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Abstract: Interpolation techniques for spatial data have been applied frequently in various 

fields of geosciences. Although most conventional interpolation methods assume that it is 

sufficient to use first- and second-order statistics to characterize random fields, researchers 

have now realized that these methods cannot always provide reliable interpolation results, 

since geological and environmental phenomena tend to be very complex, presenting non-

Gaussian distribution and/or non-linear inter-variable relationship. This paper proposes a new 

approach to the interpolation of spatial data, which can be applied with great flexibility. 

Suitable cross-variable higher-order spatial statistics are developed to measure the spatial 

relationship between the random variable at an unsampled location and those in its 

neighbourhood. Given the computed cross-variable higher-order spatial statistics, the 

conditional probability density function (CPDF) is approximated via polynomial expansions, 

which is then utilized to determine the interpolated value at the unsampled location as an 

expectation. In addition, the uncertainty associated with the interpolation is quantified by 

constructing prediction intervals of interpolated values. The proposed method is applied to a 

mineral deposit dataset, and the results demonstrate that it outperforms kriging methods in 

uncertainty quantification. The introduction of the cross-variable higher-order spatial 

statistics noticeably improves the quality of the interpolation since it enriches the information 

that can be extracted from the observed data, and this benefit is substantial when working 

with data that are sparse or have non-trivial dependence structures.  
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1      Introduction 

In the analysis of spatially distributed phenomena, samples are collected at a finite number of 

locations, and it is often necessary to obtain predictions at various unsampled locations. In 

mineral deposit evaluation, for example, due to the high cost of drilling, drill sampling of 

orebodies can be of the order of one part in a million. Clearly, estimation of orebody 

properties is required at un-drilled locations. To carry out such tasks, interpolation techniques 

are of much interest. A predicted value at an unsampled location is generated as a function of 

observations at sampled locations, by exploiting measurements of spatial relationships within 

a neighbourhood of the target location.  

The cornerstone of a high-quality interpolation is to examine carefully the distributional 

properties of the underlying random field, as these properties determine the spatial 

dependence of the value at the unsampled location on values at its surrounding locations. 

Distributional properties provide information about the uncertainty of the interpolated values, 

which means that estimation is not limited to point estimation. As claimed by Schelin and 

Luna (2010), interpolated values are of interest only if combined with information about their 

accuracy. This is especially important in geological or environmental applications. For 

example, in mineral exploration an estimated value of the potential ore resource does not 

have much meaning if the associated estimation uncertainty is unknown. Furthermore, 

estimating uncertainty precisely is very important in practice, especially for decision makers, 

so that strategy is not made upon misleading information about risk. Motivated by this 

context, the aim of this paper is to propose a new interpolation method to provide information 

on both point estimates and their associated uncertainty, using robust quantification of spatial 

features.  

In the literature, various approaches have been introduced to study the distributional 

properties of random fields. Most conventional methods assume that it is sufficient to use the 

first- and second-order statistics (e.g. variograms) to characterize random fields. Although a 

portion of past studies showed that some of these methods, such as ordinary kriging and 

inverse distance weighted interpolation, may achieve desirable performance (Babak, 2013; 

Hwang et al., 2012; Babak and Deutsch, 2009; Rojas-Avellaneda and Silvan-Cardenas, 2006; 

Saito et al., 2005), a growing number of researchers have realized that conventional methods 

have noticeable drawbacks. As claimed by Gaetan and Guyon (2010), Remy et al. (2009) and 

Chilès and Delfiner (1999), these methods usually rely on linear models and Gaussian 



3 

distribution assumptions. However, many natural phenomena exhibit non-trivial spatial 

features, such as non-linear inter-variable dependence or non-Gaussian distributions. 

Consequently, conventional methods are often ineffective in spatial modelling and 

characterization, providing imprecise information about spatial dependence structure. Such 

ineffectiveness is especially severe in geological or environmental studies, as discussed by 

Mustapha and Dimitrakopoulos (2011, 2010a, 2010b), Strebelle (2002) and Tjelmeland and 

Besag (1998). In the past decade, various techniques have been developed to improve the 

reliability of characterizing random fields, such as bootstrapping (Kleijnen et al., 2012; 

Schelin and Luna, 2010; Loh and Stein, 2008, 2004; Mukul et al., 2004), copula-based 

methods (Kazianka, 2013; Pilz et al., 2012; Kazianka and Pilz, 2010a, 2010b; Bárdossy and 

Li, 2008; Bárdossy, 2006), kernel-based methods (Honarkhah and Caers, 2010; Scheidt and 

Caers, 2010, 2009a, 2009b), Bayesian (Nieto-Barajas and Sinha, 2014; Troldborg et al., 2012; 

Pilz et al., 2012; Kazianka and Pilz, 2011, 2012), multi-point simulation methods (De Iaco, 

2013; Boucher, 2009; Chugunova and Hu, 2008; Wu et al., 2008; Mirowski et al., 2008; 

Arpat and Caers, 2007; Zhang et al., 2006; Strebelle, 2002), multi-scale simulations using 

wavelets (Chatterjee and Dimitrakopoulos, 2012; Gloaguen and Dimitrakopoulos, 2009, 

2008), and spatial-cumulant-based simulation methods (Goodfellow et al., 2012; Machuca-

Mory and Dimitrakopoulos, 2012; Mustapha et al., 2011; Mustapha and Dimitrakopoulos, 

2011, 2010a, 2010b, Dimitrakopoulos et al., 2010).  

Although there exists no evidence that methods using higher-order statistics (higher than the 

first and second order) consistently outperform the conventional ones, past studies, as stated 

above, have reached the conclusion that higher-order statistics can contribute to the 

characterization of spatial features to some appreciable extent, especially with respect to 

describing uncertainty. Higher-order spatial statistics were first introduced by 

Dimitrakopoulos et al. (2010), followed by a number of studies including Mustapha and 

Dimitrakopoulos (2010a, 2010b, 2011), Mustapha et al. (2011), Machuca-Mory and 

Dimitrakopoulos (2012), and Goodfellow et al. (2012). In these studies, the particular form of 

the higher-order spatial statistics are spatial cumulants, which are used to evaluate the 

dependence structure of a spatially distributed random variable at an unsampled location x0, 

denoted Z(x0), based on values at some sample locations in the neighbourhood. 

Dimitrakopoulos et al. (2010) concluded from case studies that spatial cumulants up to and 

including fifth-order are efficient in reflecting characteristics of various geological patterns, 

while Mustapha and Dimitrakopoulos (2010a) stated that the fourth and fifth order cumulants 
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can describe well complex patterns with either sparse or dense data. Nevertheless, spatial 

cumulants are restricted to a single variable, which cannot be considered for examining the 

multivariate dependence structure. As a result, such single-variable cumulants lead to 

potential loss of information about multivariate relationships, and the possibility of enhancing 

interpolation performance by observing multiple variables is excluded. This is especially 

undesirable in mining, since processing performance is a function of several grade, 

geochemical, and geometallurgical variables. For instance, considering both copper and 

sulphur (which are often co-present) is more meaningful than considering copper only, since 

sulphur impacts on throughput at several processing stages. To improve on the current state 

of knowledge, we introduce suitable cross-variable higher-order spatial statistics to examine 

multivariate dependence structure. 

The new interpolation method proposed in this paper can be outlined as follows. Firstly, we 

obtain the cross-variable higher-order spatial statistics, which are used to characterize the 

spatial relationship between Z(x0) and observed values at some sampled locations in the 

neighbourhood. To compute these statistics empirically, a spatial template is employed to 

search for data values by pre-determined spatial interrelationship. Given the computed cross-

variable statistics, the conditional probability density function (CPDF) of Z(x0) is 

approximated using polynomial expansions. In particular, we consider expansions using 

Legendre polynomials, which have received much interest in spatial modelling (Machuca-

Mory and Dimitrakopoulos, 2012; Dimitrakopoulos et al., 2010; Mustapha and 

Dimitrakopoulos, 2010b; Hosny, 2007). Once the approximation of the CPDF is obtained, the 

mathematical expectation E[Z(x0)] is evaluated as the interpolated value at x0. To evaluate the 

associated uncertainty, prediction intervals can be constructed from the approximated CPDF. 

The rest of this paper is organized as follows. Section 2 proposes the cross-variable higher-

order spatial statistics, which are used to characterize sophisticated spatial dependence 

structures. Details of the new interpolation method using the statistics from Section 2 are 

given in Section 3. Section 4 evaluates the performance of the proposed interpolation method 

by carrying out an application to a mineral deposit data set. Conclusions are drawn in Section 

5. 
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2      Cross-variable higher-order spatial statistics 

To achieve a better quantification of sophisticated spatial dependence structures, cross-

variable higher-order spatial statistics are proposed in this section. Compared to ordinary 

single-variable spatial statistics, the cross-variable statistics enrich the information that can be 

extracted from data, and hence spatial features can be measured more accurately than single-

variable statistics.  

For a single variable, define the higher-order spatial moment as 

݉௧బ,௧భ,…,௧ೝ ൌ  ௥ሻ൯,                                                                            (1)ݔଵሻ…ܼ௧ೝሺݔܼ௧భሺ	ሻݔ൫ܼ௧బሺܧ

where ݔ  is the reference spatial location, ݔଵ, … , ௥ݔ  denote distinct locations in the 

neighbourhood of ݔ, and ݐ଴, ,ଵݐ … ,  ௥ denote the associated orders. For multiple variables, theݐ

cross-variable higher-order spatial moment is proposed by generalizing Equation (1). For the 

sake of simplicity, we only consider two variables in this study which can be generalized in a 

straightforward way. Let ܼ௑ሺ∙ሻ and ܼ௒ሺ∙ሻ be two spatial random variables. The cross-variable 

higher-order spatial moment is defined as 

݉௧బ,௧భ,…,௧ೝ	
௑ ൌ ܧ ቀܼ௑

௧బሺݔሻ	ܼ௧భሺݔଵሻ…ܼ௧ೝሺݔ௥ሻቁ,                                                                            (2) 

where the superscript on the left hand side represents the variable ܼ௑ሺ∙ሻ with respect to which 

the interpolation will be implemented. In this case we call ܼ௑ሺ∙ሻ the principal variable and 

ܼ௒ሺ∙ሻ the contributing variable, as ܼ௒ሺ∙ሻ is expected to contribute to the interpolation of ܼ௑ሺ∙ሻ. 

It is important to note that ܼ௑
௧బሺݔሻ has a subscript X while ܼ௧భሺݔଵሻ…ܼ௧ೝሺݔ௥ሻ do not, implying 

that the former is confined to the principal variable but the latter can be either principal or 

contributing variables. Equation (2) is considered as a (ݐ଴, ,ଵݐ … , ௥ݐ )-order cross-variable 

spatial moment. To illustrate, suppose r = 3 with ݔଵ ଷݔ ,  associated with ܼ௑ሺ∙ሻ  and ݔଶ 

associated with ܼ௒ሺ∙ሻ. The (2, 2, 1, 1)-order spatial moment is of the following form: 

݉ଶ,ଶ,ଵ,ଵ
௑ ൌ ൫ܼ௑ܧ

ଶሺݔሻ	ܼ௑
ଶሺݔଵሻ	ܼ௒ሺݔଶሻ	ܼ௑ሺݔଷሻ൯. 

To compute ݉௧బ,௧భ,…,௧ೝ	
௑  empirically, the first task is to quantify the spatial relationship 

between locations ݔଵ, … , ௥ݔ  and the reference location ݔ. That is, the relative locations of 

,ଵݔ … , ௥ݔ  in relation to ݔ  need to be specified. For the one-dimensional (1D) cases, these 

relative locations can be determined by the distances from ݔ  to ݔଵ, … , ௥ݔ . For 2D cases, 
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determining relative locations requires not only the distance but also the direction, which is 

specified by the azimuth, measured as the rotation clockwise from the north. For 3D cases, 

the dip, which is measured as the rotation vertically from the horizontal plane, is necessary 

also to measure relative locations. For the sake of generality, we refer to the “spatial template” 

technique developed by Dimitrakopoulos et al. (2010). Denote by ݄௜ the distance from ݔ to ݔ௜, 

݅ ൌ 1,2, … ,  ௜, which can be expressed inݔ to ݔ ሬሬሬԦ௜ as the directions from	Define unit vectors ݀ .ݎ

terms of the azimuth and dip. Each distance, together with the corresponding direction, fully 

quantifies the relative location of an ݔ௜ in relation to the reference location. As a consequence, 

ݔ ௜ can be re-written asݔ ൅ ݄௜݀	ሬሬሬԦ௜. 

Denote by ܶሺ݄ଵ݀	ሬሬሬԦଵ, … , ݄௥݀	ሬሬሬԦ௥ሻ the r-direction spatial template. A set of r+1 spatial locations 

ሼݔ௞, ,௞భݔ …	, ,௞భݔ ௞ೝሽ is considered satisfying this template if the r relative locationsݔ …	,  ௞ೝݔ

in relation to ݔ௞ can be quantified by ܶሺ݄ଵ݀	ሬሬሬԦଵ, … , ݄௥݀	ሬሬሬԦ௥ሻ, i.e.,  

ሼݔ௞, ,௞భݔ …	, ௞ೝሽݔ ∈ ܶሺ݄ଵ݀	ሬሬሬԦଵ, … , ݄௥݀	ሬሬሬԦ௥ሻ if  ݔ௞೔ ൌ ௞ݔ ൅ ݄௜݀	ሬሬሬԦ௜ for ݅ ൌ 1,2, … ,   .ݎ

Given a defined template, the estimated cross-variable higher-order spatial statistics can be 

computed empirically as 

݉௧బ,௧భ,…,௧ೝ	
௑ ൌ ଵ

ே೅
∑ ܼ௑

௧బሺݔ௞ሻ	ܼ௧భ൫ݔ௞ ൅ ݄ଵ݀	ሬሬሬԦଵ൯…ܼ௧ೝ൫ݔ௞ ൅ ݄௥݀	ሬሬሬԦ௥൯
ே೅
௞ୀଵ ,                                       (3) 

where ்ܰ denotes the number of sets of r locations that satisfy the template. Again, it should 

be stressed that ܼ௧భ൫ݔ௞ ൅ ݄ଵ݀	ሬሬሬԦଵ൯, … , ܼ௧ೝ൫ݔ௞ ൅ ݄௥݀	ሬሬሬԦ௥൯ can be either principal or contributing 

variables. The computation of (3) involves carrying out an exhaustive searching process to 

discover all sets of locations that satisfy the template. The nearest neighbour search is 

incorporated in this study, which can be illustrated as follows. Fig. 1 displays an example in 

2D space. Suppose a sample of data, as presented by Fig. 1a, is observed in 2D space. 

Assume that the interpolation is carried out at an unsampled location, denoted x0 (Fig. 1b). 

The observed data points are searched within the neighbourhood of x0, and the corresponding 

locations are denoted x1, x2 and x3, respectively (Fig. 1c). As the number of observations in 

the neighbourhood is 3, a 3-direction linkage from x0 to x1, x2 and x3 is considered as a 

template (Fig. 1d). Since it is not reasonable to expect irregularly distributed data points 

falling exactly on the ends of the template, tolerance is taken into account for each template 

direction. The spatial template at the unsampled location x0, with respect to the three sampled 
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3      A new interpolation technique 

In this section a new approach to interpolating spatial data is developed. The aim is to 

estimate a local conditional probability density function (CPDF) at each unsampled location 

using the observed data. Let Z be a real-valued stationary and ergodic random field in Թ௦. In 

mining applications, we consider s = 3. Assume that ZX(·) and ZY(·) are two random variables 

and {ZX(x1), …, ZX(xn)} and {ZY(y1), …, ZY(ym)} are observations on ZX(·) and ZY(·) at 

locations x1, …, xn and y1, …, ym, respectively. Note that xi ≠ xj and yi ≠ yj for i ≠ j, but we 

allow xi = yj for some i and j, i.e., it is possible to observe both variables at one location.  

Denote by x0 and y0 the unsampled locations, at which the interpolation of ZX(·) and ZY(·) is 

carried out by estimating the following local density functions, conditioning on the hard data: 

݂ሺܼ௑ሺݔ଴ሻ|ܼ௑ሺݔଵሻ, … , ܼ௑ሺݔ௡ሻ, ܼ௒ሺݕଵሻ, … , ܼ௒ሺݕ௠ሻሻ, and  

݂ሺܼ௒ሺݕ଴ሻ|ܼ௑ሺݔଵሻ, … , ܼ௑ሺݔ௡ሻ, ܼ௒ሺݕଵሻ, … , ܼ௒ሺݕ௠ሻሻ. 

Without loss of generality, only the CPDF of ܼ௑ሺݔ଴ሻ is studied hereafter. By the Bayes rule, 

the CPDF can be expressed as 

݂ሺܼ௑ሺݔ଴ሻ|ܼ௑ሺݔଵሻ, … , ܼ௑ሺݔ௡ሻ, ܼ௒ሺݕଵሻ, … , ܼ௒ሺݕ௠ሻሻ ൌ
௙ሺ௓೉ሺ௫బሻ,௓೉ሺ௫భሻ,…,௓೉ሺ௫೙ሻ,௓ೊሺ௬భሻ,…,௓ೊሺ௬೘ሻሻ

௙ሺ௓೉ሺ௫భሻ,…,௓೉ሺ௫೙ሻ,௓ೊሺ௬భሻ,…,௓ೊሺ௬೘ሻሻ
. (4) 

The estimation of (1) only involves the approximation of the numerator of the right hand side 

of (4), namely ݂ሺܼ௑ሺݔ଴ሻ, ܼ௑ሺݔଵሻ, … , ܼ௑ሺݔ௡ሻ, ܼ௒ሺݕଵሻ, … , ܼ௒ሺݕ௠ሻሻ , referred to as ݂ሺࢆ௑ሻ 

hereafter. This is because the denominator can be obtained from ݂ሺࢆ௑ሻ by integrating out 

ܼ௑ሺݔ଴ሻ over its support. To achieve a high-quality approximation of ݂ሺࢆ௑ሻ, we utilize the 

cross-variable higher-order spatial statistics to quantify the dependence structure of ܼ௑ሺݔ଴ሻ 

on the observed values in the neighbourhood of ݔ଴. By doing so, the approximation of the 

CPDF is expected to be more accurate than that produced from ordinary single-variable 

spatial statistics, as the information associated with contributing variable(s) can be extracted 

and contribute to the approximation. 

Given the computed cross-variable higher-order spatial statistics, ݂ሺࢆ௑ሻ can be expressed as 

an infinite series expansion in terms of the Legendre polynomials, following Mustapha and 

Dimitrakopoulos (2010a, b). Legendre functions are solutions to the Legendre’s differential 

equation (Liu and Spiegel, 1999), which is of the form 
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݀
ݔ݀

൤ሺ1 െ ଶሻݔ
݀
ݔ݀ ௣ܲሺݔሻ൨ ൅ ݌ሺ݌ ൅ 1ሻ ௣ܲሺݔሻ ൌ 0, 

and for ݌ ൌ 0, 1, 2, … the solutions form the Legendre polynomial sequence. The pth-order 

Legendre polynomial is given by 

௣ܲሺݔሻ ൌ
ଵ

ଶ೛௣!
ቀ ௗ
ௗ௫
ቁ
௣
ሾሺݔଶ െ 1ሻ௣ሿ ൌ ∑ ܽ௞,௣ݔ௞

௣
௞ୀ଴ ,                                                                      (5) 

and the following recursive relation holds: 

௣ܲାଵሺݔሻ ൌ
ሺ2݌ ൅ 1ሻ
ሺ݌ ൅ 1ሻ

ݔ ௣ܲሺݔሻ െ
݌

ሺ݌ ൅ 1ሻ ௣ܲିଵሺݔሻ. 

It is obvious that ଴ܲሺݔሻ ൌ 1 and ଵܲሺݔሻ ൌ  and using the recursive relation above one may ,ݔ

obtain that ଶܲሺݔሻ ൌ ሺ3ݔଶ െ 1ሻ/2, ଷܲሺݔሻ ൌ ሺ5ݔଷ െ  ሻ/2, and so on. See Liu and Spiegelݔ3

(1999) for more details. An important property of the Legendre polynomials is that they are 

orthogonal in the interval [-1, 1].  

To express ݂ሺࢆ௑ሻ in terms of the Legendre polynomials, the normalized version of (5) is 

required, which is given by 

௣ܲഥ ሺݔሻ ൌ ටଶ௣ାଵ

ଶ ௣ܲሺݔሻ, 

and ݂ሺࢆ௑ሻ is then expressed as 

݂ሺࢆ௑ሻ ൌ ෍ ෍…

ஶ

௜భୀ଴

ஶ

௜బୀ଴

෍ ෍ … ෍ …,௜బ,௜భ,…,௜೙	ܮ ,௜೙శ೘ ൈ തܲ௜భ൫ܼ௑ሺݔଵሻ൯ ൈ …ൈ തܲ௜೙൫ܼ௑ሺݔ௡ሻ൯

ஶ

௜೙శ೘ୀ଴

ஶ

௜೙శభୀ଴

ஶ

௜೙ୀ଴

 

ൈ തܲ௜೙శభ൫ܼ௒ሺݕଵሻ൯ ൈ …ൈ തܲ௜೙శ೘ሺܼ௒ሺݕ௠ሻሻ ൈ തܲ௜బ൫ܼ௑ሺݔ଴ሻ൯, 

where ܮ	௜బ,௜భ,…,௜೙,… ,௜೙శ೘  are the polynomial coefficients. In practice, only a finite order, 

denoted ߱, is considered such that ݂ሺࢆ௑ሻ has the following truncation approximation: 

݂ሺࢆ௑ሻ ൎ ෍ ෍…

௜బ

௜భୀ଴

ఠ

௜బୀ଴

෍ ෍ … ෍ పబഥ	ܮ ,పభഥ ,…,	ప೙തതതത,… ,௜೙శ೘ ൈ തܲపభഥ ൫ܼ௑ሺݔଵሻ൯ ൈ …ൈ തܲప೙തതത൫ܼ௑ሺݔ௡ሻ൯

௜೙శ೘షభ

௜೙శ೘ୀ଴

௜೙

௜೙శభୀ଴

௜೙షభ

௜೙ୀ଴

 

ൈ തܲప೙శభതതതതതത൫ܼ௒ሺݕଵሻ൯ ൈ …ൈ തܲ௜೙శ೘ሺܼ௒ሺݕ௠ሻሻ ൈ തܲపబഥ ൫ܼ௑ሺݔ଴ሻ൯ ൌ መ݂ሺࢆ௑ሻ,                                          (6) 
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where ଓ௞ഥ ൌ ݅௞ െ ݅௞ାଵ , መ݂ሺࢆ௑ሻ  denotes the estimated CPDF, and ܮ	పబഥ ,పభഥ ,…,	ప೙തതതത,… ,௜೙శ೘  are the 

coefficients of the Legendre polynomials of different orders. Mustapha and Dimitrakopoulos 

(2010a, b) state that based on the orthogonality property of the Legendre polynomials, these 

coefficients can be expressed as follows: 

పబഥ	ܮ ,పభഥ ,…,	ప೙തതതത,… ,௜೙శ೘ 

ൌ ׬ തܲపబഥ ൫ܼ௑ሺݔ଴ሻ൯ തܲపభഥ ൫ܼ௑ሺݔଵሻ൯… തܲ௜೙శ೘൫ܼ௒ሺݕ௠ሻ൯݂ሺࢆ௑ሻܼ݀௑ሺݔ଴ሻܼ݀௑ሺݔଵሻ…ܼ௒ሺݕ௠ሻ,               (7) 

and following (5), (7) becomes 

పబഥ	ܮ ,పభഥ ,…,	ప೙തതതത,… ,௜೙శ೘ ൌ ඨ
2ଓ଴ഥ ൅ 1

2
…ඨ

2݅௡ା௠ ൅ 1
2

 

ൈ ෍ ܽ௧బ,పబഥ …

పబഥ

௧బୀ଴

෍ ܽ௧೙శ೘,௜೙శ೘

ప೙శ೘തതതതതതത

௧೙శ೘ୀ଴

නܼ௑
௧బሺݔ଴ሻ…ܼ௒

௧೙శ೘ሺݕ௠ሻ݂ሺࢆ௑ሻܼ݀௑ሺݔ଴ሻܼ݀௑ሺݔଵሻ…ܼ݀௒ሺݕ௠ሻ 

ൌ ටଶపబഥାଵ

ଶ
…ටଶ௜೙శ೘ାଵ

ଶ
∑ ܽ௧బ,పబഥ …
పబഥ
௧బୀ଴

∑ ܽ௧೙శ೘,௜೙శ೘
ప೙శ೘തതതതതതത
௧೙శ೘ୀ଴

ܧ ቀܼ௑
௧బሺݔ଴ሻ…ܼ௒

௧೙శ೘ሺݕ௠ሻቁ,              (8) 

where ܧ ቀܼ௑
௧బሺݔ଴ሻ…ܼ௒

௧೙శ೘ሺݕ௠ሻቁ ∶ൌ ݉௧బ,…	,௧೙శ೘
௑  is the cross-variable higher-order spatial 

moment as discussed in the previous section. Given that ݉௧బ,…	,௧೙శ೘
௑  can be computed using (3) 

and ܽ௞,௣’s are constants, ܮ	పబഥ ,పభഥ ,…,	ప೙തതതത,… ,௜೙శ೘ is then computable and hence the approximation of 

݂ሺࢆ௑ሻ using (6) is feasible. 

In summary, ݂ሺࢆ௑ሻ is approximated by the following steps: 

i. Within the neighbourhood of the unsampled location ݔ଴ , determine r observed values 

(usually the closest ones to ݔ଴) that the CPDF is conditional on, and then construct the r-

direction spatial template; 

ii. Carry out the searching process as explained in Section 2; 

iii. Compute the cross-variable higher-order spatial statistics using (3); 

iv. Compute the Legendre polynomial coefficients using (8); 

v. Compute the Legendre polynomials of different orders using (5); and 

vi. Using the outcome from Steps iv and v, obtain the approximated CPDF መ݂ሺࢆ௑ሻ by (6). 
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Once ݂ሺࢆ௑ሻ is approximated, the CPDF at the unsampled location x0, denoted መ݂ࢆ೉൫ܼ௑ሺݔ଴ሻ൯, 

is estimated by 

መ݂
଴ሻ൯ݔ೉൫ܼ௑ሺࢆ ൌ መ݂൫ܼ௑ሺݔ଴ሻหܼ௑ሺݔଵሻ, … , ܼ௑ሺݔ௡ሻ, ܼ௒ሺݕଵሻ, … , ܼ௒ሺݕ௠ሻ൯ ൌ

መ݂ሺࢆ௑ሻ

׬ መ݂ሺࢆ௑ሻ dܼ௑ሺݔ଴ሻ
, 

and then the interpolated value at x0, given the observed data in its neighbourhood, is  

,ଵሻݔ଴ሻหܼ௑ሺݔ൫ܼ௑ሺܧ … , ܼ௑ሺݔ௡ሻ, ܼ௒ሺݕଵሻ, … , ܼ௒ሺݕ௠ሻ൯ ൌ ଴ሻݔ௑ሺܼ׬ መ݂ࢆ೉൫ܼ௑ሺݔ଴ሻ൯dܼ௑ሺݔ଴ሻ.          (9) 

For a pre-determined nominal level of significance ߙ, the 100ሺ1 െ  ሻ% prediction intervalߙ

can be constructed as follows: 

ቂܨ෠ࢆ೉
ିଵ ቀఈ

ଶ
ቁ , ೉ࢆ෠ܨ

ିଵ ቀ1 െ ఈ

ଶ
ቁቃ,                                                                                                        (10) 

where ܨ෠ࢆ೉ሺ∙ሻ denotes the cumulative distribution function that is obtained from መ݂ࢆ೉ሺ∙ሻ, and 

೉ࢆ෠ܨ
ିଵሺ∙ሻ is the inverse function of ܨ෠ࢆ೉ሺ∙ሻ.  

It should be stressed that the validity of approximating ݂ሺࢆ௑ሻ using (4) builds on the property 

that the Legendre polynomials are orthogonal on the interval [-1, 1]. As a result, to apply the 

proposed method one should scale all data values to [-1, 1]s (s = 1, 2 or 3) beforehand, and 

back-transform the interpolated values afterwards.  

Although the methodology presented above considers only two variables (one principal and 

one contributing), it can be extended in a straightforward manner to work with more than two 

variables. Note that, as the number of the contributing variables increases, the computational 

cost increases dramatically. In practice, one may select a small number of contributing 

variables that have the greatest explanatory power over the principal variable for the sake of 

computational efficiency. 

 

4      An empirical study 

In this section, the proposed interpolation method is applied to drill-hole data extracted from 

a mineral deposit located in Australia. A total of 1453 observations were obtained from the 

drill-holes, each of which contains the observed copper grade (Cu) and sulphur content (S). 
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Table 1 provides descriptive statistics, while Fig. 2 displays the map and histograms of drill-

hole samples2. It is observed that both Cu and S show severe skewness to the right and large 

excess kurtosis compared to a Gaussian distribution, indicating that considering only the first- 

and second-order statistics is not appropriate. 

Table 1. Descriptive statistics of Cu and S 

 Cu S 

Mean 0.7603 0.9071 

Median 0.6010 0.7000 

Maximum 5.9000 6.0290 

Minimum 0.0080 0.0100 

Coefficient of Variation 0.9034 0.8976 

Skewness 1.8765 1.5888 

Kurtosis 8.8913 5.8855 

 

 

Fig. 2. Drill-hole maps (first row) and histograms of Cu and S (second row) 

 

To evaluate the performance of the newly proposed interpolation method, we examine both 

the interpolation accuracy and the quality of uncertainty quantification. The former is 

                                                 
2 Due to confidentiality issues, drill-hole samples are uniformly coloured in the map, i.e. specific values of Cu 
and S are not displayed. 
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achieved by computing interpolation errors, while the latter is carried out by inspecting 

prediction intervals. In particular, the “leave-one-out” cross-validation process is 

implemented. We delete one observation at a time and treat it as if it were unknown, and then 

the newly proposed interpolation method is applied to obtain an empirical distribution 

function. 

To examine the interpolation accuracy, the interpolated value is obtained by (9) and the 

interpolation error is calculated as the difference between the interpolated value and the real 

value. The mean absolute error (MAE) is computed as the average of all individual 

interpolation errors, and it is used as an overall measure of interpolation accuracy. To 

quantify the uncertainty associated with the interpolation, we generate a prediction interval 

by (10) with the nominal coverage rate equal to 0.95. The generated prediction interval is 

expected to cover the true value for 95% of the time over repeated sampling. To examine this, 

the mean coverage rate is calculated as 

ܥ ൌ
∑ 1ሺܮ෠௜ ൑ ܼ௜ ൑ ෡ܷ௜ሻ
ே
௜ୀଵ

ܰ
, 

where N is the total number of constructed prediction intervals, Zi is the true value of the ith 

prediction interval, ܮ෠௜  and ෡ܷ௜  are the lower and upper bounds of the ith prediction interval 

respectively, and the function 1ሺ∙ሻ is the indicator function which returns to 1 if the condition 

inside the parentheses is satisfied and 0 otherwise. If a prediction interval provides an 

accurate quantification of uncertainty, the calculated mean coverage rate C should be close to 

the nominal 95% level. To test whether C is statistically different from the nominal level, we 

follow Kim et al. (2011) and construct the following confidence interval: 

ቈ݌ െ 1.96ට௣ሺଵି௣ሻ

ே
, ݌ ൅ 1.96ට௣ሺଵି௣ሻ

ே
቉,                                                                                    (11)      

where p = 0.95 is the nominal coverage rate, and 1.96 is the two-tail critical value of the 

standard normal distribution at the 5% level of significance. If C is within this interval, we do 

not reject the null hypothesis that the coverage rate is equal to the nominal rate at the 95% 

level. Furthermore, we examine the mean width of the estimated prediction intervals, which 

is calculated as ܹ ൌ ܰିଵ ∑ ሺ ෡ܷ௜ െ ෠௜ሻܮ
ே
௜ୀଵ . A higher value of W implies more uncertainty 

associated with the interpolation, and hence the prediction intervals are less informative.  
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Note that there are two parameters that need to be specified before implementing the 

proposed method, namely, the number of directions in the searching template (ݎ in Eq. 1, 2 

and 3), and the order to which the CPDF is approximated (߱ in Eq. 6). One would expect 

more precise interpolation results as ݎ  and ߱  increase, since larger ݎ  and ߱  values imply 

better approximation to the CPDF. In this study, we consider r = 2, 3, 4, 5, 6 or 7. For the 

approximation order, preliminary results showed that the proposed interpolation method 

failed to achieve good performance when ߱ ൑ 3. As a consequence, we consider ߱ = 4, 6, 8 

or 10 in this study. Note that an increase in either ݎ or ߱ will cause extra computational 

complexity. It is observed from the computation below that holding other conditions constant, 

every unit increased in ߱ results in a bigger amount of extra computing time than that of 

every unit increased in r.  

Once r is specified, the searching template is determined as the spatial linkage from a 

reference location to the r nearest data points in its neighbourhood. This implies that for 

irregularly spaced data the searching template is not universal but location-dependent, i.e. it 

may vary from one reference location to another. To determine if the cross-variable higher-

order spatial statistics can improve the interpolation performance, results generated from 

cross-variable higher-order spatial statistics are compared to those from single-variable 

higher-order spatial statistics. Since both Cu and S are observed in each of the drill-hole 

samples, the spatial template for the contributing variable is the same as that of the principal 

variable. To determine if the newly proposed interpolation method can outperform 

conventional interpolation techniques, we consider the widely used kriging method as the 

benchmark. Both the interpolation accuracy and uncertainty quantification performance of 

the newly proposed method are evaluated against those of the kriging method. When single-

variable higher-order spatial statistics are used, the produced results are compared to those 

from ordinary kriging3. When cross-variable higher-order spatial statistics are considered, the 

performance is evaluated against that of the co-kriging. The spherical variogram model is 

employed to describe spatial dependence when the kriging is carried out, and the parameters 

are estimated by the weighted least squares method (Cressie, 1985). The isotropy assumption 

is imposed, as directional semivariograms do not exhibit obvious anisotropy. MAE’s are used 

to determine which interpolation method is more accurate, while the 95% prediction intervals 

are used to determine which method performs better in uncertainty quantification. We prefer 

                                                 
3 As pointed out by Li et al. (2010), ordinary kriging is the most widely used geostatistical method, producing 
the best linear unbiased predictions. 
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the prediction interval whose mean coverage rate is within the bounds stated by (11). If such 

a condition is achieved by a number of prediction intervals, we prefer the one with the 

smaller value of the mean width.  

 

Fig. 3. Mean absolute error comparison 

Fig. 3 displays the comparison of the MAE values obtained from single-variable higher-order 

statistics, cross-variable higher-order statistics and the kriging methods. The first and second 

columns correspond respectively to the interpolation methods using single- and cross-variable 

higher-order statistics, while the upper and lower rows exhibit in turn the errors of the 

interpolated Cu and S values. In each subplot, five sets of MAE values are displayed. The 

first four sets correspond to the newly proposed interpolation method using four different 

approximation orders (߱ = 4, 6, 8, 10), while the other is associated to the kriging method 

which is represented by a solid line with asterisk markers. All the MAE values are plotted 
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against various numbers of searching template directions (r = 2, …,7) which are labelled on 

the horizontal axis.  

In terms of the interpolation accuracy, it is observed from Fig. 3 that the newly proposed 

method performs similarly to the kriging methods when the number of template directions is 

larger than or equal to 4. No matter whether the single- or cross-variable higher-order 

statistics are employed, the MAE values of the proposed interpolation method are fairly close 

to those of the kriging methods when ݎ ൒ 4. When ݎ ൌ 2 or 3, the proposed interpolation 

method produces higher MAE’s than the benchmark, but the differences in values are not 

very large, especially when the cross-variable higher-order spatial statistics are employed. 

Comparing the first and second columns of Fig. 3, it is clear that incorporating the cross-

variable higher-order spatial statistics substantially improves the accuracy of the proposed 

interpolation method. The interpolation errors produced from the cross-variable statistics are 

noticeably smaller than those from the single-variable statistics. This is in accordance with 

our hypothesis that the cross-variable higher-order spatial statistics enrich the information 

that can be extracted from the observed data, and hence can lead to more accurate 

interpolation. Such a conclusion is supported by the comparison between ordinary kriging 

and co-kriging: the latter produces lower MAE’s than the former. 

Having seen that the proposed method and the kriging methods achieve similar interpolation 

accuracy when ݎ ൒ 4, the uncertainty quantification performance is then examined. Fig. 4 

and 5 display the mean coverage rates and mean widths of the produced prediction intervals 

at the 95% nominal level.  
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Fig. 4. Mean coverage rate and mean width comparison, Cu 
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Fig. 5. Mean coverage rate and mean width comparison, S 

 

Fig. 4 and Fig. 5 exhibit the comparison of the mean coverage rates (first column) and mean 

widths (second column) of the prediction intervals that are constructed from single- and 

cross-variable higher-order statistics as well as the kriging methods. The first and second 

rows in each figure correspond respectively to the interpolation methods using single- and 

cross-variable higher-order statistics. As before, various numbers of searching template 

directions are labelled on the horizontal axis, and the results associated to the kriging 

methods are represented by a solid line with asterisk markers. The solid and dashed 
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horizontal lines in the coverage rate graphs indicate 95% confidence intervals around the 

nominal coverage rate of 0.95. Such confidence intervals are constructed according to (11). 

Fig. 4 reports the results when the copper grade is treated as the principal variable. It is 

obvious that as the number of directions in searching template increases, both the mean 

coverage rate and mean width of the proposed interpolation method tend to increase. When 

the single-variable higher-order spatial statistics are used, most of the observed mean 

coverage rates are outside the confidence interval of the nominal 95% level, implying that 

they are statistically different from the nominal rate. However, if the cross-variable higher-

order spatial statistics are employed, the newly proposed interpolation method has mean 

coverage rates within the confidence interval in most cases, implying that the nominal 

coverage rate has been achieved. In contrast, the kriging methods appear to under-cover the 

true values severely, as the corresponding coverage rates are far below the lower limit of the 

confidence interval. This feature is also evident from the mean width graphs, where the 

kriging prediction intervals are much narrower than the others. Similar conclusions can be 

drawn from Fig. 5 which displays the results when the sulphur content is considered as the 

principal variable. When the single-variable higher-order statistics are used, none of the 

coverage rates is within the confidence interval. Nonetheless, for ݎ ൒ 4 the coverage rates of 

the proposed interpolation method are closer to the nominal rate. When the cross-variable 

higher-order statistics are employed, for ݎ ൒ 4 most coverage rates of the proposed method 

are within the confidence band, implying desirable performance in assessing uncertainty. The 

good performance remains for all the selected approximation orders, as those ߱ values have 

produced very similar results. In contrast, the kriging methods grossly underestimate the 

uncertainty, producing low coverage rates and relatively narrow prediction intervals. 

It is summarized from Fig. 4 and 5 that the proposed interpolation method appears to achieve 

better performance in uncertainty quantification than the kriging methods, as its mean 

coverage rates are much closer to the nominal rate when the number of searching template 

directions is not too small. The kriging methods tend to grossly underestimate the uncertainty, 

which are evidenced by lower coverage rates and smaller interval widths. Moreover, the 

cross-variable higher-order spatial statistics enhances the uncertainty quantification 

substantially, as a much greater proportion of coverage rates are within the confidence 

interval around the nominal rate.  
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5      Concluding remarks 

In reality, geological or environmental phenomena often present sophisticated spatial features 

which cannot be adequately modelled by the methods that only consider first- and second-

order statistics. In this study, we relaxed the Gaussianity and linearity assumptions and 

proposed a new interpolation method. We developed cross-variable higher-order spatial 

statistics to characterize non-Gaussian distributions and nonlinear dependence patterns 

associated with the data, and on this basis the conditional probability density function at each 

of the unsampled locations was approximated using polynomial expansions. Other than the 

Legendre polynomials that were considered in this study, other types, such as the Laguerre 

polynomials, might improve the interpolation performance. Further research is being 

undertaken to address this issue. 

The application to a mineral deposit data set showed that the proposed technique is superior 

to the kriging method if the number of searching template directions is not less than 4, Such 

superiority was demonstrated by considering jointly the interpolation error and uncertainty 

quantification performance. While the interpolation errors of the newly proposed method are 

close to those of the kriging methods, the prediction intervals constructed based on higher-

order spatial statistics showed better performance in uncertainty quantification as the 

coverage rates are much closer to the nominal level than those from the kriging methods. In 

addition, it was demonstrated that incorporating cross-variable statistics can enhance both the 

interpolation accuracy and the uncertainty quantification. 

We believe that this research has values for industrial applications. Incorporating the cross-

variable higher-order statistics, rather than the single-variable statistics, enriches the 

information that can be extracted from data. In addition to an interpolated value, the density 

approximation provides information about its associated uncertainty, and further statistical 

inferences are available as well. Therefore, decision makers can benefit largely from the 

proposed method. Future research will be carried out with respect to blocks of ore bodies, 

including the interpolation of unsampled blocks, and the quantification of the uncertainty 

associated with the interpolation.  
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