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Abstract Multiple-point simulations have been introduced over the past decade to
overcome the limitations of second-order stochastic simulations in dealing with geo-
logic complexity, curvilinear patterns, and non-Gaussianity. However, a limitation
is that they sometimes fail to generate results that comply with the statistics of the
available data while maintaining the consistency of high-order spatial statistics. As
an alternative, high-order stochastic simulations based on spatial cumulants or spatial
moments have been proposed; however, they are also computationally demanding,
which limits their applicability. The present work derives a new computational model
to numerically approximate the conditional probability density function (cpdf) as a
multivariate Legendre polynomial series based on the concept of spatial Legendre
moments. The advantage of this method is that no explicit computations of moments
(or cumulants) are needed in the model. The approximation of the cpdf is simplified
to the computation of a unified empirical function. Moreover, the new computational
model computes the cpdfs within a local neighborhood without storing the high-order
spatial statistics through a predefined template. With this computational model, the
algorithm for the estimation of the cpdf is developed in such a way that the conditional
cumulative distribution function (ccdf) can be computed conveniently through another
recursive algorithm. In addition to the significant reduction of computational cost, the
new algorithm maintains higher numerical precision compared to the original version
of the high-order simulation. A newmethod is also proposed to deal with the replicates
in the simulation algorithm, reducing the impacts of conflicting statistics between the
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sample data and the training image (TI). A brief description of implementation is
provided and, for comparison and verification, a set of case studies is conducted and
compared with the results of the well-established multi-point simulation algorithm,
filtersim. This comparison demonstrates that the proposed high-order simulation algo-
rithm can generate spatially complex geological patterns while also reproducing the
high-order spatial statistics from the sample data.

Keywords High-order stochastic simulation · Multi-point statistics · Spatial
moments · Legendre polynomials

1 Introduction

For the past several decades, stochastic simulations have been used to quantify spatial
uncertainty in earth science applications. Traditionally, stochastic models are built
on the basis of the Gaussian distribution and two-point statistics, where covariance
or variograms are used to capture the spatial correlations (David 1988; Deutsch and
Journel 1992; Journel 1994; Goovaerts 1997). The limitations of the existing two-
point simulation methods have been reported in various publications (Guardiano and
Srivastava 1993; Xu 1996; Journel 1997, 2003; De Iaco and Maggio 2011), which are
mostly related to the poor reproduction of spatial distributions while dealing with the
complex spatial patterns, spatial connectivity of extreme values, and non-Gaussianity.
To reflect the complex geological patterns, multi-point statistics have to be introduced
instead of conventional two-point statistics. Guardiano and Srivastava (1993) propose
a multiple-point simulation (mps) framework and the concept of the training image
(TI). The primary difference between mps and two-point simulations is that the con-
ditional cumulative distribution functions (ccdfs) are built on empirical estimations
of conditional probabilities with multiple-point configurations, which is equivalent to
solving a normal equation according to the Bayes’ rule. Strebelle (2002) formalizes
the method and developed the first computationally efficient implementation. For over
a decade, research has been focused on various issues around mps algorithms, such
as computational efficiency and various patch-based extensions (Zhang et al. 2006;
Arpat and Caers 2007; Wu et al. 2008; Boucher 2009; Remy et al. 2009; Honarkhah
and Caers 2010; Mariethoz et al. 2010; Parra and Ortiz 2011; Huang et al. 2013;
Boucher et al. 2014; Strebelle and Cavelius 2014; Chatterjee et al. 2016; Li et al.
2016). In general, these mps methods are TI-based, and their statistics are estimated
from distributions of replicates of data events in the TI. Their main drawbacks are: (1)
the high-order statistics are partially and indirectly considered; (2) the methods are
not driven by a consistent mathematical framework; and (3) since they are TI-driven,
they may not generate results that comply with the statistics of actual available data.
The latter shortcoming becomes distinctly clear in mining applications, where dense
data sets are used (Osterholt and Dimitrakopoulos 2007; Goodfellow et al. 2012).

As an alternative, a high-order simulation framework with mathematical con-
sistency is proposed with the introduction of a new concept of spatial cumulants
(Dimitrakopoulos et al. 2010). The so-called high-order simulation algorithm (hosim)
and its implementation are developed by Mustapha and Dimitrakopoulos (2010b,
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2011). In this algorithm, the conditional probability density function (cpdf) is approx-
imated by a multivariate expansion with coefficients expressed in terms of spatial
cumulants. The hosim algorithm has been extended mostly recently to deal with the
joint simulation of multiple variables, as well as the simulation of categorical data
(Minniakhmetov and Dimitrakopoulos 2017a, b); other extensions are approximat-
ing the cpdf with different types of orthogonal polynomial bases, such as expansion
series with Laguerre polynomials and Legendre-like spline polynomials (Mustapha
and Dimitrakopoulos 2010a; Minniakhmetov and Dimitrakopoulos 2018). However,
the related calculations are computationally demanding, since the number of spatial
cumulants involved in the series increases exponentially either as the order of cumu-
lants or the quantity of conditioning data increases. In Mustapha and Dimitrakopoulos
(2011), some terms of the expansion series have to be discarded to obtain compu-
tational feasibility, which compromises the accuracy of the approximated cpdf. In
addition, the computational cost limits the approach for larger-scale applications.

To take full advantage of the high-order simulation, that is, its data-driven aspect
and no presumption of data distribution, and address the computational difficulties, a
new stochastic simulation algorithm based on high-order spatial Legendre moments is
presented herein. Rather than just a mathematical equivalency of the previous model
of the high-order simulation, the approximation of the cpdf by Legendre polynomial
series is reformulated under the framework of the sequential simulation, leading to a
much more concise form of the computational model. In this new method, all explicit
calculations of moments are encapsulated in a unified function to derive the cpdf,
cutting down the previous complex computations into a few iterations of simple oper-
ations with polynomial time. Moreover, there is no predefined template configuration
in the new algorithm, as required for the normal mps methods and the previous hosim
model. The spatial configuration of the template will, instead, depend on the local
neighborhood of the node to be simulated; note that there is no need to store the inter-
mediate results in a tree as in most of the mps methods, including the previous hosim
model. The variable template also has the advantage of simultaneously capturing the
spatial patterns either on a local scale or a global scale.

The remainder of the paper continues with Sect. 2, which describes the stochas-
tic model based on the concepts of high-order spatial Legendre moments. Section 3
develops the computational model as a statistical function. Section 4 describes the new
proposed high-order simulation algorithm and analyzes the computational complexity.
Section 5 explores the implementation of the new high-order simulation algorithm.
Section 6 shows examples to assess the new method and compare it with filtersim.
Finally, conclusions and future research are presented in Sect. 7.

2 Stochastic Model of High-Order Simulation with Spatial Legendre
Moments

2.1 Sequential Simulation

In this paper, the stochastic model is discussed specifically under the sequential
simulation framework (Rosenblatt 1952; Johnson 1987; Journel 1994). Sequential
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simulation aims to reproduce spatial properties sequentially by decomposing the
multivariate conditional distributions into a set of univariate distributions. Consid-
ering a stationary and ergodic random field Z (u), let Z (u1) , . . . , Z (uN ) be a set
of random variables with locations at u1, . . . , uN , respectively. Then, the N random
variables Z (u1) , . . . , Z (uN ) constitute a joint multivariate distribution. In terms of
the stochastic simulation, it is supposed that realizations are to be generated from

Z (u1) , . . . , Z (uN ), and the available data set is�0 �
{
ζ

(
u

′
1

)
, . . . , ζ

(
u

′
n

)}
, where

ζ
(
u

′
i

)
is the sample data at the location u

′
i for i � 1, . . . , n and n is the number of

sample data in total. For simplification, Z (u1) , . . . , Z (uN ) are alternatively written
as Z1, . . . , ZN , and a similar simplification of notation applies in the context of a
random field. Following the above notation, the stochastic simulation of the random
field is based on the sampling from the N -variate probability distribution posterior to
the data set �0, which can be characterized by a ccdf as FZ(z1, . . . , zN |�0) or by a
cpdf as fZ(z1, . . . , zN |�0). The joint cpdf fZ(z1, . . . , zN |�0). can be decomposed
into the product of a series of univariate cpdfs (Rosenblatt 1952; Johnson 1987) as

fZ (z1, . . . , zN |�0) � fZ1 (z1|�0) · · · fZN (zN |�N−1) , (1)

where �i (i � 1, . . . , N − 1) is a series of sets and �i � �i−1 ∪ {ζ (ui )} , i �
1, . . . , N , where ζ (ui ) is the value drawn from the conditional probability distribution
with a density function described as fZi (zi |�i−1).

The basic idea of sequential simulation is to sequentially draw random values from
the decomposed univariate cpdfs through a random path that visits all the nodes to be
simulated. Irrespective of the node’s location corresponding to the sequence number,
there is no difference in the sampling procedures. Without loss of generality, the cpdf
in every single sampling procedure can be symbolized uniformly as fZ0 (z0|�), where
Z0 means the current simulating node and�means the set of conditioning data around
Z0’s location u0. Considering the computational intensity and the statistical relevancy,
the conditioning data are usually confined to a neighborhood closest to the simulation
node instead of taking account of all available data on the whole domain of the random
field. For more details on this screen-effect approximation, the reader is referred to
Dimitrakopoulos and Luo (2004).

An algorithmic description of sequential simulation can be summarized as the
following steps:

(1) Draw a random path to visit all the N nodes to be simulated.
(2) Starting from i � 1 and for each node Z (ui ), derive the conditional probability

cumulative distribution FZi (zi |�i−1) or the density function fZi (zi |�i−1).
(3) Draw a random value ζ (ui ) from the conditional probability distribution in step

(2) and update the conditioning data by adding the node value ζ (ui ) into the
current data set �i .

(4) Repeat from step (2) until all the nodes are visited.
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2.2 High-Order Spatial Legendre Moments

In probability theory, moments are defined as expectations of integer power functions
of a random variable. Given a random variable Z in probability space (�,F, P),
suppose that the density of probability measure P is a continuous function fZ (z). The
moment of order w is defined as

MomZ (w) � E[Zw] �
∫

�

[Z (ω)]wdP(ω) �
∫

R

zw fZ (z)dz. (2)

The moments of random vector Z � [Z0, . . . , ZN ] with a multivariate density
fZ (z0, . . . , zN ) are defined similarly as

MomZ (w0, · · · , wn) � E
[
zw0
1 · · · zwN

N

] �
∫

RN

zw0
0 · · · zwN

N fZ (z0, . . . , zN ) dz0 · · · dzN ,

(3)

where wi (i � 0, · · · , N ) are the orders of moments for the ith element of vector
Z. The spatial moments of a discrete random field Z � [Z (u0) , . . . , Z (un)] are
functions of spatial location variables u0, . . . , un . Assuming the random field Z (u)

is stationary and ergodic, the spatial moments of Z (u) can be expressed as functions
of distance vectors, and, thus, they are independent of the locations. These distance
vectors, which keep the spatial configuration of a center node and nodes within its
neighborhood, can be expressed using a spatial template T (Fig. 1). The terminologies
of the spatial template T and data events (Strebelle 2002; Dimitrakopoulos et al. 2010)
are as follows:

(i) Spatial template T: geometry defined by N distance vectors (h1, . . . , hN ) from
the center node u0, T � {u0, u0 + h1, . . . , u0 + hN }.

(ii) Data events: outcomes of the random field in the spatial template T. Specifically,
the data events are conditioning data set � in the present work.

The spatial moments of a random field Z in a template T can be expressed element-
wise as

MomT
Z (w0, · · · , wN ) � E

[
h1, . . . , hN ; Z

w0
0 · · · ZwN

N

]
, (4)

where MomT
Z is the moment function of Z in the spatial template T, (h1, . . . , hN )

are the distance vectors to represent the geometry of T, and wi are the orders of the
moments with each random variable Z (ui )(i � 1, . . . , N ).

The Legendre polynomials are used here to further define the concept of spatial
Legendre moments. Legendre polynomials are one kind of special math functions
defined on the interval [− 1, 1], which can be expressed using Rodrigues’ formula
(Zarowski 2004)

Pm (z) � 1
2mm!

dm
dzm

[(
z2 − 1

)m]
, (5)
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Fig. 1 aA 40×40 grid to be simulated with a 9×5 template overlaid on the current visiting node. b Spatial
template T and a certain data event in T. The center square is the node to be simulated; the black squares
are the conditioning data

where Pm (z) is the mth-degree Legendre polynomial. The infinite sequence of poly-
nomials forms a complete orthogonal basis set on the domain D� [− 1, 1]. The
orthogonal property of the Legendre polynomials can be expressed as

∫

D

Pm (z) Pn (z) dz �
{
0 m �� n

2
2m+1 m � n

, (6)
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and the norm of the Legendre polynomial Pm (z) is

||Pm ||�
√

2

2m + 1
. (7)

With a simple substitution of polynomials inmoment function Eq. (4) into Legendre
polynomials, the spatial Legendre moments are defined as

LT
w0w1···wN

�
N∏
i�0

(
wi + 1

2

) · E [
h1, . . . , hN ; Pw0 (z0) Pw1 (z1) · · · PwN (zN )

]
, (8)

where LT
w0w1···wN

are Legendre moments defined on the spatial template T; the extra
coefficient

(
wi + 1

2

)
on the right-hand side of the equation is intentionally introduced

as a normalization term for the convenience of the later computation (see theAppendix
for details).

2.3 Multivariate Expansion Series of a Joint pdf

A piecewise continuous function f (z) defined on the interval [− 1, 1] can be written
as a series of Legendre polynomials

f (z) �
∞∑

m�0
Lm Pm (z) . (9)

Likewise, the expansion of amultivariate function f (z0, z1, . . . , zN ) can be defined
on an (N +1)-dimensional domain in the same way. Specifically, suppose that the
multivariate function is a density function related to the joint distribution of random
variables on a spatial template T. The density function can be expanded into Legendre
polynomial series in terms of Legendre spatial moments and Legendre polynomials
as (see the Appendix for details)

f (z0, z1, . . . , zN ) �
∞∑

w0�0

∞∑
w1�0

· · ·
∞∑

wN�0
LT

w0w1···wN
Pw0 (z0) Pw1 (z1) · · · PwN (zN ) .

(10)
In practice, the above infinite series in Eq. (10) is truncated at a certain order W,

thus leading to the approximated density function

f (z0, z1, . . . , zN ) ≈ fW (z0, z1, . . . , zN ) �
W∑

w0�0

W∑
w1�0

· · ·
W∑

wN�0
LT

w0w1···wN

N∏
i�0

Pwi (zi ) .

(11)

From the definition in Eq. (8), the spatial Legendre moments can be explicitly
derived as

LT
w0w1···wN

�
∫

D

N∏
i�0

[(
wi +

1

2

)
Pwi (zi )

]
f (z0, z1, . . . , zN ) dz0dz1 · · · dzN .

(12)
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Experimentally, if there areM replicates of data events associated with template T
found in the TI, the spatial Legendre moments can be calculated as

L̃T
w0w1···wN

� 1
M

M∑
t�1

N∏
i�0

(
wi + 1

2

)
Pwi

(
ζt,i

)
, (13)

where ζt,i are the data values of replicates in the template T, t is the sequence number
of replicates, and i is the sequence number of random variables.

3 Computational Model

Combining Eqs. (10)–(13), the empirical joint pdf can be derived as

f̃ (z0, z1, . . . , zN ) ≈ f̃W (z0, z1, . . . , zN )

� 1
M

M∑
t�1

W∑
w0�0

W∑
w1�0

· · ·
N∏
i�0

[(
wi + 1

2

)
Pwi

(
ζt,i

)
Pwi (zi )

]

� 1
M

M∑
t�1

N∏
i�0

[
W∑

w�0

(
w + 1

2

)
Pw

(
ζt,i

)
Pw (zi )

] . (14)

Equation (14) gives a unified computational model of empirical estimation of the
density function on the spatial template T, noticing that, on the right-hand side of the
equation, the subscript i of wi is dropped because of the symmetry of computation.

Now let’s consider the cpdf fZ0 (z0|�) of a single sampling step in sequential
simulation (ref. Sect. 2.1). The joint pdf can be marginalized from Eq. (14) to get the
marginal pdf of conditioning random variables. To specify the difference between the
empirical models and theoretical models in Eqs. (10) and (11), f̃ and f̃W specifically
denote the experimental function corresponding to pdf f and its Legendre polynomial
series truncated at order W , respectively.

For convenience, denote functions Xt (zi ) as

Xt (zi ) �
W∑

w�0

(
w + 1

2

)
Pw

(
ζt,i

)
Pw (zi ) . (15)

Then, Eq. (14) can be rewritten as

f̃W (z0, z1, . . . , zN ) � 1
M

M∑
t�1

Xt (z0)
N∏
i�1

Xt (zi ) . (16)

The result of the integration of Xt (z) over [− 1, 1] can be derived from the orthog-
onal properties of Legendre polynomials as

∫ 1

−1
Xt (zi ) dzi � 1. (17)

In fact, Eqs. (16) and (17) ensure that the integral of the approximated pdf to be 1,
a necessary property of probability density.
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Followed by the marginalization and Eq. (17), the empirical density of marginal
distribution on the random variables z1, . . . , zN is

f̃W (z1, . . . , zN ) � 1
M

M∑
t�1

N∏
i�1

Xt (zi ) . (18)

From Eqs. (16) and (18) and considering the relation between the cpdf and the joint
pdf, one can derive

f (z0|�) ≈ f̃W (z0|�) �
∑M

t�1 Xt (z0) · ∏N
i�1 Xt (ζi )∑M

t�1
∏N

i�1 Xt (ζi )
, (19)

which provides a concise computational model of the cpdf.
The above development provides a theoretical equivalency of the approximation of

the cpdf by a truncated Legendre series, which was proposed by Mustapha and Dimi-
trakopoulos (2010b, 2011). However, the new reformulated model in the current paper
leads to a different stochastic simulation method in view of the related computational
aspects. The advantage of the new model represented by Eq. (19) is that no explicit
computations ofmoments or cumulants are needed. In addition, the newmodel is com-
putationally more accurate than the hosim program inMustapha and Dimitrakopoulos
(2011), in which some terms have to be dropped from the full expansion of the Leg-
endre series in the form of spatial cumulants to gain computational efficiency.

4 Algorithm Description and Computational Analysis

4.1 Algorithm for Computing a cpdf

From Eqs. (17)–(19), it can be easily shown that
∫ 1

−1
f̃W (z0|�) dz0 � 1. (20)

As Xt
(
ζt,i

)
is a constant fromEq. (15) and fromEqs. (15) and (19), it is obvious that

f̃W (z0|�) can be expressed as the summation of a series of Legendre polynomials,
that is

f̃W (z0|�) �
W∑

w�0
cwPw (z0) , (21)

where cw (w � 1, . . . ,W ) are constants which can be conveniently computed as
shown in the following Algorithm 1.

By the property of Legendre polynomials that P0 (z) � 1,∀z ∈ [−1, 1], combined
with Eqs. (15) and (21), the computation of coefficients cw (w � 1, . . . ,W ) can be
divided into the computation of functions Xt (zi ) over the nodes of each replicate.
Especially, the first term of cw is always fixed as c0 � 1

2 .
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4.2 Recursive Algorithm for Computing a ccdf

From the results of Algorithm 1, the cpdf can be expressed as

f (z0|�) � 1
2 +

W∑
w�1

cwPw (z0) . (22)

The coefficient c0 � 1
2 is taken out from the summation in Eq. (22) so that the

Bonnet’s recursion relation of Legendre polynomials can be smoothly applied in the
followed derivation.

According to the Bonnet’s recursion relation of Legendre polynomials

(2w + 1) Pw (z) � d
dz

[
Pw+1 (z) − Pw−1 (z)

]
, (23)

the following equation can be derived

(2w + 1)
∫ z0
−1 Pw (z) dz � Pw+1 (z0) − Pw−1 (z0) . (24)

Therefore, the ccdf, F (z0|�), can be deduced as

F (z0|�) � ∫ z0
−1 f (z0|�) dz

� 1
2 + 1

2 z0 +
W∑

w�1

cw
2w+1

[
Pw+1 (z0) − Pw−1 (z0)

]

�
W+1∑
w�0

dwPw (z0)

. (25)

As can be seen from Eq. (25), the ccdf is also expressed as the summation of
the univariate Legendre polynomials, with the order of the Legendre polynomi-
als increasing by one because of the integration. Furthermore, the new coefficients
dw (w � 0, . . . ,W,W + 1) can now be computed through Eq. (25) in an iterative
way, as shown in Algorithm 2.
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4.3 Computational Complexity

Themost computationally demanding part of the high-order simulation algorithm is to
calculate the Legendre series coefficients, which is the basis for estimating the cpdfs.
Considering that the cpdfs are approximated by Legendre series truncated to a certain
order W , as Eq. (11) shows, the number of the different coefficients is (W + 1)N+1,
where N is the number of data points. Even the Legendre series is approximated by
truncated series, where the sum of orders of different variables is not greater thanW ,
which is the form adopted by Mustapha and Dimitrakopoulos (2011). The number

of the different coefficients is still as big as
W∑

w�0

(
N + w

w

)
for a single data event.

Although this computational complexity can be reduced by discarding some terms
which are regarded as negligible, it should be noted that this simplification may lead
to a loss of accuracy.

FromEqs. (15) and (19), it can be seen that all of the different coefficients introduced
by the explicit expansion of Legendre series are reduced to a calculation of the function∏N

i�1 Xt (zi ). There are only NW computations of Legendre polynomials and a few
products and additions included in the calculation of the function

∏N
i�1 Xt

(
ζt,i

)
for

each replicate of the data event encountered in the TI. It should be noted that the
computational time still depends on the number of the replicates encountered in the TI,
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aswell as themaximal order of Legendre polynomials and the number of conditionings
in the neighborhood. However, the computational cost regarding the above-mentioned
parameters is significantly reduced, as opposed to computing the large number of
coefficients in the previous version of high-order simulation.

5 Implementation

The implementation is relatively straightforward in terms of the above algorithms
estimating the cpdf and ccdf according to the framework of sequential simulation.
However, a method is proposed in this section to deal with the replicates, aiming to
reduce the conflicts of spatial statistics between the sample data and the TI. The main
idea of the method is to deliberately select replicates which are similar to the condi-
tioning data within a certain range according to somemeasure of similarity. The reason
for this is that the conditional probability distribution is a one-dimensional intercept
from the multivariate joint probability distribution and, therefore, the replicates that
are close to the conditioning data are more relevant to estimate this one-dimensional
local probability distribution.

For every node to be simulated in sequential simulation, a local neighborhood is
defined to search for conditional data fromboth the sample data and the simulation grid.
The locations of these conditional data together with the center node to be simulated
constitute a geometry template. Given a TI, replicates of the geometry template can
always be found from the TI as long as the searching neighborhood is inside of the TI’s
extent. In the present work, the measure of similarity between the replicates and the
data event is set to be the average square Euclidean distance between the replicates and
the conditioning data, and the threshold is set as the variance of the sample data. The
replicatewill be selected in the estimation of a cpdf if the distance between the replicate
and the conditioning data is less than the variance of the sample data. In addition, when
there are few replicates that can be found from the TI due to the conflicts between the
sample and the TI, some tolerances are given to the shape of the geometry template
so that similar replicates can be found. Figure 2 shows a general way to search the
candidate points associated with a certain vector in a spatial template. The parameter
θ is the angle tolerance of the candidate point’s deviation from the original vector in
the template, and �h and b are the tolerances in the lag and bandwidth, respectively.
Possible candidate points are taken from the shadowed area, and the point that has the
closest property to the ending node of the original vector in the template is selected. To
maintain the consistency of the geometry configuration, an inner part of the template
is specified such that the relative locations to the center node inside the inner part
remains unchanged. In other words, only the nodes further away from the center node
are allowed to have the ability to change locations. This strategy gives more flexibility
to manipulate the geometry configuration of the replicates.

The main procedure of the high-order simulation approach can be summarized in
the following steps

(1) Read the sample data and TI into memory. In order to apply the multivariate
expansion of Legendre polynomials, the property values of the samples or TI are
scaled to the interval [− 1, 1] through a linear transformation.
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Fig. 2 Finding approximate replicates from the training image (TI) with the tolerances of the original
geometry template

(2) Specify dimensions of a certain neighborhood for searching the conditional data
and other parameters, such as the minimum or maximum number of the condi-
tional data. The geometry of the local template totally depends on the locations
of the conditional data. In the present work, a rectangular shape neighborhood
was used and a searching policy was applied to find the closest points to the
center. Nevertheless, the shape of the neighborhood and the searching policy can
be manipulated to further control the spatial configuration of the template.

(3) Set the lag tolerance, angle tolerance, and bandwidth tolerance to enable searching
approximate replicates from the TI (see Fig. 2).

(4) Generate a random sequence on the indices of the simulation grid to create a
random visiting path.

(5) According to the predefined visiting path, sequentially pick one node at a time
for the simulation. If the property value is already known (copied from the hard
data), then continue to choose another single node until the property value is not
assigned. The conditioning data are searched inside the neighborhood centered
on the chosen node by the previously specified searching policy from both the
hard data and the simulated nodes.

(6) A local spatial template is determined by the data and the center node for later
simulation. This spatial template is then used to find similar replicates from the TI
according to the parameters set in steps (2) and (3). If the number of approximated
replicates is not adequate for statistical inference, then drop the furthest node to
the center node and repeat until the minimum number of conditioning data is
reached.

(7) The local ccdf is estimated from the replicates using the algorithms elaborated
in Sect. 3. A random value is drawn from the local ccdf using the Monte Carlo
method and set as the property value of the node to be simulated.

(8) Repeat from step (5) until all the nodes in the random path are visited.

6 Examples and Comparisons

The data used in this paper are extracted from the Stanford V reservoir data set (Mao
and Journel 1999). A horizontal section serving as the exhaustive image is taken from
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Fig. 3 A horizontal section from reservoir’s porosity values with sinuous connectivity

the Stanford V reservoir model of porosity in a square grid with 100×100 pixels
(cells of size 100 m). As seen from the exhausting image in Fig. 3, porosity values
are distributed as several channels that can be distinguished from the background.
For the examples and comparisons presented in the next sections, 200 data points are
randomly sampled from the selected exhaustive image to serve as the sample data set
and are displayed in Fig. 4. Applying the proposed high-order approach, the selected
data are used to simulate the exhaustive image in two different ways, so as to show the
sensitivity of the approach to the chosen TI. Accordingly, in Example 1, the exhaustive
data are used as the TI; then, in Example 2, the TI is selected from a different section
of the Stanford V reservoir data set than the exhaustive image. The second TI is shown
in Fig. 5 and has different spatial patterns than those in the exhaustive image. In
addition, a comparison of the proposed algorithm to the well-established mps method
filtersim (Zhang et al. 2006) is presented. In each of the realizations using the high-
order simulation algorithm, a window of size 15 × 20 in terms of cell size is used as
the search template. The tolerance angle for searching is set to 15°, the lag tolerance
to 2 and the bandwidth to 1. These parameters are chosen from the calculation of
experimental variograms (Goovaerts 1997). The minimum number of conditioning
data is 6 and the maximum number is 12, while 6–12 previously simulated values are
used. The maximum order of Legendre polynomials is set to 10. For the realizations
generated with filtersim, the searching template is 15 × 21 with an inner patch of
size 7 × 7 and a multiple grid level of 3, while replicates are classified into different
categories according to their filter scores. For further details on filtersim, the reader is
referred to Zhang et al. (2006).
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Fig. 4 Data points sampled from the exhaustive image (containing 200 points, or 2% of the total data)

Fig. 5 TI that is different from the exhaustive data

6.1 Example 1

This example generates simulations using the 200 samples shown in Fig. 4 and the
exhaustive image in Fig. 3 as the TI. In this case, there are no conflicts between
the available data and the TI. Figure 6 shows one realization from the high-order
simulation and another from filtersim, respectively. From visual comparison with the
exhaustive image, the realization from the high-order simulation better reproduces the
channels of the original image. To demonstrate the reproduction of the distribution and
second-order spatial statistics of simulation results, ten different realizations for each
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Fig. 6 Simulations with 200 sample data using the exhaustive data as the TI: a and b are one realization
from high-order simulation and filtersim, respectively

method are generated. The histograms of the realizations are displayed in the Fig. 7
and related variograms are displayed in Fig. 8. Both simulation methods reproduce
well the bimodal shape in the histograms; however, in general, high-order simulations
show better reproduction in the proportions of porosity values. High-order simulation
methods also reproduce well the variograms in the X-direction or Y-direction, while
the variograms from the filtersim simulations demonstrate larger fluctuations and have
notable deviations from the variogram of the exhaustive data in the Y-direction. For a
comparison of the high-order spatial statistics of simulation results to the original data
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Fig. 7 Reproduction of histograms of ten realizations with 200 sample data using the exhaustive data as
the TI: a and b correspond to ten realizations from the high-order simulation and filtersim, respectively

in the two different settings, the third-order cumulant maps are generated by theHOSC
program (Mustapha and Dimitrakopoulos 2010c), which are displayed in Fig. 9. This
program uses a template with two directions in X-axis and Y-axis, and the number of
lags is 70, with lag size as 1. In comparison to the third-order cumulant map of the
exhaustive image, the high-order simulation performs better in the reproduction of the
high-order statistics, although both simulation methods have reasonable similarity in
terms of the third-order cumulant map, as there are no conflicts between the sample
data and the TI in this case.
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Fig. 8 Reproduction of the variograms of ten realizations with 200 sample data using the exhaustive data as
the TI from high-order simulation and filtersim, respectively. a Reproduction of variograms of high-order
simulations in the X-direction. b Reproduction of variograms of high-order simulations in the Y-direction.
c Reproduction of variograms of filtersim simulations in the X-direction. d Reproduction of variograms of
filtersim simulations in the Y-direction

6.2 Example 2

In this setting, the simulations are conductedwith the same conditioning data; however,
the TI is different from the exhaustive data. Figure 10 shows one realization from the
high-order simulation and one for filtersim. Clearly, there are conflicts between the
spatial statistics of the sample data and the TI, which are key factors affecting the
results of the simulations. As expected, the reproduction of the spatial patterns is
worse when compared to the results from the simulations in the previous example.
Nevertheless, the realization from the high-order simulation method still maintains
the spatial structures of the original exhaustive data. As shown in Fig. 11, the ten
realizations of the high-order simulation match the histogram of the exhaustive image
very well. By contrast, the ten realizations of filtersim mismatched the exhaustive
image in some part of the proportions. From the comparison shown in Fig. 12, the
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Fig. 9 Comparing third-order
cumulant maps of realizations
with 200 sample data using the
exhaustive data as the TI from
the high-order simulation and
filtersim, respectively. a
Third-order cumulant map of the
exhaustive image. b Third-order
cumulant map of one realization
from the high-order simulation.
c Third-order cumulant map of
one realization from filtersim
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Fig. 10 Simulations with 200 sample data using a separate TI different from the exhaustive data: a and b
are one realization from high-order simulation and filtersim, respectively

high-order simulation performs better than filtersim in reproducing the variograms of
the exhaustive image as well, although there is a minor deviation in the Y-direction.

In order to demonstrate the impact of the conflicts between the sample data and TI
during the simulations, Fig. 13 shows the third-order cumulant maps corresponding
to the exhaustive image, the sample data, the TI and one realization of high-order
simulation and filtersim. The parameter settings to generate the cumulant maps for
the grid data are the same as those used in Fig. 9, whereas the lag size is set to 5 grid
cells, with the lag tolerance being set to 1 grid cell and the angle tolerance being set
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Fig. 11 Reproduction of histograms of ten realizations with 200 sample data using the TI different from the
exhaustive data: a and b correspond to ten realizations from high-order simulation and filtersim, respectively

to 15° for generating the cumulant map of the sample data. As the sample data is too
sparse to compute the cumulant map at the same scale as the exhaustive image, some
smoothing has been applied to the cumulant map of the sample data for the purpose
of visualization. The third-order cumulant map of the realization from the high-order
simulation maintains the main structures of the exhaustive data. On the other hand, the
third-order cumulantmap of the realization fromfiltersim resembles the cumulantmap
of the TI, which differs from the cumulant map of the exhaustive image. This implies
that the high-order simulation is primarily data-driven, whereas the filtersim method
is TI-driven. This result can be explained by the fact that the high-order simulation
seeks to find replicates that comply to the statistical configuration of the conditioning
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Fig. 12 Variograms of ten realizations with 200 sample data using the TI different from the exhaustive data
from the high-order simulation and filtersim, respectively

data from the TI, and the values of nodes to be simulated are drawn from the related
local probability distribution. By contrast, the filtersim method is TI-driven, which
means that the values of nodes to be simulated comes directly from the pasting of
certain replicates from the TI, which is patch-based instead of node-by-node, as in
the high-order simulation. In particular, the impact of the conditioning data is more
important for capturing the large-scale spatial structures in the early stage of the high-
order simulation. For instance, Fig. 13b shows the cumulant map of the sample data,
and the resolution of the map is much coarser than the exhaustive data. This map
shows some distortion when representing the third-order statistics of the exhaustive
image due to the sparsity of the data. However, the spatial structures of the limited
sample data control the spatial statistics of the results from the high-order simulation.
In general, the results in this case study show that the proposed high-order simulation
algorithm can reasonably reproduce the overall probability distribution, the second-
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Fig. 13 Comparing third-order cumulant maps of realizations with 200 sample data using the TI different
from the exhaustive data from the high-order simulation and filtersim, respectively. a Third-order cumulant
map of the exhaustive image. b Third-order cumulant map of the sample data (after smoothing). c Third-
order cumulant map of the TI. d Third-order cumulant map of the realization of high-order simulation. e
Third-order cumulant map of the realization of filtersim
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order statistics, and the higher-order statistical features (such as spatial cumulants), as
the statistical conflicts between the sample data and the TI are not severe.

6.3 Parameter Sensitivity Testing

Most parameters in the current implementation of the high-order stochastic simulation
method are experimental choices. Amongst all the parameters encountered in the
current implementation, some follow common practices in the parameter selection
for conventional geostatistical simulations, such as the size of the search window, the
lag, and angle tolerance. Additionally, in the high-order simulation method presented
here, the number of conditioning data corresponding to a certain template needs more
consideration, as it determines the dimension of the local probability distribution.
In the current implementation, the number of the conditioning data is limited for
two important reasons. First, the limited number of conditioning data reduces the
computational time needed to estimate the cpdf. Second, the method resembles the so-
called multiple grid strategy (Strebelle 2002) applied in many multi-point simulation
methods in order to maintain both large- and small-scale spatial structures. In the
early stage of the simulation process, the neighborhoods are more likely to capture
large-scale patterns, since the known data are sparse. The neighborhoods gradually
correspond to finer-scale patterns as the simulation continues andmore known data are
generated. A similar search strategy has also been applied and discussed byMariethoz
et al. (2010).

The maximum order of the polynomials is another parameter of importance in
the high-order simulation, since it affects the precision of the approximation of a
cpdf by a truncated Legendre polynomial series. Theoretically, the coefficients in the
Legendre polynomial series decay exponentially, and, in general, much faster than in
Taylor series (Cohen and Tan 2012; Wang and Xiang 2012). The numerical results
of Cohen and Tan (2012) show that Legendre polynomial series with six non-zero
coefficients (orders 10 and 11 in their examples) are highly accurate approximations
to the targets. The numerical test to approximate a probability distribution regarding
the order of Legendre polynomial series has also been investigated by Mustapha and
Dimitrakopoulos (2010b) and led to similar results. However, it should be noted that
the above tests are conducted for the approximation of a determined function, whereas
for the approximation of the pdf, there is also the impact from the limitation of the
number of replicates. Depending on different data sets, Legendre polynomial series
with an order from 6 to 20 should be a reasonable range to select.

For validation and sensitivity analysis, further tests are conducted specifically to
demonstrate the impacts of the number of conditioning data and themaximum order of
Legendre polynomial series. In order to restrict the effects of the conflicting statistics
between the TI and the sample data, the same data set from Example 1 is used to
evaluate the sensitivity of the related parameters. The experiments are taken for each
individual parameter without considering the possible dependencies between them. In
all the experiments, the parameters not being tested remain the same as in Example
1. Furthermore, the random seed used to generate the visiting path is also fixed for all
the simulations in the experiments, so that the impact of the different visiting paths is

123



954 Math Geosci (2018) 50:929–960

Fig. 14 Comparing the realizations of high-order simulation by applying different local neighborhood size,
with 200 sample data using the exhaustive data as the TI. The maximum order of Legendre polynomials
to approximate the cpdfs is 10 for all the realizations. Realizations with neighborhood of: a 6 conditioning
data, b 12 conditioning data, c 20 conditioning data, and d 30 conditioning data

excluded. Figures 14 and 15 depict the realizations of the high-order simulation with
different neighborhood sizes and their corresponding third-order cumulant maps. In
addition, Figs. 16 and 17 show the realizations of high-order simulation with respect
to the order of the Legendre polynomial series in order to approximate the cpdfs (as
well as their corresponding third-order cumulant maps). From the results, it can be
seen that both the size of the neighborhood and the maximum order of the polynomials
have considerable impacts on the high-order simulation results. In particular, using a
small size of the neighborhood of 6 grid cells or a Legendre polynomial order less than
6 results in a poor reproduction of the spatial patterns, as well as the cumulant maps.
However, when the size of the neighborhood increases to more than 12 or the order
of polynomials is greater than 10, the differences become trivial. Although the testing
is for a specific data set, and the size neighborhood should be larger in 3D space than
in 2D space, it can be expected that a similar sensitivity analysis can be applied to
choose the appropriate parameters on a case-by-case basis.
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Fig. 15 Comparing the third-order cumulant maps of the realizations of the high-order simulation by apply-
ingdifferent local neighborhood size,with 200 sample data using the exhaustive data as theTI.Themaximum
order of Legendre polynomials to approximate the cpdfs is 10 for all the realizations. Third-order cumu-
lant maps of one realization with neighborhood of: a 6 conditioning data, b 12 conditioning data, c 20
conditioning data, and d 30 conditioning data

7 Conclusions

Themain contributions of this paper are as follows. Firstly, starting from the high-order
simulation method based on Legendre polynomial series, a new computational model
in the form of a unified empirical function is developed to approximate the conditional
probability density function (cpdf). The computational model leads to an estimation
of the cpdf without calculating the high-order spatial cumulants or moments term by
term. As a consequence, it not only greatly reduces the computational requirements,
but it also provides a more accurate approximation of the cpdf through Legendre poly-
nomial series in comparison to the previous high-order simulation algorithm based on
Legendre cumulants. Secondly, two new algorithms to derive the cpdf and conditional
cumulative distribution function (ccdf) based on the above computational model are
developed; they both use the properties of Legendre polynomials to simplify the com-
putation and avoid an explicit expansion of a multivariate Legendre series. Lastly,
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Fig. 16 Comparing the realizations of the high-order simulation by applying the different order of truncated
Legendre polynomial series, with 200 sample data using the exhaustive data as the TI. The number of
conditioning data in the local neighborhood is 12 for all the realizations. Realizations of the high-order
simulation by approximating the cpdf with Legendre polynomial series up to: a order 6, b order 10, c order
20, and d order 30

the spatial template used in the current high-order simulation method is dynamically
changing with the computation of the probability distribution in real time, without
storing data events. In addition, a flexible strategy to search replicates from the train-
ing image (TI) is proposed and implemented to deal with the conflicts between the
statistics of the sample data and the TI.

Tests show the capacity of the proposed algorithm to reproduce complex geological
patterns, and, in addition, that both the overall distribution and the high-order spatial
statistics of the data are reproduced by the high-order simulations. Comparing the
results of the high-order simulation in different cases with those of filtersim, the
high-order simulation outperforms in the reproduction of high-order spatial statistics.
This result becomes more notable in cases where there are conflicts in the spatial
statistics between the sample data and the TI. This demonstrates that the high-order
simulation has a more data-driven nature, whereas the filtersim is more TI-driven.
Although the computational cost is significantly reduced (depending on the size of the
training image, the number of neighborhoods, and the maximum order of Legendre
polynomial series), the simulation is still slower than the filtersim method. However,
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Fig. 17 Comparing third-order cumulant maps of the realizations of the high-order simulation by applying
the different order of truncated Legendre polynomial series, with 200 sample data using the exhaustive data
as the TI. The number of conditioning data in the local neighborhood is 12 for all realizations. Third-order
cumulant map of one realization of the high-order simulation by approximating the cpdf with Legendre
polynomial series up to: a order 6, b order 10, c order 20, and d order 30

since the computations of the cpdf are carried out on each replicate with the same
type of calculation, the procedure could be parallelized so that the simulation can be
further accelerated through parallelization techniques, such as GPU programming.
It should also be noted that the approximation of cpdfs by Legendre series or any kind
of polynomial series may generate problems of non-positive probability densities;
further research is needed to address this issue.
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Appendix: Expansion Series of Probability Density Function Based on the
Spatial Legendre Moments

Suppose that themultivariate function f (z0, z1, . . . , zN ) is the density function related
to the joint distribution of random variables on a spatial template T, and that it can be
expressed as a Legendre polynomial series. The sequence of Legendre polynomials at
different orders forms a set of orthogonal bases of a Hilbert space containing all the
continuous functions defined on D � [−1, 1]N+1; the inner product is defined as

〈g, h〉 �
∫

D
ghdz0 . . . dzN , (A.1)

where g, h are functions in the Hilbert space.
From the orthogonal property of a Legendre polynomial and the definition of its

norm shown in Eq. (7), there is

f (z0, z1, . . . , zN ) �
∞∑

w0�0

∞∑
w1�0

· · ·
∞∑

wN�0

〈
f, P̄w0 P̄w1 · · · P̄wN

〉
P̄w0 P̄w1 · · · P̄wN ,

(A.2)

where the set {P̄w0 P̄w1 · · · P̄wN |wi � 0, 1, 2, . . . , 0 ≤ i ≤ N } are the orthonormal

bases of the Hilbert space and P̄wi (zi ) � Pwi (zi )||Pwi || , 0 ≤ i ≤ N is the normalized

Legendre polynomial. Therefore

P̄w0 P̄w1 · · · P̄wN � P̄w0 P̄w1 ···P̄wN‖Pw0‖···‖PwN ‖ �
N∏
i�0

√
wi + 1

2 · Pw0 Pw1 · · · PwN (A.3)

〈 f, P̄w0 P̄w1 · · · P̄wN 〉 �
N∏
i�0

√
wi + 1

2 · 〈 f, Pw0 Pw1 · · · PwN 〉. (A.4)

Combining Eqs. (A.2)–(A.4), it is seen that

f (z0, z1, . . . , zN ) �
∞∑

w0�0

∞∑
w1�0

· · ·
∞∑

wN�0

N∏
i�0

(
wi + 1

2

) · 〈
f, Pw0 Pw1 · · · PwN

〉
Pw0 Pw1 · · · PwN .

(A.5)

Note that f (z0, z1, . . . , zN ) is the pdf; thus

〈 f, Pw0 Pw1 · · · PwN 〉 �
∫

D
Pw0 (z0) Pw1 (z1) · · · PwN (zN ) f (z0, z1, . . . , zN ) dz0 · · · dzN

� E
[
h1, . . . , hN ; Pw0 (z0) Pw1 (z1) · · · PwN (zN )

]
.

(A.6)
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To use the Legendre polynomials as the bases without normalization and avoid
computation of the square roots, the spatial Legendre moments are defined as

LT
w0w1···wN

�
N∏
i�0

(
wi + 1

2

) · 〈 f, Pw0 Pw1 · · · PwN 〉, (A.7)

which is equivalent to the definition in Eq. (8).
Furthermore, from Eqs. (A.5)–(A.7), one can directly derive the expansion series of

the pdf based on the spatial Legendre moments, which appears in Eq. (10). A similar
derivationworks for the truncatedLegendre polynomial series, since the corresponding
function space forms a finite-dimensional subspace of the above Hilbert space.
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