729 research outputs found

    Status of the differential transformation method

    Full text link
    Further to a recent controversy on whether the differential transformation method (DTM) for solving a differential equation is purely and solely the traditional Taylor series method, it is emphasized that the DTM is currently used, often only, as a technique for (analytically) calculating the power series of the solution (in terms of the initial value parameters). Sometimes, a piecewise analytic continuation process is implemented either in a numerical routine (e.g., within a shooting method) or in a semi-analytical procedure (e.g., to solve a boundary value problem). Emphasized also is the fact that, at the time of its invention, the currently-used basic ingredients of the DTM (that transform a differential equation into a difference equation of same order that is iteratively solvable) were already known for a long time by the "traditional"-Taylor-method users (notably in the elaboration of software packages --numerical routines-- for automatically solving ordinary differential equations). At now, the defenders of the DTM still ignore the, though much better developed, studies of the "traditional"-Taylor-method users who, in turn, seem to ignore similarly the existence of the DTM. The DTM has been given an apparent strong formalization (set on the same footing as the Fourier, Laplace or Mellin transformations). Though often used trivially, it is easily attainable and easily adaptable to different kinds of differentiation procedures. That has made it very attractive. Hence applications to various problems of the Taylor method, and more generally of the power series method (including noninteger powers) has been sketched. It seems that its potential has not been exploited as it could be. After a discussion on the reasons of the "misunderstandings" which have caused the controversy, the preceding topics are concretely illustrated.Comment: To appear in Applied Mathematics and Computation, 29 pages, references and further considerations adde

    A Novel Third Order Numerical Method for Solving Volterra Integro-Differential Equations

    Full text link
    In this paper we introduce a numerical method for solving nonlinear Volterra integro-differential equations. In the first step, we apply implicit trapezium rule to discretize the integral in given equation. Further, the Daftardar-Gejji and Jafari technique (DJM) is used to find the unknown term on the right side. We derive existence-uniqueness theorem for such equations by using Lipschitz condition. We further present the error, convergence, stability and bifurcation analysis of the proposed method. We solve various types of equations using this method and compare the error with other numerical methods. It is observed that our method is more efficient than other numerical methods

    Shifted Jacobi spectral collocation method with convergence analysis for solving integro-differential equations and system of integro-differential equations

    Get PDF
    This article addresses the solution of multi-dimensional integro-differential equations (IDEs) by means of the spectral collocation method and taking the advantage of the properties of shifted Jacobi polynomials. The applicability and accuracy of the present technique have been examined by the given numerical examples in this paper. By means of these numerical examples, we ensure that the present technique is simple and very accurate. Furthermore, an error analysis is performed to verify the correctness and feasibility of the proposed method when solving IDE

    Sparse spectral methods for integral equations and equilibrium measures

    Get PDF
    In this thesis, we introduce new numerical approaches to two important types of integral equation problems using sparse spectral methods. First, linear as well as nonlinear Volterra integral and integro-differential equations and second, power-law integral equations on d-dimensional balls involved in the solution of equilibrium measure problems. These methods are based on ultraspherical spectral methods and share key properties and advantages as a result of their joint starting point: By working in appropriately weighted orthogonal Jacobi polynomial bases, we obtain recursively generated banded operators allowing us to obtain high precision solutions at low computational cost. This thesis consists of three chapters in which the background of the above-mentioned problems and methods are respectively introduced in the context of their mathematical theory and applications, the necessary results to construct the operators and obtain solutions are proved and the method's applicability and efficiency are showcased by comparing them with current state-of-the-art approaches and analytic results where available. The first chapter gives a general scope introduction to sparse spectral methods using Jacobi polynomials in one and higher dimensions. The second chapter concerns the numerical solution of Volterra integral equations. The introduced method achieves exponential convergence and works for general kernels, a major advantage over comparable methods which are limited to convolution kernels. The third chapter introduces an approximately banded method to solve power law kernel equilibrium measures in arbitrary dimensional balls. This choice of domain is suggested by the radial symmetry of the problem and analytic results on the supports of the resulting measures. For our method, we obtain the crucial property of computational cost independent of the dimension of the domain, a major contrast to particle simulations which are the current standard approach to these problems and scale extremely poorly with both the dimension and the number of particles.Open Acces

    A new approach for solving nonlinear Thomas-Fermi equation based on fractional order of rational Bessel functions

    Full text link
    In this paper, the fractional order of rational Bessel functions collocation method (FRBC) to solve Thomas-Fermi equation which is defined in the semi-infinite domain and has singularity at x=0x = 0 and its boundary condition occurs at infinity, have been introduced. We solve the problem on semi-infinite domain without any domain truncation or transformation of the domain of the problem to a finite domain. This approach at first, obtains a sequence of linear differential equations by using the quasilinearization method (QLM), then at each iteration solves it by FRBC method. To illustrate the reliability of this work, we compare the numerical results of the present method with some well-known results in other to show that the new method is accurate, efficient and applicable
    • …
    corecore