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Abstract1

The multivariate cumulants characterize aspects of the spatial variability of a re-2

gionalized variable. A centred multivariate Gaussian random variable, for example, has3

zero third-order cumulants. In this paper it is shown how the third-order cumulants can4

be used to test the plausibility of the assumption of multivariate normality for the porosity5

of an important formation, the Bunter Sandstone in the North Sea. The results suggest6

that the spatial variability of this variable deviates from multivariate normality, and that7

this assumption may lead to misleading inferences about, for example, the uncertainty8

attached to kriging predictions.9

10

1. Introduction11

Geostatistical analysis of spatially variable geological data allows us to quantify the12

uncertainties in inferences made from partial samples by treating data as realizations of13

a random field. In most cases the underlying model is multivariate Gaussian, and the14

plausibility of this assumption is usually judged from the marginal distribution of obser-15

vations (e.g. Webster and Oliver, 2007). Where necessary the data may be transformed,16

for example to logarithms or, more generally, by the Box-Cox transformation. However, it17

is recognized that the assumption of a Gaussian or trans-Gaussian (Gaussian after trans-18

formation) distribution is not always safe, and, particularly, that it might not hold even19

when it seems plausible for the marginal distribution of the data. Of particular concern20

is the recognition that, under the multivariate Gaussian model, the first and second order21
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moments entirely characterize the spatial distribution of a variable since all odd moments22

larger than the first are zero and all even moments larger than the second can be written23

in terms of it. However, it is known that the complex geometries that may be encountered24

in geological data, the strongly-connected patterns of coarse-textured alluvium in former25

braided streams are a locus classicus, might not be fully characterized by the first and26

second moments, and more complex spatial distributions are necessary (e.g. Guardiano27

and Srivastava, 1993).28

It is therefore necessary to develop exploratory methods to examine the higher-29

order behaviour of spatially variable data. Dimitrakopoulos et al. (2010) have shown30

how higher order spatial cumulants of random variables can capture features of dense31

training images that are not compatible with the assumption of an underlying multivariate-32

Gaussian variable. The objective of the present paper is to show how such a cumulant33

can be used in an inferential framework to test the strength of evidence against the null34

hypothesis that, possibly relatively sparse, observations are drawn from a variable in which35

these cumulants take values expected in the Gaussian case; and to identify exploratory36

statistics that might be used to judge whether a Gaussian assumption is plausible. The37

approach is illustrated using data on porosity of an important sedimentary formation under38

the North Sea. A sound spatial stochastic model for this variable is necessary because the39

pore-space in this unit may be important as a site for future carbon capture and storage40

(Holloway, 2009).41

2. Cumulants42

A real-valued random variable, Z, with a probability density function fZ(z), has a43

moment-generating function:44

M(v) = E [exp{vZ}] =

∫ ∞
−∞

exp{vz}fZ(z)dz. (1)

If M(v) has a Taylor series expansion about the origin then it may be written as45

M(v) = E [exp{vZ}] = E

[
1 + vZ +

v2

2!
Z2 + . . .+

vr

r!
Zr + . . .

]
. (2)
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Note that the rth non-centred moment of Z,46

µ′r = E [Zr] ,

is the coefficient of vr

r! in the rth term in this expansion, hence the name of the function.47

Cumulants of the random variable may be defined in a similar and related way. The48

cumulant generating function is49

K(v) = ln (E [exp{vZ}]) ,

so we may write50

1 + µ′1
v

1!
+ µ′2

v2

2!
+ . . .+ µ′r

vr

r!
+ . . . = exp

{
κ1
v

1!
+ κ2

v2

2!
+ . . .+ κr

vr

r!
+ . . .

}
, (3)

where κr is the rth cumulant of Z.51

The cumulants and moments of a distribution are related, for example (Kendall and52

Stuart, 1977)53

µ′1 = κ1,

µ′2 = κ21 + κ2,

µ′3 = κ31 + 3κ1κ2 + κ3. (4)

However, cumulants have certain properties which can make them more useful than54

moments. In particular they generalize simply to the multivariate case (McCullagh and55

Kolassa, 2009). Consider an n-variate random variate Z = {Z1, Z2, . . . , Zn}. One may56

define entries in the mean vector of Z, the matrix of second non-centred moments and the57

array of non-centred third moments as58

Er = E[Zr]

Ers = E[ZrZs]

Erst = E[ZrZsZt] (5)
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We denote linear combinations of the variables in Z, and the powers of this term using59

Einstein’s simplified convention for notation of multiple summations (Kuptsov, 2001):60

vrZr ≡
n∑
r=1

vrZr (6)

61

vrvsZrZs ≡
n∑
r=1

n∑
s=1

vrvsZrZs = (vrZr)
2 (7)

where the term vrZr on the right is defined in Eq [6],62

vrvsvtZrZsZt ≡
n∑
r=1

n∑
s=1

n∑
t=1

vrvsvtZrZsZt = (vrZr)
3 etc. (8)

Given this notation, the multivariate moment-generating function can be expanded as63

M(v) = 1 + vrEr +
vrvsErs

2!
+ . . . (9)

and, similarly,64

K(v) = ln(M(v)) = κr
vr
1!

+ κr,s
vrvs
2!

. . . . (10)

As in the univariate case, the cumulants of increasing order, κr, κr,s, . . . appear as coeffi-65

cients in the expansion. The moments and cumulants in the multivariate case are found66

to be related in a simple way, the moments of some order are given by the sum of products67

of cumulants over partitions of the superscripts so, for moments and cumulants of order68

up to three:69

Er = κr, (11)
70

Ers = κr,s + κrκs, (12)

and71

Erst = κr,s,t + κr,sκt + κr,tκs + κs,tκr + κrκsκt. (13)

The expressions above can be rearranged to express the cumulant of order k as functions72

of moments of order m ≤ k and cumulants of order < k:73

κr = κr, (14)
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74

κr,s = Ers − κrκs, (15)

and, rearranging Eq [13] and substituting Eq [15] for the second-order cumulants,75

κr,s,t = Erst − κr,sκt − κr,tκs − κs,tκr − κrκsκt,

= Erst − [Ers − κrκs]κt −
[
Ert − κrκt

]
κs −

[
Est − κsκt

]
κr − κrκsκt,

= Erst − Ersκ
t − Ertκ

s − Estκ
r + 2κrκsκt,

= Erst − ErsEt − ErtEs − EstEr + 2ErEsEt. (16)

For zero mean Z Eq[15] and Eq[16] simplify to76

κr,s = Ers = Cov [Zr, Zs] , (17)

where Cov [·, ·] denotes the covariance of the terms in the brackets, and77

κr,s,t = Erst, (18)

i.e. the third cumulant is equal to the third moment. This is zero for multivariate Gaus-78

sian Z. In fact all multivariate cumulants of order m > 2 are zero for the Gaussian79

case (Bilodeau and Brenner, 1999). This is demonstrated for the fourth cumulant in the80

appendix.81

Dimitrakopoulos et al. (2010) describe the extension of multivariate cumulants to82

the spatial random field Z(x). Consider the third-order cumulant. Given some location83

x we may define a set of three locations {x,x + h1,x + h1 + h2} where h1 and h2 are84

lag vectors such that h1 = h1l1 and h2 = h2l2 where h1 and h2 are scalar lag distances85

and l1 and l2 are lag vectors of unit length. Note that this notation is somewhat different86

to that of Dimitrakopoulos et al. (2010). Given such a configuration, and making the87

ergodicity assumption that the distribution of Z(x) is independent of x, we may express88
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the third-order cumulant for the random field at these locations as a function of lag only:89

κ3(h1,h2) = E [Z(x)Z(x + h1)Z(x + h1 + h2)]

−E [Z(x)] E [Z(x + h1)Z(x + h1 + h2)]

−E [Z(x + h1)] E [Z(x)Z(x + h1 + h2)]

−E [Z(x + h1 + h2)] E [Z(x + h1)Z(x)]

+2E [Z(x)] E [Z(x + h1))] E [Z(x + h1 + h2)] , (19)

given Equation (16) When Z(x) is a zero mean spatial field this simplifies to90

κ3(h1,h2) = E [Z(x)Z(x + h1)Z(x + h1 + h2)] . (20)

Note from the discussion above that, for a Gaussian random field, the cumulants91

κr(h1,h2, . . . ,hr−1) for any lags and for r > 2 are zero. This does not depend on assump-92

tions of ergodicity.93

As proposed by Dimitrakopoulos et al. (2010) cumulants may be estimated for94

specified lag combinations, such as h1,h2, by considering all sets of observations whose95

locations are translations of the basic template [{0, 0} ,h1,h1 + h2]. When observations96

are not regularly spaced it is necessary, as with estimation of the empirical variogram,97

to compute estimates for lag bins which allow for some variation or tolerance about a98

central lag. Under the assumption of ergodicity (at least up to the order of the cumulant99

of interest), the estimator for the third cumulant of a zero-mean random variable from a100

set of observations at locations X is therefore101

κ̂3(h1,h2) =
1

N(h1,h2)

∑
{x,x+h1,x+h1+h2}∈X

z(x)z(x + h1)z(x + h1 + h2), (21)

where there are N(h1,h2) sets of observations whose locations are translations of the basic102

template [{0, 0} ,h1,h1 + h2].103

3. Materials and Methods104

3.1. Data on the Bunter Sandstone porosity.105
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The data used in this study are all from the Bunter Sandstone formation. The Bunter106

Sandstone is a sheet-sand complex comprising mainly fine-grained but locally medium- or107

coarse-grained material (Cameron et al., 1992). It was deposited as fluvial channel sands in108

arid conditions in the lower Triassic. The Bunter Sandstone is a significant formation in the109

North Sea and corresponds to the Sherwood Sandstone group onshore. It is an important110

gas reservoir in the North Sea and is potentially important for carbon capture and storage111

(Holloway, 2009; Senior, 2010). For this reason the porosity of the Bunter Sandstone is of112

interest. The porosity of this material is affected by various factors including the structure113

of the original sediments, the depositional overburden, cementation of the material and114

subsequent diagenetic transformation (Bifani, 1986).115

The data are derived from analysis of cores extracted from 32 wells across the North116

Sea. The cores were of variable length, and were sampled by extracting plug samples of one117

inch diameter, the diameter of the plug being in the vertical direction. The recorded depth118

of the plug was at its centre. The samples were not collected at absolutely regular intervals,119

the mean spacing down-core between successive samples was 0.6 m. Where coherent plugs120

could not be extracted a comparable volume of chipped material was removed. Each121

sampled specimen was washed to remove all hydrocarbons and oven-dried to a constant122

weight before porosity was determined by helium porosimetry. These are the best data123

available on the porosity of the Bunter Sandstone, but it is acknowledged that there may124

be some observational errors due to dissolution of halite cements during washing of the125

samples (Ketter, 1991). The analyses reported in this paper are limited to porosity data126

from plugs in water-filled sections of the cores, excluding results from gas-filled material.127

A total of 1282 measurements from the 32 cores were available.128

3.2. Calculations.129

3.2.1. Exploratory analysis and linear mixed model. The number of wells is too small to130

allow spatial modelling of the lateral variability of porosity in this formation. For this131
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reason a linear mixed model of the following form was fitted for exploratory purposes132

Z(i, x) = µ+Ki + η(i, x), (22)

where Z(i, x) is a random variable: the porosity at depth x within the ith well. Note that133

we define locations within wells by scalar depths, effectively the data within any well are134

in one dimension. The mean porosity over all depths and wells is µ, Ki is a random effect135

drawn from a random variable with mean zero and variance σ2B; it represents the difference136

between the mean porosity for the ith well and the overall mean porosity. The term η(i, x)137

is also a random effect of mean zero and variance, σ2W. This random effect accounts for138

the within-well variability. The covariance of the values of η at any two depths in the139

same borehole is140

Cov
[
η(i, x), η(i, x′)

]
= σ2W, x = x′

= (1− ξ)σ2WR
(
|x− x′|;ψ

)
, x 6= x′ (23)

where R (·;ψ) is a correlation function with parameters in ψ and ξ ∈ [0, 1] is the nugget141

ratio, the proportion of the variance of η which is not correlated at spatial scales resolved142

by the sampling. This may include measurement error. Because the argument of the143

correlation function is the distance between two locations within a borehole rather than144

two absolute positions, the correlation structure is said to be second-order stationary145

(Journel and Huijbregts, 1977). Various correlation functions may be considered, provided146

that they guarantee a positive definite correlation matrix for η at any set of unique sites.147

One such function is the exponential:148

R
(
|x− x′|; [r]

)
= exp

{
−|x− x′|/r

}
, (24)

with r, a distance parameter the only element in ψ. An alternative is the spherical149

function:150

R
(
|x− x′|; [a]

)
= 0 a > |x− x′|,

= 1− 3|x− x′|
2a

+
1

2

(
|x− x′|

a

)3

a ≤ |x− x′|, (25)
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for which a is the distance parameters, the range of the covariance function. Under these151

correlation models the term η at two locations in a borehole are expected to be more152

similar the closer they are in space.153

The variance parameters of the linear mixed model in Eq. [22] — the variances σ2B154

and σ2W, the nugget ratio ξ and the terms in ψ — are best estimated by residual maximum155

likelihood (REML) (Verbeke and Mohlenbergs, 2000). This entails the assumption that156

the random effects can plausibly be regarded as realizations of a normal random field. In157

the context of this study we examined the plausibility of this assumption (which we know158

cannot be strictly true because porosity is bounded in the interval [0,100]), by examining159

the marginal distribution of the residuals from an ordinary least squares fit of the LMM.160

Exploratory statistics were computed for the residuals, including the robust measure of161

skewness, the octile skew, proposed by Brys et al. (2003). Because porosity is a proportion,162

as noted above, we repeated this exploratory analysis after a logistic transformation of the163

porosities. Finally, the parameter of a Box-Cox transformation was estimated by maximum164

likelihood by means of the boxcox procedure in the MASS package for the R platform165

(Venables and Ripley, 2002) and exploratory analysis was undertaken on residuals after166

this transform. Results are presented below, but the following procedures may be followed167

on the basis either that the residuals appear to have a reasonably normal distribution or168

that this is plausible after an appropriate transformation.169

The parameters of the linear mixed model were then estimated by REML. The lme170

procedure in the nlme library for R (Pinheiro et al., 2013; R Development Core Team,171

2010) was used, and spherical and exponential correlation functions for η were considered.172

The variance parameters for η were tested by cross-validation. Each residual from the173

well mean was removed from the data set in turn and predicted by ordinary kriging from174

the remaining values in the same well. This was done using the xvok2d algorithm in the175

GSLIB library (Deutsch and Journel, 1997). For each observation, η(i, x) this provides a176

kriging estimate, η̃(i, x), and the prediction error variance (kriging variance) σ2K(i, x). A177
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useful diagnostic (Lark, 2009) is the standardized squared prediction error, with mean one178

and median 0.455 for normal kriging errors when the variance parameters are correct:179

θ(i, x) =
{η(i, x)− η̃(i, x)}2

σ2K(i, x)
. (26)

The linear mixed modelling framework was used to test the hypothesis that porosity180

depends on depth down the well. Neither exploratory plots of the data nor these models181

provided any evidence for a trend in porosity with depth, and so I proceeded with the182

model in Equation [22] where the mean porosity is constant within any well.183

3.2.2 Estimating κ3 for particular templates. For a zero-mean ergodic random variable184

η(i, x) on a set of one-dimensional wells, K, the third-order cumulant, defined for a random185

field in Eq. [20], is defined for scalar lag distances h1 and h2 by186

κ3η(h1, h2) = (27)

E [η(i, x1)η(i, x2)η(i, x3); |x2 − x1| = h1, |x3 − x2| = h2, (x2 − x1)(x3 − x2) > 0]i∈K .

Note that under this definition the locations are in order x1, x2, x3 up or down the well,187

and the cumulant is symmetric in the sense that κ3η(h1, h2) = κ3η(h2, h1).188

In practice, when sampling is not on a regular array, it is necessary to allow some189

tolerance in the definition of the lag distances (Dimitrakopoulos et al., 2010). In this study190

we define a scalar-lag class h̃ as the interval [h− τ, h+ τ ] where τ is the tolerance. We191

define the indicator variable192

I(i, x1, x2, x3; h̃1, h̃2) = 1 i ∈ K, |x2 − x1| ∈ h̃1, |x3 − x2| ∈ h̃2, (x2 − x1)(x3 − x2) > 0

= 0 otherwise. (28)

We then define the estimate κ̂3η(h1, h2) by193

κ̂3η(h1, h2) = (29)

1

Nh1,h2

∑
i∈K

I(i, x1, x2, x3; h̃1, h̃2){z(i, x1)− zi}{z(i, x2)− zi}{z(i, x3)− zi},

where z(i, x1) is the observed value of the variable at depth x1 in the ith well, and zi is194

the average value of the variable over all observations in the ith well. The summation is195
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over all sets of three observations within all wells in the set K and Nh1,h2 is the sum of196

the indicator over all these observations.197

In this study the estimate κ̂3η(h1, h2) was computed for lag distances 25 cm, 50 cm, . . . , 500 cm198

with lag tolerance τ = 12.5 cm.199

3.2.3. Testing κ̂3 against a null hypothesis of normality. As noted above the expected200

value of the third cumulant for a multivariate normal random variable is zero. Values of201

κ̂3 for some h1, h2 provide evidence against this null hypothesis, but this evidence must be202

assessed accounting for the sample variance of the estimates. This is complicated by the203

lack of independence of the observations from which the estimate is obtained, so a Monte204

Carlo simulation procedure was developed.205

Under the null hypothesis of multivariate normality the variability of the data is206

entirely accounted for by the variances and associated parameters of the random effects207

in the linear mixed model, Eq [22]. The Monte Carlo procedure requires that we can208

generate realizations of the random term η from the linear mixed model. We denote the209

set of values of this random variable by the N × 1 vector η which corresponds to the full210

set of N observations. The covariance matrix of the random variate η is denoted by V211

where212

V = ξσ2WI + (1− ξ)σ2WR, (30)

where I is a N ×N identity matrix and R is an N ×N correlation matrix such that the213

entry R{k, l} for the lth observation η(i, d) and the kth η(j, d′) is:214

R{k, l} = 0, ∀i 6= j

= R
(
|d− d′|;ψ

)
, ∀i = j, (31)

where R is a correlation function with parameters in ψ. In this study the correlation215

function fitted by REML, and the estimated parameters were used. Once V has been216

computed it is possible to find its Cholesky factorization:217

V = LL∗, (32)
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where L is a lower-triangular matrix with real and positive diagonal elements and L∗ is its218

conjugate transpose. This factorization is guaranteed to exist because the matrix R, as a219

covariance matrix computed from an authorized correlation function, is positive-definite220

and symmetric with real values. It is then possible to generate a realization of η by221

computing222

η = Lg, (33)

where the elements of g are independent values with a standard normal distribution.223

In this study the IMSL subroutine chfac was used to compute the Cholesky fac-224

torization. One may then substitute the elements of η for the values of z in Eq. [29] to225

compute κ̂3η(h1, h2) for the same lag distances for which this was computed for the original226

data. It is immaterial that the between-well random effect is not simulated here since227

the mean value for each well is subtracted from each observation in Eq. [29]. Since η228

is simulated for the same locations as the data, the value of κ̂3η(h1, h2) for some lag dis-229

tances computed from the simulated data can be regarded as a realization of the sampling230

distribution of our observed statistic under the null hypothesis of a multivariate normal231

distribution. Note also that the sample error of each well mean, which contributes to the232

error of the estimation of κ̂3η which is estimated on the assumption of zero mean, also233

appears in the simulation procedure and so is included in the Monte Carlo approximation234

to the sampling distribution of κ̂3η. In this study 100 000 realizations of η were generated235

and used to compute the sampling distribution of κ̂3η(h1, h2) for the specified lags under236

the null hypothesis.237

Two approaches were used to examine the extent to which the empirical cumulants238

of the data are consistent or otherwise with a null hypothesis of normality. The first was239

to find the maximum absolute value of the estimated cumulants over all lag distances,240

κ̂3η,max = max
{∣∣∣κ̂3η(h1, h2)∣∣∣ ;h1 = 25, 50, . . . , 500cm;h2 = 25, 50, . . . , 500cm

}
. (34)

This statistic was evaluated for the empirical residuals from the well means, and241

then for each of a set of 100 000 realizations of η, generated as described above. Since the242
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expected value of the cumulant under the null hypothesis of a multivariate Gaussian ran-243

dom variable is zero a large value of κ̂3η,max provides evidence against this null hypothesis.244

The strength of evidence is measured by a p-value which can be approximated by ordering245

the values of κ̂3η,max from the simulations and computing the proportion of these which246

exceed the observed value.247

The second approach was to test the separate cumulants for each lag pair h1, h2. For248

some observed lag pair at which the observed cumulant is κ̂3η(h1, h2) the p-value for the null249

hypothesis of a zero cumulant is computed by finding the proportion of the 100 000 realiza-250

tions of η for which the cumulant fall outwith the interval
[
−
∣∣∣κ̂3η(h1, h2)∣∣∣ ,+ ∣∣∣κ̂3η(h1, h2)∣∣∣].251

These p-values were inspected for a set of lag combinations, excluding those with fewer252

than 600 supporting triplets of observations. This is a multiple hypothesis test, in which253

we examine a family of null hypotheses which are not mutually independent. For that254

reason it is necessary to control the family-wise error rate (FWER), αrmFW , which is the255

probability of one or more of the family of null hypotheses’ being rejected although all256

of them are true. The simplest way to control the family-wise error rate for a set of m257

hypotheses is to reject only those for which p < αFW/m. This is the Bonferroni control258

of FWER, and is valid for non-independent hypotheses (Snedecor and Cochran, 1980).259

However, it is relatively lacking in power. An alternative, also valid for non-independent260

hypotheses, is the procedure due to Holm (1979). In Holm’s procedure one orders the261

null hypotheses H1, H2, . . . ,Hm in order of ascending p-value, p1, p2, . . . , pm. One then262

evaluates for successive k = 1, 2, . . . ,m whether263

pk >
αFW

m+ 1− k
.

Let kr be the smallest value of k for which this expression is true. One may then reject,264

with FWER αFW, the null hypotheses H1, H2, . . . ,Hkr−1. This procedure was followed to265

find the subset of lag pairs for which the null hypothesis that the cumulant is zero could266

be rejected.267

3.2.4 Exploring the implications of a non-zero cumulant. In order to gain insight into268
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the nature of the variability of a variable with non-zero third order cumulants for lag-269

pairs h1, h2 I examined 3-D plots of the triplets of observations {z(d), z(d+ h1), z(d+ h2)}270

using the scatterplot3d package in R. This is comparable to the examination of two-271

dimensional scatterplots of {z(x), z(x + h)} which is sometimes advocated as an exploratory272

technique in geostatistics (Goovaerts, 1997).273

4. Results274

Table 1 presents summary statistics for residuals for porosity from the well mean,275

and the same residuals for data after logistic or Box-Cox transformation. Note that there276

is little appreciable effect of the Box-Cox transformation, and the 95% confidence interval277

of the Box-Cox parameter included the value 1, under which the transform is equivalent278

to adding a constant to the variable and has no effect on the shape of the distribution.279

The residuals after a logistic transform are more skewed than in the other two cases. All280

of these exploratory statistics suggest that an assumption of normality of the residuals281

with no transformation seemed plausible. Figure 1 shows the histogram of these residuals282

and their empirical Quantile-Quantile plot which should lie on the bisector.283

Table 2 shows the results of the REML estimation of the variance parameters for284

the linear mixed model for porosity set out in Eq[22]. Figure 2 shows the histogram of285

cross-validation errors for the selected model (exponential) and the Q-Q plot. These show286

that the errors are close to normal in their distribution. The mean and median standard287

square cross validation errors are in Table 2. Note that the mean is close to 1.0, but the288

median is rather smaller than is expected.289

It was found that the numbers of triplets of observations from which to estimate the290

cumulant for particular lag pairs Nh1,h2 varied. For most pairs of lags there were between291

600 and 1600 triplets, so those lags supported by fewer observations were discarded. Figure292

3 shows the estimated values κ̂3η(h1, h2) which are plotted only in the lower half of the293

plot (where h1 > h2). The dots in the upper half of the plot indicate the lags at which294
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the number of supporting triplets of observations was fewer than 600.295

The largest absolute value of the third cumulant over the lags considered was 57.8296

for lag-pair {50 cm, 250 cm}. Table 3 shows the percentiles of the maximum absolute value297

of the third cumulant over 100 000 realizations of the Gaussian model, and also percentiles298

of the third cumulant for lags {50 cm, 250 cm}. Figure 4 shows the approximate density299

functions for (a) the maximum absolute value of the third cumulant over all lags and300

(b) the third cumulant for lags {50 cm, 250 cm} from the 100 000 realizations. The301

density was obtained by the kerneldensity procedure in GenStat (Goedhart, 2009).302

This, and the percentiles in Table 3, indicate that the cumulant is distributed more or less303

symmetrically about zero under the null hypothesis of a multivariate Gaussian distribution.304

The percentiles of the maximum absolute value of the third cumulant over all lags in Table305

3 shows that the approximate p-value for the evidence provided by the absolute maximum306

third cumulant for these data against a null hypothesis of normality is less than 0.01, but307

larger than 0.001.308

In the upper half of Figure 3 are plotted those cumulants which were significantly309

different from zero as judged by the p-values computed for each lag pair from the 100 000310

realizations, with FWER controlled at 0.05. There are six lag pairs at which the cumulants311

are significantly non-zero. Note that the significant cumulants are negative for smaller lags312

— {50 cm, 250 cm},{50 cm, 225 cm} and {100 cm, 225 cm}— and positive for the longer313

lags, {50 cm, 425 cm}, {150 cm, 275 cm} and {275 cm, 500 cm}.314

Three-dimensional scatter-plots were examined for data triplets (residuals from the315

well mean) with the smallest (most negative) and largest (most positive) cumulant, cor-316

responding to lags {50 cm, 250 cm} and {150 cm, 275 cm} respectively. I do not attempt317

to reproduce them here but the effects that they show can be illustrated by two two-318

dimensional plots of residuals for two locations, x1 and x2 = x1 + h1 with, respectively319

η(x3) > 0 and η(x3) ≤ 0 where x3 = x2 + h2. These plots are shown in Figure 5, along320

with the correlations between the variables on the plots. Note that the ‘positive quad-321
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rants’ of the plot, where η(x1)η(x2) > 0, have been given a grey background. It is apparent322

that the correlation between η(x1) and η(x2) differ between the cases where η(x3) > 0 and323

η(x3) ≤ 0, and these differences are significant in each case with p < 0.001. This difference324

in correlation is an expression of the non-zero third cumulant of η which has been found325

for these lag pairs, since it means that distribution of observations between the positive326

and negative quadrants of these plots is different for the case where η(x3) > 0 and where327

η(x3) ≤ 0. Furthermore, this difference in correlation is inconsistent with the assumption328

of second-order stationarity under which the correlation between η(x1) and η(x2) should329

depend only on h1.330

5. Discussion331

In the work above five general results were obtained from the exploratory analysis332

of the porosity data.333

1. Summary statistics and histograms on the marginal distribution of the data, includ-334

ing after transformation. (Figure 1, Table 1).335

2. A plot of the third cumulant of the centred data for a range of lags (Figure 3).336

3. P -values for tests of the null hypothesis of an underlying multivariate Gaussian337

process based on the third cumulants.338

4. Scatter plots of data triplets and associated correlations (Figure 4).339

5. Results from the cross validation of the fitted linear mixed model (Figure 2, Table340

2).341

The significance tests on the cumulants — item (3) in the list above — allow us to re-342

ject the null hypothesis of an underlying multivariate Gaussian random variable. Whether343

this is, of itself, of direct practical relevance is open to debate. Webster and Oliver (2007)344

suggest that significance tests for conformity to distributions are not particularly valuable345

for the purpose of assessing the plausibility of distributional assumptions. We know in346
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most cases that a variable is not strictly normally distributed, and, particularly with large347

data sets, we do not expect the null hypothesis of normality to be accepted. For example,348

with the data in this paper, we know that they cannot have a Gaussian distribution at the349

limit since porosity is bounded on the interval [0, 1]. However, the exploratory statistics of350

these data indicated that they are close to symmetrically distributed with a bell-shaped351

histogram, and that neither the logistic nor the Box-Cox transformation improved this.352

Following the guidelines of Webster and Oliver (2007) one would normally proceed on the353

basis that a normality assumption is plausible.354

How is this approach extended to the consideration of multivariate normality? The355

plot of the cumulants (Figure 3) may indicate possible systematic deviations from the356

expected value (zero), e.g. clustering of small (large negative) or large positive values at357

particular lags, and the significance test indicates whether or not the general pattern is358

compatible with sampling error from an underlying Gaussian process. The cumulant plot359

also leads us to the particular data triplet plots which merit further investigation. These360

triplet plots are visualizable projections of the data which allow us to see the particular361

deviation from normality which the corresponding cumulant represents. In this case we362

can identify notable differences between the correlation of η(x1) with η(x2) conditional363

on the value of η(x3). This is not consistent with an assumption of stationarity in the364

covariance. This is consistent with the cross-validation results, presented in Table 2. Note365

that the median squared standard prediction error is rather less than the expected value366

of 0.455. This may be due to the non-stationarity of the underlying variable, as found367

by Lark (2009) in the comparison of kriging results from stationary and non-stationary368

variance models. It is also possible that outlying data values could influence both the369

squared standard prediction errors and estimates of the cumulants. The exploratory data370

analysis did not indicate any marginal outliers in the data, but spatial outliers, values371

unusual in their local context, may be present. One possible area for future work is to372

develop robust estimators of the cumulants, but it would be necessary to find estimators373

17



that do not import distributional assumptions through the use of particular consistency374

corrections (Lark, 2000) while remaining reasonably efficient.375

In short, the analysis of the third cumulants of the variable provides us with a basis376

for identifying particular plots of the data which allow us to examine its deviation from a377

stationary normal process directly, and to interpret other results such as those from the378

cross-validation. I would agree with Webster and Oliver (2007) that, in general, we should379

not base decisions about the validity of distributional assumptions on tests of conformity380

to the particular distribution. Further work is required to develop exploratory statistics381

based on the cumulants, which allow us to make an informed pragmatic judgement about382

the plausibility of the distributional assumption. We require, for example, rules of thumb383

such as that enunciated by Webster and Oliver (2007) that some transformation of data384

is required if the coefficient of skewness exceeds 0.5. Such rules of thumb might be based385

on plots of the cumulant such as Figure 3, and must be based on experience of a range of386

data sets and the robustness of the Gaussian assumption when predicting or simulating387

the measured variable.388

Note that in the case study there was no evidence for any trend in porosity with389

depth, and so it was assumed that the mean porosity in any well was constant. If a trend390

was found then this would be subtracted from the observations before computation of the391

cumulants, and the Monte Carlo procedure to approximate the sample distribution of the392

cumulant under the null hypothesis would have to be extended to include the contribution393

of the uncertainty in the estimation of the trend just as the reported procedure accounted394

for the uncertainty in the estimation of the well means.395

Given the sparsity of wells, and the distances between them, the current study396

was limited to cumulants in one dimension, attention was also focussed on the third397

cumulants. Any third cumulant in one dimension is defined for a lag pair, and so can398

easily be displayed in 2-D plots. The extension of this method to higher-order cumulants,399

to two or more dimensions, or both would make it harder to use visualization in the400

18



analysis of data. However, the general principles used in this paper, for the estimation401

of empirical cumulants and the use of multiple hypothesis testing methods to find lag-402

combinations at which the data provide evidence against a multivariate Gaussian model,403

could be extended to sets of more than two lag combinations in a straightforward way, and404

so to higher-order cumulants and more than one dimension. Plots for visual interpretation405

could then be generated as appropriate projections, in the same spirit of the triplet plots406

used in this paper. Those considerations aside, the one-dimensional case illustrated here407

remains of considerable relevance since many porosity or conductivity fields in geology can408

only be examined intensively down-core. This is because of the relative sparsity of cores,409

particularly offshore, and the fact that they are often widely spaced which limits the scope410

to examine lateral variability.411

These results give reason for concern about the suitability of prediction error vari-412

ances and other measures of uncertainty based on the multivariate Gaussian model of413

porosity in the Bunter Sandstone. It should also be recalled that regionalized variables with414

non-Gaussian distributions may have more complex geometrical structure than Gaussian415

variables, particularly with respect to the connectivity of extreme values (e.g. Guardiano416

and Srivastava, 1993). This means that simulations of porosity fields from multivariate417

Gaussian random variables, even if these well-reproduce the marginal statistics of porosity,418

may fail to represent all aspects of the spatial structure of the variable (such as the vol-419

umes of regions of continuous large or small porosity) which may be relevant to questions420

of fluid flow or potential gas storage in the field.421

One way to deal with this may be by copula methods (e.g. Haslauer et al, 2012),422

although the development of appropriate spatial copula models other than the Gaussian423

which can be fitted to sizeable data sets is at an early stage. An alternative is to use the424

methods of multiple point geostatistical modelling,(e.g. Strebelle, 2001), but these require425

large data sets for training. One solution would be to find a non-Gaussian stochastic model426

which reproduces the cumulants of interest. A possible general form of the model would be427
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one in which a well is divided into intervals by randomly located boundaries (occurring as428

a Poisson process, so that the boundaries have an exponential distribution). The resulting429

segments of the well could be regarded as distinct geological facies. In the simplest such430

model all observations within any one of the segments thus-formed take a value drawn431

from a centred Gaussian random variable, Y . It is known (Lark, 2010) that this random432

field is not multivariate Gaussian (although its marginal distribution is). However, one433

can see that its third cumulant is zero since:434

κ3(h1,h2) = p1(h1,h2)E[Y 3] + p2(h1,h2)E[Y ]E[Y 2] + p3(h1,h2)E[Y ]3, (35)

where p1(h1,h2) is the probability that all three locations in the template fall in different435

segments, p2(h1,h2) is the probability that two sites fall in one segment and one in another436

and p3(h1,h2) is the probability that all three locations fall into the same segment. These437

probabilities need not be evaluated since it is clear, from the fact that the variable is438

centred and Gaussian, so E[Y ] = E[Y 3] = 0, that all three terms are zero. In a more439

complex version of this model one might postulate, for example, a correlation between440

the thickness of the segment and its expected porosity. In some preliminary simulations441

it was found that the resulting random variable may have a marginal distribution which442

appears Gaussian when the correlation between segment thickness and mean porosity is443

not too strong, but that the third cumulants were systematically smaller than zero for444

pairs of short lags (Figure 6). This is not offered as an alternative model for the Bunter445

Sandstone porosity, but simply as an indicator that the kind of spatial variation that has446

been found in reality might be reproduced by an appropriate stochastic model. This is a447

topic for further work, and should account for known general properties of the geological448

units. For example, while one might postulate relationships between grain size and facies449

thickness in depositional environments, porosity is also affected by overburden, diagenetic450

transformations of the sandstone and other processes which may be spatially dependent451

but are not obviously reproducible by a stochastic geometry.452
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6. Conclusions453

It has been shown how the third cumulant of a spatial variable observed in linear454

data sets (wells) can be used in an inferential context to test the null hypothesis that the455

underlying distribution of the variable is multivariate Gaussian, and to guide exploratory456

analysis to test the plausibility of this distributional assumption. This approach was457

applied to data on porosity of the Bunter Sandstone and showed that there were features458

of its distribution which appear incompatible with the assumption of stationarity and459

multivariate Gaussian variation. This has potential implications for the use of standard460

geostatistical methods to characterize the uncertainty that attends inferences about this461

variable. This might require that multiple point geostatistics are used for this variable.462

Alternatively some non-Gaussian random variable might be postulated as a model, and an463

example of one which has some common features with the data is discussed. In practice464

it might be possible to develop such a model for porosity of the Bunter Sandstone; such465

a model should take account of our understanding of the depositional and diagenetic466

processes that control this variable.467
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Haslauer, C.P., Guthke, P., Bárdossy, A., Sudicky, E.A. 2012. Effects of non-Gaussian

copula-based hydraulic conductivity fields on macrodispersion. Water Resources

Research, 48, W07507.

Holloway, S. 2009 Storage capacity and containment issues for carbon dioxide capture

and geological storage on the UK continental shelf. Proceedings of the Institution

of Mechanical Engineers. Part A, Journal of Power and Energy, 223 (A3), 239–248.

Holm, S. 1979. A simple sequentially rejective multiple test procedure. Scandinavian

Journal of Statistics, 6, 65–70.

Jansen, P.H.M., Stoica, P. 1988. On the expectation of the product of four matrix-values

Gaussian random variables. IEEE Transactions on Automation and Control, 33,

867–870.

Journel, A.G., Huijbregts, C.J. 1978. Mining Geostatistics. Academic Press, London.

Ketter, F.J. 1991. The Esmond, Forbes and Gordon Fields, Blocks 43/8a, 43/13a, 43/15a,

43/20a, UK North Sea. In: Abbotts, I.L. (ed.) United Kingdom Oil and Gas Fields,

25 Years Commemorative Volume. Geological Society, London, Memoirs, 14, 425–

432.

Kuptsov, L.P. 2001. Einstein’s Rule. In: Hazewinkel, M. (Ed.) Encyclopaedia of Math-

ematics, Springer, Berlin.

Lark, R.M. 2000. A comparison of some robust estimators of the variogram for use in

soil survey. European Journal of Soil Science, 51, 137–157

Lark, R.M. 2009. Kriging a soil variable with a simple non-stationary variance model.

Journal of Agricultural, Biological and Environmental Statistics, 14, 301–321.

Lark, R.M. 2010. Two contrasting spatial processes with a common variogram: inference

about spatial models from higher-order statistics. European Journal of Soil Science,

61, 479–492.

23



Lark, R.M, Bellamy, P.H. Rawlins, B.G. 2006. Spatio-temporal variability of some metal

concentrations in the soil of eastern England, and implications for soil monitoring.

Geoderma 133, 363–379.

McCullagh, P., Kolassa, J. 2009. Cumulants. Scholarpedia 4, 4699.

Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., The R Development Core Team, 2013.

nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-110.

R Development Core Team 2010. R: A language and environment for statistical comput-

ing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0,

URL http://www.R-project.org/.

Senior, B. 2010. CO2 Storage in the UK — Industry Potential. Department Department

for Energy and Climate Change (DECC) Report URN 10D/512, DECC, London.

Strebelle, S. 2002. Conditional simulation of complex geological structures using multiple-

point statistics. Mathematical Geology, 34, 1–21.

Venables, W. N., Ripley, B. D. 2002. Modern Applied Statistics with S. Fourth Edition.

Springer, New York.

Verbeke, G., Molenberghs, G. 2000. Linear Mixed Models for Longitudinal Data. Springer,

New York.

Visual Numerics, 2006. IMSL Fortran Numerical Library Version 6.0. Visual Numerics,

Houston, Texas.

Webster, R. & Oliver, M.A. 2007. Geostatistics for Environmental Scientists. 2nd Edition

John Wiley & Sons, Chichester.

24



Appendix. The fourth cumulant of a multivariate-Gaussian random variable

is zero.

Using the notation from section 2, and considering the zero-mean case for brevity

of notation, the fourth multivariate cumulant can be written as

κr,s,t,u = Erstu − {ErsEtu + ErtEsu + EruEst} , (36)

see McCullagh and Kolassa, 2009. Now, for multivariate-Gaussian Z ≡ [Z1, Z2, Z3, Z4] the

expected product Z1Z2Z3Z4 is

E [Z1Z2Z3Z4] = Cov [Z1, Z2] Cov [Z3, Z4]

+ Cov [Z1, Z3] Cov [Z2, Z4]

+ Cov [Z1, Z4] Cov [Z2, Z3] , (37)

because of the disappearance of odd-order moments, see, for example, Jansen and Stoica

(1988). Note that the term in braces on the RHS of Eq. [36] is equivalent to the RHS of

Eq. [37], from which it follows immediately that κr,s,t,u = 0.
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Table 1. Summary statistics of residuals from mean well porosity using the original data,

data after a logistic transformation and data after a Box-Cox transformation.

Original After Box-Cox∗ After logistic
data transformation transformation

Mean 0.00 0.00 0.00
Median 0.28 0.26 0.09
Skewness −0.04 −0.09 −1.36
Standard deviation 6.61 5.25 0.64
Quartile 1 −4.44 −3.51 −0.69
Quartile 3 4.27 3.32 0.59
Octile −0.07 −0.08 −0.20
skewness

∗The maximum-likelihood estimate of the Box-Cox transformation parameter was 0.92

with 95% confidence interval [0.83,1.01].

26



Table 2. Results from REML estimation of random effects parameters, and cross-

validation.

Model log-Likelihood AIC

Exponential −4166.1 8342.3
Spherical −4176.8 8363.7

Selected model

Model Random effects parameters
σ2B σ2W ξ

Exponential 23.59 45.23 18× 10−9

Cross-validation results

Mean error 0.004
Mean standardized squared error 1.06
Median standardized squared error 0.32
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Table 3. Quantiles of (a) Maximum value of the third cumulant over all lags,κ̂3η,max;

and (b) Value of the third cumulant for lag pair {50 cm, 250 cm}, κ̂3η(50 cm, 250 cm);

computed from 100 000 realizations of the random model for η.

κ̂3η,max

Quantile Value

0.5 29.5
0.9 40
0.95 43.9
0.99 53.3
0.999 68.7

κ̂3η(50 cm, 250 cm)

Quantile Value

0.001 -26.3
0.01 -19.4
0.05 -13.6
0.1 -10.5
0.5 0.0
0.9 10.5
0.95 13.7
0.99 19.8
0.999 27.1
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Figure Captions

1. (a) Histogram of residuals from well mean porosity and (b) Gaussian Q-Q plot with

bisector.

2. (a) Histogram of residuals cross-validation kriging errors and (b) Gaussian Q-Q plot

with bisector.

3. Map of estimates, κ̂3η(h1, h2) (below the diagonal). Symbols appear above the diagonal

where the estimate was judged significantly different from zero. Small grey circles

indicate where the estimate is supported by fewer than 600 triplets.

4. Estimated density functions for (top) the maximum absolute value of the third cumu-

lant over all lag pairs under a null hypothesis of a multivariate Gaussian distribution

and (bottom) the third cumulant for lag pair {50 cm, 250 cm}.

5. Scatter plots of data triplets for observations at x1 and x2 = x1+h1 for (left) η(x3) < 0

and (right) η(x3) > 0, x3 = x2 + h2. Top row, h1 = 50 cm, h2 = 250 cm; bottom

row, h1 = 150 cm, h2 = 275 cm.

6. Map of estimates κ̂3η(h1, h2) for a simulated random variable in which wells are divided

randomly into segments and segment porosity is weakly correlated with segment

thickness.
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Cross−validation error
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