominated by a few other low-value 

pixels as hard data. It is obvious from the E-type map that the algorithm honors the hard 

data point as the average values around that point seems to be higher than the surroundings. 

Honoring all hard data points is a clear advantage of the pixel-based simulation method, 

and demonstrated by the proposed algorithm, over pattern-based simulation. By using 

pattern-based simulation, individual points could be neglected while pasting patterns to the 

simulation grid. 

The continuous training image used here has a complex bimodal histogram, and the 

algorithm is able to reproduce this distribution over all realizations (Fig. 26-a). A small 

overestimation of the left head frequency, and small under-estimation of the right head 

frequency, on average, were observed. The variogram comparison plot in Fig. 26, reveals 

that the second-order statistics of the continuous training image were also well reproduced, 
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and the TI variogram falls in almost the middle of the ones for realizations for different lag 

distances. To show the multiple-point reproduction of the TI using the proposed pixel-

based method, the three-points cumulant maps of the training image and a simulated 

realization were generated and are presented in Fig. 27. The algorithm output ensures the 

reproduction of the TI's third-order statistical characteristics. 
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Figure 25. Conditioning data for the training image shown in Fig. 5-b (a), two conditional 
realizations by the proposed method (b & c), and the E-type plots (d & e) of 100 

conditional simulations for the continuous TI. 
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Figure 26. Histogram of the continuous training image shown in Fig. 5-b and the 

generated 100 conditional realizations (top), and mean comparison plot (bottom). 
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Figure 27. Cumulant maps of the continuous TI (b) and a conditional simulation (c) 

plotted for higher-order validation of the proposed method. 

For continuous variable as well, the E-type map closely reproduces the reference TI when 

the number of hard data is sufficiently high. We tested the algorithm using 500 randomly 

distributed hard data (Fig. 28-a), and the results presented in Figs. 28-c and 28-d, confirmed 

this claim. It can be seen from Fig. 28-b that the channels occurring in the continuous TI 

are almost perfectly reproduced, and this happens due to the presence of a higher number 

of conditioning datasets. Within the region limited by the red lines (60<y<80), there are 

almost no high-value hard data available, and consequently, no high-value streams were 

reproduced. It shows the appropriate effectiveness of hard data on the simulation by the 

proposed algorithm. The variance plot confirms that as well, because the variability 

remained very low in that region as it was dominated by almost similar hard data pixel 

values. A comparison of the E-type maps in Figs. 28 and 26 proves the effect of the number 

of hard data on the simulation quality. In Fig. 28-c, the channels of the TI are almost 

perfectly reproduced as opposed to the ensemble map in Fig. 26-d, where higher 

uncertainty was revealed. Still, the percentage of the hard data for this case is under 4%. 
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Figure 28. Five hundred randomly distributed hard datasets (a), conditional realization 

(b), and the E-Type and variance plots (c & d) for the continuous TI. 

2.4. Three-Dimensional Case Study 

After validation and testing, we applied the proposed method to a gold deposit to 

simulate categorical variables. The mining company has categorized the exploration 

drilling data into three different categories, i.e., high-grade, low-grade, and waste, to 

create wireframes (solid models) for volumetric analysis. We used the solid model 

developed by the mining company as the training image, and categorically-transformed 
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composited exploration drilling data as hard conditioning data for our simulation. A total 

number of 8759 composite samples with a composite length of 10 m is available for this 

study. The pixel size of the training image is 25 m × 25 m × 10 m. We selected the same 

pixel size for simulation. Figure 29 shows the training image and hard conditioning data 

used in this study. The training image used in this case study has the size of [70×60×57], 

and a total of 239,400 blocks were simulated by the proposed method. 
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Figure 29. Three-categorical Training image of the gold deposit (top) and hard 
(conditioning) data gathered (bottom). 
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The solid, which is used as a training image, is generated based on updated geological 

interpretations, including the existence of faults, mineralization zones, lithological 

characterization, and lithological contacts. Drilling data were considered as the source of 

information with almost the highest certainty. To perform simulation, we firstly determined 

the template size to extract the patterns database from the training image, for which the 

results showed in Fig. 30 indicates the optimal size would be t=[13 13 13]. For simulation, 

all nodes that are falling above the topography were excluded from the simulation process. 

 

Figure 30. Entropy-based determination of template size for the three-dimensional TI in 

Fig. 29. 

After extraction of patterns database, we removed the patterns containing the above-

topography values, and then stochastic embedding and clustering were performed. We 

performed the same approach mentioned for the previous three-dimensional simulation, 

which means that we used ccdf for sampling from the highly populated clusters (more than 

100 members). Figure 31 shows two generated realizations. Figure 32 shows a statistical 

comparison between hard data, TI, and realizations. 
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Figure 31. Two generated three-dimensional realizations of the conditional three-

categorical simulation. 
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Figure 32. Boxplots for comparison of the statistics of the three-dimensional TI, the hard 

(conditioning) data, and the generated realizations (a), and mean comparison plot (b). 

From Figure 32, we note that there are some deviations between the hard data and 

simulations statistics; however, the results show an excellent match between training image 

and simulations. The reason for this observation is that the statistics and frequency of 

different classes are not the same for both the conditioning data and the TI. Thus, the 

simulations, as expected, honor the statistics of the TI rather than the hard data. The 

proposed method, like other MPS methods, is supposed to reproduce the TI statistics, as 

the realizations derived by using this methodology are training-image-driven. The statistics 

of the simulations tend to get skewed towards the conditioning data while remaining similar 

to the TI. It is specifically clear for the class three as shown in Fig. 32-a-3. Thus, it can be 

concluded that, in case of having similar statistics between TI and hard data, the 

simulations reproduce the statistical properties that honor both of the TI and conditioning 

data. Figure 33 shows a cross-sectional view of TI and a generated realization to check the 

ability of the model to reconstruct structures in addition to honoring the conditioning data. 

Having a visual comparison between the two plots confirms the accuracy of the proposed 

pixel-based MPS method in the generation of realizations that reconstruct the structures of 

the training image, and at the same time, honoring the conditioning data. 
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In this case study three-dimensional TI, we deal with the dense areas of the conditioning 

data indicating the areas in which cumulations of orebody materials with different grades 

happeng. This necessitates the evaluation of the results in this regard, in addition to 

checking for the reproduction of textures and continuities. As observed in Fig. 33(the slice 

views), even the high-grade zones, which were a minority class compared to the other two 

classes, were formed via the pixel-based simulation presented in this study. The number of 

high-grade class among the training image pixels is 189 (0.08%), and among the hard 

datasets is 79 (0.14%). 
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Figure 33. Three-dimensional TI's six slice views (two in each direction) for showing 

textures and shapes (top two rows), and the realization's six slice views (two in each same 

direction) for checking if/how the simulations are reproducing the TI textures and shapes 

(bottom two rows). 
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2.5. Runtime and Code Availability 

Our proposed method can be considered a fast MPS method in both two-dimensional and 

three-dimensional simulations, based on the information provided in Table 1. The codes 

were run on a PC with Windows 10 (64-bit) and with configurations including 1.70 GHz 

Intel(R) Xeon(R) Bronze 3106 CPU (2 processors) and 96 GB of Installed Memory 

(RAM). The computer was a shared system exploited simultaneously by several users. The 

sources codes used to produce the results published in this paper, and the associated 

supplementary materials are available online in the GitHub repository of the first author, 

https://github.com/adel-asadi/Pixel_based_MPS. It should be noted that our code is 

implemented in MATLAB, using parallel computing for the simulation step. Therefore, 

the speed could be improved in environments like Java, Python, and C++. We cannot 

compare the speed of our method with other algorithms that are not written and run in 

MATLAB. However, especially due to the dimensionality reduction and subsequent fast 

clustering, the runtime of the code on different cases is acceptably low, which is a 

promising criterion in the success of the methodology in terms of being used as an 

application in the industry. 

Table 1. Simulation times by the training image and simulation type. 

Training 

Image 

Simulation 

Grid Size 

Number 

of Hard 

Data 

Simulation 

Type 

Number of 

Realizations 

Total 

Time 

(Seconds) 

Time per 

Realization 

(Seconds) 

Two-

dimensional 

Categorical 

(Fig. 5-a) 

101×101 

(10201) 
- Unconditional 100 516 5.16 

101×101 

(10201) 
361 Conditional 100 429 4.29 

101×101 

(10201) 
1000 Conditional 100 936 9.36 (1) 
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Two-

dimensional 

Continuous 

(Fig. 5-b) 

100×128 

(12800) 
- Unconditional 100 510 5.10 

100×128 

(12800) 
208 Conditional 100 388 3.88 

100×128 

(12800) 
500 Conditional 100 874 8.74 (1) 

Three-

dimensional 

TI 

(Fig. 16) 

69×69×39 

(185679) 
- Unconditional 10 24520 2452 (2) 

Three-

dimensional 

TI 

(Fig. 29) 

70×60×57 

(239400) 

8759 Conditional 10 9850 985 (3) 
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The information provided by Table 1 also indicates the followings points as marked within 

the table: 

1. Conditional simulation via the same training image is faster than the unconditional 

simulation because the less number of nodes need to be filled via the MPS simulation. 

However, we also tested the method with a larger number of hard data (for both of the 

two-dimensional TIs shown in Fig. 5), and saw an increase in the computational time, 

which is more than the unconditional simulation time because of the more expensive 

similarity detection. 

 

2. By assigning MinPts=3, the computational time decreases significantly (542 seconds 

for this case), but the reconstructions can be considered suboptimal. We decided to 

assign MinPts=2 for quality results. However, it should be changed and tested via the 

trial and error for different training images and scenarios. Another observation of our 

experiments was that having a higher number of conditioning data to help the 

simulation in reproducing the desired textures and statistics, can let the user assign 

MinPts=3 for faster simulations while maintaining outputs with acceptable quality. It 

should be noted that assigning MinPts=3 decreased the number of clusters from 1947 

to 374 for this case. In an experiment, removal of ccdf partial usage in similarity 

detection for MinPts=3 case, increased the timing to 792 seconds. 

 
 

3. The case study three-dimensional TI had 46339 points above topography, which did 

not need to be simulated. The number of nodes to be simulated was 193061 (including 

the points which were filled using hard data). In addition, the computational time is less 

than the unconditional simulation for the other three-dimensional TI, because the 

number of clusters of patterns formed for the case study TI was 463, which is almost a 

quarter of 1947 for the other two-categorical three-dimensional TI. 
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2.6. Conclusions and Future Works 

This research proposed a new pixel-based simulation algorithm using different machine 

learning techniques. The results showed that t-Distributed Stochastic Neighbors 

Embedding (t-SNE algorithm), and Density-based Spatial Clustering of Applications with 

Noise (DBSCAN algorithm) are efficient methods for dimensional reduction and 

classification of pattern database generated from a training image. In addition, we showed 

that the algorithm is useful to take advantage of the pixel-based MPS algorithms as the 

basic approach of our study. We also employed an automatic method for template size 

determination and a number of optimization techniques in order to fully automate our 

proposed MPS method. In this study, we achieved a high performance while reconstructing 

complex features and continuities although our method uses a pixel-based approach of 

geostatistical simulation. In terms of respecting hard data, the MPS method showed its 

ability to produce high-quality conditional simulations while also honoring the statistical 

properties of the training image. Continuous variables were also tested for simulation using 

the algorithm, and the results of continuous training image simulation were promising, 

similar to the categorical simulations. Another main advantage of the algorithm was its 

computational speed, as we achieved a relatively high-speed methodology in this work, 

and this criterion is very important to consider for real-life three-dimensional problems. 

The validation results for different scenarios showed that the algorithm is capable of 

solving related problems in various disciplines, including but not limited to mineral 

resources modeling. 

Although the proposed approach is computationally fast, there is still some scope for 

further improvement. The t-SNE is the most time-consuming step in our proposed method. 

The DBSCAN clustering is fast and efficient enough but inappropriate for a high-

dimensional dataset. Therefore, implementing a fast clustering algorithm for high-

dimensional datasets instead of dimensionality reduction and subsequent clustering, as 

proposed in this study, can significantly improve the computational time. If this could be 

achieved, the proposed method will be significantly faster while being efficient. Another 

path towards the development of the proposed method will be the implementation and 
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testing of the algorithm via non-stationary simulations, multivariate modeling, block 

conditioning, simulations post-processing, optimization and enhancement of the 

reconstructions, dealing with Spatio-temporal datasets, and other widespread MPS 

applications in different fields of studies, using various training images and datasets for 

hard or soft conditioning to the simulation process. 
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3. Concluding Remarks 

The goal of this research was to introduce a novel pixel-based multiple-point geostatistical 

simulation algorithm to increase the efficiency of such models. Reduction in computational 

time, honoring hard conditioning data, and improvement in reproducing the training image 

patterns and statistics are important measures of evaluating the performance of the 

algorithm. To achieve that, we proposed the implementation of  several advanced machine 

learning algorithms for dimensionality reduction, clustering of patterns database, and 

automation of the (MPS) algorithm. PCA and t-SNE for mapping high-dimensional 

patterns database, and DBSCAN for subsequent clustering of mapped data, showed their 

efficiency in this study. The proposed pixel-based simulation approach proved its 

performance in different conditions via various validation tests performed on the generated 

realizations of categorical and continuous variables, using 2D and 3D training images, and 

via conditional and unconditional simulations. The proposed algorithm is fast, based on the 

recorded run-times; however, the stochastic embedding part of the process is consuming 

the most of the simulation time. Thus, a recommendation for future study can be the 

implementation of a faster mapping technique. Besides, we recommend adding other 

extensions such as non-stationary and multivariate modeling, in addition to testing the 

method on various applications. 
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	,𝑃-𝑗|𝑖.=,exp(,−𝑑,𝑖𝑠𝑡,,,𝒅.-𝑖., ,,𝒅.-𝑗..-2.-2 ,𝜎-𝑖-2..)-,𝑘≠𝑖-exp(,−𝑑𝑖𝑠𝑡,,,,𝒅.-𝑖., ,,𝒅.-𝑘..-2.-2 ,𝜎-𝑖-2..)..                                              (3)
	Conditional probability ,𝑃-𝑗|𝑖. is the measure of similarity between data points ,,𝒅.-𝑖. and ,,𝒅.-𝑗., and they would be considered neighbors based on their probability density under a Gaussian centered at ,,𝒅.-𝑖.. Thus, ,𝑃-𝑗|𝑖. is higher f...
	,𝐏-𝑖𝑗.=,,𝑃-𝑖|𝑗.+,𝑃-𝑗|𝑖.-2𝑚.   ,   (Pii = 0)                                             (4)
	,𝑞-𝑖𝑗.=,,,1+(,||,𝐲-𝑖.−,𝐲-𝑗.||)-2..-−1.-,𝑘-,𝑙≠𝑘-,,1+(,||,𝐲-𝑘.−,𝐲-𝑙.||)-2..-−1....    ,    (qii = 0)                               (5)
	𝐊𝐋(𝐏|,𝐐.=,𝑗-,𝑖≠𝑗-,𝑃-𝑖𝑗. ,log-,,𝑃-𝑖𝑗.-,𝑞-𝑖𝑗.....                                              (6)
	The optimization procedure explained in step 10 is the most time-consuming part of the algorithm. The t-SNE optimization can also be implemented via the exact but expensive algorithm, which optimizes the Kullback-Leibler divergence of distributions be...

	2.2.3. DBSCAN Clustering and Prototypes Generation
	DBSCAN clustering works based on the density of the pattern database, as opposed to distance. The advantage of DBSCAN is that, unlike k-means clustering, it does not require the cluster number as an input parameter to perform clustering. DBSCAN is a n...
	The algorithm requires two user-defined input parameters: ε (EPS) as the neighborhood distance, and the minimum number of points required to form a cluster (MinPts). It is suggested by the algorithm developers that a value of MinPts should be selected...
	In our study, we use a method proposed by Akbari and Unland (2016) to define the EPS parameter. For each mapped point yi, firstly, the MinPts nearest neighbors using the k-nearest neighbor search algorithm (Friedman et al., 1977) is found. Then, the m...
	EPS=(𝑚𝑒𝑎𝑛+(3×𝑆𝐷))                                                (7)
	DBSCAN algorithm forms clusters within the data in Ym×2 by performing the following steps (Ester et al. 1996):
	After termination of clustering, we have a vector of numerical integers, idxm×1, showing that each row of our data (each embedded pattern) corresponds to a cluster number, and this clustering index is valid for the raw pattern database Dm×nn.

	2.2.4. Pixel-based Simulation
	After clustering the patterns, we produce a prototype for every cluster by pixel-wise averaging of the cluster members; so that we have a single pattern as a reference for every class. During the sequential simulation, we measure the distance between ...
	To optimize the simulation process by enhancing the quality of the realizations, we perform a multi-grid approach proposed by Arpat and Caers (2007). We use the multi-grid size of three to avoid high computational complexity by performing multi-level ...
	Figure 2. Three-level Coarse/Medium/Fine Multiple-Grid approach implemented.
	Consider SG as the simulation grid, in which all the pixels (nodes) are filled with a default value of, e.g., -999 as the indication of being empty (not yet simulated). In the case of conditional simulation, the hard data locations is filled by the sa...
	We use a weight distribution in our methodology while measuring similarity in template matching. As our method is a pixel-based simulation method, there is a risk of mismatching due to the number of nodes that take part in similarity detection steps. ...
	𝑑=,𝑖=1-𝑛𝑛-,,,𝑤-𝑖.×,,𝑥-𝑖.−,𝑣-𝑖...-𝑝..   ;   (p = 1)                                 (8)
	where, wi is the weight associated with the xi and vi, which are corresponding nodes of the data event and patterns/prototypes database, respectively, and nn is the length of the multiple-point vectors of data events and patterns.
	Figure 3. Plots of the weights distributions used while two- and three-dimensional template matching.
	The similarity comparison step is expensive when the template size is big, and all or a high number of corresponding nodes around the simulation node are known. This problem is intensified for three-dimensional simulations, as the computational comple...
	Figure 5. Cumulative conditional distribution function (ccdf) plot for selecting random pattern by drawing a random sample from the probability distribution for highly crowded clusters.

	2.2.5. Summary of the Methodology
	Here, we provide a summary of the proposed methodology:
	Repeat steps 7 to 12 of the simulation process to generate different equiprobable realizations.
	In this section, we demonstrate the performance of our model by visual and statistical comparison of the generated realizations with the continuous and categorical training images used in this study. In addition, the realizations produced by FILTERSIM...
	Figure 5. Categorical binary TI named channel (a), and continuous TI (b).
	We performed the automatic template size determination on our training images, based on the approach explained in Section 2.2.1. The mean Entropy, the variance Entropy, and the Log-likelihood profile of the Entropy plots of different template sizes fo...
	Figure 6. Entropy-based template size determination plots for the channel TI (top row) and continuous TI (bottom row) shown in Fig. 5.
	The stochastic embedding and clustering of pattern database, generated using the automatically selected template size, were performed. In a single run, the algorithm provided 206 and 1004 distinct clusters for patterns database of the categorical and ...
	Figure 7. DBSCAN Clustering on the embedded patterns database, for the original-resolution channel TI shown in Fig. 5-a.
	To verify the combined impact of t-SNE mapping and the DBSCAN clustering algorithm, we inspected the patterns from clusters to see the results visually. To provide an example, all patterns which were formed as a cluster for categorical and continuous ...
	Figure 8. Members of randomly selected clusters (left) and their calculated prototypes (right), extracted from categorical channel (top) and continuous (bottom) training images.
	2.3.1. Unconditional Simulation
	The results of unconditional simulation on the introduced categorical and continuous training images are presented herein. Generally, a minimum number of realizations should be generated to have an understanding of the uncertainty of the simulation (J...
	Figure 9. Categorical TI realizations of the proposed MPS method (top) versus FILTERSIM realizations (bottom).
	It is observed that the continuity of the training image streams is reproduced well by our proposed method; however, FILTERSIM fails to maintain the continuity of the channels through the simulation process. The main differences of our proposed method...
	Statistical analysis was performed on the simulation results to show the efficiency of the methodology. Figure 10 shows a first order statistical comparison of the realizations and training images using the box and mean comparison plots. It can be inf...
	Figure 10. Categorical boxplots (a) and mean comparison plot (b) of generated 100 unconditional realizations simulated by categorical training image shown in Fig. (5-a).
	Figure 11. Variograms of the TI (in red) and100 unconditional realizations (a), and E-Type plots (b&c) of realizations of categorical channel training image shown in Fig. 5-a.
	Figure 12. Cumulant maps of the categorical channel TI (b) and an unconditional simulation (c) plotted for higher-order validation of the proposed method.
	The results of performing the methodology on continuous training image (Fig. 5-b) also confirm the applicability of the proposed simulation method for continuous variable. Figure 13 compares the quality of realizations with the FILTERSIM algorithm. It...
	Figure 13. Continuous TI realizations of the proposed MPS method (top) versus FILTERSIM realizations (bottom).
	Figure 14. Histogram (a), variogram (b) and mean comparison (c) plots of the continuous training image shown in Fig. 5-b and the 100 generated unconditional realizations.
	Figure 15. E-Type plots (a & b), and the cumulant maps of the continuous TI (d) and an unconditional simulation (e) for higher-order validation.

	2.3.1.1. Three-Dimensional TI
	Additionally, we tested our algorithm on a three-dimensional TI with a size of [69×69×39], shown in Fig. 16, accompanied by its cross-sectional views (middle row). We used a template size of t=[13×13×13], as concluded from the Entropy-based method for...
	Looking at the realizations produced by the proposed method (Figs. 19 and 20), and comparing them to the TI (Fig. 16), it can be observed that continuity of the channels was reproduced within the simulation domain. The trapezoids available in the TI a...
	Figure 16. Three-dimensional training image (top) with three slice views (middle row) for checking textures and shapes, and the entropy-based determination of template size.
	Figure 17. Unconditional three-dimensional simulation results and cross-sectional view.
	Figure 18. Three-dimensional realization generated by our proposed method (left) and realization generated by FILTERSIM algorithm (right).
	Figure 19. Categorical boxplots (a) and mean comparison plot (b) for the three-dimensional unconditional simulations, showing the comparison of the one-point statistics.
	Figure 20. Cumulant maps of the categorical three-dimensional TI (b) and an unconditional simulation (c) plotted for higher-order validation of the proposed method.


	2.3.2. Conditional Simulation
	We tested our proposed method for the conditional simulation to check the accuracy of simulations in honoring hard data during the simulation process. Figure 21-a depicts 361 points of the hard data used for conditional simulation of the channel train...
	Figures 22 and 23 show the statistical validation results for 100 realizations of the conditional simulation for the channel TI, shown in Fig. 5-a. The first-, second- and third-order statistical comparison of the realizations with the corresponding c...
	Figure 21. Conditioning data for the TI shown in Fig. 5-a (a), two conditional realizations (b & c), and the E-type plots of the 100 conditional simulations (d & e).
	Figure 22. Variograms of the channel TI (in red) and the 100 conditional realizations (bottom), categorical boxplots (top row), and the mean comparison plot (middle).
	Figure 23. Cumulant maps of the categorical channel TI (b) and a conditional simulation (c) plotted for higher-order validation of the proposed method.
	The quality of such realizations depends on maintaining the continuity and shape of the channels across the simulated images in the same manner as they are available in the training image. As the hard data are derived from the TI, the realizations sho...
	Figure 24. One thousand randomly distributed hard dataset (a), conditional realization (b), and the E-Type (c) and variance (d) maps for the channel TI.
	For a conditional simulation of a continuous variable, 208 hard conditioning data were used (Fig. 25-a). The hard data are irregularly spaced and scattered all over the simulation grid domain. The two conditional simulation maps are shown in Figs. 25-...
	The continuous training image used here has a complex bimodal histogram, and the algorithm is able to reproduce this distribution over all realizations (Fig. 26-a). A small overestimation of the left head frequency, and small under-estimation of the r...
	Figure 25. Conditioning data for the training image shown in Fig. 5-b (a), two conditional realizations by the proposed method (b & c), and the E-type plots (d & e) of 100 conditional simulations for the continuous TI.
	Figure 26. Histogram of the continuous training image shown in Fig. 5-b and the generated 100 conditional realizations (top), and mean comparison plot (bottom).
	Figure 27. Cumulant maps of the continuous TI (b) and a conditional simulation (c) plotted for higher-order validation of the proposed method.
	For continuous variable as well, the E-type map closely reproduces the reference TI when the number of hard data is sufficiently high. We tested the algorithm using 500 randomly distributed hard data (Fig. 28-a), and the results presented in Figs. 28-...
	Figure 28. Five hundred randomly distributed hard datasets (a), conditional realization (b), and the E-Type and variance plots (c & d) for the continuous TI.


	2.4. Three-Dimensional Case Study
	After validation and testing, we applied the proposed method to a gold deposit to simulate categorical variables. The mining company has categorized the exploration drilling data into three different categories, i.e., high-grade, low-grade, and waste,...
	Figure 29. Three-categorical Training image of the gold deposit (top) and hard (conditioning) data gathered (bottom).
	The solid, which is used as a training image, is generated based on updated geological interpretations, including the existence of faults, mineralization zones, lithological characterization, and lithological contacts. Drilling data were considered as...
	Figure 30. Entropy-based determination of template size for the three-dimensional TI in Fig. 29.
	After extraction of patterns database, we removed the patterns containing the above-topography values, and then stochastic embedding and clustering were performed. We performed the same approach mentioned for the previous three-dimensional simulation,...
	Figure 31. Two generated three-dimensional realizations of the conditional three-categorical simulation.
	Figure 32. Boxplots for comparison of the statistics of the three-dimensional TI, the hard (conditioning) data, and the generated realizations (a), and mean comparison plot (b).
	From Figure 32, we note that there are some deviations between the hard data and simulations statistics; however, the results show an excellent match between training image and simulations. The reason for this observation is that the statistics and fr...
	In this case study three-dimensional TI, we deal with the dense areas of the conditioning data indicating the areas in which cumulations of orebody materials with different grades happeng. This necessitates the evaluation of the results in this regard...
	Figure 33. Three-dimensional TI's six slice views (two in each direction) for showing textures and shapes (top two rows), and the realization's six slice views (two in each same direction) for checking if/how the simulations are reproducing the TI tex...

	2.5. Runtime and Code Availability
	Our proposed method can be considered a fast MPS method in both two-dimensional and three-dimensional simulations, based on the information provided in Table 1. The codes were run on a PC with Windows 10 (64-bit) and with configurations including 1.70...
	Table 1. Simulation times by the training image and simulation type.

	The information provided by Table 1 also indicates the followings points as marked within the table:
	1. Conditional simulation via the same training image is faster than the unconditional simulation because the less number of nodes need to be filled via the MPS simulation. However, we also tested the method with a larger number of hard data (for both...
	2.6. Conclusions and Future Works
	This research proposed a new pixel-based simulation algorithm using different machine learning techniques. The results showed that t-Distributed Stochastic Neighbors Embedding (t-SNE algorithm), and Density-based Spatial Clustering of Applications wit...
	Although the proposed approach is computationally fast, there is still some scope for further improvement. The t-SNE is the most time-consuming step in our proposed method. The DBSCAN clustering is fast and efficient enough but inappropriate for a hig...

	3. Concluding Remarks
	The goal of this research was to introduce a novel pixel-based multiple-point geostatistical simulation algorithm to increase the efficiency of such models. Reduction in computational time, honoring hard conditioning data, and improvement in reproduci...
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