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Abstract

In this thesis, we introduce new numerical approaches to two important types of integral

equation problems using sparse spectral methods. First, linear as well as nonlinear Volterra

integral and integro-differential equations and second, power-law integral equations on d-

dimensional balls involved in the solution of equilibrium measure problems.

These methods are based on ultraspherical spectral methods and share key properties and

advantages as a result of their joint starting point: By working in appropriately weighted

orthogonal Jacobi polynomial bases, we obtain recursively generated banded operators al-

lowing us to obtain high precision solutions at low computational cost.

This thesis consists of three chapters in which the background of the above-mentioned prob-

lems and methods are respectively introduced in the context of their mathematical theory

and applications, the necessary results to construct the operators and obtain solutions are

proved and the method’s applicability and efficiency are showcased by comparing them with

current state-of-the-art approaches and analytic results where available.

The first chapter gives a general scope introduction to sparse spectral methods using Jacobi

polynomials in one and higher dimensions.

The second chapter concerns the numerical solution of Volterra integral equations. The

introduced method achieves exponential convergence and works for general kernels, a major

advantage over comparable methods which are limited to convolution kernels.

The third chapter introduces an approximately banded method to solve power law kernel

equilibrium measures in arbitrary dimensional balls. This choice of domain is suggested by

the radial symmetry of the problem and analytic results on the supports of the resulting

measures. For our method, we obtain the crucial property of computational cost indepen-

dent of the dimension of the domain, a major contrast to particle simulations which are

the current standard approach to these problems and scale extremely poorly with both the

dimension and the number of particles.
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Chapter 1
Banded spectral methods

The general notation adopted throughout this thesis will largely follow that of the NIST

Digital Library of Mathematical Functions (DLMF) [73]. We provide references for more

specialized notation where appropriate.

1.1 Orthogonal polynomials and spectral methods

1.1.1 Introduction

Broadly the label spectral method refers to any method used to obtain numerical solutions

to mathematical problems which involves the expansion and approximation of functions

in simpler basis function spaces. The most widely known representatives of this class of

methods make use of Fourier series, in which case the basis functions are the sinusoids

appearing in the series representation. Another widely known but numerically significantly

less well-behaved approach is the expansion of functions as a Taylor series, in which case the

basis functions are simply the monomials t1, x, x2, x3...u. The present thesis concerns itself

with spectral methods whose basis functions are orthogonal polynomials, specifically Jacobi

polynomials. In what follows, we give an overview of the general aspects of approximation

theory using orthogonal polynomials as required for the discussion of such spectral methods

and give an introduction to sparse computation with Jacobi polynomial bases.

1



2 Chapter 1. Banded spectral methods

1.1.2 Jacobi polynomial bases

The Jacobi polynomials, named after mathematician Carl Gustav Jacob Jacobi, are a two

parameter family of ordered complete sets of classical orthogonal polynomials on the interval

p´1, 1q, orthogonal with respect to the Jacobi weight

wpa,bq
pxq “ p1 ´ xq

a
p1 ` xq

b,

with a, b ą ´1. The n-th degree Jacobi polynomial with basis parameters a and b is typically

denoted P
pa,bq
n and satisfies the orthogonality condition [73, 18.3]

ż 1

´1

p1 ´ xq
a
p1 ` xq

bP pa,bq
n pxqP pa,bq

m pxq dx “
2a`b`1Γpn ` a ` 1qΓpn ` b ` 1q

p2n ` a ` b ` 1qΓpn ` 1q Γpn ` a ` b ` 1q
δnm,

(1.1)

where δnm denotes the Kronecker delta and Γp¨q the Gamma function, as well as the following

second order homogeneous linear differential equation [73, 18.8.1]:

`

1 ´ x2
˘

f2
pxq ` pb ´ a ´ pa ` b ` 2qxqf 1

pxq ` npn ` a ` b ` 1qfpxq “ 0.

Alongside the above, there are many equivalent ways of defining the Jacobi polynomials –

other popular ways include the use of Rodrigues’ formula [73, 18.5.1]

P pa,bq
n pxq :“

p´1qn

2nn!
p1 ´ zq

´a
p1 ` zq

´b dn

dxn

␣

p1 ´ xq
a
p1 ` xq

b
`

1 ´ x2
˘n(

,

and the explicit series representation [73, 18.5.7]

P pa,bq
n pxq :“

Γpa ` n ` 1q

n! Γpa ` b ` n ` 1q

n
ÿ

m“0

ˆ

n

m

˙

Γpa ` b ` n ` m ` 1q

Γpa ` m ` 1q

ˆ

x ´ 1

2

˙m

.

involving gamma functions Γp¨q and binomial coefficients.



1.1. Orthogonal polynomials and spectral methods 3

The above series representation can easily be seen to be of the form of a finite hypergeometric

series, cf. [73, 15.2.2], which allows one to concisely define the Jacobi polynomials using only

a Gaussian hypergeometric 2F1 function and the Pochhammer symbol (or rising factorial)

denoted p¨qn [73, 18.5.7]:

P pa,bq
n pxq :“

pa ` 1qn

n!
2F1

ˆ

´n, 1 ` a ` b ` n, a ` 1,
1 ´ x

2

˙

. (1.2)

This last definition of the Jacobi polynomials will be the most useful to us in this thesis,

in particular when discussing equilibrium measures in Chapter 3. We provide additional

details on the hypergeometric function and some of its properties in Section 1.4.

As is generally true for orthogonal polynomials, the choice of normalization constants as

seen in Equation (1.1) is somewhat arbitrary. Appropriately dividing by these constants

yields orthonormal Jacobi polynomials, but throughout this thesis we will be working with

the canonical (and not orthonormal) normalization used in all of the above definitions.

Being orthogonal polynomials the Jacobi polynomials satisfy a characteristic three term

recurrence relationship [73, 18.2(iv),18.9.2], specifically

P
pa,bq

n`1 pxq “ pκ1x ` κ2qP pa,bq
n pxq ` κ3P

pa,bq

n´1 pxq, (1.3)

with constants independent of x but depending on n, a, b:

κ1 “
p2n ` a ` b ` 1qp2n ` a ` b ` 2q

2pn ` 1qpn ` a ` b ` 1q
,

κ2 “
pa2 ´ b2qp2n ` a ` b ` 1q

2pn ` 1qpn ` a ` b ` 1qp2n ` a ` bq
,

κ3 “ ´
pn ` aqpn ` bqp2n ` a ` b ` 2q

pn ` 1qpn ` a ` b ` 1qp2n ` a ` bq
.

There are many more recurrence relationships for the Jacobi polynomials which may for

example be obtained from their hypergeometric function representation by use of more

general contiguous and recurrence relationships for said functions, cf. [73, 18.9]. We now list
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a non-exhaustive selection of additional properties with significance in applications including

the methods introduced in this thesis.

Sign inversion and parameter exchange ’symmetry’ [73, 18.6.1]:

P pa,bq
n p´xq “ p´1q

nP pb,aq
n pxq. (1.4)

Endpoint evaluation [73, 18.6.1]:

P pa,bq
n p1q “

pa ` 1qn

n!
. (1.5)

Indefinite integration [73, 18.17.1]:

ż

p1 ´ xq
a
p1 ` xq

bP pa,bq
n pxqdx “ ´

p1 ´ xqa`1p1 ` xqb`1

2n
P

pa`1,b`1q

n´1 pxq ` const. (1.6)

Derivative [73, 18.9.15]:

d

dx
P pa,bq
n pxq “

pn ` a ` b ` 1q

2
P

pa`1,b`1q

n´1 pxq . (1.7)

Weighted derivative [73, 18.9.16]:

d

dx

`

p1 ´ xq
a
p1 ` xq

bP pa,bq
n pxq

˘

“ ´2pn ` 1qp1 ´ xq
a´1

p1 ` xq
b´1P

pa´1,b´1q

n`1 pxq . (1.8)

Lowering the second parameter via weight multiplication [73, 18.9.6]:

pn ` a
2

` b
2

` 1qp1 ` xqP pa,b`1q
n pxq “ pn ` 1qP

pa,bq

n`1 pxq ` pn ` b ` 1qP pa,bq
n pxq . (1.9)

Raising the second parameter [73, 18.9.5]:

p2n ` a ` b ` 1qP pa,bq
n pxq “ pn ` a ` b ` 1qP pa,b`1q

n pxq ` pn ` aqP
pa,b`1q

n´1 pxq . (1.10)
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We refer to the DLMF [73], as well as the formula collections by Prudnikov, Brychkov and

Marichev [86, 87] for a vast collection of further relationships and properties.

1.1.3 Shifted Jacobi polynomial bases

The previous section defined the Jacobi polynomials on their canonical domain p´1, 1q. In

this section we briefly discuss how simple variable transformations allow us to use the Jacobi

polynomials on any single interval domain. We also introduce so-called radial or radially

shifted Jacobi polynomials which are related but distinct from the shifted polynomials and

have applications in ball domains in higher dimensions.

To obtain Jacobi polynomials shifted from x P p´1, 1q to the interval pl1, l2q with arbitrary

non-degenerate boundary points

l1 ă l2, l1, l2 P R

one uses the well-known change of variables

t “
pl2 ` l1q

2
`

pl2 ´ l1q

2
x. (1.11)

The change of variables must be applied consistently, i.e. to the polynomials themselves but

also to the weight in order to retain orthogonality on the new domain pl1, l2q. For the general

variable change above, the orthogonality weight on the new interval domain becomes

w
pa,bq

pl1,l2q
ptq “ pl2 ´ tqa pt ´ l1q

b . (1.12)

We furthermore introduce the notation P̃
pa,bq
n pxq for the shifted Jacobi polynomials to the

domain x P p0, 1q “ pl1, l2q, with orthogonality weight

w
pa,bq

p0,1q
pxq “ w̃pa,bq

pxq “ p1 ´ xq
axb.
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These polynomials frequently appear in applications to simplify notation, including those

we discuss in Chapter 2 for Volterra integral equations.

The radial or radially shifted Jacobi polynomials P̃
pa,bq
n pr2q “ P

pa,bq
n p2r2 ´ 1q are obtained

by means of a quadratic as opposed to linear shift in the variable resulting in a polynomial

basis orthogonal on r P p0, 1q. These polynomials are widely used in higher dimensional

domains such as disks and balls, where their orthogonality property is natural with respect

to the symmetry of the domain. We will discuss the higher dimensional uses of the radial

Jacobi polynomials in more detail in Section 1.3.3.

1.1.4 Ultraspherical polynomial bases

The ultraspherical or Gegenbauer polynomials, denoted tC
pλq
n pxquně0 with 0 ‰ λ ą ´1

2
, are

a complete set of classical orthogonal polynomials orthogonal on p´1, 1q with respect to the

ultraspherical weight

wpλq
pxq “ p1 ´ x2

q
λ´ 1

2 “ p1 ´ xq
λ´ 1

2 p1 ` xq
λ´ 1

2 ,

and thus satisfy the orthogonality condition

ż 1

´1

p1 ´ x2
q
λ´ 1

2Cpλq
n pxqCpλq

m pxq dx “
21´2λπΓpn ` 2λq

Γpn ` 1qpn ` λqpΓpλqq2
δnm.

As can be deduced from the form of the ultraspherical weight the ultraspherical polynomials

arise out of the Jacobi polynomials P
pa,bq
n in the special case when a “ b, albeit with

slightly different normalization. Both the ultraspherical and the Jacobi polynomials may

be considered a generalization of the Legendre polynomials typically denoted Pnpxq which

are orthogonal with respect to the uniform weight wpxq “ 1 and correspond to a “ b “ 0

or λ “ 1
2
.
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The following describes the relationship between the two canonical normalizations of the

Jacobi and ultraspherical polynomials [73, 18.7.1,18.7.2]:

Cpλq
n pxq “

p2λqn

pλ ` 1
2
qn
P

pλ´ 1
2
,λ´ 1

2
q

n pxq, (1.13)

P pα,αq
n pxq “

pα ` 1qn

p2α ` 1qn
C

pα` 1
2

q

n pxq . (1.14)

Using these relationships one can readily obtain analogous versions of the above-stated

definitions and properties of the Jacobi polynomials for the ultraspherical polynomials, e.g.:

Classical recurrence relationship [73, 18.9.1]:

C
pλq

n`1pxq “
2pn ` λq

pn ` 1q
xCpλq

n pxq ´
pn ` 2λ ´ 1q

pn ` 1q
C

pλq

n´1pxq. (1.15)

In what follows we explicitly collect a selection of these properties which will be useful.

Hypergeometric representation [73, 18.5.9]

Cpλq
n pxq :“

p2λqn

n!
2F1

ˆ

´n, n ` 2λ, λ `
1

2
;
1 ´ x

2

˙

. (1.16)

Indefinite integration [73, 18.17.1]:

ż

p1 ´ x2
q
λ´ 1

2Cpλq
n pxqdx “ ´

2λp1 ´ x2qλ` 1
2

n2 ` 2λn
C

pλ`1q

n´1 pxq ` const. (1.17)

Orthogonality condition, special case where m “ 0:

ż 1

´1

p1 ´ x2
q
λ´ 1

2Cpλq
n pxqdx “

21´2λπΓpn ` 2λq

n!pn ` λqpΓpλqq2
δn0. (1.18)

Derivative [73, 18.9.19]:

d

dx
Cpλq

n pxq “ 2λC
pλ`1q

n´1 pxq . (1.19)
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Weighted derivative [73, 18.9.20]:

d

dx

´

p1 ´ x2
q
λ´ 1

2Cpλq
n pxq

¯

“ ´
pn ` 1qpn ` 2λ ´ 1q

2pλ ´ 1q
p1 ´ x2

q
λ´ 3

2C
pλ´1q

n`1 pxq . (1.20)

Lowering recurrence via weight multiplication [73, 18.9.8]:

p1 ´ x2
qCpλ`1q

n pxq “
pn ` 2λqpn ` 2λ ` 1q

4λpn ` λ ` 1q
Cpλq

n pxq ´
pn ` 1qpn ` 2q

4λpn ` λ ` 1q
C

pλq

n`2pxq. (1.21)

Raising the basis parameter [73, 18.9.7]:

pn ` λqCpλq
n pxq “ λ

´

Cpλ`1q
n pxq ´ C

pλ`1q

n´2 pxq

¯

. (1.22)

As with the Jacobi polynomials, we refer to the DLMF [73], as well as the formula collections

by Prudnikov, Brychkov and Marichev [86, 87] for a large collection of properties of the

ultraspherical polynomials.
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1.1.5 Function approximation and sparse operators

While we will focus on methods involving Jacobi polynomials, most of the concepts dis-

cussed in this section readily translate to other orthogonal polynomials, as e.g., seen in the

recently published detailed overview in [76], so we keep the notation generic in this section.

The fundamental idea underlying orthogonal polynomial spectral methods is the classical

result that any sufficiently well-behaved function fpxq may be expanded in a complete basis

of polynomials tpjpxqujě0 with coefficients fj:

fpxq “

8
ÿ

j“0

pjpxqfj.

For orthogonal polynomials pjpxq with respect to a weight wpxq the unique scalar coefficients

of this expansion are given by

fj “
1

hj

ż

Ω

wpxqpjpxqwpxqfpxqdx,

hj “

ż

Ω

wpxqppjpxqq
2dx.

We note that Slevinsky recently developed and implemented an open source, stable and

multi-threaded C library called FastTransforms [4] which allows the efficient computation

of these coefficients along with an associated Julia package FastTransforms.jl [5]. We refer

to the papers [97, 98, 66] which discuss the methods used in these packages in detail.

Collecting the basis elements pjpxq and the coefficients fj into infinite dimensional vectors

ppxq “

ˆ

p0pxq p1pxq . . .

˙

, f “

¨

˚

˚

˚

˚

˝

f0

f1
...

˛

‹

‹

‹

‹

‚
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we may instead choose to write the above series expansions as

fpxq “ ppxqf .

We may also adopt the viewpoint of quasimatrices for the object ppxq: Instead of think-

ing of it as an infinite-dimensional vector of functions, we can think of ppxq as being a

two-dimensional array of values with one discrete index for the degree of the polynomial

and one continuous index x P Ω with Ω the domain of the given set of polynomials. This

quasimatrix viewpoint reduces many common operations in the resulting spectral methods

to straightforward classical linear algebra analogies and thus makes numerical approxima-

tions natural both in written notation and in code. A computer implementation of the

above ideas may for example be found in the Julia language [16] package ecosystem around

ContinuumArrays.jl [3], QuasiArrays.jl [7] and ClassicalOrthogonalPolynomials.jl [2].

Thinking of functions in terms of their respective coefficient column vectors in an orthog-

onal polynomial basis means that operators become (infinite dimensional) matrices. For

example, the multiplication-by-x operator acts as

xfpxq “ xppxqf “ ppxqXf ,

where the entries of the infinite dimensional operator X can be obtained from the three

term recurrence of the given polynomial basis, which also immediately demonstrates that

multiplication-by-x is tridiagonal:

X “

¨

˚

˚

˚

˚

˚

˚

˚

˝

a0 c0

b0 a1 c1

b1 a2
. . .

. . . . . .

˛

‹

‹

‹

‹

‹

‹

‹

‚

. (1.23)

Explicit forms of the constants aj, bj and cj are straightforwardly obtained by rearranging
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the classical recurrence relationship in Eq. (1.3). If the underlying orthogonal polynomial

basis is orthonormal, the multiplication-by-x operator is also symmetric [41, 1.3.14]. The

takeaway from this is that instead of having to re-expand xfpxq we can efficiently and

accurately compute them via Xf from the known coefficicents of fpxq. Similar banded

matrix forms can be obtained for differentiation, integration, basis changes and more, based

on various recurrence relationships – some of which we have listed above for Jacobi and

ultraspherical polynomials.

An important part of Chapter 2 and Chapter 3 will be proofs that the infinite matrix forms

of the Volterra integro-differential operators and power law integral operators respectively

are banded and approximately banded in appropriate Jacobi polynomial bases.

1.2 Function evaluation using Clenshaw’s algorithm

While there are straightforward ways to evaluate functions given as coefficient vectors in

some orthogonal polynomial basis, i.e. the evaluation of
ř8

j“0 pjpxqfj at a given point,

Clenshaw’s algorithm [30] allows one to reduce this evaluation to the solution of an upper

triangular linear system, solved via backwards substitution. Among other benefits, Clen-

shaw’s algorithm is thus far more memory optimized than a naive evaluation approach for

approximated functions, cf. [77]. Furthermore, the sparse spectral method for Volterra

integral equations we derive in Chapter 2 relies on an operator-valued modification of Clen-

shaw’s algorithm.

In what follows we write e0 for the first standard basis vector of appropriate length, i.e. the

vector with 1 in its first component, and x˚ P p´1, 1q for an arbitrary point at which we wish

to evaluate the approximated function. The classical three term recurrence relationship of

the Jacobi polynomials can be used to write

LNpx˚qP
pa,bq

N px˚q
T

“ e0, (1.24)
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where P
pa,bq

N pxq collects the polynomials up to order N and the operator LNpx˚q is defined

as

LNpx˚q “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1

a0 ´ x˚ b0

c0 a1 ´ x˚ b1

. . . . . . . . .

cN´2 aN´1 ´ x˚ bN´1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

with the constants aj, bj and cj corresponding with the notation used for the multiplication-

by-x operator in Eq. (1.23). Solving the lower triangular system in (1.24) via forward

substitution provides a way to recursively evaluate each element of the basis Ppa,bqpxq and

thus also an approximated function if the coefficients of fpxq in this basis are known. Clen-

shaw’s algorithm proceeds similarly but instead uses backward substitution on the upper

triangular system

fpx˚q “ P
pa,bq

N px˚qf “ eT0LNpx˚q
´Tf . (1.25)

1.3 Multivariate orthogonal polynomials

The previous sections discussed the use of single variable, i.e. univariate, polynomials to

approximate univariate functions. Analogous ideas allow one to approximate functions of

multiple variables in higher dimensional domains using multivariate polynomials. In recent

years, substantial advances have been made in the use of multivariate orthogonal polyno-

mials for sparse spectral methods on triangles [77, 78], disks [108], trapeziums [99], wedges

[79], surfaces of revolution [80] as well as quadratic and cubic curves [38, 81]. Dunkl and

Xu’s recent book [35] on orthogonal polynomials in several variables provides an excellent

survey of bases on various classical arbitary dimensional domains such as cubes, balls and

simplices. Preliminary support for multivariate orthogonal polynomials on triangles and

disks is available in the MultivariateOrthogonalPolynomials.jl [6] Julia package.
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1.3.1 From univariate to bivariate spectral methods

A bivariate function fpx, yq may be expanded in a complete set of orthogonal polynomials

tpn,kpx, yqun,kě0 with unique coefficients fn,k via

fpx, yq “

8
ÿ

n“0

n
ÿ

k“0

pn,kpx, yqfn,k “ ppx, yqf , (1.26)

where we have used the following notation analogous to that in Section 1.1.5:

f “

¨

˚

˚

˚

˚

˚

˚

˚

˝

f0

f1

f2
...

˛

‹

‹

‹

‹

‹

‹

‹

‚

, fn “

¨

˚

˚

˚

˚

˚

˚

˚

˝

fn,0

fn,1
...

fn,n

˛

‹

‹

‹

‹

‹

‹

‹

‚

, (1.27)

ppx, yq “

ˆ

p0px, yq p1px, yq . . .

˙

, (1.28)

pnpx, yq “

ˆ

pn,0px, yq pn,1px, yq . . . pn,npx, yq

˙

, (1.29)

that is, the vectors ppx, yq and f collect their respective elements in lexicographic order.

One may contruct versions with more than two variables in analogous fashion.

1.3.2 Proriol polynomials on the triangle

The Proriol polynomials, denoted tP
pa,b,cq

n,k px, yqun,kě0 are a three parameter family of com-

plete orthogonal polynomials on the triangle T 2 “ tpx, yq P R2, 0 ď x, 0 ď y ď 1 ´ xu with

respect to the weight

wpa,b,cq
pxq “ xaybp1 ´ x ´ yq

c, (1.30)
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meaning that they satisfy

ż 1

0

ż 1´x

0

xaybp1 ´ x ´ yq
cP

pa,b,cq

n,k px, yqP
pa,b,cq

m,j px, yqdxdy “ κn,m,j,kδn,mδk,j, (1.31)

where we refer to [35, 2.4] for the explicit constant of orthogonality. Due to their close

relationship with the one-dimensional Jacobi polynomials as defined in Section 1.1.2 they

are also sometimes referred to as Jacobi polynomials on the triangle or simply orthogonal

polynomials on the triangle [35, 77, 49, 73] without further specification:

P
pa,b,cq

n,k px, yq “ p1 ´ xq
kP

p2k`b`c`1,aq

n´k p2x ´ 1qP
pc,bq

k

ˆ

2y

1 ´ x
´ 1

˙

. (1.32)

Versions of this basis for other orientations of the triangle are straightforward to obtain via

variable transformations, cf. [73, 18.37(ii)] and [35, 2.4]. We will use the Proriol polynomials

in Chapter 2 to construct sparse spectral methods for Volterra integro-differential equations

with general kernels. The following alternative representation in terms of the shifted Jacobi

polynomials as defined in Section 1.1.3 will be more convenient for that purpose:

P
pa,b,cq

n,k px, yq “ p1 ´ xq
kP̃

p2k`b`c`1,aq

n´k pxqP̃
pc,bq

k

ˆ

y

1 ´ x

˙

. (1.33)

The history of orthogonal polynomials on triangles appears to begin with Proriol in 1957 [84]

who this family of polynomials were subsequently named after. They were later picked up

and discussed by Koornwinder in a 1975 survey [56], see also [37] for a loosely contemporary

discussion of biorthogonal triangle polynomials. While Munschy and Pluvinage [67] used the

uniform weight special case to obtain approximate solutions to Schrödinger-type equations in

1957, the Proriol polynomials’ first use in numerical methods in the modern sense appears to

have been due to Dubiner in 1991 who used them in a spectral element scheme [34]. Following

Dunkl and Xu’s inclusion of triangle and simplex polynomials in their book on multivariate

orthogonal polynomials [35], Olver, Townsend and Vasil [77, 78] derived explicit recurrence

relationships and ladder operators along with producing an efficient implementation. Their
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research laid the groundwork for the sparse spectral methods for Volterra integral equations

research discussed in Chapter 2, based on [45, 49]. More general orthogonal polynomials on

arbitrary dimensional simplex domains were also discussed in [35].

As in the 1-dimensional case we can define infinite dimensional sparse multiplication matrices

X and Y which respectively act as

Ppa,b,cq
px, yqXf△ “ xfpx, yq,

Ppa,b,cq
px, yqYf△ “ yfpx, yq.

Note that since we will often be discussing approximations on the triangle simultaneously

with those on the real line as well as conversion operators between them in Chapter 2, we

will denote coefficient vectors with respect to the Proriol polynomials with a subscript △

symbol throughout this thesis to avoid ambiguity. Unlike in the 1-dimensional case these

matrices are now block tridiagonal instead of tridiagonal for the Proriol polynomials, cf.

[77]:

XT
“

¨

˚

˚

˚

˚

˚

˚

˚

˝

Ax
0 Bx

0

Cx
0 Ax

1 Bx
1

Cx
1 Ax

2
. . .

. . . . . .

˛

‹

‹

‹

‹

‹

‹

‹

‚

, YT
“

¨

˚

˚

˚

˚

˚

˚

˚

˝

Ay
0 By

0

Cy
0 Ay

1 By
1

Cy
1 Ay

2
. . .

. . . . . .

˛

‹

‹

‹

‹

‹

‹

‹

‚

, (1.34)

where Ax
n, A

y
n P Rpn`1qˆpn`1q, Bx

n, B
y
n P Rpn`1qˆpn`2q and Cx

n , C
y
n P Rpn`2qˆpn`1q. Raising and

lowering as well as other kinds of useful operators discussed for the one dimensional case

may also be constructed for the Proriol polynomials, see [78, 77].

Finally, we describe a generalization of Clenshaw’s algorithm as discussed in Section 1.2

to the Proriol polynomials. This efficient way of evaluating functions expanded in Proriol

polynomials was recently discussed in [77]. Analogous to the move from tridiagonal to block

tridiagonal for the multiplication operators, Clenshaw’s algorithm for the Proriol polynomi-
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als involves solving a block triangular system to evaluate at px˚, y˚q instead, namely:

LNpx˚, y˚qP
pa,b,cq

N px˚, y˚q
T

“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

I1

Ax
0 ´ x˚I1 Bx

0

Ay
0 ´ y˚I1 By

0

Cx
0 Ax

1 ´ x˚I2 Bx
1

Cy
0 Ay

1 ´ y˚I2 By
1

. . . . . . . . .

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

P
pa,b,cq

N px˚, y˚q
T

“ e0,

where we have denoted the kˆk identity matrix by Ik. As this system is not triangular but

block triangular, we must first apply a preconditioner to be able to use forward or backward

substitution methods:

¨

˚

˚

˚

˚

˚

˚

˚

˝

1

B`
0

B`
1

. . .

˛

‹

‹

‹

‹

‹

‹

‹

‚

LNpx˚, y˚q “ L̃Npx˚, y˚q.

After appropriate preconditioning, the matrix L̃Npx˚, y˚q should then be lower triangular,

allowing the evaluation of functions expanded in the Proriol polynomials recursively via

forward substitution. Choosing left-inverses to the following blocks satisfies our precondi-

tioning requirements:

Bn “

¨

˚

˝

Bx
n

By
n

˛

‹

‚

.

That is, we choose B`
n such that B`

n Bn “ In. The analogue of Clenshaw’s algorithm for the

Proriol polynomials then reads

fpx˚, y˚q “ P
pa,b,cq

N px˚, y˚qf△ “ eT0 L̃Npx˚, y˚q
´Tf△.
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Using backward substitution to solve this allows for function evaluation in optimal OpN2q

complexity, cf. [77].

1.3.3 Radial Jacobi polynomials on arbitrary dimensional balls

The Zernike polynomials, herein denoted Z
p0,m,2q
n pr, ϕq, are a widely known and used com-

plete orthogonal polynomials on the disk D “ tx P R2, |x| “ r ď 1u, i.e. the ball in two

dimensions. They are polynomials in the x and y coordinate variables but are more com-

monly written in their polar coordinate form which decays into a product of angular and

radial components:

Zp0,m,2q
n pr, ϕq “ U pmq

pϕqRp0,m,2q
n prq, (1.35)

where the radial part inherits its orthogonality directly from its relationship to the one-

dimensional Jacobi polynomials:

Rp0,m,2q
n prq :“ rmP̃ p0,mq

n pr2q, (1.36)

and the angular part is given by

U pmq
pϕq “

$

’

’

&

’

’

%

cospmϕq, for m ě 0,

sinpmϕq, else.

The motivation for the chosen notation is a natural generalization which we discuss below.

The Zernike polynomials have a long-standing history of use in pure mathematics as well

as applications and engineering focused fields going back to [117, 118]. Nowadays they

are mostly known in the optics literature for their uses in describing various optical effects

on lenses, cf. [101, 63, 89], but have also seen recent use in other applications such as

impact crater models [112] and atmospheric science [90, 72]. As a result of their history

and interdisciplinary applications one finds a large number of conflicting notations and
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ordering schemes for the Zernike polynomials present in the literature – we will avoid most

of this confusion by relying on their Fourier and Jacobi representations instead, which are

straightforward.

Various generalizations of the Zernike polynomials have been described, see e.g. [115, 8,

105, 11, 69], which among other potential generalizations allow the definition of a family of

polynomials orthogonal with respect to the weight

wpkq
‚ prq “ p1 ´ r2q

k, (1.37)

which are sometimes referred to simply as generalized Zernike polynomials. The angular part

of the generalized Zernike polynomials remains unchanged while the radial part becomes

Rpk,m,2q
n prq :“ rmP̃ pk,mq

n pr2q. (1.38)

The idea of combining spherical harmonics with a radial Jacobi polynomial basis can further

be expanded to d-dimensional balls. We will use a special case of the above on arbitrary

dimensional balls in Chapter 3: the restriction to the m “ 0 (angle-independent) mode,

which can be used for radially symmetric functions on balls, with the corresponding radial

part being:

Rpk,0,dq
n prq “ P̃

pk, d´2
2 q

n pr2q. (1.39)

As this basis is restricted to the m “ 0 mode and thus no longer includes an angular

component, we will refer to this simply as a radial Jacobi polynomial basis. Just like

the generalized Zernike polynomials in two dimensions, the radial Jacobi polynomials in

arbitrary dimensions are orthogonal with respect to the weight in Eq. (1.37).

Finally, we include a list of basic properties for the radial Jacobi polynomials P̃
pa,bq
n p|x|2q

which are direct consequences of the respective properties of the Jacobi polynomials [73,

18.9]:



1.3. Multivariate orthogonal polynomials 19

Classical recurrence relationship:

P̃
pa,bq

n`1 p|x|
2
q “ p2An|x|

2
` pBn ´ AnqqP̃ pa,bq

n p|x|
2
q ´ CnP̃

pa,bq

n´1 p|x|
2
q, (1.40)

with constants independent of x but dependent on n, a, b:

An “
p2n`a`b`1qp2n`a`b`2q

2pn`1qpn`a`b`1q
,

Bn “
pa2´b2qp2n`a`b`1q

2pn`1qpn`a`b`1qp2n`a`bq
,

Cn “
pn`aqpn`bqp2n`a`b`2q

pn`1qpn`a`b`1qp2n`a`bq
.

Explicit representations :

P̃ pa,bq
n

`

|x|
2
˘

“

n
ÿ

k“0

p´1q
n`k pn`a`b`1qkpb`k`1qn´k

k! pn´kq!
|x|

2k, (1.41)

“
Γpa`n`1q

n! Γpa`b`n`1q

n
ÿ

k“0

p´1q
k

ˆ

n

k

˙

Γpa`b`n`k`1q

Γpa`k`1q

`

1 ´ |x|
2
˘k

, (1.42)

“
pa ` 1qn

n!
2F1

¨

˚

˝

´n, n ` a ` b ` 1

a ` 1
; 1 ´ |x|

2

˛

‹

‚

“ p´1q
n pb ` 1qn

n!
2F1

¨

˚

˝

´n, n ` a ` b ` 1

b ` 1
; |x|

2

˛

‹

‚

. (1.43)

Symmetry :

P pa,bq
n p1 ´ 2|x|

2
q “ p´1q

nP pb,aq
n p2|x|

2
´ 1q. (1.44)

Various basis conversions :

P̃ pa,bq
n

`

|x|
2
˘

“
pn`a`b`1q

p2n`a`b`1q
P̃ pa`1,bq
n

`

|x|
2
˘

´
pn`bq

p2n`a`b`1q
P̃

pa`1,bq

n´1

`

|x|
2
˘

, (1.45)

P̃ pa,bq
n

`

|x|
2
˘

“
pn`a`b`1q

p2n`a`b`1q
P̃ pa,b`1q
n

`

|x|
2
˘

`
pn`aq

p2n`a`b`1q
P̃

pa,b`1q

n´1

`

|x|
2
˘

.
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|x|
2P̃ pa,b`1q

n

`

|x|
2
˘

“ KnP̃
pa,bq

n`1

`

|x|
2
˘

`
pn`b`1q

2pn`a
2

` b
2

`1q
P̃ pa,bq
n

`

|x|
2
˘

, (1.46)

p|x|
2

´ 1qP̃ pa`1,bq
n

`

|x|
2
˘

“ KnP̃
pa,bq

n`1

`

|x|
2
˘

´
pn`a`1q

2pn`a
2

` b
2

`1q
P̃ pa,bq
n

`

|x|
2
˘

,

with Kn “
pn`1q

2pn`a
2

` b
2

`1q
.

1.4 Notes on hypergeometric and Meijer-G functions

Hypergeometric functions are a large class of functions which include many familiar functions

as special cases, including the above-discussed polynomials as for example seen in Eq. (1.2).

The most commonly used hypergeometric function is the so-called Gaussian hypergeometric

function denoted 2F1. The more general hypergeometric function pFq as well as the even

more general class of hypergeometric functions known as Meijer-G functions satisfy various

known properties including reductions to simpler forms, symmetries, various recurrence

relationships and more.

Definition 1.1. Let a1, a2, ..., ap and b1, b2, ..., bq be real or complex, m P r0, qs and n P r0, ps

be integers and let none of ak ´ bj be positive for 1 ď k ď n and 1 ď j ď m. Then the

Meijer-G function is defined via the following Mellin-Barnes integral:

Gm,n
p,q

ˆ

a1, . . . , ap
b1, . . . , bq

; z

˙

“
1

2πi

ż

L

m
ś

ℓ“1

Γ pbℓ ´ sq
n
ś

ℓ“1

Γ p1 ´ aℓ ` sq

ˆ

q´1
ś

ℓ“m

Γ p1 ´ bℓ`1 ` sq
p´1
ś

ℓ“n

Γ paℓ`1 ´ sq

˙zsds.

The integration path L has to be chosen such that it separates the poles of the Γpbℓ ´ sq

from the poles of the Γp1 ´ aℓ ` sq factors. For details on how to choose L, we refer to [73,

16.17.1].

As these functions satisfy far too many interesting properties to provide an exhaustive list

here, we will make no such attempt – entire books collecting formulae have been written for

these functions, see e.g. the excellent collections in [73, 85, 87]. Instead, in what follows we
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will include the specific properties we make of use in this thesis and include references or

comments on how they may be obtained.

The hypergeometric functions as special case Meijer-G functions:[73, 16.18.1]:

pFq

ˆ

a1, . . . , ap
b1, . . . , bq

; z

˙

“

¨

˚

˚

˝

q
ś

k“1

Γ pbkq

p
ś

k“1

Γ pakq

˛

‹

‹

‚

G1,p
p,q`1

ˆ

1 ´ a1, . . . , 1 ´ ap
0, 1 ´ b1, . . . , 1 ´ bq

;´z

˙

“

¨

˚

˚

˝

q
ś

k“1

Γ pbkq

p
ś

k“1

Γ pakq

˛

‹

‹

‚

Gp,1
q`1,p

ˆ

1, b1, . . . , bq
a1, . . . , ap

;´
1

z

˙

.

Explicit series representation:

The Meijer-G function has the explicit series representation [73, 16.17.2]:

Gm,n
p,q

ˆ

a1, . . . , ap
b1, . . . , bq

; z

˙

“

m
ÿ

k“1

Am,n
p,q,kpzqpFq´1

ˆ

1 ` bk ´ a1, . . . , 1 ` bk ´ ap
1 ` bk ´ b1, . . . ˚ . . . , 1 ` bk ´ bq

; p´1q
p´m´nz

˙

,

where ˚ on the right-hand side indicates that the entry 1 ` bk ´ bk is not included and

Am,n
p,q,kpzq “

m
ś

ℓ“1
ℓ‰k

Γ pbℓ ´ bkq
n
ś

ℓ“1

Γ p1 ` bk ´ aℓq z
bk

q´1
ś

ℓ“m

Γ p1 ` bk ´ bℓ`1q
p´1
ś

ℓ“n

Γ paℓ`1 ´ bkq

.

This series representation only holds when certain conditions on p, q, aj and bj are satisfied,

see [73, 16.17] for details. We also note the following series representations of the pFq and

2F1 hypergeometric functions [73, 16.2.1,]:

pFq

ˆ

a1, . . . , ap
b1, . . . , bq

; z

˙

“

8
ÿ

k“0

pa1qk ¨ ¨ ¨ papqk

pb1qk ¨ ¨ ¨ pbqqk

zk

k!
, (1.47)

2F1 pa, b; c; zq “

8
ÿ

k“0

paqkpbqk
pcqk

zk

k!
“

Γ pcq

Γ paqΓ pbq

8
ÿ

k“0

Γ pa ` kqΓ pb ` kq

Γ pc ` kq

zk

k!
. (1.48)
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Parameter symmetries :

The Meijer-G function is invariant with respect to permutations of its upper or lower pa-

rameters respectively and the same holds for hypergeometric pFq functions. Furthermore,

the following properties hold [73, 16.19.1–16.19.2]:

Gm,n
p,q

ˆ

a1, . . . , ap
b1, . . . , bq

;
1

z

˙

“ Gn,m
q,p

ˆ

1 ´ b1, . . . , 1 ´ bq
1 ´ a1, . . . , 1 ´ ap

; z

˙

, (1.49)

zµGm,n
p,q

ˆ

a1, . . . , ap
b1, . . . , bq

; z

˙

“ Gm,n
p,q

ˆ

a1 ` µ, . . . , ap ` µ

b1 ` µ, . . . , bq ` µ
; z

˙

. (1.50)

Parameter cancellation and reduction to lower order functions :

The general Meijer-G function satisfies the following reduction rules, cf. [36, Eq. 21–22]

and [73]:

Gm,n`1
p`1,q`1

ˆ

a0, . . . , ap
b1, . . . , bq, a0

; z

˙

“ Gm,n
p,q

ˆ

a1, . . . , ap
b1, . . . , bq

; z

˙

, (1.51)

By the respective symmetry properties for permutations of upper and lower parameters as

well as (1.49-1.50) many similar reduction properties may be derived from the one above.

As pFq hypergeometric functions are a special case of Meijer-G functions, such cancellation

rules also hold for them. An explicit example of such a cancellation which we will use in

Chapter 3 is the reduction of 3F2 to 2F1 functions:

3F2

¨

˚

˝

a1, a2, a3

c1, a3

; z

˛

‹

‚

“ 2F1

¨

˚

˝

a1, a2

c1

; z

˛

‹

‚

. (1.52)

Finite sums of general hypergeometric functions :

Certain finite sums of hypergemeotric functions may be collapsed to a single hypergemeotric

function via the following expression contained in the works of Prudnikov, Brychkov and
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Marichev [87, 5.3.6.3]:

n
ÿ

k“0

p´1q
k

ˆ

n

k

˙

p1 ´ bqk

p1 ´ aqk
p`mFq

¨

˚

˝

ap, ∆pm, a ´ kq

bq

;x

˛

‹

‚

“
pb ´ aqn

p1 ´ aqn
p`2mFq`m

¨

˚

˝

ap, ∆pm, a ´ b ` 1q, ∆pm, a ´ nq

bq, ∆pm, a ´ b ´ n ` 1q

;x

˛

‹

‚

where ∆pk, aq :“ a
k
, a`1

k
, ..., a`k´1

k
, cf [87, p.798]. In Chapter 3 we will make use of the

p “ q “ m “ 1 special case which reduces certain finite sums of 2F1 functions to the 3F2

function:

n
ÿ

k“0

p´1q
k

ˆ

n

k

˙

p1 ´ bqk

p1 ´ aqk
2F1

¨

˚

˝

a1, a ´ k

b1

;x

˛

‹

‚

(1.53)

“
pb ´ aqn

p1 ´ aqn
3F2

¨

˚

˝

a1, a ´ b ` 1, a ´ n

b1, a ´ b ´ n ` 1
;x

˛

‹

‚

.

A class of contiguous recurrence relationships :

Gaussian hypergeometric functions of general form

2F1

¨

˚

˝

a ` ϵ1n, b ` ϵ2n

c ` ϵ3n
; z

˛

‹

‚

where ϵi P t´1, 0, 1u satisfy numerous recurrence relationships. Many of these can be ob-

tained by appropriately combining the so-called contiguous relationships for hypergeometric

functions, which are e.g. listed in [73, 15.5.11–15.5.18]. One such recurrence which we use
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in Chapter 3 and may be obtained in this way is the following two-term recurrence:

2F1

¨

˚

˝

a ` 1, b ´ 1

c
; z

˛

‹

‚

“
pa ´ bq pz ppa ´ bq2 ´ 1q ` 2ab ´ ac ´ bc ` cq

apa ´ b ´ 1qpb ´ cq
2F1

¨

˚

˝

a, b

c
; z

˛

‹

‚

´
bpa ´ b ` 1qpa ´ cq

apa ´ b ´ 1qpb ´ cq
2F1

¨

˚

˝

a ´ 1, b ` 1

c
; z

˛

‹

‚

. (1.54)



Chapter 2
Sparse spectral methods for Volterra

integro-differential equations

The content of this chapter is based on research published in [49] and [45]. For the purposes

of this thesis, the content of the papers has been rewritten and merged into one coherent

chapter. Furthermore, all appearing figures for the numerical experiments included in this

chapter are original and were generated exclusively for this thesis.

2.1 Introduction to Volterra integral equations (VIEs)

Definition 2.1 (Volterra integral operator). For a given kernel Kpx, yq, we define the

Volterra integral operator with respect to Kpx, yq as:

pVKuqpxq :“

ż ℓpxq

0

Kpx, yqupyqdy.

In what follows we will discuss limits of integration options ℓpxq “ x and ℓpxq “ 1 ´ x,

as the former is the traditional definition of Volterra integrals and the latter variant arises

naturally in our derivation.

Volterra integral equations (VIEs) then, are equations in which the unknown function is

acted upon by a Volterra integral operator as defined above, whereas Volterra integro-

differential equations also involve derivatives. One furthermore distinguishes different so-

called kinds of these equations, of particular relevance to us are first and second kind

25
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equations for which we will explicitly construct a banded spectral method. Denoting the

unknown by u and the right-hand side function as g, first-kind Volterra integro-differential

equations have the general form

Definition 2.2 (Volterra integral equations of the first-kind).

VKu “ g.

Second kind equations arise out of first-kind equations by the addition of an identity operator

I to the Volterra integral term

Definition 2.3 (Volterra integral equations of the second-kind).

pλI ´ VKqu “ g.

The above definitions are for the linear varieties of these equations. We will discuss nonlinear

and integro-differential generalizations in Section 2.6. It should be noted that the name

third-kind equation is also used in the literature, see e.g. [100, 9, 10], but its specific

meaning is less standardized. While our method also has applications for some of these

third-kind equations, we will only sparingly mention them in numerical examples in Section

2.8.

Due to their common occurrence in natural science and finance applications, cf. [21, 113],

there is a rich literature on numerical algorithms for Volterra integral and integro-differential

equations, including numerical methods approaching half a century in age [19]. Some recent

notable numerical schemes developed for Volterra integral and integro-differential equations

include the convolution kernel, i.e. Kpx, yq “ Kpx ´ yq, approach due to Loureiro and

Xu in [116, 62] which generalizes an ultraspherical spectral method for convolution kernel

problems developed by Hale and Townsend in [52, 53] as well as collocation methods [20, 32]

and wavelet based approaches [59, 96, 54]. The significance of the method we propose in
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this chapter is that it achieves competitive accuracy and efficiency comparable to that of

the ultraspherical spectral method due to Hale [52] while not being restricted to convolution

kernels.

While superficially first and second-kind Volterra integral equations may appear similar,

important mathematical properties of the respective operators are different. Of particular

importance for our context is that first-kind operators are compact in certain function

spaces, meaning that straightforward convergence properties from finite section theory are

not applicable. As we will see in Section 2.7, at least for the linear case second-kind operators

are readily found to be more well-behaved. For similar reasons the difference between first

and second-kind equations will come into play again when we discuss preconditioning for

equilibrium measure problems in Chapter 3.

The remainder of this chapter is organized as follows: In Section 2.2 we briefly discuss the

above-mentioned spectral method for Volterra integral equations with convolution kernels

due to Hale and Townsend. In Section 2.3 we derive banded representations of the Volterra

integral operator on selected Jacobi polynomial bases. In Section 2.5 we detail the resulting

sparse spectral method algorithm for the linear equations. In Section 2.6 we describe a

generalization of the method to integro-differential and nonlinear equations. Convergence

proofs for the linear case for first and second-kind equations are given in Section 2.7. We

close with several numerical experiments and validations in Section 2.8 and an overview of

the results in Section 2.9.

2.2 The Hale-Townsend method for convolution kernel

Volterra integral equations

In this section we state the known result due to Hale and Townsend [52, 53] that Volterra

integro-differential equations of convolution type, i.e. Kpx, yq “ Kpx ´ yq, may be solved

using banded operators in a Legendre polynomial basis. As mentioned in Chapter 1, the

Legendre polynomials Pnpxq “ P
p0,0q
n pxq correspond to the special case a “ b “ 0 of the



28 Chapter 2. Sparse spectral methods for Volterra integro-differential equations

Jacobi polynomials. This section serves to describe the context of the method we introduce

in this chapter which holds for more general kernels.

We reproduce the main results underlying the banded spectral method for Volterra integro-

differential equations introduced by Hale and Townsend in [52, 53] in the following theorem:

Theorem 2.1. We denote the shifted and scaled Legendre polynomial basis with x P p0, 1q by

P̃pxq and a polynomial of degree m by Kpxq “ P̃pxqK, where K is an infinite dimensional

coefficient vector with m nonzero entries. Then the convolution Volterra integral operator

pVKuqpxq “

ż x

0

Kpx ´ yqupyqy, 0 ď x ď 1,

corresponds to an pm ` 2q-banded infinite dimensional matrix VK such that

pVKuqpxq “ P̃pxqVKu.

Furthermore, the entries of VK may be computed using the following recurrence relationship:

pVKqj,n`1 “ pVKqj,n´1 ´
2n ` 1

2j ` 3
pVKqj`1,n `

2n ` 1

2j ´ 1
pVKqj´1,n,

with the following starting values:

pVKqj,0 “

$

’

’

&

’

’

%

1
2

´

Kj´1

2j´1
´

Kj`1

2j`3

¯

, j ‰ 0

1
2

`

K0 ´ K1

3

˘

, j “ 0,

pVKqj,1 “

$

’

’

&

’

’

%

pVKqj´1,0

2j´1
´ pVKqj,0 ´

pVKqj`1,0

2j`3
, j ‰ 0

´
pVKq1,0

3
, j “ 0,

pVKq0,n “
p´1qnpVKqn,0

2n ` 1
, n ě 0.

Proof. The proof that the Volterra operator corresponds to an pm ` 2q-banded infinite

dimensional matrix can be found in [52, Proposition 3.1], while the proof of the recurrence
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relationship is given in [53, Theorem 4.1].

Hale and Townsend’s results allow one to solve Volterra integral equations for sufficiently

smooth convolution kernels K and solutions u with spectral accuracy and linear complex-

ity. By appending appropriate evaluation operators one can also use these results to solve

Volterra integro-differential equations with convolution kernels, cf. [52]. We delay the dis-

cussion of this procedure resulting in almost banded linear systems for integro-differential

equations to Section 2.6, as it similarly applies for our general kernel method. Finally, we

note that while Hale and Townsend’s result uses Legendre polynomials, Xu and Loureiro

proved generalizations for other orthogonal polynomial bases such as Jacobi polynomials,

cf. [116, 62].

In the section which follows we derive a general kernel banded spectral method by using

properties of the Proriol polyomials on the triangle, retaining the attractive features of

spectral accuracy and linear complexity of Hale and Townsend’s approach.

2.3 Banded Volterra operators in Jacobi bases

Before we derive the banded structure of the Volterra integral operator, we describe the

general strategy and define some of the auxiliary operators we will require. The first stepping

stone is to rewrite the following integral over a general bivariate function fpx, yq as a product

of operators acting on the coefficient vectors of this function in a basis of Proriol polynomials

on the triangle as introduced in Section 1.3.2:

ż 1´x

0

fpx, yqdy “ P̃pxqWQyf△. (2.1)

In the above, we have introduced the two infinite-dimensional matrices W and Qy, which

respectively act as weight and integration operators. Note that integrating over one variable,

in this case y, still leaves us with a univariate function and thus the result of WQyf△ is as

a coefficient vector of the integrated function in univariate shifted Jacobi polynomials on
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the univariate interval p0, 1q. We delay the explicit entry-wise characterization of these two

matrices to a later point, as they will make more sense when the full strategy is understood.

The next step is to define an extension operator Ey, which has the property of mapping a

univariate function expanded in univariate Jacobi polynomials to a bivariate function on

the triangle expanded in Proriol polynomials, i.e.:

P̃pxqf “ Ppx, yqEyf . (2.2)

The resulting bivariate function defined by the coefficient vector f△ “ Eyf is independent of

y and the extension operation can thus be thought of as extending the univariate function

across the triangle domain. Putting the two previous steps together allows us to write an

integration of a univariate function expanded in some Jacobi polynomial basis as

ż 1´x

0

fpx, yqdy “ P̃pxqWQyEyf . (2.3)

The most straightforward way of changing the limits of integration to ℓpxq “ x is to define

a reflection operator R based on the equivalent of the symmetry property in Eq. 1.4 for the

shifted Jacobi polynomials on p0, 1q:

P̃pxqRf “ fp1 ´ xq. (2.4)

It turns out that the above-defined operators satisfy nice commutation relationships with

the multiplication by x and y operators on the Proriol polynomials as defined in Eq.(1.34).

To remove ambiguity, we denote the multiplication-by-x operator on the real interval using

X̄ in the following relationships:

QyXf△ “ X̄Qyf△, (2.5)

YEyf “ EyX̄f . (2.6)
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Having made the above observations, we now move on to deriving the explicit form of the

operators. First, we have so far deliberately suppressed the basis parameters for the shifted

Jacobi and the Proriol polynomials but to derive an explicit element-wise construction we

have to choose concrete bases. We make the choice pa, b, cq “ p0, 0, 0q for the Proriol polyno-

mials, as this leads to a particularly simple form. The natural choice for the corresponding

univariate basis then becomes P̃p1,0qpxq as the following first steps towards the entries of Qy

show:

P̃p1,0q
pxqWQyf△ “

ż 1´x

0

fpx, yqdy “

ż 1´x

0

8
ÿ

n“0

n
ÿ

k“0

P
p0,0,0q

n,k px, yqfn,kdy

“

8
ÿ

n“0

n
ÿ

k“0

fn,kp1 ´ xq
kP̃

p2k`1,0q

n´k pxq

ż 1´x

0

P̃
p0,0q

k

ˆ

y

1 ´ x

˙

dy

“

8
ÿ

n“0

n
ÿ

k“0

fn,kp1 ´ xq
k`1P̃

p2k`1,0q

n´k pxq

ż 1

0

P̃
p0,0q

k psq ds.

In the above computation, the first line is simply an expansion of the function fpx, yq in the

Proriol basis Pp0,0,0qpx, yq. The second line then uses the definition of the Proriol polynomials

in terms of shifted Jacobi polynomials as described in Eq. (1.33). The final step makes the

variable substitution y
1´x

Ñ s. Continuing from the final line of the above computation, we

make the observation that
ş1

0
P̃

p0,0q

k psq ds vanishes for all k ą 0 due to the orthogonality of

the shifted Jacobi – or in this case specifically Legendre – polynomials. Since furthermore

we have
ş1

0
P̃

p0,0q

0 psq ds “ 1 this results in the following simplification:

P̃p1,0q
pxqWQyf△ “

ż 1´x

0

fpx, yqdy “

8
ÿ

n“0

fn,0p1 ´ xqP̃ p1,0q
n pxq (2.7)

with limits of integration from 0 to 1 ´ x. Using the reflection operator, i.e. the symmetry

property in Eq. (1.4), we obtain a version valid for integration limits from 0 to x as an

immediate corollary. Setting W “ pI ´ Xq on the basis of (2.7), we find that we can write

Qy as a block matrix with the n-th diagonal block being given by an n-dimensional row
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vector with 1 as the first element and 0 as the remaining elements, i.e.:

Qy “

¨

˚

˚

˚

˚

˚

˚

˚

˝

1

1 0

1 0 0

. . . . . . . . . . . .

˛

‹

‹

‹

‹

‹

‹

‹

‚

.

The expansion operator from the univariate Jacobi polynomials to the triangle has a straight-

forward block matrix form

Ey “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

ˆ

ˆ

ˆ

. . .

. . .

. . .

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

whose entries depend on the basis parameters used in the univariate and triangle bases. For

the basis choices made above, that is P̃p1,0qpxq for the univariate basis and Pp0,0,0qpx, yq for

the triangle, the n-th diagonal block, which is an n-dimensional column vector, has j-th

entry p´1qj`np2j´1q

n
.

Finally, we point out that due to the block structure of the expansion and integration oper-

ators, multiplication of Qy and Ey yields a diagonal matrix D whose entries are analytically

known and thus can be directly generated, i.e. without the need for matrix multiplication:

pQyEyqn,n “ pDqn,n “
p´1qn`1

n
.

2.4 An operator-valued version of Clenshaw’s algorithm

The operators defined in the previous section allow for the efficient computation of integrals

of the form
şx

0
fpyqdy, which corresponds to a Volterra integral with trivial kernel Kpx, yq “



2.4. An operator-valued version of Clenshaw’s algorithm 33

1. In this section we describe how a modification of Clenshaw’s algorithm discussed above

in Section 1.2 can be used to extend this approach to general kernels. First, we note that

if we had access to the kernel multiplication operator KpX,Yq, with X and Y being the

multiplication operators defined in Section 1.3.2 on the Proriol polynomial basis, we could

naively simply compute

ż 1´x

0

Kpx, yqfpyqdy “ P̃p1,0q
pxqpI ´ X̄qQyKpX,YqEyf .

To obtain the kernel multiplication operator we could for example use a variant of Clen-

shaw’s method, as was recently discussed in [77]. While this turns out to be computationally

wasteful for the computation of Volterra integrals, which is our primary concern in this chap-

ter, it is still the method of choice when the multiplication operators themselves are required

and we thus briefly describe it before explaining how to improve upon it for Volterra inte-

grals. The kernel multiplication operator KpX,Yq can be written in an operator Clenshaw

approach, cf. Section 1.2, as

KpX,Yq “ pe0 b IqL´TK△, (2.8)

where b denotes the Kronecker product, K△ represents the Proriol polynomial coefficients

of the bivariate kernel function and L is defined to be

L “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

pI1 b Iq

pAx
0 b Iq ´ pI1 b Xq pBx

0 b Iq

pAy
0 b Iq ´ pI1 b Yq pBy

0 b Iq

pCx
0 b Iq pAx

1 b Iq ´ pI2 b Xq pBx
1 b Iq

pCy
0 b Iq pAx

1 b Iq ´ pI2 b Yq pBy
1 b Iq

. . . . . . . . .

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.
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When we introduced the Clenshaw method on the triangle in Section 1.3.2, we noted that

these systems require preconditioning in order to use backward substitution. A precondi-

tioner satisfying our requirements is

¨

˚

˚

˚

˚

˚

˚

˚

˝

pI1 b Iq

pB`
0 b Iq

pB`
1 b Iq

. . .

˛

‹

‹

‹

‹

‹

‹

‹

‚

L “ L̃,

where the blocks B`
n are defined exactly as in Section 1.3.2, cf. [77].

While the above approach allows us to compute the kernel multiplication operator effectively

using an operator valued Clenshaw method, there are still substantial improvements we can

make to our algorithm if the ultimate goal is to compute the Volterra integral operator.

It is instructive to illustrate the general idea of these improvements the simpler context

of monomial expansions first. Given a monomial expansion of a general kernel function

Kpx, yq “
ř8

n“0

řn
j“0 knjx

n´jyj we can write the Volterra integral operator in the following

way using the results of the previous section:

ż 1´x

0

Kpx, yqfpyqdy “ P̃p1,0q
pxqpI ´ X̄qQyKpX,YqEyf

“ P̃p1,0q
pxqpI ´ X̄qQy

˜

8
ÿ

n“0

n
ÿ

j“0

knjX
n´jYj

¸

Eyf

“ P̃p1,0q
pxqpI ´ X̄q

8
ÿ

n“0

n
ÿ

j“0

knjX̄
n´jQyEyX̄

jf

“ P̃p1,0q
pxqpI ´ X̄q

8
ÿ

n“0

n
ÿ

j“0

knjX̄
n´jDX̄jf ,

where again we note that the multiplication-by-x operator on the real interval is denoted by

X̄ to avoid ambiguity with the triangle basis multiplication-by-x operator denoted X. Note

that the second to last step used the commutation relationships in (2.5–2.6). The above

derivation shows that instead of the very costly approach of generating the kernel multi-
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plication operator (either via a direct expansion or operator valued Clenshaw algorithm)

on the triangle and then multiplying it with all of the required operators one by one, we

can instead generate the entire Volterra integral operator in the kernel computation step

while making use of the diagonal nature of integration in these bases. Simultaneously we

only require the use of the tridiagonal multiplication-by-x operators associated with the

univariate Jacobi polynomials as opposed to the more involved multiplication operators on

the triangle domain.

As stated, the monomial example was merely for illustrative purposes – in practice we will

use this idea of using the commutation relationships to generate the Volterra integral opera-

tor during the kernel computation step but expand in the kernel in an orthogonal polynomial

(Proriol) basis for substantially improved efficiency and convergence.

By replacing K△ with pK△ b QyEyq in (2.8) and using the commutation relationships (2.5–

2.6) we find that all the X operators can be replaced by left multiplication by X̄ and all Y

operators with right multiplication by X̄ respectively – we will denote this using ˛ on the

respective sides. The system to solve is then

QyKpX,YqEy “ pe0 b IqL´T
V pK△ b QyEyq

“ pe0 b IqL´T
V pK△ b Dq,

where we have

LV “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

pI1 b Iq

pAx
0 b Iq ´ pI1 b X̄˛q pBx

0 b Iq

pAy
0 b Iq ´ pI1 b ˛X̄q pBy

0 b Iq

pCx
0 b Iq pAx

1 b Iq ´ pI2 b X̄˛q pBx
1 b Iq

pCy
0 b Iq pAx

1 b Iq ´ pI2 b ˛X̄q pBy
1 b Iq

. . . . . . . . .

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.
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After preconditioning, as described above and in Section 1.2, this allows for efficient com-

putation of QyKpX,YqEy by taking advantage of the diagonality of D “ QyEy. Note that

the weight I ´ X̄ was not included in this computation and thus must still be applied to

this operator to obtain the full Volterra integral operator.

As the final part of this section we briefly mention how the described approach must be

modified if we instead wish to integrate from 0 to x; there are two mathematically equivalent

approaches: First, we may replace all the left multiplications with X̄ by left multiplications

with pI´X̄q while the right multiplications remain as they are since they correspond to mul-

tiplications by y. The second option is to simply supply the function Hpx, yq “ Kp1´ x, yq

to the algorithm instead, avoiding the need for a separate implementation entirely.

2.5 Sparse spectral method for linear Volterra integral

equations

This section details the sparse solution algorithms for linear Volterra integral equations of

first and second-kind, as presented in Algorithm 1 and 2 on the basis of the results derived

in the previous sections.

We begin with Volterra integral equations of second-kind, that is equations of the form

upxq “ gpxq `

ż x

0

Kpx, yqupyqdy,

where gpxq and Kpx, yq are given. We have seen in the previous section that we can obtain

the QyKpI ´ X,YqEy part of the Volterra operator using a recursive operator-valued Clen-

shaw method but are left with a missing multiplication of pI ´ Xq. An elegant quasimatrix

version of the full equation may be found by introducing the weighted lowering operator

L
p0,0q

p1,0q
, whose entries are found using the recurrence relationships in (1.9) and which maps

from P̃p1,0qpxq to P̃p0,0qpxq while simultaneously multiplying by p1´xq. After an application

of the reflection operator discussed in (2.4), we use the raising operator S
p1,0q

p0,0q
, whose entries
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are given by the recurrence relationships (1.10), to return to our original basis of P̃p1,0qpxq.

In summary, we can write the Volterra integral equations of the second-kind as

P̃p1,0q
pxqu “ P̃p1,0q

pxq

´

I ´ S
p1,0q

p0,0q
RL

p0,0q

p1,0q
QyKpI ´ X,YqEy

¯´1

g,

which means that we can obtain u by solving a banded linear system, as all of the operators

appearing in the above equation are banded. The reason we lower, reflect, then raise instead

of just multiplying pI ´ Xq and then reflecting, is that the reflection operator acting on

P̃p1,0qpxq would move us to P̃p0,1qpxq and thus an incompatible basis, whereas P̃p0,0qpxq is

mapped to P̃p0,0qpxq due to the parameter symmetry. Consequently, if we instead intend

to solve a second-kind Volterra integral equation with limits of integration 0 to 1 ´ x, i.e.

without the need for reflection, we instead obtain the slightly simpler form

P̃p1,0q
pxqu “ P̃p1,0q

pxq
`

I ´ pI ´ X̄qQyKpX,YqEy

˘´1
g.

This procedure is summarized in Algorithm 2.

Next we briefly discuss the ways in which solving Volterra integral equations of first-kind

differs from the method introduced for second-kind equations. First, it is evident from

the symmetries of the first-kind equation that we will not require any reflections – this is

because, in general if upxq solves

upxq “

ż x

0

Kpx, yqupyqdy,

then clearly up1 ´ xq solves

up1 ´ xq “

ż 1´x

0

Kp1 ´ x, yqupyqdy,

and vice versa. In general this symmetry does not hold for second-kind equations. For

technical reasons, the discussion of which we delay to the convergence analysis in Section 2.7,
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the equation must furthermore first be divided by p1´xq on both sides before expanding the

functions in the appropriate bases. This means that the Clenshaw obtained term QyKpI ´

X,YqEy is already the to-be-inverted operator, i.e.:

P̃p1,0q
pxqu “ P̃p1,0q

pxq pQyKpI ´ X,YqEyq
´1 q,

where qpxq “
gp1´xq

1´x
. We summarize the full procedure in Algorithm 1.

Algorithm 1 Linear Volterra integral equations of first-kind

ż x

0

Kpx, yqupyqdy “ gpxq.

1. Expand qpxq “
gp1´xq

1´x
in P̃p1,0qpxq, obtaining q.

2. Generate QyKpI ´ X,YqEy via operator-valued Clenshaw method.

3. Solve the banded linear system QyKpI ´ X,YqEyu “ q for u.

4. The solution is P̃p1,0qpxqu.

Algorithm 2 Linear Volterra integral equations of second-kind

upxq ´

ż x

0

Kpx, yqupyqdy “ gpxq.

1. Expand gpxq in P̃p1,0qpxq, obtaining g.

2. Generate QyKpI ´ X,YqEy recursively via an operator-valued Clenshaw method.

3. Solve the banded linear system
´

I ´ S
p1,0q

p0,0q
RL

p0,0q

p1,0q
QyKpI ´ X,YqEy

¯

u “ g for u.

4. The solution is P̃p1,0qpxqu.
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2.6 Integro-differential and nonlinear generalization

In this section we extend the above methods to integro-differential Volterra equations

(VIDEs), nonlinear Volterra integral equations as well as simultaneously nonlinear and

integro-differential Volterra equations. We begin with linear integro-differential Volterra

equations, a for our purposes sufficiently general form of which is

m
ÿ

k“0

λk
dku

dxk
“ gpxq `

ż ℓpxq

0

Kpx, yqupyqdy, (2.9)

for somem P N0 and λk P R. As may be inferred from the derivative recurrence relationships

for the univariate Jacobi polynomials in (1.7), the introduction of derivative operators of

various orders needs to be treated with some care in order to maintain a consistent polyno-

mial basis. First, we define the operator which acts on the coefficient space of P̃p1,0qpxq to

obtain the derivative as

f 1
pxq “ P̃p2,1q

pxqDp1,0qf ,

where the entries are obtained via the recurrence in (1.7). Note the basis shift, which

similarly holds in the general basis case, i.e.

f 1
pxq “ P̃p2`k,1`kq

pxqDp1`k,kqfp1`k,kq,

where to avoid ambiguity we have labeled the coefficient vector fp1`k,kq with a subscript

indicating that it is an expansion in the basis P̃p1`k,kqpxq. Where we write no subscript in

this chapter, we mean the coefficient vector with respect to P̃p1,0qpxq as discussed above but

when multiple bases are involved in an expression we will also make this basis explicit to

avoid ambiguity.

Importantly, since first order derivatives cause a basis parameter shift, higher order deriva-

tives are not obtained by simply re-applying the first order derivative operator. Instead,
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they are comprised of consecutive applications of higher basis parameter versions of first

order derivatives. We will thus denote the order of our derivative operatars by subscript,

e.g. for the second order derivative we write

f2
pxq “ P̃p3`k,2`kq

pxqDp2`k,1`kqDp1`k,kqfp1`k,kq “ P̃p3`k,2`kq
pxqDp1`k,kq

2 fp1`k,kq.

Note that we choose the superscript on the second order operator such that it indicates

what basis it acts on, as opposed to the basis it maps to, consistent with our above notation

for the first order derivatives. In general we thus observe that the m-th order derivative

operators act as

f pmq
pxq “ P̃p1`k`m,k`mq

pxqDp1`k,kq
m fp1`k,kq.

There are a number of reasons why the above discussion on its own is still insufficient to

invert a sum of derivative operators and the Volterra integral operator. First and foremost,

we will have to apply consistent raising operators to both the Volterra integral operator and

all derivative operators which are not of the highest appearing order, for the resulting basis

to be consistent with the shift caused by the highest order derivative operator. Second, the

inverse of an operator mapping from basis P̃p1,0qpxq to the some other basis P̃p1`m,mqpxq

also reverses this mapping, meaning that the function gpxq should initially be expanded

in the basis consistent with the highest order derivative, i.e. P̃p1`m,1`mqpxq – in principle

we could also compute an expansion in P̃p1,0qpxq and apply a raising operator but this is

computationally wasteful. The final piece we are missing is that differential equations are

ill-posed without supplementary constraints on the solution, such as boundary conditions.

In fact for a differential equation with highest appearing derivative order m, we in general

require m boundary conditions, e.g.

dku

dxk

ˇ

ˇ

ˇ

ˇ

x“0

“ ck,



2.7. Convergence proofs for the linear VIEs 41

where k “ 0...m ´ 1 and ck P R. Boundary conditions are enforced on coefficients by

appending evaluation operators (which take the form of row vectors) as well as the initial

conditions to the system. These evaluation operators in general lead to a loss of true

bandedness of the operator, as they fill in the top m rows – we explore the structure of

these operators further in the numerical experiments section. However, the resulting almost

banded systems remain highly efficient to solve. We summarize the resulting procedure for

linear VIDEs in Algorithm 3. Note that the entries of the evaluation operators, which we

denote E0 may be obtained via the Jacobi polynomial properties in (1.4) and (1.5).

To solve nonlinear Volterra integral equations we use an iterative approach, meaning that we

leverage the linear method along with a root search algorithm (such as Newton’s method).

We summarize the steps of the resulting nonlinear integral equation method in Algorithm

4. The same idea also allows us to solve integro-differential equations based on the linear

VIDE solver we derived above – with Algorithm 5 detailing the steps.

2.7 Convergence proofs for the linear VIEs

In practice, computers cannot use the full analytic infinite-dimensional versions of the meth-

ods discussed in previous sections. Instead, as sketched in Section 1.1.5, we terminate the

polynomial approximation of the appearing functions at some finite degree N P N. As a

result, we also only ever have to compute N ˆ N blocks of the infinite-dimensional banded

operators.

In this section we prove convergence of the obtained truncated solution coefficient vectors

uN to the true solution u as N Ñ 8, given appropriate assumptions. For this purpose we

first define some useful operators.



42 Chapter 2. Sparse spectral methods for Volterra integro-differential equations

Algorithm 3 Linear integro-differential Volterra equations (linear VIDEs)

˜

m
ÿ

k“0

λk
dku

dxk

¸

´

ż x

0

Kpx, yqupyqdy “ gpxq, λk P R;m P N

dku

dxk

ˇ

ˇ

ˇ

ˇ

x“0

“ ck, k “ 0...m ´ 1 and ck P R.

1. Expand gpxq in P̃p1`m,mqpxq.

2. Generate QyKpI ´ X,YqEy recursively via operator-valued Clenshaw method.

3. Generate the banded operator
´

řm
k“0 λkS

p1`m,mq

p1`k,kq
Dp1,0q

k ´ S
p1`m,mq

p0,0q
RL

p0,0q

p1,0q
QyKpI ´ X,YqEy

¯

.

4. Append evaluation operators pE0, E0Dp1,0q, ...q to the top rows of the computed operator
and append corresponding initial conditions pc0, c1, ...q to the top of gp1`m,mq.

5. Solve the now almost banded linear system:
¨

˚

˚

˚

˚

˚

˝

E0
E0Dp1,0q

...

E0Dpm,m´1q

m´1
řm

k“0 λkS
p1`m,mq

p1`k,kq
Dp1,0q

k ´ S
p1`m,mq

p0,0q
RL

p0,0q

p1,0q
QyKpI ´ X,YqEy

˛

‹

‹

‹

‹

‹

‚

up1,0q “

¨

˚

˚

˚

˚

˚

˝

c0
c1
...

cm´1

gp1`m,mq

˛

‹

‹

‹

‹

‹

‚

6. The approximate solution is P̃p1,0qpxqup1,0q.
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Algorithm 4 Non-linear Volterra integral equations

upxq “ gpxq `

ż x

0

Kpx, yqfpy, upyqqdy.

1. Expand gpxq in P̃p1,0qpxq.

2. Generate QyKpI ´ X,YqEy recursively via operator-valued Clenshaw method.

3. Generate the operator
´

I ´ S
p1,0q

p0,0q
RL

p0,0q

p1,0q
VK

¯

.

4. Use a simultaneous root-search algorithm (e.g. Newton method) for the elements of

the objective function F puq “

´

I ´ S
p1,0q

p0,0q
RL

p0,0q

p1,0q
VK

¯

fpy,uq ´ g.

5. The approximate solution is given by the obtained root P̃p1,0qpxqTu.

Definition 2.4 (Analysis and synthesis operators). We define the analysis operator

E : L2
p0, 1q Ñ ℓ2

as the inclusion of a square integrable function into the infinite-dimensional Banach se-

quence space ℓ2 of normalized shifted Legendre polynomials P̃pxq. Furthermore, we define

the synthesis operator as the inverse of the analysis operator:

E´1 : ℓ2 Ñ L2
p0, 1q.

The terminology (’analysis’ and ’synthesis’) are borrowed from frame theory [29]. We note

as an important property of the above defined operators that they are both bounded. We

furthermore note a distinction between the bases used in our descriptions of the algorithms

and the proofs we present in this section: In these proofs we will use the fact that the basis

obtained for the linear Volterra integral equations is of the form p1 ´ xqPp1,0qpxq, meaning

that it is possible to use conversion operators to transform our method into one which uses

only normalized Legendre polynomials via the weighted lowering relationships in (1.9).
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Algorithm 5 Non-linear integro-differential Volterra equations

˜

m
ÿ

k“0

λk
dku

dxk

¸

´

ż x

0

Kpx, yqfpy, upyqqdy “ gpxq, λk P R;m P N

dku

dxk

ˇ

ˇ

ˇ

ˇ

x“0

“ ck, k “ 0...m ´ 1 and ck P R.

1. Expand gpxq in P̃p1`m,mqpxq.

2. Generate QyKpI ´ X,YqEy recursively via operator-valued Clenshaw method.

3. Generate the banded operator
´

řm
k“0 λkS

p1`m,mq

p1`k,kq
Dp1,0q

k ´ S
p1`m,mq

p0,0q
RL

p0,0q

p1,0q
QyKpI ´ X,YqEy

¯

.

4. Append evaluation operators pE0, E0Dp1,0q, ...q as the first row of the operator and
append corresponding initial conditions pc0, c1, ...q to the top of gp1`m,mq.

5. Use a simultaneous root-search algorithm (e.g. Newton method) for the elements of
the objective function

F puq “

¨

˚

˚

˚

˚

˚

˚

˝

E0u ´ c0
E0Dp1,0qu ´ c1

...

E0Dpm,m´1q

m´1 u ´ cm´1
´

řm
k“0 λmS

p1`m,mq

p1`k,kq
Dp1,0q

k ´ S
p1`m,mq

p0,0q
RL

p0,0q

p1,0q
QyKpI ´ X,YqEy

¯

fpy,uq ´ gp1`m,mq

˛

‹

‹

‹

‹

‹

‹

‚

.

6. The approximate solution is given by the obtained root P̃p1,0qpxqTu.
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Definition 2.5 (Truncation projection operator). We define the truncation projection op-

erators Pn : ℓ2 Ñ ℓ2 to map an infinite coefficient vector to a truncated version with zeros

after a cutoff point given by n, that is:

Pn

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

u1

...

un

un`1

...

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

u1

...

un

0

...

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

We now mention two classical results on the existence of solutions to the analytic Volterra

integral equations in certain well-behaved special cases. For our numerical approach we will

always assume that the problems we wish to solve have unique solutions; analytic topics

such as uniqueness and existence of solutions to these types of equations have been discussed

at length in the literature and we refer to e.g. [21, 88, 113] for details.

Theorem 2.2. Let I “ r0, T s, let V : CpIq Ñ CpIq denote the linear Volterra integral

operator

pVuqptq :“

ż t

0

Kpt, squpsqds, t P I,

with the kernel Kpt, sq continuous on D “ tpt, sq, 0 ď s ď t ď T u. Furthermore, let Rpt, sq

be the resolvent kernel associated with K defined by

Rpt, sq :“ lim
νÑ8

ν
ÿ

n“1

Knpt, sq,

Knpt, sq :“

ż t

s

Krpt, vqKn´rpv, sqdv, pt, sq P D,

K1pt, sq :“ Kpt, sq.
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Then for any f P CpIq the second kind Volterra integral equation

uptq ´ pVuqptq “ fptq,

posesses a unique solution u P CpIq which can be written in the form

uptq “ fptq `

ż t

0

Rpt, sqfpsqds, t P I.

Proof. For a proof of this result see [21, Chapter 1.2.1].

Theorem 2.3. Let K P CpDq with D “ tpt, sq, 0 ď s ď t ď T u and BK
Bt

P CpDq and let

Kpt, tq ‰ 0 for all t P I :“ r0, T s. Then for any g P C1pIq with gp0q “ 0, the Volterra

integral equation of first kind

ż t

0

Kpt, squpsqds “ gptq, t P I,

posesses a unique solution u P CpIq satisfying

up0q “
g1p0q

Kp0, 0q
.

Proof. For a proof of this result we refer to [21, Chapter 1.4.1]; the original proof is due to

Volterra himself [109].

Note that existence and uniqueness of solutions for Volterra integral equations has been

studied in more general spaces such as L2pIq as well as for more general kernels for which

we refer to [21, 88, 113] and the references therein.
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For numerical convergence, our proof strategy is to find a representation of the to-be-inverted

operators as compact perturbations of the identity, i.e.

pI ` Kqu “ g, (2.10)

where K is a compact operator. By the Fredholm alternative, see e.g. [13, 60], we then

immediately know that the operators are either invertible or neither injective nor surjective.

Standard convergence results from the theory of finite section methods then complete the

convergence proofs. While the general strategy is thus similar for both first and second-kind

equations, the way we derive a representation for them in terms of compact perturbations

of the identity differ substantially and we thus address them separately – beginning with

the easier to analyze second-kind equations.

Lemma 2.1. The Volterra integral operator VK : ℓ2 Ñ ℓ2 with limits of integration from

0 to x acting on the coefficient Banach space of the Legendre polynomial basis P̃pxq can be

represented as

VK “ RL
p0,0q

p1,0q
QyKpI ´ X,YqEyS

p1,0q

p0,0q
,

for a given kernel function Kpx, yq P L2rT 2s and with the respective operators as defined in

Section 2.3. Furthermore, this operator is compact.

Proof. The form of the operator was derived in Section 2.3. The compactness of VK follows

from its relationship to the known to be compact Volterra integral operator on the space of

square integrable functions which we write VK for a Kpx, yq P L2rT 2s:

L2p0, 1q L2p0, 1q

ℓ2 ℓ2

E

VK

VK

E´1
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The compactness of VK (which is a Hilbert-Schmidt operator) is a classical result of func-

tional analysis, cf. [68]. Since VK is thus a finite composition of bounded and a compact

operators from and to Banach spaces, it is itself also compact.

Lemma 2.2. The coefficient space Volterra integral operator VK and truncation projection

operator Pn, defined as above, satisfy

lim
nÑ8

}VK ´ PnVKPT
n } “ 0.

Proof. This is a corollary of the compactness of VK and ℓ2 having the approximation prop-

erty as it is a Hilbert space, cf. [60].

Corollary 2.1. For well-posed Volterra integral equations of second-kind, Algorithm 2 con-

verges in the sense that

}u ´ Pnu} Ñ 0 as n Ñ 8.

Proof. By Lemma 2.1 the operator for which we intend to solve truncated problems can

be written as a compact perturbation of the identity, i.e. I ` K with K “ ´VK compact.

The result is then a corollary of Lemmas 2.1 and 2.2 combined with the convergence results

for problems involving compact perturbations of the identity in the theory of finite section

methods, for which we refer to [18].

Remark 2.1. For polynomial kernels Kpx, yq, our method (for both equations of first and

second kind) computes the expansion coefficients in the orthogonal polynomial basis in the

sense discussed in Chapter 1. In particular, this means that the convergence rate with respect

to the degree of the polynomial approximation n follows known convergence properties for

these bases, with the precise convergence properties depending e.g. on the smoothness of the

solution. We refer to [106] for a standard work discussing these convergence rates.
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The three above results provide the necessary justification to treat the solutions obtained

by means of Algorithm 2 as approximations to the unique solution of a Volterra integral

equation of second-kind. We will now prove a similar result for Algorithm 1. The proof

of the analogous first-kind result should be expected to be substantially different, since as

we saw in Lemma 2.1, both operators VK and VK are compact on the respective spaces.

To obtain a sense in which we can still invert these operators and approximate them in

a convergent way, we need to introduce some restrictions to our spaces. To that end, we

introduce the following definition:

Definition 2.6. We denote by ℓ2λ, λ ě 0 the Banach sequence space with norm

}u}ℓ2λ
“

g

f

f

e

8
ÿ

n“0

pp1 ` nqλ|un|q
2

ă 8.

We may loosely think of these λ-spaces as a Sobolev space analogue for sequence spaces.

In what follows we will use the fact that for any u P ℓ2λ, we also have u P ℓ2, meaning that

ℓ2λ Ă ℓ2 (the converse of this does not hold for λ ą 0). We will see that by restricting our

Volterra operator to acting on such λ-spaces, we can obtain the desired convergence results

as the operator turns out to no longer be compact.

We will present the proofs for the example of monomial expansions of the kernel as opposed

to the orthogonal polynomial Clenshaw approach we described, as while it is less efficient

computationally it is mathematically equivalent and much easier to work with.

Lemma 2.3. For a given polynomial kernel of general form

Kpx, yq “

M
ÿ

n“0

n
ÿ

j“0

knjx
n´jyj,

the Volterra integral operator with limits of integration from 0 to x acting on the coefficient
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space of the shifted Legendre polynomials P̃pxq satisfies

VK “ RL
p0,0q

p1,0q
D

˜

D´1
M
ÿ

n“0

n
ÿ

j“0

knjpI ´ X̄q
n´jDX̄j

¸

S
p1,0q

p0,0q
,

where the diagonal operator D satisfies D “ QyEy, with Qy and Ey as in Section 2.3.

Proof. That the Volterra operator is of this form if D´1 exists and that D “ QyEy is

diagonal with n-th diagonal entry p´1qn`1

n
was shown in Section 2.3, compare also [73, 18.6.1

and 18.17.1]. Note that importantly, by definition of the λ sequence spaces one finds that

D actually maps into ℓ21, that is D : ℓ2 Ñ ℓ21, making D an invertible bounded operator with

inverse D´1 : ℓ21 Ñ ℓ2. The result then follows immediately from D´1D “ I.

Lemma 2.4. The Volterra operator VK has a representation in terms of a product of in-

vertible operators with a compact perturbation of a Toeplitz operator, i.e.:

ṼK “ L
p0,0q

p1,0q
DpTrf s ` KqS

p1,0q

p0,0q
,

where Trf s is a Toeplitz operator with symbol f and K is a compact operator. The symbol

f of the Toeplitz operator Trf s has explicit form

fpzq “

M
ÿ

n“0

n
ÿ

j“0

knj cos
2n

ˆ

θ

2

˙

with z “ eiθ,

where knj are the unique coefficients of the polynomial kernel

Kpx, yq “

M
ÿ

n“0

n
ÿ

j“0

knjx
n´jyj

Proof. By Lemma 2.3 the Volterra operator VK is known to be of the form

VK “ L
p0,0q

p1,0q
D

˜

M
ÿ

n“0

n
ÿ

j“0

knjD
´1

pI ´ X̄q
n´jDX̄j

¸

S
p1,0q

p0,0q
.
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We thus seek a representation of
´

řM
n“0

řn
j“0 knjD

´1pI ´ X̄qn´jDX̄j
¯

as a compact pertur-

bation of a Toeplitz operator. We will make use of the result that given sufficient continuity

assumptions on the kernel (which are automatically satisfied in this case because it is a

polynomial) the following relationship holds for a multiplication of two Toeplitz operators:

T rasT rbs “ T rabs ´ HrasHrb̄s, (2.11)

with the operators Hras, Hrās and Hrb̄s being compact Hankel operator – we refer to [17]

for discussion and proof of this result. In the case that a “ b the above result reduces to

T rasT ras “ T ra2s ´ HrasHrās.

An important corollary of the above statement is that any finite power of an asymptotically

Toeplitz operator (satisfying the appropriate continuity assumptions on the symbol) again

yields an asymptotically Toeplitz operator, since e.g.

pT ` Kq
2

“ T 2
` TK ` KT ` K2.

This is asymptotically Toeplitz because T 2 is asymptotically Toeplitz by the above cited

result, while the remaining terms are compositions of bounded operators and compact op-

erators, making TK ` KT ` K2 compact. Induction may be used to prove this result for

any finite power. Since X̄ is known to be an asymptotically Toeplitz operator, the above

discussion shows that all operators of the form X̄j as well as D´1pI ´ X̄qjD are also asymp-

totically Toeplitz. Furthermore, we note that the operators X̄ and D´1pI ´ X̄qD differ only

in their compact part, with their Toeplitz component being the same. As sums of asymp-

totically Toeplitz operators are straightforwardly seen to be asymptotically Toeplitz as well,
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this proves that the expression

˜

M
ÿ

n“0

n
ÿ

j“0

knjD
´1

pI ´ X̄q
n´jDX̄j

¸

indeed does have a representation as pTrf s ` Kq. What remains to be demonstrated is the

claimed explicit form of the symbol f of Trf s. Since the multiplication operator X̄ for the

basis P̃p1,0qpxq is banded with explicitly known entries it is straightforward to observe that

its symbol is

ˆ

1

2
`

z

4
`

z̄

4

˙

“ cos2
ˆ

θ

2

˙

.

As discussed above, this is thus also the symbol of the Toeplitz component of D´1pI ´ X̄qD.

Furthermore, we have

D´1
pI ´ X̄q

n´jD “ pD´1
pI ´ X̄qDq

n´j.

Putting all of these observations together, we obtain the explicit form of the desired symbol

of
´

řM
n“0

řn
j“0 knjD

´1pI ´ X̄qn´jDX̄j
¯

:

fpzq “

M
ÿ

n“0

n
ÿ

j“0

knj cos
2n

ˆ

θ

2

˙

.

Theorem 2.4. The method described in Algorithm 1 converges for well-posed Volterra in-

tegral equations of the first-kind VKu “ g with limits of integration 0 to x and with a

polynomial kernel Kpx, yq P L2rT 2s if both of the following conditions are true:

• g P ℓ21, where g is defined by p1 ´ xqgpxq “ P̃p1,0qpxqg.

• The symbol of the Toeplitz component of the asymptotically Toeplitz part of the Volterra
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operator in Lemma 2.4 does not vanish on the unit circle – an equivalent condition is

that @x P r0, 1s : Kpx, xq ‰ 0.

Proof. The first condition is a consequence of the spaces the operator in Lemma 2.3 maps

between. One way to see this is that, after expanding gp1´xq “ P̃pxqRg in Legendre basis,

inverting the partial operators sequentially from the left requires using D´1
´

L
p0,0q

p1,0q

¯´1

R´1.

We then note that by definition of the respective operators

´

L
p0,0q

p1,0q

¯´1

R´1Rg “ pI ´ X̄qS
p1,0q

p0,0q
g “ g

where g are the coefficients of p1 ´ xqgpxq in the basis P̃p1,0qpxq. Finally, since D maps into

ℓ21, that is D : ℓ2 Ñ ℓ21, taking its inverse puts the stated condition on the Jacobi polynomial

coefficients of p1 ´ xqgpxq.

The proof of the second condition requires the introduction of some auxilliary results: An

asymptotically Toeplitz operator of the form pT ` Kq is known to be invertible if it is a

Fredholm operator, its index is 0 and its kernel is trivial, cf. [51, 18, 43] and the references

therein. Additionally, a sufficient condition for an asymptotically Toeplitz operator to be

Fredholm is for its symbol, i.e. the symbol of its Toeplitz component, to not be zero

anywhere on the complex unit circle. The final auxilliary result we require is that the index

of a Fredholm Toeplitz operator is the sign-inverted winding number of its symbol on the

complex unit disk, cf. [18].

We saw in Lemma 2.4 that the symbol of the T appearing in the Volterra operator is real

valued and continuous. As a result, its index is 0 if and only if it does not vanish on the

complex unit circle which as noted above is equivalent to the operator being Fredholm. Next

we investigate possible vanishing points of the symbol: Since cos2
`

θ
2

˘

P r0, 1s, requiring that

M
ÿ

n“0

n
ÿ

j“0

knj cos
2n

ˆ

θ

2

˙

“ 0,
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for some θ P r0, 2πq is equivalent to requiring that for some x P r0, 1s we have

M
ÿ

n“0

n
ÿ

j“0

knjx
n

“ 0.

This is turn is equivalent to the condition that the polynomial kernel Kpx, yq evaluated at

y “ x vanishes:

Kpx, xq “

M
ÿ

n“0

n
ÿ

j“0

knjx
n´jxj

“

M
ÿ

n“0

n
ÿ

j“0

knjx
n.

Consequently, if we have @x P r0, 1s : Kpx, xq ‰ 0, then the operator pT ` Kq appearing in

the Volterra operator is a Fredholm operator because its symbol does not vanish anywhere

on the complex unit circle. Furthermore, if this is the case, we also know that its index

is 0 since the symbol is real-valued and thus has winding number 0. The final part is to

show that pT ` Kq has a trivial kernel, which is a consequence of the Volterra integral

operator having no non-zero eigenvalues. The convergence of the method then becomes a

straightforward consequence of known results in finite section method theory for which we

refer to [51].

The above results show convergence for well-posed linear Volterra integral equations of

first-kind under appropriate conditions but only for polynomial kernels. To prove that we

may extend theses results to general kernels we will require the following known auxilliary

theorem, cf. [12, 107], which we restate here:

Theorem 2.5. Let X and Y be normed linear spaces with at least one of them also being

a Banach space. Furthermore, let T : X Ñ Y be a bounded and invertible operator. If the

operator M : X Ñ Y is bounded and satisfies

}M ´ T } ă
1

}T ´1}
,



2.7. Convergence proofs for the linear VIEs 55

then M is invertible with bounded inverse M´1 : Y Ñ X satisfying

}M´1
} ď

}T ´1}

1 ´ }T ´1}}T ´ M}

and

}M´1
´ T ´1

} ď
}T ´1}2}T ´ M}

1 ´ }T ´1}}T ´ M}
.

Proof. We refer to [12, 107] for discussions of this result.

Next, we show how to use Theorem 2.5 to extend our convergence result for linear Volterra

integral equations to more general kernels.

Lemma 2.5. If a sequence of reduced Volterra integral operators for polynomial kernels

KMpx, yq of degree M converges as M Ñ 8 in the sense that

}ṼKM
´ ṼK} ÝÝÝÝÑ

MÑ8
0,

then the solutions to their respective first-kind equations also satisfy

}uM ´ u} ÝÝÝÝÑ
MÑ8

0,

where uM is the solution to the M-th degree approximate equation ṼKM
uM “ q.

Proof. Setting M “ ṼKM
and T “ ṼK , the result follows via Theorem 2.5: If we have

}ṼKM
´ ṼK} ÝÝÝÝÑ

MÑ8
0,
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then it follows from Theorem 2.5 that

}ṼKM
´ ṼK} ă

1

}Ṽ´1
K }

.

This implies, again via Theorem 2.5, that if ṼK is invertible then so is ṼKM
but more impor-

tantly it shows that the solutions to the sequence of equations with increasing polynomial

degree converge in the sense that

}Ṽ´1
KM

´ Ṽ´1
K } ă

}Ṽ´1}2}ṼKM
´ ṼK}

1 ´ }Ṽ´1}}ṼKM
´ ṼK}

ÝÝÝÝÑ
MÑ8

0
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2.8 Numerical experiments and validation

The numerical experiments in this section were performed using an open source proof-of-

concept implementation of the methods introduced in this chapter. The code is freely avail-

able at [44] and makes use of the ApproxFun [1] Julia package ecosystem for approximating

functions in orthogonal polynomial bases.

2.8.1 Linear Volterra integral equations

Simple examples with known solutions

We seek numerical solutions to the following linear Volterra integral equations for x P r0, 1s:

u1pxq “ x `

ż 1´x

0

py ´ xq sinhpx2
qu1pyqdy (2.12)

ż 1´x

0

yu2pyqdy “
x ´ 1

2π
cosp´2πxq `

4π2 ` 1

4π2
sinp2πp1 ´ xqq, (2.13)

ż x

0

ey´xu3pyqdy “
e´x

2
`

exp2x ´ 1q

2
. (2.14)

Note that Equation (2.12) is a Volterra integral equation of second-kind, while Equation

(2.13) and Equation (2.14) are Volterra integral equations of first-kind. The analytic solu-

tions to the above integral equations are known to be:

u1 “
px ´ 1q2p2 ´ 5xq sinh px2q

6
, (2.15)

u2 “ sinp´2πxq, (2.16)

u3 “ 2xex. (2.17)

In Figure 2.1 we plot the absolute error between numerically obtained and analytic solutions

for suitably converged fixed order of approximation. In Figure 2.2 we plot the convergence

behavior with increasing degree of the polynomial approximation. In agreement with expec-

tation we observe exponential convergence in the form of a linear plot on semi-logarithmic
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(a) u1, n “ 25 (b) u2, n “ 20

(c) u3, n “ 20

Figure 2.1: Absolute error between numerically obtained solutions for the linear Volterra
integral equations in (2.12-2.14) and their analytic solutions in (2.15-2.17) for indicated fixed
degree of the polynomial approximation.

axes.

Direct comparisons with other available methods

In this section we present a comparison with state-of-the-art collocation method Matlab soft-

ware package Chebfun [33]. Solving Volterra integral equations with Chebfun was addressed

in a recent paper by Driscoll, see [32]. We use the following problem for our comparison

which is same problem compared in [49]:

ukpxq “ gkpxq `

ż x

0

px ` yqukpyqdy, (2.18)
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(a) u1 (b) u2

(c) u3

Figure 2.2: Semi-logarithmic convergence plots of numerically obtained solutions for the
linear Volterra integral equations in (2.12-2.14) to their analytic solutions in (2.15-2.17).
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Method k CPU time approximation degree absolute error

Sparse method 1 0.001s 19 7.8e-16
10 0.002s 128 4.0e-14
50 0.08s 2200 9.0e-13
75 0.29s 3850 3.1e-12

Chebfun 1 0.18s 17 1.0e-15
10 0.48s 119 2.9e-14
50 27.0s 1768 7.9e-13
75 163.5s 4096 2.0e-12

Table 2.1: Accuracy and performance comparison of sparse method and Chebfun for Equa-
tion (2.18) first published in [49]. The CPU time was measured on an Intel Core i7-6700T
CPU @ 2.80GHz.

where gkpxq contains a type-S Fresnel integral [73, 7.2(iii)]:

gkpxq “
cos pk2x2q ` 2k2 sin pk2x2q ´ 1

2k2
´

x

k

c

π

2

ż

?
2
π
kx

0

sin

ˆ

πy2

2

˙

dy.

The above equation has analytically known solutions @k P N:

ukpxq “ sinpk2x2
q. (2.19)

A comprehensive comparison for errors and processing time with increasing k using our

sparse method and Chebfun is presented in Table 2.1 which was first published in [49]

(note that Chebfun automatically chooses its approximation order based on convergence

criteria). To keep the comparison fair, we do not include the approximation of gkpxq in the

benchmark for either our sparse method or Chebfun, as language inherent differences for

the computation of Fresnel integrals otherwise obscure the difference between the Volterra

integral aspects of the methods. The sparse method compares favorably both in accuracy

and performance, the latter being a consequence of the bandedness of the involved operators.

We present similar successes for integro-differential equations as part of the next section.



2.8. Numerical experiments and validation 61

Linear Volterra integral equations of third-kind

As mentioned in Section 2.1 the methods introduced in this chapter can also be extended

to certain kinds of third-kind equations, here understood to mean equations of the form

xµupxq “ gpxq `

ż x

0

Kpx, yqupyqdy,

although currently no guarantees for convergence are known. We present the following

third-kind equation

xµuµpxq “ xµ
` xµ`1

` xµ`2
`

ż x

0

yµ´1uµpyqdy (2.20)

as an example for which our sparse method successfully converges to the analytically known

solution (see [114] for a derivation):

uµpxq “
µ

µ ´ 1
`

µ ` 1

µ
x `

µ ` 2

µ ` 1
x2. (2.21)

In Figure 2.3 we plot the absolute errors between the numerically obtained polynomial

approximation and analytic solutions for three different values of µ. As is to be expected,

the error is orders of magnitude worse near the boundary singularity of the third-kind

equation (in this case x “ 0). An additional third-kind example where similar behavior is

observed is discussed in [49] but as mentioned above, unlike the first and second-kind case

for now no numerical guarantees, e.g. via regularization or constraints on functions, are

known for this class of equations.
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Figure 2.3: Absolute error between numerically obtained solutions for the linear Volterra
integral equation of third-kind in (2.20) and analytic solution in (2.21) for fixed approxima-
tion degree n “ 7 and three different values of µ.

2.8.2 Linear Volterra integro-differential equations

Simple examples with known solutions

We seek numerical solutions to the following integro-differential equations:

d2u1

dx2
“ 1 `

ż x

0

px ´ yqu1pyqdy, (2.22)

d3u2

dx3
“ 1 ` x `

x2

2
´

x4

4!
`

ż x

0

px ´ yq2

2
u2pyqdy, (2.23)

Given the initial conditions

u1p0q “ 1, u1
1p0q “ 0, (2.24)

u2p0q “ 1, u1
2p0q “ 2, u2

2p0q “ 1 (2.25)
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(a) u1, n “ 15 (b) u2, n “ 20

Figure 2.4: Absolute error between numerically obtained solutions for the linear Volterra
integro-differential equations in (2.22-2.23) with initial conditions in (2.24-2.25) and their
analytic solutions in (2.26-2.27) for indicated fixed degree of the polynomial approximation.

the analytic solutions to the above integro-differential equations are known to be:

u1pxq “ coshpxq, (2.26)

u2pxq “ x ` ex. (2.27)

The two above equations were also discussed as numerical examples in [45]. In Figure 2.4

and 2.5 we plot the absolute error between numerically obtained and analytic solutions for

a suitably converged fixed order of approximation, as well as the convergence behavior with

increasing degree of the polynomial approximation.

A high order example involving approximations of a step function

Most of the above examples require only a very small number of polynomial degrees to

successfully approximate solutions to machine precision due to the simplicity required to

obtain analytic solutions for comparison. In this section we compute numerical solutions

for a Volterra integro-differential equation involving approximations of the step-function in

the sense of

upx, kq “ arctanpkxq.
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(a) u1 (b) u2

Figure 2.5: Semi-logarithmic convergence plots of numerically obtained solutions for the
linear Volterra integro-differential equations in (2.22-2.23) with initial conditions in (2.24-
2.25) to their analytic solutions in (2.26-2.27).

We plot examples of this function in Figure 2.6(a) to showcase its rapid convergence to a

step function as k Ñ 8. A Volterra integro-differential equation which is solved by the

above function upx, kq is:

u1
px, kq “ gpx, kq `

ż x

0

yex
2

upy, kqdy, (2.28)

with

gpx, kq “
k

k2x2 ` 1
´

ex
2
arctanpkxq

2k2
`

ex
2
x

2k
´

1

2
ex

2

x2 arctanpkxq.

In Table 2.2, which was first published in [45], we present a comprehensive comparison for

errors and processing time using our sparse method and state-of-the-art collocation method

Matlab software package Chebfun [33] for increasing orders. To aid with the interpretation

of Table 2.2, we again note that Chebfun automatically chooses its approximation degree

based on convergence heuristics. While in the case of linear Volterra integral equations our

method obtained similar accuracy with substantially less computing time, linear Volterra

integro-differential equations are not only sped up but also simultaneously more accurate. To

provide a practical example of operator quasi-bandedness for integro-differential equations,
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(a) (b)

Figure 2.6: (a) shows convergence of upx, kq “ arctanpkxq to step function as k increases. (b)
shows spy plot of computed quasi-banded Volterra integro-differential operator for equation
(2.28) with n “ 200.

we also provide a spy plot of the obtained operator in Figure 2.6(b).

A high order example involving oscillatory Bessel kernels

This example was first presented in [52] as an example for evaluating the adequacy of a

convolution-kernel only spectral method and then again in [45] for the method discussed

in this chapter. The previous section showcased an example where high polynomial orders

were required as a result of approximations to a step function. In this section we discuss

an example of a more common scenario requiring high polynomial orders: highly oscillatory

functions. We seek numerical solution to the following equation:

10´3u2
pxq ` ω2upxq “ gpx, µ, νq ´ ω

ż x

0

Jµpωpx ´ yqqu2pyqdy, (2.29)

with

gpx, µ, νq “ Jµ`νpωxq `
1

2x2
ppν ´ 1qpν ´ 2qJν´1pωxq ` pν ` 1qpν ` 2qJν`1pωxqq.
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Method k CPU time approx. order abs. error

Sparse method 100 0.3s 300 6.0e-15
1000 0.4s 800 2.9e-14
10000 0.8s 2000 9.3e-14
50000 3.5s 5000 2.8e-13
100000 8.8s 8000 8.1e-12

Chebfun 100 1.4s 196 4.8e-14
1000 2.1s 540 6.6e-12
10000 10.7s 1477 1.2e-09
50000 10.4s 2863 4.1e-08

Table 2.2: Accuracy and performance comparison of sparse method and Chebfun for Equa-
tion (2.28) first published in [45]. For k “ 100, 000 Chebfun fails to converge, so it is not
included. CPU time measured on Intel Core i7-6700T CPU @ 2.80GHz.

In the above, the functions Jµ are first-kind Bessel functions and we further have µ ą 0 and

ω P R. The equation is solved with the following initial conditions:

up0q “ u1
p0q “ 0.

The method introduced in this chapter can be used for general kernels; this naturally also

includes convolution kernels. In Figure 2.7 we plot the numerical solution for a high polyno-

mial order of approximation (n “ 3000) for the case pν “ 3, µ “ 2, ω “ 20q to give an idea of

the highly oscillatory nature of the solution as well as an error convergence plot comparing

obtained solutions to the high degree approximation (as no analytic solution is available

for this equation). We observe exponential convergence once the degree of the polynomial

approximation overcomes an initial threshold required to resolve the oscillations, compati-

ble and comparable with what was observed in [52] (as they also discuss the example case

pν “ 3, µ “ 2, ω “ 20q).
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(a) (b)

Figure 2.7: (a) shows numerical solution to Equation (2.29) for degree of approximation
n “ 3000. (b) shows semi-logarithmic convergence plot of numerical solutions to the n “

3000 solution with increasing degree of approximation n.

2.8.3 Nonlinear Volterra integro-differential equations

In this section we provide some numerical examples for nonlinear Volterra integral and

integro-differential equations. First, we seek numerical solutions to the following nonlinear

Volterra integral equations

u1pxq “ ex `
xp1 ´ e3xq

3
`

ż x

0

xu3
1pyqdy, (2.30)

u2pxq “ sinpxq `
sin2pxq

4
´

x2

4
`

ż x

0

px ´ yqu2
2pyqdy, (2.31)

with known solutions

u1pxq “ ex, (2.32)

u2pxq “ sinpxq. (2.33)

These problems were also discussed in [45]. We plot error convergence with increasing

polynomial degree in Figure 2.9 and the absolute error at a fixed polynomial approximation

degree in Figure 2.8.
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(a) u1, n “ 15 (b) u2, n “ 14

Figure 2.8: Absolute error between numerically obtained solutions for the linear Volterra
integro-differential equations in (2.30-2.31) and their analytic solutions in (2.32-2.33) for
indicated fixed degree of the polynomial approximation.

(a) u1 (b) u2

Figure 2.9: Semi-logarithmic convergence plots of numerically obtained solutions for the
linear Volterra integro-differential equations in (2.30-2.31) to their analytic solutions in
(2.32-2.33).
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(a) (b)

Figure 2.10: (a) shows absolute error between numerically obtained solution for the non-
linear Volterra integro-differential equation in (2.34) and its analytic solution tanpxq for
approximation degree n “ 28. (b) shows a semi-logarithmic convergence plot of the numer-
ically obtained solutions for (2.34).

Finally, we seek a numerical solution to the following nonlinear integro-differential equation:

d

dx
upxq “ x ` cospxq ´ tanpxq ` tan2

pxq `

ż x

0

u2
pyqdy, (2.34)

with initial conditions

up0q “ 0. (2.35)

and known solution

u2pxq “ tanpxq. (2.36)

This equation was previously discussed in [45]. We plot the absolute error at a fixed poly-

nomial approximation degree in Figure 2.10(a) and error convergence with increasing poly-

nomial degree in Figure 2.10(b).
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2.9 Discussion

In this chapter we introduced a banded spectral method for linear and nonlinear Volterra in-

tegral and integro-differential equations using appropriately chosen orthogonal (Jacobi and

Proriol) polynomial bases, in particular making use of multivariate orthogonal polynomials

on triangle domains. The methods outperform state-of-the-art collocation methods in com-

putational cost and as we saw in some examples in the numerical experiments section also

match or outperform them in accuracy. The methods are furthermore not restricted to con-

volution kernels which is a common constraint of currently available competitive methods,

cf. [52, 62]. For the linear first and second-kind equations, we provided proofs of conver-

gence based on finite section theory and a connection to the theory of Toeplitz operators.

In the next chapter, we introduce a sparse spectral method using ultraspherical and Jacobi

polynomials for equilibrium measures for power law kernels, which involve integral equations

with convolution kernels of the form Kpx, yq “
|x´y|α

α
´

|x´y|β

β
. We will see that the equilib-

rium measure problem essentially splits into one part linear Fredholm integral equation of

first-kind solver and one part optimization.



Chapter 3
Computing power law equilibrium measures

The content of this chapter is based on research published in [48] and [47]. For the purposes

of this thesis, the content of the papers has been rewritten and merged into one coherent

chapter. Furthermore, all appearing figures for the numerical experiments included in this

chapter are original and were generated exclusively for this thesis.

3.1 Introduction to equilibrium measure problems

In this section we introduce the problem of equilibrium measures starting with the application-

oriented motivation from particle swarm dynamics. The following is a system of equations

of motion describing a generic classical Newtonian one-species particle swarm consisting of

N particles described by their positions xi P Rd:

d2xi

dt2
“ f

ˆ
∣∣∣∣dxi

dt

∣∣∣∣˙ dxi

dt
´

1

N

ÿ

j‰i

∇Kp|xi ´ xj|q.

The functionKp¨q in this context describes the particle’s interaction potential which depends

only on the pairwise distance of two distinct particles. The function fp¨q is related to self-

propulsion and friction [25]. Systems which may successfully be modelled by the above,

particularly the case of two and three dimensions, arise in a multitude of applications. In

classical physics one may encounter such systems when modelling classical (in the sense of

’non-quantum’) particles and particulates such as (charged) dust or aerosols, while biological

swarms such as cellular motion, e.g. in a petri dish, or animal (e.g. bird or fish) flocking

71
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behavior [82, 104, 110, 15, 23, 50] are life sciences applications.

In the absence of friction, that is when f
`
∣∣dxi

dt

∣∣˘ “ 0, taking the continuous limit N Ñ 8

(partially motivated by the study of very large N particle systems) leads to the well-studied

aggregation equation:

ρt “ ∇ ¨ pρ∇K ˚ ρq (3.1)

Depending on problem-inherent quantities, in particular the interaction kernel and the di-

mension of the problem, some such aggregation equations may have steady equilibrium

states characterized by

∇K ˚ ρ “ 0 on supppρq.

We note at this point that due in part to the natural science applications in the background of

this problem, only non-negative measures ρ qualify as admissible solutions to the equilibrium

measure problem. Stable stationary states, i.e. equilibrium states, are by their definition

(local) minimizers of the energy expression

Ẽ “

ż

ρpK ˚ ρqdx.

We also have to impose a mass condition for the problem to become well-posed, i.e.
ş

ρdx “

M . Stated as above, the equilibrium measure problem appears numerically intractable in

two different ways. First, the naive approach of performing classical particle simulations

to approximate solutions to the continuous problems is doomed by the rapidly growing

computational cost as N and d increase, and we will see in the numerical experiments

sections that even simple problems in low dimensions (even 1D and 2D) often show very poor

convergence. Meanwhile, the continuous problem itself is a constrained energy optimization

problem over a measure space with measures of unknown support – it is unclear how one

could iterate over such a general space numerically in a structured, let alone fast, way. To



3.1. Introduction to equilibrium measure problems 73

alleviate this problem we employ a strategy also used in analytic discussions of equilibrium

measures, cf. [25]: Using an Euler-Lagrange type approach one can show that the minimizers

of the above energy expression in fact must be among the non-negative densities satisfying

K ˚ ρ “ E on supppρq,

where E is a constant expression different from the above-defined energy Ẽ by a factor given

by the mass of the measure, cf. the discussion in [25]. For the purposes of our numerical

method, E and Ẽ will play effectively equivalent roles and we thus refer to both as energies.

We can equivalently write the above problem as

ż

supppρq

Kp|x ´ y|qρpyqdy “ E,

to instead highlight the integral equation nature of the now slightly more tractable problem.

By restricting our search to compactly supported measures for general attractive-repulsive

power law kernels, i.e.

Kp|x ´ y|q “
|x ´ y|α

α
´

|x ´ y|β

β
, (3.2)

we show in what follows that a sparse spectral method for the integral equation part com-

bined with a straightforward constrained optimization can not only solve equilibrium mea-

sure problems but do so in a highly efficient way with rapid convergence.

The existence of global minimizers for attractive-repulsive power law equilibrium measures

was recently discussed by Canizo, Carrillo and Patacchini in [22]. Some uniqueness results

also exist for α P p2, 4q and β P p´1, 0q [61, 28]. Further candidate solutions for the case

where either α or β are an even integer were derived in [25] and later proved to be the

minimizers in [27] (see also [40]). Numerical approaches to equilibrium measure problems

have mostly been limited to discrete particle simulations [14, 111, 39], which have hinted at

many interesting phenomena about which little is known in the continuous limit. We will
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investigate one such phenomenon – the void formation behavior for high repulsive powers

– using our method in the numerical experiments section of this chapter. More recently,

Olver [74] introduced a spectral method for the closely related one-dimensional equilibrium

measure problem with logarithmic interaction kernel using Chebyshev polynomials.

The structure of the remaining sections is as follows: In Section 3.2 we briefly discuss the

above-mentioned method due to Olver [74] for computing equilibrium measures for loga-

rithmic kernels to highlight similarities as well as substantial differences to the power law

kernel approach introduced in this chapter. In Section 3.3 we formally introduce the frac-

tional Laplacian and Riesz potential as well as the Riemann-Liouville fractional integral

and describe their relationship with the power law equilibrium measure problem. In Section

3.4 we derive recurrence relationships leading to banded and approximately banded power

law integral operators in specialized ultraspherical polynomial bases. Section 3.5 explains

how to construct a numerical algorithm for power law equilibrium measures based on the

aforementioned recurrence relationships. In Section 3.6 we discuss how the one interval

method of the previous sections may be extended to two interval methods in one dimen-

sion, while Section 3.7 covers a different generalization based on radial Jacobi polynomial

recurrence relationships on arbitrary dimensional balls. The higher-dimensional spectral

method algorithm on arbitrary dimensional balls is further detailed in Section 3.8. Section

3.9 introduces Tikhonov regularization as a way to improve the stability of the introduced

algorithms both in one and higher dimensions. Finally, Section 3.5 and 3.8 show numerical

experiments, including verifications with known results, comparison with other methods

as well as exploration of novel phenomena for the one-dimensional and higher-dimensional

method respectively. The results of this chapter are then summarized and reviewed in a

discussion section.
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3.2 Olver’s method for computing equilibrium mesures

with logarithmic kernels

Methods to approximate continuous equilibrium measures for logarithmic kernels, that is

Kp|x ´ y|q “ log

ˆ

1

|x ´ y|

˙

,

based on Leja points have been available for almost a century [58, 42], but their convergence

properties are relatively poor [74]. More recently, Olver [74] introduced a spectral method

using Chebyshev polynomials for computing equilibrium measures based on reformulating

them in terms of a Riemann-Hilbert problem.

Olver’s method only applies to equilibrium measure problems with logarithmic kernels in

one dimension, specifically with non-vanishing potentials. As it applies only to one type of

kernel as opposed to a class of kernels, it cannot be used for attractive-repulsive problems

with non-vanishing potentials, which are the primary focus of this chapter. We nevertheless

include a brief overview of this method for logarithmic kernels in this section since (1) the

logarithmic kernel case is understood to formally arise from the power law kernel case as the

kernel power approaches 0, cf. [25], (2) the methodological similarities and differences to

our power law kernel method are noteworthy for general continuous numerics of equilibrium

measures and (3) because the problem of equilibrium measures for logarithmic kernels are

known to have interesting connections with random matrix theory, cf. [31], which raises

interesting questions about whether such connections also exist for other kernels.

As mentioned above, Olver’s method is based on reformulating the logarithmic kernel equi-

librium measure problem, i.e. finding a non-negative measure which minimizes

Ẽ “

ż ż

log

ˆ

1

|x ´ y|

˙

dρpxqdρpyq `

ż

V pyqdρpyq,
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as a Riemann-Hilbert problem. This is accomplished via the following theorem:

Theorem 3.1. Let supppρq consist of a finite number of intervals and let ϕ be a function

which is analytic and bounded on Czsupppρq satisfying

ϕ`
pxq ` ϕ´

pxq “ V 1
pxq, for x P supppρq,

where ϕ˘pxq denotes the following limits:

ϕ˘
pxq “ lim

ϵÑ0`
ϕpx ˘ iϵq.

Let ϕ furthermore satisfy

ϕpzq “
1

z
` O

ˆ

1

z2

˙

, as z Ñ 8.

Then we have

ϕpzq “

ż

dρ

z ´ y

and

dρpyq “
i

2π

`

ϕ`
pyq ´ ϕ´

pyq
˘

dy.

Proof. A proof of this result may be found in [95], see also the discussion in [74].

By using fast cosine transforms and Chebyshev polynomials [74, 75] Olver’s method proceeds

to solve

ϕ`
pxq ` ϕ´

pxq “ V 1
pxq,

for x P pa, bq with limzÑ8 ϕpzq “ 0. This approach only determines the solution up to a
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parameter ξ, which can be fixed by using the additional constraint that for the logarithmic

kernel equilibrium measures it is known that the measure vanishes at the support boundary

(a fact which generally does not hold for power law equilibrium measures). This then allows

the definition of a function F pa, bq which satisfies F psupppρqq “ 0, meaning that a Newton

method may be used to find the support interval if the equilibrium measure is unique.

While Olver’s method differs substantially from the method we introduce in this chapter, in

particular as we primarily treat attractive-repulsive power law equilibrium measure prob-

lems and approach them from the point of view of fractional integral equations as opposed

to Riemann-Hilbert problems, we will see that the two methods end up relying on similar

ideas: The most important similarity is that the equilibrium measure problems are both

initially reduced from an optimization problem over a measure space to an optimization

problem over the support boundary. This step is what prevents the computation of continu-

ous equilibrium measures from being an intractable problem. Additionally, both equilibrium

measure problems are initially underdetermined and thus require the use of additional con-

straints - we will discuss the nature of these constraints for the power law kernel case in the

coming sections. Finally, both methods make use of the excellent convergence properties of

expansions in orthogonal polynomials as well as the specific action of the respective con-

volution kernel operators on the Chebyshev, ultraspherical and radial Jacobi polynomials

respectively. Finally, we note that Olver also presents a generalization of his method to

multiple interval support [74], motivating some of the ideas for two interval methods for

power law equilibrium measures which we discuss in Section 3.6.
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3.3 Riesz potential theory and fractional Laplacians

The integrals found in power law equilibrium measure problems are essentially Riesz poten-

tials, except with slightly different normalization constants:

Definition 3.1 (Riesz kernel). The Riesz kernel kγp|x ´ y|q, with x, y P Rd is defines as

kγp|x ´ y|q “
Γp

d´γ
2

q

π
d
2 2γΓp

γ
2
q

1

|x ´ y|d´γ
.

Definition 3.2 (Riesz potential). The Riesz potential of upyq with y P supppρq Ď Rd and

γ P p0, dq is

p´∆q
´

γ
2 upxq “

Γp
d´γ
2

q

π
d
2 2γΓp

γ
2
q

ż

supppρq

1

|x ´ y|d´γ
upyqdy.

The constants in the above definitions are chosen to ensure that it is the inverse of the

so-called fractional Laplace operator:

Definition 3.3 (Fractional Laplace operator). The fractional Laplace operator p´∆q
γ
2 for

γ P p0, 2q is defined via singular integral

p´∆q
γ
2 fpxq “

2γ|Γp
d`γ
2

q|

π
d
2Γp´

γ
2
q

lim
ϵÑ0`

ż

RdzBϵ

fpxq ´ fpyq

|x ´ y|d`γ
dy,

where Bϵ “ Bp0, ϵq denotes the origin-centered ball of radius ϵ. If γ P p0, dq this is equivalent

to the inverse of the Riesz potential, see [57], which is thus sometimes denoted p´∆q´
γ
2 .

The above definitions are valid for arbitrary dimension d. In the special case d “ 1 the Riesz

potential may be further split up into two distinct but closely related fractional integral

operators which are known as left and right-handed Riemann-Liouville integrals:

Definition 3.4 (Riemann-Liouville integrals). For γ ą 0 the left and right-handed Riemann-
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Liouville fractional integrals are defined by

IγL,a rus pxq :“
1

Γpγq

ż x

a

px ´ yq
γ´1upyqdy,

IγR,b rus pxq :“
1

Γpγq

ż b

x

py ´ xq
γ´1upyqdy.

Up to a multiplicative constant, a sum of appropriate left and right-handed Riemann-

Liouville fractional integrals precisely yields the Riesz potential on a one-dimensional inter-

val:

IγL,a rus pxq ` IγR,b rus pxq “
1

Γpγq

ż b

a

|x ´ y|
γ´1upyqdy (3.3)

“
1

Γpγq

ż b

a

1

|x ´ y|1´γ
upyqdy.

While there are conceptually related methods for splitting up a higher-dimensional Riesz

potential into different fractional integrals in higher dimensions, mostly due to Rubin [94,

93, 92, 91], we will not list them here as they do not lead to any directly useful simplifications

for the numerical methods we introduce below.

The Riemann-Liouville integrals are fractional integrals in the sense that they satisfy the

following relationships with the conventional integration and differentiation operators:

d

dx
Is`1
L,a rf s pxq “ IsL,a rf s pxq,

d

dx
Is`1
R,b rf s pxq “ ´IsR,b rf s pxq, (3.4)

IsL,a
“

I tL,a rf s
‰

“ Is`t
L,a rf s, IsR,b

“

I tR,b rf s
‰

“ Is`t
R,b rf s , (3.5)

for t ą 0. We refer to [64, Section 2] and [65, Section 2] for a more in-depth review of

fractional integrals and their properties.
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3.4 Recurrence results for ultraspherical polynomials

in one dimension

In one dimension, the most natural basis to search for a banded representation of power

law integrals is found in the ultraspherical polynomials as introduced in 1.1.4. In higher

dimensions, which we discuss in Section 3.7, we will be using the radial Jacobi polynomial

bases on balls as introduced in Section 1.3.3 instead. As the one-dimensional results do

not require radial symmetry (or mirror symmetry in one dimension), the ultraspherical

polynomial results are in a sense more general than the radial Jacobi polynomial alternative

in the special case of one dimension.

The initial motivation for using the ultraspherical polynomials is the following result for

power law integrals, valid for low powers α P p´1, 1q, which has been known since at least

Popov’s 1960s publication [83]:

Lemma 3.1. Let α P p´1, 1q and x P p´1, 1q. Then the action of the power law integral

operator Qα rus pxq “
ş1

´1
|x ´ y|αupyqdy on the ultraspherical polynomials C

p´α
2 q

n pyq, i.e.

C
pλq
n with choice λ “ ´α

2
, is:

Qα

„

wp´α
2

qC
p´α

2 q
n

ȷ

pxq “
p´1qnπ

nBp´n`α`1,nq cospπα
2 q

C
p´α

2 q
n pxq.

where B is the Beta function Bpx, yq “
ΓpxqΓpyq

Γpx`yq
and wpλqpyq “ p1 ´ y2qλ´ 1

2 .

Proof. We refer to [83] for a proof of this result.

The restriction on the power, i.e. α P p´1, 1q, is important and means that we cannot

use this to study the primary range of interest where analytic methods are unavailable and

the measures show interesting gap formation behavior (we discuss this in more detail in

the numerical experiments at the end of this chapter). The goal is thus to find a similarly

powerful expression but generalized to work for arbitrary powers. The first step towards
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this goal is to prove the following recurrence relationship result for the Riemann-Liouville

integrals which as we saw in Section 3.3 sum to the Riesz potential in one dimension:

Theorem 3.2. The left and right-handed Riemann–Liouville fractional integral operators

in Definition 3.4 satisfy the following two-term recurrence relationship on weighted ultras-

pherical polynomials C
pλq
n pyq with n ě 2:

xI1`α
L,´1

“

wpλqCpλq
n

‰

pxq “ κ1I
1`α
L,´1

”

wpλqC
pλq

n´1

ı

pxq ` κ2I
1`α
L,´1

”

wpλqC
pλq

n`1

ı

pxq,

xI1`α
R,1

“

wpλqCpλq
n

‰

pxq “ κ1I
1`α
R,1

”

wpλqC
pλq

n´1

ı

pxq ` κ2I
1`α
R,1

”

wpλqC
pλq

n`1

ı

pxq,

where wpλqpyq “ p1 ´ y2qλ´ 1
2 is the ultraspherical weight and κ1 and κ2 have explicit form:

κ1 “
pn ´ α ´ 1qp2λ ` n ´ 1q

2npλ ` nq
,

κ2 “
pn ` 1qp2λ ` n ` α ` 1q

2pλ ` nqp2λ ` nq
.

Proof. We begin with the left-handed case:

xI1`α
L,´1

“

wpλqCpλq
n

‰

pxq “ 1
Γp1`αq

ż x

´1

xpx ´ yq
αwpλq

pyqCpλq
n pyqdy

“ 1
Γp1`αq

ż x

´1

px ´ yqpx ´ yq
αwpλq

pyqCpλq
n pyqdy ` 1

Γp1`αq

ż x

´1

ypx ´ yq
αwpλq

pyqCpλq
n pyqdy.

The two resulting terms are addressed differently: for the second term, we can use the

classical two term recurrence relationship of ultraspherical polynomials (in Eq. (1.15)) to

expand yC
pλq
n pyq. The first term makes use of the Riemann-Liouville fractional integrals

properties in Eq. (3.5):

1
Γp1`αq

ż x

´1

px ´ yq
α`1wpλq

pyqCpλq
n pyqdy “ p1 ` αqI2`α

L,´1

“

wpλqCpλq
n

‰

pxq

“ p1 ` αqI1`α
L,´1

“

I1L,´1

“

wpλqCpλq
n

‰‰

pxq. (3.6)
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Using the ultraspherical polynomial property for integration in Eq. (1.17) we then obtain:

p1 ` αqI1L,´1

“

wpλqCpλq
n

‰

pyq “ ´
p1`αq2λ
n2`2λn

`

1 ´ y2
˘λ` 1

2 C
pλ`1q

n´1 pyq ,

Which after a final application of the classical two term recurrence of the ultraspherical

polynomials in Eq. (1.15) results in:

´
p1`αq2λ
n2`2λn

`

1 ´ y2
˘λ` 1

2 C
pλ`1q

n´1 pyq

“
p1`αqpn`1q

2pn`λqpn`2λq

`

1 ´ y2
˘λ´ 1

2 C
pλq

n`1 pyq ´
p1`αqpn`2λ´1q

2npn`λq

`

1 ´ y2
˘λ´ 1

2 C
pλq

n´1 pyq ,

Thus we have reduced both terms on the RHS of Eq. (3.6) to lower degree terms. Putting

the components together yields

xI1`α
L,´1

“

wpλqCpλq
n

‰

pxq “
pn`1qp2λ`n`α`1q

2pλ`nqp2λ`nq
I1`α
L,´1

”

wpλqC
pλq

n`1

ı

pxq `
pn´α´1qp2λ`n´1q

2npλ`nq
I1`α
L,´1

”

wpλqC
pλq

n´1

ı

pxq,

if n ě 2 as desired.

To prove the right-handed case, we proceed similarly but with a slightly different starting

point:

xI1`α
R,1

“

wpλqCpλq
n

‰

pxq “ 1
Γp1`αq

ż 1

x

xpy ´ xq
αwpλq

pyqCpλq
n pyqdy

“ 1
Γp1`αq

ż 1

x

px ´ yqpy ´ xq
αwpλq

pyqCpλq
n pyqdy ` 1

Γp1`αq

ż 1

x

ypy ´ xq
αwpλq

pyqCpλq
n pyqdy,

“ ´1
Γp1`αq

ż 1

x

py ´ xq
α`1wpλq

pyqCpλq
n pyqdy ` 1

Γp1`αq

ż 1

x

ypy ´ xq
αwpλq

pyqCpλq
n pyqdy.

As before, the second term in the resulting equation is expanded using the classical two

term recurrence relationship of ultraspherical polynomials in Eq. (1.15). For the first term
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we proceed as before:

´1
Γp1`αq

ż 1

x

py ´ xq
α`1wpλq

pyqCpλq
n pyqdy “ p´1 ´ αqI2`α

R,1

“

wpλqCpλq
n

‰

pxq

“ p´1 ´ αqI1`α
R,1

“

I1R,1

“

wpλqCpλq
n

‰‰

pxq.

By the property in (1.17) we then obtain

p´1 ´ αqI1R,1

“

wpλqCpλq
n

‰

pyq “ ´
p1`αq2λ
n2`2λn

`

1 ´ y2
˘λ` 1

2 Cλ`1
n´1 pyq .

A favorable cancellation of signs then results in a recurrence relationship with the same

recurrence coefficients as the left-handed case:

xI1`α
R,1

“

wpλqCpλq
n

‰

“
pn`1qp2λ`n`α`1q

2pλ`nqp2λ`nq
I1`α
R,1

”

wpλqC
pλq

n`1

ı

`
pn´α´1qp2λ`n´1q

2npλ`nq
I1`α
R,1

”

wpλqC
pλq

n´1

ı

,

concluding the proof.

Together with the observation in Equation 3.3 this leads to the following recurrence rela-

tionship for the one-dimensional Riesz potential / power law integral:

Corollary 3.1. The power law integral operator Qα rus pxq :“
ş1

´1
|x ´ y|αupyqdy satisfies

the following two-term recurrence relationship on the weighted ultraspherical polynomials

C
pλq
n pyq with n ě 2:

xQα
“

wpλqCpλq
n

‰

pxq “ κ1Q
α
”

wpλqC
pλq

n´1

ı

pxq ` κ2Q
α
”

wpλqC
pλq

n`1

ı

pxq,

where wpλqpyq “ p1 ´ y2qλ´ 1
2 is the ultraspherical weight and κ1 and κ2 have explicit form:

κ1 “
pn ´ α ´ 1qp2λ ` n ´ 1q

2npλ ` nq
,

κ2 “
pn ` 1qp2λ ` n ` α ` 1q

2pλ ` nqp2λ ` nq
.
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Proof. This is an immediate corollary of Theorem 3.2 combined with the observation that

a sum of left and right-handed Riemann-Liouville integral operators results in the Riesz

potential, see Eq. (3.3).

Since the recurrences above only hold for n ě 2, we will require some auxiliary initial results

for n “ 0 and n “ 1 to generate the full operators which we collect below. Since the n “ 0

case is simply the power law integral of Cλ
0 pxq “ 1 multiplied by the ultraspherical weight,

we begin with the following lemma which was previously proved in the context of fractional

Laplacians:

Lemma 3.2. The power law integral of power α of the ultraspherical weight wpλq “ p1 ´

x2qλ´ 1
2 evaluates to the following explicit expression for the choice λ “ 2k´α´1

2
:

ż 1

´1

|x ´ y|
α
p1 ´ y2q

2k´α´1
2 dy “ B

`

α`1
2
, 2k`1´α

2

˘

2F1

`

´α
2
,´k; 1

2
;x2

˘

. (3.7)

Proof. A proof of this result can be found in [55].

Note that Lemma 3.2 is a generalization of Lemma 3.1. Similar results to the above will

come up again when we discuss the higher-dimensional case in Section 3.7. The next result

shows how to evaluate the n “ 1 case for the two Riemann-Liouville integrals:

Lemma 3.3. The left and right-handed Riemann–Liouville fractional integral operators

in Definition 3.4 evaluate as follows when acting on the n “ 1 ultraspherical polynomial

C
pλq

1 pyq “ 2λy with weight wpλqpyq “ p1 ´ y2qλ´ 1
2 :

I1`α
L,´1

”

wpλqC
pλq

1

ı

pxq “ ´ 2λ
Γp1`αq

ż x

´1

px ´ yq
α`1wpλq

pyqdy ` 2λx
Γp1`αq

ż x

´1

px ´ yq
αwpλq

pyqdy,

I1`α
R,1

”

wpλqC
pλq

1

ı

pxq “ 2λ
Γp1`αq

ż 1

x

py ´ xq
α`1wpλq

pyqdy ` 2λx
Γp1`αq

ż 1

x

py ´ xq
αwpλq

pyqdy.
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Proof. We begin by proving the left-handed case:

I1`α
L,´1

”

wpλqC
pλq

1

ı

pxq “ 2λ
Γp1`αq

ż x

´1

ypx ´ yq
αwpλq

pyqdy

“ 2λ
Γp1`αq

ż x

´1

py ´ xqpx ´ yq
αwpλq

pyqdy ` 2λ
Γp1`αq

ż x

´1

xpx ´ yq
αwpλq

pyqdy

“ ´2λ
Γp1`αq

ż x

´1

px ´ yq
α`1wpλq

pyqdy ` 2λx
Γp1`αq

ż x

´1

px ´ yq
αwpλq

pyqdy.

The right-handed case is proved similarly:

I1`α
R,1

”

wpλqC
pλq

1

ı

pxq “ 2λ
Γp1`αq

ż x

´1

ypy ´ xq
αwpλq

pyqdy

“ 2λ
Γp1`αq

ż x

´1

py ´ xqpy ´ xq
αwpλq

pyqdy ` 2λ
Γp1`αq

ż x

´1

xpy ´ xq
αwpλq

pyqdy

“ 2λ
Γp1`αq

ż x

´1

py ´ xq
α`1wpλq

pyqdy ` 2λx
Γp1`αq

ż x

´1

py ´ xq
αwpλq

pyqdy.

As with the recurrence relationship in Corollary 3.1, the above evaluation lemma for the

Riemann-Liouville integrals of a weighted n “ 1 ultraspherical polynomial leads directly to

a power law integral corollary:

Corollary 3.2. The power law integral operator Qα rus pxq :“
ş1

´1
|x ´ y|αupyqdy evaluates

as follows when acting on the n “ 1 ultraspherical polynomial C
pλq

1 pyq “ 2λy with weight

wpλqpyq “ p1 ´ y2qλ´ 1
2 :

Qα
”

wpλqC
pλq

1

ı

pxq “ 2λ

ˆ
ż 1

x

py ´ xq
α`1wpλq

pyqdy ´

ż x

´1

px ´ yq
α`1wpλq

pyqdy

˙

` 2λxQα
“

wpλq
‰

pxq.

Proof. The result is an immediate consequence of combining Lemma 3.3 with the observation

that a sum of left and right-handed Riemann-Liouville integral operators results in the Riesz

potential, see Eq. (3.3).
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3.5 Numerical method on intervals in one dimension

In this section we describe how to use the recurrence results derived in the previous section to

construct banded and approximately banded operators acting on a well-chosen ultraspherical

polynomial basis in one dimension as well as how to use them to solve power law equilibrium

measure problems.

First, we show that a single power law integral acting on the ultraspherical polynomial

basis on an interval can be made diagonal or at least banded for particular basis parameter

choices:

Lemma 3.4. Let α ą ´1 and λ ą ´1
2
. With λ chosen such that 0 ă λ ` α

2
P N is a

non-negative integer the power law integrals

ż 1

´1

|x ´ y|
α
p1 ´ y2qλ´ 1

2dy

and
ż 1

´1

|x ´ y|
α
p1 ´ y2qλ´ 1

2C
pλq

1 pyqdy

evaluate to finite degree polynomials.

Proof. From Lemma 3.2 we know that for the choice λ “ 2k´α
2

the analytic solution of the

n “ 0 case expression is:

ż 1

´1

|x ´ y|
α
p1 ´ y2q

2k´α´1
2 dy “ B

`

α`1
2
, 2k`1´α

2

˘

2F1

`

´α
2
,´k; 1

2
;x2

˘

.

Gaussian hypergeometric functions 2F1 are polynomials if one of their first two arguments

is a negative integer and the third parameter is not a positive integer [73, 15.2.4]. Thus,

choosing k P N or equivalently 0 ă k “ λ ` α
2

P N results in a polynomial right-hand side.

It remains to be shown that the n “ 1 case with this basis choice also results in a finite
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polynomial. We can evaluate the n “ 1 case using Corollary 3.2:

Qα
”

wpλqC
pλq

1

ı

pxq “ 2λ

ˆ
ż 1

x

py ´ xq
α`1wpλq

pyqdy ´

ż x

´1

px ´ yq
α`1wpλq

pyqdy

˙

` 2λxQα
“

wpλq
‰

pxq.

The last term in the above equation is a finite polynomial by the argument for the n “ 0

case above. What remains to be shown is that the term in parentheses also evaluates to

a finite degree polynomial. The expression in parenthesis can be shown to evaluate to the

following expression for α ą ´1 and λ ą ´1
2
:

ż 1

x

py ´ xq
α`1

p1 ´ y2qλ´ 1
2dy ´

ż x

´1

px ´ yq
α`1

p1 ´ y2qλ´ 1
2dy

“ ´21´α
?
π

Γpα`2qΓpλ` 1
2q

Γpα
2 qΓpα

2
`λ`1q

p2x2pα`λ`1qq 2F1p´α
2
,´λ´α

2
; 1
2
;x2q`px2´1q 2F1p´α

2
,´λ´α

2
;´ 1

2
;x2q

αpα`1qpα`2λ`1qx

A simple change of variables in the n “ 0 condition shows that the appearing hypergeometric

functions in the numerator of the n “ 1 case are simultaneously polynomial if 0 ă λ` α
2

P N:

ż 1

´1

|x ´ y|
α
p1 ´ y2q

λ´ 1
2dy “

Γpα`1
2 qΓpλ` 1

2
q

Γpλ`α
2

`1q
2F1

`

´α
2
,´λ ´ α

2
; 1
2
;x2

˘

.

What remains to be shown is that the division by x in the n “ 1 case does not destroy the

finite polynomial form. Most of the hypergeometric terms in the numerator are multiplied

by x2, so we do not need to discuss them further. We are thus left to investigate the action

of the division by x on the j “ 0 case of the remaining standalone term:

2F1

`

´α
2
,´λ ´ α

2
; 1
2
;x2

˘

´ 2F1

`

´α
2
,´λ ´ α

2
;´1

2
;x2

˘

“

λ`α
2

ÿ

j“0

p´1q
j

¨

˚

˝

λ ` α
2

j

˛

‹

‚

p´α
2

qj

p1
2
qj

x2j
´

λ`α
2

ÿ

j“0

p´1q
j

¨

˚

˝

λ ` α
2

j

˛

‹

‚

p´α
2

qj

p´1
2
qj
x2j

“

λ`α
2

ÿ

j“1

p´1q
j

¨

˚

˝

λ ` α
2

j

˛

‹

‚

´

´
α

2

¯

j

ˆ

1

p1
2
qj

´
1

p´1
2
qj

˙

x2j.
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As for j “ 0 both terms appearing in the cental subtraction are equal to 1 the resulting

sum only involving terms where j “ 1 or higher. Division by x thus yields a finite degree

polynomial.

In light of Corollary 3.1, the above result shows that the operators acting on the ul-

traspherical polynomial coefficient space are banded with compatible λ parameter choice

0 ă λ ` α
2

P N.

As the equilibrium measure problems we wish to solve have an attractive-repulsive kernel

and thus consist of a sum of two power law integrals of different powers it is straightforward

to see that unfortunately, except for rare special cases, no basis choice can be made in which

both operators are banded. However, the recurrence result we proved was not restricted to

a particular basis choice, so we may still compute the operators for an unmatched basis and

as a result we can obtain approximately banded operators in the sense of operators that

decay off-band. In Figure 3.1 we show spy plots of operators corresponding to the α and β

terms for a representative example case using densely stored operators to show the emer-

gent banded structure. In practice, e.g. for the numerical experiments in Section 3.10.1 and

3.10.2, the recurrence results are implemented in a banded way such that no dense operator

is ever computed or stored.

Remark 3.1 (Basis parameter choice strategy). For α ą ´1 the following basis choice

strategy always results in a banded operator for a single power law integral since the n “ 0

and n “ 1 cases evaluate to polynomials:

λ “

$

’

’

&

’

’

%

X

α
2

\

´ α
2
, if

X

α
2

\

´ α
2

ą ´1
2

P

α
2

T

´ α
2
, otherwise.

(3.8)

While this choice is not unique, it is the smallest parameter choice with this property which

satisfies the integrability condition λ ą ´1
2
.

With the structure of the operators known and their entries being efficiently computable
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(a) α operator (b) β operator

Figure 3.1: (a) shows a spy plot of the α operator corresponding to the attractive term of the
kernel for the parameter combination α “ 2.6, β “ 1.8 in one dimension, while (b) shows the
β operator corresponding to the repulsive term. The basis was chosen to make α operator
banded, resulting in an banded-dominant β operator. The number of bands required in the
α operator is determined by the value of α. The scale of the legend is logarithmic, indicating
order of magnitude of the absolute values.

via a recurrence, we now address how to use these operators to solve equilibrium measure

problems. We describe two different methods for one-dimensional problems, one valid for

the primary case of interest with vanishing external potentials, i.e. the purely attractive-

repulsive case, and one which also works in the presence of external potentials, captured in

Algorithm 6 and 7 respectively. Note that we have to perform a regularization step in these

algorithms due to the appearing first-kind problem – we explain this procedure known as

Tikhonov regularization in Section 3.9.

3.6 Two interval methods in one dimension

We have previously hinted that the single interval support assumption we have made above

is known to break down from numerical experiments with particle simulations as well as

limited analytic results [25]. Studying this gap formation behavior is one of the primary

motivations behind this work. In one dimension, we may not only compute the point at

which a single interval method breaks down (which we discuss in Section 3.10.1) but also

compute the resulting two interval support equilibrium measures. Due to the translation
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Algorithm 6 1D single interval attractive-repulsive power law equilibrium measures

Find polynomial approximation of non-negative equilibrium measure dρ “ ρpxqdx and single
interval support supppρq “ pa, bq such that the value of

E “
1

α

ż b

a

|x ´ y|
αρpyqdy ´

1

β

ż b

a

|x ´ y|
βρpyqdy

is minimized with mass condition
ş

supppρq
ρpyqdy “ M for given M .

1. The algorithm takes an initial guess for the support as input but due to translation
symmetry of the problem a single guess is sufficient by e.g. setting a “ ´b. This input
is varied during the optimization part in the last step.

2. Perform a variable transformation to the unit interval, thus instead minimizing the
expression

E “ 1
α

`

b´a
2

˘α`1
ż 1

´1

|s ´ t|αρ̃ptqdt ´ 1
β

`

b´a
2

˘β`1
ż 1

´1

|s ´ t|β ρ̃ptqdt,

where ρ̃ptq “ ρ
`

b`a
2

` b´a
2
t
˘

and Ṽ psq “ V
`

b`a
2

` b´a
2
s
˘

.

3. Assume the density ρ̃ is expanded in the weighted ultraspherical polynomial basis with
parameter λα chosen according to Remark 3.1 (choosing the α operator to be banded),
i.e.:

ρ̃ptq “ p1 ´ t2q
λα´ 1

2Cpλαq
ptqρ̃,

resulting in approximately banded operator form for the linear problem which is solved
for ρ̃

E
after Tikhonov regularization as discussed in Section 3.9:

e1 “

´

1
α

`

b´a
2

˘α`1
Qα

´ 1
β

`

b´a
2

˘β`1
Qβ

¯

ρ̃
E
.

4. Use the property of the ultraspherical polynomials in Eq. (1.18) and the mass condi-

tion on the measure density
`

b´a
2

˘ ş1

´1
ρ̃pyqdy “ M to obtain the correctly scaled value

of ρ̃ from ρ̃
E
.

5. Compute the value of E in the sense of

E “ 1
α

`

b´a
2

˘α`1
ż 1

´1

|s ´ t|αρ̃ptqdt ´ 1
β

`

b´a
2

˘β`1
ż 1

´1

|s ´ t|β ρ̃ptqdt,

by using the already stored operators and loop over these steps using any constrained
optimization algorithm to minimize E with non-negative ρ, e.g. by penalizing negative
minima of ρ on pa, bq.
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Algorithm 7 1D single interval power law equilibrium measures with V pxq ‰ 0 ‰ V 1pxq

Find polynomial approximation of equilibrium measure dρ “ ρpxqdx and single interval
support supppρq “ pa, bq such that the value of

E “
1

α

ż b

a

|x ´ y|
αρpyqdy ` V pxq

is minimized with mass condition
ş

supppρq
ρpyqdy “ M for given M .

1. The algorithm takes an initial guess of the support boundary points a and b as input
which are varied during the optimization part in the last step.

2. Perform a variable transformation to the unit interval, thus instead minimizing the
expression

E “ 1
α

`

b´a
2

˘α`1
ż 1

´1

|s ´ t|αρ̃ptqdt ` Ṽ psq,

where ρ̃ptq “ ρ
`

b`a
2

` b´a
2
t
˘

and Ṽ psq “ V
`

b`a
2

` b´a
2
s
˘

.

3. Assume the density ρ̃ is expanded in the weighted ultraspherical polynomial basis with
parameter λα chosen according to Remark 3.1, i.e.:

ρ̃ptq “ p1 ´ t2q
λα´ 1

2Cpλαq
ptqρ̃,

resulting in a banded operator form for the linear problem

E ´ Ṽ “
1

α

`

b´a
2

˘α`1
Qαρ̃.

4. Differentiate once and solve the resulting linear problem for ρ̃ after Tikhonov regular-
ization as discussed in Section 3.9:

´DṼ “
1

α

`

b´a
2

˘α`1
DQαρ̃.

5. Use the property of the ultraspherical polynomials in Eq. (1.18) and the mass condi-

tion on the measure density
`

b´a
2

˘ ş1

´1
ρ̃pyqdy “ M to determine the correct value of

the n “ 0 coefficient of ρ̃.

6. Compute the value of E in the sense of

E “ 1
α

`

b´a
2

˘α`1
ż 1

´1

|s ´ t|ρ̃ptqdt ` Ṽ psq,

by using the already stored operators and loop over these steps using any constrained
optimization algorithm to minimize E with non-negative ρ, e.g. by penalizing negative
minima of ρ on pa, bq.
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invariance of the problem, we may freely choose the two intervals to be symmetrically placed

around the origin, that is

supppρq “ p´b,´aq Y pa, bq.

We will need to extend some of our recurrence and initial condition results from Section 3.4

to the two interval case:

Lemma 3.5. The equilibrium measure ρpxq with two interval support supppρq “ p´b,´aq Y

pa, bq minimizing the governing equation

1
α

ż ´a

´b

|x ´ y|
αρlpyqdy ` 1

α

ż b

a

|x ´ y|
αρrpyqdy

´ 1
β

ż ´a

´b

|x ´ y|
βρlpyqdy ´ 1

β

ż b

a

|x ´ y|
βρrpyqdy “ Epxq,

with

ρpyq “

$

’

’

&

’

’

%

ρlpyq, if y P r´b,´as

ρrpyq, if y P ra, bs,

is equivalent to the equilibrium measure minimizing

1
α

`

b´a
2

˘α`1
ż 1

´1

∣∣∣´´

2pb`aq

b´a
` s

¯

´ t
∣∣∣α ρrptqdt ` 1

α

`

b´a
2

˘α`1
ż 1

´1

|s ´ t|αρrptqdy

´ 1
β

`

b´a
2

˘β`1
ż 1

´1

∣∣∣´´

2pb`aq

b´a
` s

¯

´ t
∣∣∣β ρrptqdt ` 1

β

`

b´a
2

˘β`1
ż 1

´1

|s ´ t|βρrptqdy “ Epsq,

where y “
`

b`a
2

˘

`
`

b´a
2

˘

t and x “
`

b`a
2

˘

`
`

b´a
2

˘

s with s, t P r´1, 1s.

Proof. We prove this equivalence for an operator with single power α, the rest follows

immediately by linearity. First, note that by rotational symmetry of the equilibrium measure

problem without external potentials we have ρlp´yq “ ρrpyq. Performing the substitution
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y Ñ ´y one thus obtains

ż b

a

|x ` y|
αρrpyqdy `

ż b

a

|x ´ y|
αρrpyqdy, (3.9)

for a single power operator. The appearance of the |x ` y|α kernel is expected from the

discrete physical interpretation of the problem, as it accounts for long-range interactions

between particles in the two separate clusters of the support. Noting that we can write

|x ` y|
α

“ |y ´ p´xq|
α

and performing the variable transformations y “
`

b`a
2

˘

`
`

b´a
2

˘

t and x “
`

b`a
2

˘

`
`

b´a
2

˘

s

with s, t P r´1, 1s completes the proof.

Lemma 3.5 shows that we can use the recurrence in Corollary 3.1 to compute the power law

integral operators, as long as we use the following n “ 0 and n “ 1 case starting points for

the terms which require evaluation outside of a support component:

ż 1

´1

|x ´ y|
αwpλq

pyqdy “

?
πΓpλ` 1

2
q|x|α2F1p 1´α

2
,´α

2
;1`λ; 1

x2
q

Γp1`λq
, if |x| ą 1.

ż 1

´1

|x ´ y|
αwpλq

pyqC
pλq

1 pxqdy “

$

’

’

&

’

’

%

?
παλΓpλ` 1

2
qp´xqα´1

2F1p 1´α
2

,1´α
2
;2`λ; 1

x2
q

Γp2`λq
, if x ă ´1,

´
?
παλΓpλ` 1

2
qxα´1

2F1p 1´α
2

,1´α
2
;2`λ; 1

x2
q

Γp2`λq
, if x ą 1.

It is straightforward to see using similar arguments as in the previous sections that this

does not result in banded operators. Instead we choose a fixed approximation degree for

the initial conditions and recursively generate approximately banded operators. We can

then use a straightforwardly modified version of Algorithm 6 to also compute two interval

equilibrium measures.
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3.7 Recurrence results for radial Jacobi polynomials

in arbitrary dimensions

The previous section showed how the one-dimensional equilibrium measure algorithm may

be extended from single interval support to two interval support. A different direction to

generalize the method in is to support higher dimensions. In this section we show how recur-

rence results obtained by entirely different means in higher-dimensional ball domains (the

natural radially symmetric generalization of single intervals to higher dimensions) in prac-

tice allow us to compute arbitrary dimensional equilibrium measures for attractive-repulsive

power law kernels.

Instead of relying on the ultraspherical polynomials as in previous sections, we require an

orthogonal polynomial basis on arbitrary dimensional balls. Higher dimensional analogues

of the Zernike polynomials can be used in arbitrary dimensions but these bases are unnec-

essarily general for our purposes.

The assumption that the power law equilibrium measure problem without external potential

is radially symmetric is what guarantees that our domain will be a ball in the first place.

As a consequence, we can drop all angular dependence from our basis, meaning that the

radial Jacobi polynomial basis in Section 1.3.3 is the natural choice. This is further sub-

stantiated by recent results from the theory of fractional Laplacians and Riesz potentials

by Dyda, Kuznetsov and Kwaśnicki in [36]. The following result is a minor extension to

include γ P p´2, 0q in the parameter range of Theorem 3 in [36] which holds for γ ą 0.

Theorem 3.3. Let γ P p´2, 0q, l, n ě 0 and 1 ď m ď Md,l. Then the Riesz potential of

p1 ´ |x|
2
q
γ
2Vl,mpxqP

p γ
2
, d´2

2
`lq

n p2|x|
2

´ 1q
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on the unit ball B1 Ă Rd evaluates as follows:

p´∆q
γ
2 p1 ´ |x|

2
q
γ
2Vl,mpxqP

p γ
2
, d´2

2
`lq

n p2|x|
2

´ 1q

“
2γΓp1`

γ
2

`nqΓp δ`α
2

`nq

n!Γp δ
2

`nq
Vl,mpxqP

p γ
2
, d´2

2
`lq

n p2|x|
2

´ 1q,

for all x P Rd such that |x| ă 1 and where δ :“ d` 2l. In the above Vl,mpxq denotes a linear

basis of the finite dimensional space with dimension

Md,l “
d ` 2l ´ 2

d ` l ´ 2

¨

˚

˝

2 ` l ´ 2

l

˛

‹

‚

spanned by solid harmonic polynomials, i.e. polynomial solutions to Laplace’s equation, with

degree l ě 0.

Proof. A proof for an analogous result with γ ą 0 is given in [36]. While the proof strategies

are more or less identical, we nevertheless include the full modified proof for the stated

parameter range for completion.

Throughout this proof we will be abbreviating our notation by setting Vl,mpxq “ V pxq. Using

the explicit hypergeometric function representation of the shifted radial Jacobi polynomials

in Eq. (1.43) we obtain:

n!

Γp1 `
γ
2

` nq
p1 ´ |x|

2
q
γ
2V pxqP

p γ
2
, d´2

2
`lq

n p2|x|
2

´ 1q

“ V pxqp1 ´ |x|
2
q
γ
2 2F1

¨

˚

˝

´n, δ`γ
2

` n

1 `
γ
2

; 1 ´ |x|
2

˛

‹

‚

“ V pxqG2,0
2,2

¨

˚

˝

1 `
γ
2

` n, 1 ´ δ
2

´ n

1 ´ δ
2
, 0

; |x|
2

˛

‹

‚

,

“ p´1q
nV pxqG1,1

2,2

¨

˚

˝

1 ´ δ
2

´ n, 1 `
γ
2

` n

0, 1 ´ δ
2

; |x|
2

˛

‹

‚

,
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where the second and third equalities make use of properties of the Meijer-G function cf.

[87, 8.4.49.22] and [36, Eq. 51]. Dyda, Kuznetsov and Kwaśnicki’s next step for their proof

of the γ ą 0 case is to use Theorem 2 in their paper [36]. To obtain the desired γ P p´2, 0q

result we instead use their Theorem 1 in combination with the Meijer-G cancellation rules

in Eq. (1.51), yielding:

p´∆q
γ
2

n!

Γp1 `
γ
2

` nq
p1 ´ |x|

2
q
γ
2V pxqP

p γ
2
, d´2

2
`lq

n p2|x|
2

´ 1q

“ p´1q
n2γV pxqG2,2

4,4

¨

˚

˝

1 ´
δ`γ
2
, 1 ´

δ`γ
2

´ n, 1 ` n, ´
γ
2

0, ´
γ
2
, 1 ´

δ`γ
2
, 1 ´ δ

2

; |x|
2

˛

‹

‚

“ p´1q
n2γV pxqG1,1

2,2

¨

˚

˝

1 ´
δ`γ
2

´ n, 1 ` n

0, 1 ´ δ
2

; |x|
2

˛

‹

‚

“
p´1qn2γV pxqΓp δ`γ

2
`nq

n! 2F1

¨

˚

˝

δ`γ
2

` n, ´n

δ
2

; |x|
2

˛

‹

‚

,

for |x| ă 1. All that remains to obtain the desired statement are simplifications to reduce

the hypergeometric function to Jacobi polynomial form as seen in the representation in Eq.

(1.43). Note that γ ą ´2 follows from the requirement that the Jacobi polynomial basis

parameters must be greater than ´1.

To generalize the above result to be sufficient for our equilibrium measure computations,

we will require the following auxiliary Lemmas:

Lemma 3.6. For x P BR Ă Rd the power law potential of pR2 ´ |y|2qℓ´
α`d
2 , with parameter

α P p´d, 2 ` 2ℓ ´ dq, evaluates to:

ż

BR

|x ´ y|α pR2
´ |y|

2
q
ℓ´α`d

2 dy “
π

d
2R2ℓ

Γ
`

d
2

˘ B
`

α`d
2
, 2ℓ`2´α´d

2

˘

2F1

¨

˚

˝

´α
2
, ´ℓ,

d
2

; |x|2

R2

˛

‹

‚

.

Proof. This is a slightly more general statement of the result in Lemma 3.2, the proof for
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both is found in [55].

Corollary 3.3. For x P BR Ă Rd the power law potential of pR2´|y|2qm´α`d
2 with parameters

α P p´d, 2 ` 2m ´ dq, m P N0 and β ą ´d, evaluates to:

ż

BR

|x ´ y|βpR2
´ |y|

2
q
m´α`d

2 dy “
π

d
2R2m`β´α

Γ
`

d
2

˘ B
`

β`d
2
, 2m`2´α´d

2

˘

2F1

¨

˚

˝

´
β
2
, ´m ´

β´α
2

d
2

; |x|2

R2

˛

‹

‚

.

Proof. This result is an immediately corollary of Lemma 3.6 by making the substitutions

ℓ “ m `
β´α
2

in
ş

BR
|x ´ y|β pR2 ´ |y|2qℓ´

β`d
2 dy.

The next result generalizes Theorem 3.3 to be suitable for our application:

Theorem 3.4. The power law integral on the unit ball B1 Ă Rd with α P p´d, 2 ` 2m ´ dq,

m P N0 and β ą ´d of a weighted radial Jacobi polynomial

p1 ´ |y|
2
q
m´α`d

2 P
pm´α`d

2
, d´2

2
q

n p2|y|
2

´ 1q

can be evaluated as a Gaussian hypergeometric function:

ż

B1

|x ´ y|
β
p1 ´ |y|

2
q
m´α`d

2 P
pm´α`d

2
, d´2

2
q

n p2|y|
2

´ 1qdy

“
πd{2Γp1`

β
2 qΓpβ`d

2 qΓpm`n´α`d
2

`1q

Γp d
2qΓpn`1qΓpβ

2
´n`1qΓpβ´α

2
`m`n`1q

2F1

¨

˚

˝

n ´
β
2
, ´m ´ n `

α´β
2

d
2

; |x|
2

˛

‹

‚

.

Proof. We begin by expanding the Jacobi polynomial on the left-hand side using the series

representation in Eq. (1.42):

ż

B1

|x ´ y|
β
p1 ´ |y|

2
q
m´α`d

2 P
pm´α`d

2
, d´2

2
q

n p2|y|
2

´ 1qdy

“
Γpm`n´α`d

2
`1q

n!Γpm`n´α
2 q

n
ÿ

k“0

p´1q
k

ˆ

n

k

˙

Γpm`n`k´α
2 q

Γpm`k´α`d
2

`1q

ż

B1

|x ´ y|
β
p1 ´ |y|

2
q
k`m´α`d

2 dy.
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The integral on the right-hand side allows the use of Corollary 3.3 to obtain

ż

B1

|x ´ y|
β
p1 ´ |y|

2
q
m´α`d

2 P
pm´α`d

2
, d´2

2
q

n p2|y|
2

´ 1qdy

“
π

d
2 Γpm`n´α`d

2
`1q

n!Γp d
2

qΓpm`n´α
2 q

n
ÿ

k“0

p´1q
k

ˆ

n

k

˙

Γpm`n`k´α
2 qΓp d`β

2 q

Γpk`m`
β´α
2

`1q
2F1

¨

˚

˝

´
β
2
,´m ´ k ´

β´α
2

d
2

; |x|
2

˛

‹

‚

.

after expanding the Beta function into Gamma functions and performing the resulting can-

cellations. It is straightforward to see that this may be rewritten into the form

ż

B1

|x ´ y|
β
p1 ´ |y|

2
q
m´α`d

2 P
pm´α`d

2
, d´2

2
q

n p2|y|
2

´ 1qdy

“ κα,β,d
m,n

n
ÿ

k“0

p´1q
k

ˆ

n

k

˙

p1´p´n´m`α
2

`1qq
k

p1´p´m´
β´α
2 qq

k

2F1

¨

˚

˝

´
β
2
, ´m ´ k ´

β´α
2

d
2

; |x|
2

˛

‹

‚

,

with newly defined constant

κα,β,d
m,n “

π
d
2 Γpm`n´α`d

2
`1qΓp d`β

2 qΓp´α
2

`m`nq

n!Γp d
2

qΓpm`n´a
2 qΓpβ´α

2
`m`1q

.

The finite sum appearing in this statement is of the form of Eq. (1.53), which means we

may collapse the finite sum of 2F1 functions to a 3F2 function:

κα,β,d
m,n

pb ´ aqn

p1 ´ aqn
3F2

¨

˚

˝

´
β
2
, a ´ b ` 1, a ´ n

d
2
, a ´ b ´ n ` 1

; |x|
2

˛

‹

‚

“ κα,β,d
m,n

p1 `
β
2

´ nqn

p
β´α
2

` m ` 1qn
3F2

¨

˚

˝

´
β
2
, n ´

β
2
, ´m ´ n `

α´β
2

d
2
, ´

β
2

; |x|
2

˛

‹

‚

.

The cancellation property for the 3F2 function we explicitly noted in Eq. (1.52) then allows

a final simplification back to precisely the 2F1 function version of the expression which we

claimed in the theorem statement.
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Based on Theorem 3.4 we can also find the following recurrence relationship to efficiently

compute the operators:

Corollary 3.4. The power law integral on the unit ball B1 Ă Rd with α P p´d, 2` 2m´ dq,

m P N0 and β ą ´d of a weighted radial Jacobi polynomial

p1 ´ |y|
2
q
m´α`d

2 P
pm´α`d

2
, d´2

2
q

n p2|y|
2

´ 1q

satisfies the three term recurrence relationship:

ż

B1

|x ´ y|
β
p1 ´ |y|

2
q
m´α`d

2 P
pm´α`d

2
, d´2

2
q

n`1 p2|y|
2

´ 1qdy

“ pca|x|
2

` cbq

ż

B1

|x ´ y|
β
p1 ´ |y|

2
q
m´α`d

2 P
pm´α`d

2
, d´2

2
q

n p2|y|
2

´ 1qdy

` cc

ż

B1

|x ´ y|
β
p1 ´ |y|

2
q
m´α`d

2 P
pm´α`d

2
, d´2

2
q

n´1 p2|y|
2

´ 1qdy,

with constants

ca “ ´
p´α`2m`4nqp´α`2m`4n`2qpα`d´2pm`n`1qq

2pn`1qp´α`β`2m`2n`2qp´α`β`d`2m`2nq
,

cb “ ´
p´α`2m`4nqpα`d´2pm`n`1qqpdp´α`2β`2m`2q´2p2n´βqp´α`β`2m`2nqq

2pn`1qp´α`2m`4n´2qp´α`β`2m`2n`2qp´α`β`d`2m`2nq
,

cc “
p´β`2n´2qpβ`d´2nqp´α`2m`4n`2qpα`d´2pm`nqqpα`d´2pm`n`1qq

4npn`1qp´α`2m`4n´2qp´α`β`2m`2n`2qp´α`β`d`2m`2nq
.

Proof. The proof of this is an immediate consequence of Theorem 3.4 in combination with

one of the recurrence relationships for Gaussian hypergeometric functions of general form

2F1

¨

˚

˝

a ` ϵ1n, b ` ϵ2n

c ` ϵ3n
; z

˛

‹

‚

with ϵi P t´1, 0, 1u which we mentioned in Section 1.4 and which follow from the so-called

contiguous relationships [73, 15.5.11–15.5.18]. The specific recurrence used to obtain this

result from Theorem 3.4 is stated in Eq. (1.54).
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(a) α operator (b) β operator

Figure 3.2: (a) shows a spy plot of the α operator corresponding to the attractive term of
the kernel for the parameter combination d “ 2, α “ 1.3, β “ 1

π
, while (b) shows the β

operator corresponding to the repulsive term. The basis was chosen to make α operator
banded (in this case tridiagonal), resulting in an approximately banded β operator. The
number of bands required in the α operator is determined by the value of α and d. The
scale of the legend is logarithmic, indicating order of magnitude of the absolute values.

Note that in the above results, in addition to the increased parameter range, the kernel

and weight powers are now decoupled in contrast with Theorem 3.3, which makes it useful

for the attractive-repulsive case. If α “ β in Theorem 3.4 we once again obtain a banded

operator, as is readily checked using the condition under which hypergeometric functions are

finite polynomials. Likewise, the attractive-repulsive case once again yields approximately

banded operators. We present some typical spy plots for different powers of these operators

in Figure 3.2. In the original publication [47] that this chapter is based on, we showed

how additional simpler forms of the recurrence relationships on arbitrary dimensional balls

can also be obtained by different means which are nevertheless strictly special cases of the

above recurrence. As they are all special cases of the above results which may be obtained

by making appropriate choices of β and m, we only include the particularly interesting

special cases of diagonal and tridiagonal operators.
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Lemma 3.7. The power law integral at x “ 0 on the unit ball B1 Ă Rd with α P p´d, 2´ dq

of a weighted radial Jacobi polynomial

p1 ´ |y|
2
q

´α`d
2 P

p´α`d
2

, d´2
2

q

n p2|y|
2

´ 1q

can be evaluated by means of a hypergeometric 3F2 function:

ż

B1

|y|
p
p1 ´ |y|

2
q
mP pa,bq

n p2|y|
2

´ 1qdy

“

n
ÿ

k“0

p´1q
n`k pn`a`b`1qkpb`k`1qn´k

k! pn´kq!

π
d
2

Γpd
2
q
B

ˆ

2k ` p ` d

2
,m ` 1

˙

“
p´1qnπ

d
2 `1

pα`dqΓp d
2

`nq

2Γp d
2q

2
Γpn`1q sinp

πpα`dq

2 q
3F2

¨

˚

˝

´n, n ´ α
2
, 1 ` α`d

2

2, d
2

; 1

˛

‹

‚

.

Proof. This proof is obtained by expanding the Jacobi polynomial using the series repre-

sentation in Eq. (1.41), then using the known result (c.f. [25, Appendix A])

ż

BR

pR2
´ |y|

2
q
m

|y|
kdy “ Rk`2m`d π

d
2

Γpd
2
q
B

ˆ

k ` d

2
,m ` 1

˙

to obtain

ż

B1

p1 ´ |y|
2
q
m

|y|
pP pa,bq

n p2|y|
2

´ 1qdy

“

n
ÿ

k“0

p´1q
n`k pn`a`b`1qkpb`k`1qn´k

k! pn´kq!

ż

B1

p1 ´ |y|
2
q
m

|y|
2k`pdy

“

n
ÿ

k“0

p´1q
n`k pn`a`b`1qkpb`k`1qn´k

k! pn´kq!

π
d
2

Γpd
2
q
B

ˆ

2k ` p ` d

2
,m ` 1

˙

.

The 3F2 variant then follows via [73, 5.12, 16.2].

Lemma 3.8. The power law integral on the unit ball B1 Ă Rd with α P p´d, 2 ´ dq of a
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weighted radial Jacobi polynomial

p1 ´ |y|
2
q

´α`d
2 P

p´α`d
2

, d´2
2

q

n p2|y|
2

´ 1q

can be evaluated as a Jacobi polynomial:

ż

B1

|x ´ y|
α
p1 ´ |y|

2
q

´α`d
2 P

p´α`d
2

, d´2
2

q

n p2|y|
2

´ 1qdy

“
π

d
2 Γpα`d

2 qΓpn´α
2 qΓp1´α`d

2
`nq

Γp´α
2 qΓp d

2
`nqn!

P
p´α`d

2
, d´2

2
q

n p2|x|
2

´ 1q

“ ´
απ

d
2 `1p1´α

2 q
n´1

p1´α`d
2 q

n

2 sinp
πpα`dq

2 qΓp d
2

`nqn!
P

p´α`d
2

, d´2
2

q

n p2|x|
2

´ 1q.

Proof. The most direct way to this result is using our extension of the Dyda, Kuznetsov and

Kwaśnicki in Theorem 3.3. The case l “ 0 corresponds to the special case where V pxq “ 1,

hence we obtain

p´∆q
´α`d

2 p1 ´ |x|
2
q

´α`d
2 P

p´α`d
2

, d´2
2

q

n p2|x|
2

´ 1q

“
Γp1´α`d

2
`nqΓpn´α

2 q

2α`d Γp d
2

`nqn!
P

p´α`d
2

, d´2
2

q

n p2|x|
2

´ 1q.

where we have set γ “ ´pα ` dq. Following the domains of validity for individual steps via

Theorem 3.3 we end up with range of validity α P p´d, 2´dq. Note from Definition 3.2 that

there is a multiplicative constant distinguishing Riesz potentials and power law integrals,

which results in the different constants in the statement of the Lemma. The second stated

equality is a consequence of the known special case of the beta function [73, 5.5.3]:

B
`

α`d
2
, 1 ´ α`d

2

˘

“ π

sinp
πpα`dq

2 q
.
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Lemma 3.9. The power law integral on the unit ball B1 Ă Rd with α P p2 ´ d, 4 ´ dq of a

weighted radial Jacobi polynomial

p1 ´ |y|
2
q
1´α`d

2 P
p1´α`d

2
, d´2

2
q

n p2|y|
2

´ 1q

satisfies the three term recurrence relationship:

ż

B1

|x ´ y|
α
p1 ´ |y|

2
q
1´α`d

2 P
p1´α`d

2
, d´2

2
q

n p2|y|
2

´ 1qdy “ κaP
p1´α`d

2
, d´2

2 q
n´1

`

2|x|
2

´ 1
˘

` κbP
p1´α`d

2
, d´2

2 q
n

`

2|x|
2

´ 1
˘

` κcP
p1´α`d

2
, d´2

2 q
n`1

`

2|x|
2

´ 1
˘

,

with constants

κa “ ´
4πd{2Γpα`d

2 qΓpn´α
2 qΓpn´α`d

2
`2q

pα´4n´2qpα´4nqΓp´α
2 qΓpn`1qΓp d

2
`n´1q

,

κb “
8πd{2Γpα`d

2 qΓpn´α
2

`1qΓpn´α`d
2

`2q

pα´4nqpα´4pn`1qqΓp´α
2 qΓpn`1qΓp d

2
`nq

,

κc “ ´
4πd{2Γpα`d

2 qΓpn´α
2

`2qΓpn´α`d
2

`2q

pα´4n´2qpα´4pn`1qqΓp´α
2 qΓpn`1qΓp d

2
`n`1q

.

Proof. The crucial observation for this result is that the ordinary Laplace operator acts as

follows on power law integrals with α P p´d, 2 ´ dq:

∆x

ż

B1

|x ´ y|
α`2

p1 ´ |y|
2
q

´α`d
2 P

p´α`d
2

, d´2
2

q

n p2|y|
2

´ 1qdy “

pα ` dqpα ` 2q

ż

B1

|x ´ y|
α
p1 ´ |y|

2
q

´α`d
2 P

p´α`d
2

, d´2
2

q

n p2|y|
2

´ 1qdy “

´
pα`dqpα`2qαπ

d
2 Bpα`d

2
,1´α`d

2 qp1´α
2 q

n´1
p1´α`d

2 q
n

2Γp d
2

`nqn!
P

p´α`d
2

, d´2
2

q

n p2|x|
2

´ 1q.

Note that we have used Lemma 3.8 to evaluate the power law integral in the final step.

Before proceeding, we use basis conversion operators to raise the first parameter of the

Jacobi polynomial basis by 2 in the above result because otherwise the chain of arguments
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which follows fails to guarantee that the Jacobi polynomial parameters remain greater than

´1. We thus use

P
p´α`d

2
, d´2

2
q

n p2|x|
2

´ 1q “
pd`2n´4qpd`2n´2q

p4n´αqp´α`4n´2q
P

p2´α`d
2

, d´2
2 q

n´2

`

2|x|
2

´ 1
˘

`
2pd`2n´2qpα´2nq

pα´4nq2´4
P

p2´α`d
2

, d´2
2 q

n´1

`

2|x|
2

´ 1
˘

`
pα´2nqpα´2n´2q

p4n´αqp´α`4n`2q
P

p2´α`d
2

, d´2
2 q

n

`

2|x|
2

´ 1
˘

.

Due to the radial symmetry of the integrals we then obtain

ż

B1

|x ´ y|
α`2

p1 ´ |y|
2
q

´α`d
2 P

p´α`d
2

, d´2
2 q

n p2|y|
2

´ 1qdy “

caP
p´α`d

2
, d´2

2 q
n´1

`

2|x|
2

´ 1
˘

` cbP
p´α`d

2
, d´2

2 q
n

`

2|x|
2

´ 1
˘

` ccP
p´α`d

2
, d´2

2 q
n`1

`

2|x|
2

´ 1
˘

` cd,

with the fixed constants

ca “ ´
4πd{2Γp 1

2
pd`α`2qqΓpn´α

2
´1qΓpn´α`d

2
`1q

Γp´α
2

´1qp´α`4n´2qp4n´αqΓpn`1qΓp d
2

`n´1q
,

cb “
8πd{2Γp 1

2
pd`α`2qqΓpn´α

2 qΓpn´α`d
2

`1q

Γp´α
2

´1qppα´4nq2´4qΓpn`1qΓp d
2

`nq
,

cc “ ´
4πd{2Γp 1

2
pd`α`2qqΓpn´α

2
`1qΓpn´α`d

2
`1q

Γp´α
2

´1qp´α`4n`2qp4n´αqΓpn`1qΓp d
2

`n`1q
.

What remains to be proved is that the constant cd “ 0. This is done using Lemma 3.7,

which results in

p´1q
n

˜

´
pd
2
qn´1

pn ´ 1q!
ca `

pd
2
qn

n!
cb ´

pd
2
qn`1

pn ` 1q!
cc

¸

` cd “

n
ÿ

k“0

p´1q
n`k pn´α`d

2
` d´2

2
`1q

k
p d´2

2
`k`1q

n´k

k! pn´kq!

π
d
2

Γpd
2
q
B
`

2k`α`2`d
2

, 1 ´ α`d
2

˘

,

which may be solved to obtain cd “ 0. The Lemma statement follows after performing the

power shift α ` 2 Ñ α to maintain consistent kernel power notation.

These two results respectively show in which special cases one obtains diagonal or tridiagonal
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operators from the more general results in 3.4. By using the methodology in the proof of

Lemma 3.9 one can obtain further polynomial recurrences for appropriately matched basis

and kernel powers with increasing bandwidth in the resulting operator as the parameters

increase. All of the resulting recurrences valid for higher parameter ranges remain special

cases of the fully general result in Corollary 3.4, so we do not pursue this different proof

approach further than we did above.

3.8 Numerical method on arbitrary dimensional balls

The primary two results of the previous section, Theorem 3.4 and Corollary 3.4, can be

used to construct an algorithm similar to Algorithm 6 but for arbitrary dimensions. We

summarize this method in Algorithm 8. As before, we choose to delay the discussion of the

Tikhonov regularization step to Section 3.9. In step 4 of Algorithm 8 we make use of the

following result to correctly normalize the obtained measure:

Lemma 3.10. Let ρpyq “ ρp|y|2q, y P B1 Ă Rd be a function of constant mass M in the

sense that

ż

B1

ρpyqdy “ M.

If an expansion of ρpyq in weighted radial Jacobi polynomials

ρpyq “

8
ÿ

n“0

ρnp1 ´ |y|
2
q
aP

pa, d´2
2

q

n p2|y|
2

´ 1q

exists and satisfies the condition

ż

B1

8
ÿ

n“0

ˇ

ˇ

ˇ
ρnp1 ´ |y|

2
q
aP

pa, d´2
2

q

n p2|y|
2

´ 1q

ˇ

ˇ

ˇ
dy ă 8, (3.10)

then

M “

ż

B1

ρpyqdy “
π

d
2Γpa ` 1q

Γ
`

a ` d
2

` 1
˘ρ0.
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Proof. Using hyperspherical coordinates, with σpSd´1q “ 2π
d
2

Γp d
2

q
denoting the surface area of

the d ´ 1 dimensional sphere, we obtain

M1 “

ż

B1

ρpyqdy “

8
ÿ

n“0

ρn

ż

B1

p1 ´ |y|
2
q
aP

pa, d´2
2

q

n p2|y|
2

´ 1qdy

“

8
ÿ

n“0

ρn

ż

Sd´1

ż 1

r“0

p1 ´ r2qaP
pa, d´2

2
q

n p2r2 ´ 1qrd´1drdσpωq

“ σpSd´1
q

8
ÿ

n“0

ρn

ż 1

r“0

p1 ´ r2q
aP

pa, d´2
2

q

n p2r2 ´ 1qrd´1dr.

Note that the sum and integral order change in the first step uses the Fubini-Tonelli theorem,

which is why the condition in (3.10) is part of the Lemma statement. The stated result then

follows via

8
ÿ

n“0

ρn

ż 1

0

p1 ´ r2q
aP

pa, d´2
2

q

n p2r2 ´ 1qrd´1dr

“
1

4

8
ÿ

n“0

ρn

ż 1

´1

p1 ´ tqa

2a
p1 ` tq

d´2
2

2
d´2
2

P
pa, d´2

2
q

n ptqdt

“ 2
´2´2a´d

2

8
ÿ

n“0

ρn

ż 1

´1

p1 ´ tqap1 ` tq
d´2
2 P

pa, d´2
2

q

n ptqdt

“
Γpa ` 1qΓ

`

d
2

˘

2Γ
`

a ` d
2

` 1
˘ρ0.

Remark 3.2. Note that the operators Qα and Qβ in the Algorithms (6-8) are independent of

R or in the one-dimensional cases independent of a and b. The computational consequence

of this is that one does not need to re-generate operators in each optimization step.
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Algorithm 8 Arbitrary dimensional ball power law equilibrium measures with V pxq “ 0

Find polynomial approximation of non-negative equilibrium measure dρ “ ρpxqdx and ra-
dius of ball support centered on the origin

supppρq “ BR

such that the value of

1

α

ż

BR

|x ´ y|
αρpyqdy ´

1

β

ż

BR

|x ´ y|
βρpyqdy “ E,

is minimized with mass condition
ş

supppρq
ρpyqdy “ M for given M .

1. The algorithm takes an initial guess for the support radius as input which is varied in
the optimization part in the last step.

2. Perform a variable transformation to the unit ball, thus instead minimizing the ex-
pression

Rα`d

α

ż

B1

|x ´ y|
αρpRyqdy ´

Rβ`d

β

ż

B1

|x ´ y|
βρpRyqdy “ E,

where now |y|, |x| ď 1.

3. Assume the density ρ̃pyq “ ρpRyq is expanded in the weighted radial Jacobi polynomial
basis

ρ̃pyq “

8
ÿ

n“0

ρ̃np1´|y|
2
q
ℓ´α`d

2 P
pℓ´α`d

2
, d´2

2
q

n p2|y|
2
´1q “ p1´|y|

2
q
ℓ´α`d

2 Ppℓ´α`d
2

, d´2
2

q
p2|y|

2
´1qρ̃,

with ℓ chosen in accordance with Theorem 3.4 and Corollary 3.4, resulting in the
following approximately banded operator form which is solved for ρ̃

E
after Tikhonov

regularization:
ˆ

Rα`d

α
Qα

´
Rβ`d

β
Qβ

˙

ρ̃

E
“ e1.

4. Use Lemma 3.10 to normalize the obtained measure and obtain ρ̃ from ρ̃
E
.

5. Compute the value of E in the sense of

Rα`d

α

ż

B1

|x ´ y|
αρpRyqdy ´

Rβ`d

β

ż

B1

|x ´ y|
βρpRyqdy “ E,

by using the already stored operators and loop over these steps using any constrained
optimization algorithm to minimize E with non-negative ρ, e.g. by penalizing negative
minima on BR.
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3.9 Tikhonov regularization for power law equilibrium

measure problems

The discussion of convergence and stability for the one-dimensional and higher-dimensional

method is largely identical and respectively splits into two sub-questions regarding the

convergence of the spectral method step and the convergence of the optimization step.

As the optimization step simply inherits its convergence properties from the optimization

method of choice, the value of E is well-behaved in the neighborhood of the equilibrium

measures and we do not specify a concrete optimization method to use, we will focus on the

spectral method step in this section.

As we saw in sections 3.5 and 3.8, the spectral method part of our solution algorithms may

be reduced to solving the following system:

E “
1

α

ż

BR

|x ´ y|
αρpyqdy ´

1

β

ż

BR

|x ´ y|
βρpyqdy, (3.11)

where the ball BR may be of arbitrary dimension, including the case d “ 1. In Chapter 2 we

noted how Volterra integral equations of first-kind, that is equations of the form VKu “ g

were in a sense ill-posed without further specification as the Volterra integral operator is

known to be compact on L2r0, 1s. While the integral operator in (3.11) is not a Volterra in-

tegral operator it is nevertheless a Fredholm integral operator for which similar results hold

and finite section methods should not be expected to sensibly converge without additional

constraints. Note that even in the case where the external potential V is non-vanishing

as in Algorithm 7, the linear problem we end up solving in the algorithm is nevertheless a

first-kind problem.

Unlike in the case of our convergence proof for Volterra integral equations of first-kind in

Chapter 2, restricting the function space is not an option here. While such an approach

may yield a convergence result, in an actual application we have little to no control over

the function space of the equilibrium measure solutions we wish to compute for a given pair
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of powers and thus require a method that regularizes these problems more generically. The

method of choice in the literature to turn first-kind Fredholm integral equations into well-

posed problems is known as Tikhonov regularization, named after Andrey Tikhonov who

first discussed these ideas in the 1960s [103, 102]. The general idea of Tikhonov regulariza-

tion is to solve an, in a suitably defined sense, adjacent second-kind problem of the first-kind

problem we wish to solve. If the first-kind problem has a solution, which we assume is the

case, then the error incurred from solving the second-kind problem instead may be bounded

by how far away it is from the first-kind problem. To make this more explicit, instead of

the above equation we solve

psI ` F˚Fqρs “ F˚E, (3.12)

where I is the identity matrix, and we have introduced a shorthand notation for the power

law integral operators F “ Qα ´Qβ. Note that in this notation the original equation in 3.11

is simply Fρ “ E. Solving the Tikhonov regularized equation 3.12 for small parameters s

allows us to substantially improve the stability of our method – we explore this numerically

in sections 3.10.1 and 3.10.2. Lastly, we note that the error incurred by using the n-th order

polynomial approximation of ρs (with small s) denoted ρs,n may be split into an error due

to the Tikhonov regularization }ρs ´ ρ} and one due to the spectral method }ρs,n ´ ρs} by

means of the triangle inequality:

}ρs,n ´ ρ} “ }ρs,n ´ ρs ` ρs ´ ρ} ď }ρs,n ´ ρs} ` }ρs ´ ρ}.

The literature on choice strategies for s and properties of Tikhonov regularizations is too

extensive to include a detailed discussion here, so for additional details on the available

options and trade-offs we refer to [71, 70] and the references therein.
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3.10 Numerical experiments and validation

In this section we present numerical experiments with the aim of verifying the above-

introduced algorithms against special case known solutions and particle-based simulations

as well as explore presently poorly understood properties such as uniqueness and the void

formation boundary of power law equilibrium measures in one and higher dimensions. Sec-

tion 3.10.1 discusses the one-dimensional case, while Section 3.10.2 addresses the case of

arbitrary dimensional ball support.

3.10.1 In one dimension

Special cases with known solutions

As mentioned in the introduction of this chapter, some uniqueness and existence results

exist for special parameter cases. One such example is problems of the form

E “
1

2

ż b

a

|x ´ y|
2ρpyqdy ´

1

β

ż b

a

|x ´ y|
βρpyqdy, (3.13)

with 1 ă β ă 2, for which the analytically obtained solution and support radius are:

b “ ´a “

„

cosp
p2´βqπ

2 q
πpβ´1q

B
`

1
2
, 3´β

2

˘

ȷ
1

β´2

, (3.14)

ρpxq “ M
β´1

cosp
πp2´βq

2 q
π

`

b2 ´ x2
˘

1´β
2 . (3.15)

In this section we compare numerically obtained solutions with these analytic special case

solutions. In Figure 3.3 we plot the value of E obtained from different support radius

assumptions for two examples with analytic solutions, showing how the analytic solution

is located in a unique local minimum of E. When taking into account the constraint that

the measure must be non-negative, the measure appears to in fact be globally unique. In

Figure 3.4 and 3.5 we plot the obtained measures corresponding with the parameter choices
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(a) β “ 1.1 (b) β “ 1.68

Figure 3.3: E computed from equilibrium measure candidates for the problem in (3.13)
in the neighborhood of the analytic solution (with support radius on the x-axis). The
indicated analytic radius of support seen in (3.14) agrees with the numerically found unique
local minimum and any measures with lower E are found to not be admissible due to the
non-negativity condition.

of Figure 3.3 on their support as well as the error compared to the analytic solution for a

fixed approximation degree.

Exploring uniqueness and existence of solutions

Figure 3.3 in the previous section showed how uniqueness and existence of the numerically

obtained solution is observed for the special cases where these properties are already ana-

lytically known. In this section we show that even when α and β are not of the even integer

form for which solutions are known, uniqueness and existence still hold.

In Figure 3.6, we plot E as a function of the support radius as we did in Figure 3.3 but

now for problems where no analytic solutions are known and observe the same qualitative

behavior: A unique local minimum with admissible non-negative measures. This is observed

as long as the value of the repulsive power β is lower than a certain void formation threshold

which depends on α as well as the dimension of the problem. We discuss this void formation

threshold in more detail in the final numerical experiments section of this chapter.

In Figure 3.7 we plot the equilibrium measure solutions corresponding to the problem pa-

rameters in Figure 3.6 including histograms generated from a particle simulation with 1000
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(a) (b)

Figure 3.4: (a) shows computed equilibrium measure for (3.13) with β “ 1.1 on its radius of
support. (b) shows the error compared to the analytic solution in (3.15) after both measures
have been normalized to the unit interval p´1, 1q.

(a) (b)

Figure 3.5: (a) shows computed equilibrium measure for (3.13) with β “ 1.68 on its radius of
support. (b) shows the error compared to the analytic solution in (3.15) after both measures
have been normalized to the unit interval p´1, 1q.
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(a) α “ 1.87, β “ 0.33 (b) α “ 3.6, β “ 1.2

Figure 3.6: E computed from equilibrium measure candidates for the attractive-repulsive
equilibrium measure problem with indicated parameters in the neighborhood of the only
observed local minimum with non-negative measure. As no analytic solutions are available,
we instead compare the computed measures with what is obtained from particle simulations
in Figure 3.7.

particles showing that our continuous solutions agree with the only other currently available

approach.

Two interval examples

We described how two interval attractive-repulsive problems may be solved using a vari-

ation of our method in section 3.6. These measures occur in practice when the repulsive

power overcomes a void formation threshold which causes all single interval measures to

have negative values around the origin. Thus, an implementation of the methods discussed

in this chapter may automatically detect the need to use a two interval method based on the

non-existence of non-negative measures of single interval support – we show an example of

how this could work in Figure 3.8 where we show the single interval measures obtained from

the unique local minimum (with the non-negativity condition turned off). Similar ideas

were previously discussed for the case of log kernel equilibrium measures in [74].

In Figure 3.9 we plot a measure obtained using the two interval method for a parameter

combination where single interval support yields no non-negative measures. Since no ana-

lytic solutions exist in these cases, we instead include a comparison with discrete particle
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(a) α “ 1.87, β “ 0.33 (b) α “ 3.6, β “ 1.2

Figure 3.7: Plot of the numerically obtained measures for the attractive-repulsive power law
equilibrium measure problems with indicated parameters (in blue). As no analytic solutions
are available for comparison, we instead include histograms of a particle simulation using
1000 particles. The measure mass M was scaled to the histogram mass to allow comparison.

simulations. An animation generated using our method which shows the transition from

single to two interval measures was previously made available as part of the publication

[48] in [46]. While the two interval method works and agrees with particle simulations, the

numerical experiments we performed suggest that the two interval approach is substantially

more prone to instability and thus a more specialized regularization scheme or using different

recurrences and bases than the ones discussed may be worth exploring in future research.

Examples with external potentials

While the bulk of the discussion in this chapter concerned attractive-repulsive equilibrium

measures, we also discussed a method for a single power in combination with an external

potential in Algorithm 7. In this section we show proof of concept of this algorithm in action

for the following equilibrium measure problem:

E “ ´
4

3

ż b

a

|x ´ y|
´ 3

4ρpyqdy ` V pxq, (3.16)
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Figure 3.8: Plot of the numerically obtained measures for attractive-repulsive power law
equilibrium measure problem with parameters α “ 3.75 and the indicated values of β.
Above a void formation threshold of the repulsive power β (which depends on α) no non-
negative measures on single interval support can be found. Choosing the local minimum
in E disregarding the non-negativity condition results in a single interval measure with
negative values around the origin, which can be used in code to automate splitting the
support interval.

Figure 3.9: Plot of the numerically obtained measure for an attractive-repulsive power law
equilibrium measure problem with parameters α “ 3.37 and β “ 1.81 (in blue). As no
analytic solutions are available for comparison, we instead include a histogram of a particle
simulation using 1000 particles. The measure mass M was scaled to the histogram mass to
allow comparison.
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with asymmetric external potential

V pxq “ ´x6
´ sinp2xq. (3.17)

We use an asymmetric external potential to showcase that Algorithm 7 does not require or

assume radial symmetry. We plot the numerically obtained measure solving the equilibrium

measure problem in Eq. (3.16) in Figure 3.10. An interesting consequence of problems

involving external potentials is that the problem loses the translation invariance inherent in

purely attractive-repulsive problems.

Since once again no analytic solutions are available, we instead compare with a differently

obtained numerical solution in Figure 3.10. The alternative method we use as a comparison

is an immediate consequence of the operator form derived for (3.16) as part of Algorithm

7 and is based on an idea found in [74]: For the special case in which the equilibrium

measure is the unique solution which vanishes on its support boundary we can instead

obtain a numerical solution by using a Newton iteration acting on each component of the

approximation’s polynomial coefficients to force the resulting approximation to vanish on

the boundary. As we have seen in previous numerical experiments, most measures are not of

this form and instead have non-trivial singularities on the boundary. Limited information

for which parameter ranges allow for such an alternative approach can be inferred from

results in [25] but to best of the knowledge of the authors no general results are known.

Nevertheless, this alternative method provides a further check that the candidate measures

our algorithms pick out are indeed the equilibrium measures. Note that this alternative

method is not discussed in more detail because it is always less efficient than the method

where we optimize over the support boundary points (since any reasonable approximation of

ρ will have more than two coefficients) and for reasons outlined above is severely restricted

in applicable range.



3.10. Numerical experiments and validation 117
ρ
(x
)

(a) (b)

Figure 3.10: (a) shows a plot of the numerically obtained measure (in black) for the asym-
metric single power equilibrium measure problem in (3.16) with external potential in (3.17)
and parameters α “ 3.6, β “ 1.2. Note that unlike the purely attractive-repulsive equilib-
rium measure problems this measure is not translation invariant. No analytic solutions are
available for comparison but as this is a special case where the candidate measure vanishes
at the boundary, we instead overlay (in dashed gray) a measure obtained with an alternative
coefficient space Newton iteration approach. (b) shows the absolute error between the two
methods.

3.10.2 In higher dimensions

Special cases with known solutions

As in the one-dimensional case, analytic solutions with arbitrary ball support are known for

the special case where either α or β are an even integer [25]. Here we consider the following

special case solutions for α “ 4 and β ă
p2`2d´d2q

pd`1q
:

R “

«

dpd ` 2qΓpd
2
q

2Γp
β`d
2

qΓp2 ´
β
2
qq

˜

1

4 ´ β
`

1
a

p2 ´ βqp6 ´ βq

¸ff´ 1
4´β

, (3.18)

ρpxq “ pR2
´ |x|

2
q
1´

β`d
2

`

A1R
2

` A2pR2
´ |x|

2
q
˘

, (3.19)



118 Chapter 3. Computing power law equilibrium measures

(a) d “ 2, β “ 1
π (b) d “ 6, β “ 3.7

Figure 3.11: E computed from equilibrium measure candidates for the attractive-repulsive
problem with α “ 4 in indicated dimension d in the neighborhood of the analytic solution
(with support radius on the x-axis). The indicated analytic radius of support seen in (3.18)
agrees with the numerically found unique local minimum and any measures with lower E
are found to not be admissible due to the non-negativity condition.

with functions

A1pβ, dq “
Γpd

2
q

π
d
2

dpd ` 2qM

2B
`

β`d
2
, 2 ´

β`d
2

˘

«

1
a

p2 ´ βqp6 ´ βq
`

1

2 ´ β

ff

,

A2pβ, dq “
Γpd

2
q

π
d
2

dpd ` 2qM

B
`

β`d
2
, 3 ´

β`d
2

˘

4pβ ´ 2qM
.

In Figure 3.11 we plot the value of E obtained from different support radius assumptions

for two examples in different dimensions with analytic solutions, showing how the analytic

solution is located in the unique local minimum of E where non-negative measures exist. In

Figure 3.12 we plot the measure corresponding with the d “ 2 parameter choice found in

Figure 3.11 as well as the absolute error compared with the analytic solution.

Exploring uniqueness and existence of solutions

In Figure 3.13 we plot E as a function of the support radius for generic cases in various

dimensions d, showing that the behavior observed in the analytic case above also persists

away from even integer powers. As in the one-dimensional case, the qualitative behavior of

E does not change until a certain void formation threshold is reached, at which point no
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(a) (b)

Figure 3.12: (a) shows the numerically obtained solution for the attractive-repulsive equi-
librium measure problem with α “ 4 and β “ 1

π
on its disk support (cf. Figure 3.11(a)).

(b) shows the error compared to the analytic solution in (3.19) after both measures have
been normalized to the unit ball.

non-negative measures on single ball support can be found. This void formation threshold

is explored in more detail in a later numerical experiment.

As in the one-dimensional case we may in principle use particle simulations to verify the

results of our higher-dimensional methods outside the special cases where analytic solutions

exist. In practice this is a difficult task, however, as the number of particles required

scaled poorly with dimension and soon exceeds reasonable computing times. In Figure

3.14 we plot the result of a simulation using 1000 particles and compare a rough two-

dimensional histogram to the continuous measure obtained by our method for two examples

with d “ 2. While no sensible quantitative comparison can be made without using orders of

magnitude more particles (exceeding available computing resources), we nevertheless observe

qualitatively compatible measures as one would expect.

Errors, convergence and impact of regularization

As discussed in Section 3.9, two primary errors are to be considered for our method: The

error incurred from the approximately banded spectral method and the error incurred from

the optimization. In addition to these two sources of error, we also investigate the positive

impact on stability due to the Tikhonov regularization.
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(a) d “ 2, α “ 1.31, β “ 1.23 (b) d “ 3, α “ 1.4, β “ 0.22

Figure 3.13: E computed from equilibrium measure candidates for the attractive-repulsive
equilibrium measure problem with indicated parameters and dimension d in the neighbor-
hood of the only observed local minimum with non-negative measure. No analytic solutions
are available for these parameters. Instead, we qualitatively compare the d “ 2 case to a
particle simulation in Figure 3.14.

The output of our optimization step is the radius of support of the equilibrium measure.

To explore the impact of errors due to the optimization method we thus explore how using

slightly perturbed radii affect the resulting measures. We use the special cases discussed in

Equation (3.13) for which analytic solutions are known to plot the error with radius pertur-

bations in Figure 3.15 for the one-dimensional method. Similar plots can be generated for

the higher-dimensional method showing the same linear relationship. We observe that per-

turbations in the radius propagate linearly to errors in the measures after normalization to

unit ball support. In a given application this knowledge can be used to fine-tune the conver-

gence criteria of the optimization step which has a support radius candidate as its output.

In Figure 3.16(a) we show the convergence behavior of the approximation coefficients for

the equilibrium measures obtained with and without using Tikhonov regularization for the

d “ 3 example without known analytic solutions discussed in Figure 3.13(b). In general, we

find that while the methods obtained with the Tikhonov regularized method qualitatively

agree with the non-regularized method, the non-regularized method is prone to (incorrect)

oscillations near the boundary as a result of the numerical instability. We show an example

of this behavior in Figure 3.16(b).
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(a) (b)

(c)

Figure 3.14: (a) shows a the numerically obtained equilibrium measure for the problem in
Figure 3.13(a) with d “ 2, α “ 1.31, β “ 1.23 on its disk support. (b) shows a particle
simulation with 1000 particles for the same problem. (c) shows a two-dimensional histogram
generated based on the particle configuration in (b).
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(a) β “ 1.1 (b) β “ 1.68

Figure 3.15: Plot of the absolute error between analytic solution to the problem in (3.13)
with indicated β and a numerical solution computed using a radius value perturbed by the
values on the x-axis.

(a) (b)

Figure 3.16: (a) shows the absolute value of the n-th approximation coefficient in the nu-
merical solution obtained for the problem in Figure 3.13(b) with and without Tikhonov
regularization on a semi-logarithmic scale. (b) shows how regularization corrects incorrect
oscillations near the boundary. Note that the measures plotted in (b) are normalized to the
unit ball, such that 1 represents the boundary.
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Void formation for high repulsive powers

A primary motivation for the development of this method was the possibility to explore

the void formation phenomenon observed in discrete particle simulations in a continuous

context. In Figure 3.17 we plot two examples in d “ 2 computed using 1000 particles in

which we can observe the later stages of void formation which include a large void around

the origin and for high parameter ranges even an apparent collapse to a ring. Unfortunately,

particle simulations converge at extremely slow rates in the initial void formation ranges,

making it near impossible to study the range of powers at which the void begins to form.

This problem is only further exacerbated by the increased degrees of freedom in higher di-

mensions, requiring particle numbers well beyond reasonable computing capacity.

Using our method the boundary between compactly supported measures and those with

a void can be explored to arbitrary precision, possibly contributing to future analytic un-

derstanding of this phenomenon. In one dimension we may study both the pre and post

void formation measures using the two interval method described in Section 3.6. For higher

dimensions, while we may still explore the void formation boundary, the post void formation

measures cannot be directly investigated unless future research finds a way to use similar

methods for hyperspherical annuli which is work-in-progress.

In Figure 3.18 we show contour plots of the void formation boundary in dimension d “ 2

and d “ 3. Note that the boundaries observed in Figure 3.18 may be made arbitrarily

smooth by decreasing the stepsizes at which we probe for void formation.

3.11 Discussion

In this chapter we have introduced, to the best of the knowledge of the author, the first

continuous numerical method to solve power law equilibrium measures. The method can be

used for the case of one or two intervals of support in one dimension or for arbitrary dimen-

sional problems supported on balls, while scaling favorably with the dimension due to the

radial symmetry of the problem. This contrasts with the particle swarm simulation approach
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(a) α “ 4.18, β “ 0.86 (b) α “ 3.88, β “ 1.23

Figure 3.17: Plot of converged particle simulation for the attractive-repulsive equilibrium
measure problem for 1000 particles in two dimensions with indicated parameters. In these
high (relative to d, cf. Figure 3.18) parameter ranges we observe that in (a) a void begins to
form around the origin which as seen in (b) for further increased repulsive powers eventually
leads to collapse to a ring.

(a) d “ 2 (b) d “ 3

Figure 3.18: Contour plots of void formation boundary for d “ 2 and d “ 3. Light regions
indicate existence of non-negative ball support equilibrium measure while black regions
indicate that no such solutions exist. Data underlying contour plots was generated with
a stepsize of 0.05 in α and β. The observed qualitative behavior is the same in other
dimensions.
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to equilibrium measure problems which have so far been the only way to explore equilibrium

measures outside the range of analytically known solutions. As these particle simulations

scale very poorly with dimension as well as the number of particles and additionally show

very poor convergence to the equilibrium near the parameter ranges of interest, our method

provides an opportunity to explore previously poorly understood parameter ranges such as

the neighborhood of the void formation boundary, and in the original publication in [48]

predicted uniqueness properties later proved to be true in [27].
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Chapter 4
Conclusion

4.1 Summary of thesis achievements

In this thesis, I have extended the range of problems that banded spectral methods using

orthogonal polynomials may be used for to include general kernel linear Volterra integral

equations (VIEs) of first and second kind, general kernel nonlinear and integro-differential

Volterra equations (VIDEs) and equilibrium measure problems involving the computation

of power law kernel integrals (Riesz potentials) in one and higher dimensions.

The introduced method for Volterra integral and integro-differential equations is to the

best knowledge of the author the first sparse spectral method for these equations which

is not restricted to convolution-type kernels. For the problem of equilibrium measures the

introduced methods are unique in that, to the best knowledge of the author, they represent

the first numerical analysis contribution to the continuous equilibrium measure problem as

opposed to the alternative of extraordinarily costly particle swarm simulations and is also

the first computational method to explore the continuous void formation behavior, as well

as the uniqueness of solutions in certain parameter regions which are out of reach of current

analytic methods.

4.2 Outlook and future research

Several interesting questions for future research arise from the results discussed in Chapter

2 and 3.
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For Volterra integral equations, we observed reasonable results without any additional work

or regularization for problems involving certain kernel singularities which may be rewrit-

ten into one type of so-called third kind Volterra equations – it is worth exploring third

kind equations further to find or improve the extent of applicability for methods based

on multivariate orthogonal polynomials. Many natural applications of Volterra integral

and integro-differential equations also involve systems of equations, for which the discussed

sparse methods may readily be adapted by linearizing the system followed by an application

of Newton’s method. Lastly, while we proved convergence for first and second kind Volterra

integral equations, similar proofs for Volterra integro-differential equations are expected to

hold but so far remain conjecture.

Many open questions regarding equilibrium measures were already addressed in Chapter

3, primarily relating to the void formation phenomenon at high parameter ranges. While

the two interval method in one dimension shines some light on the form of the post-void

formation measures, similar methods in higher dimension remain out of reach for lack of

equally powerful recurrence relationships on annular or hyperspherical shell domain poly-

nomial bases. Beyond the immediate applicability to equilibrium measures, many of the

recurrence relationships derived in Chapter 3 may also find use in solving fractional differ-

ential equations featuring the Riesz potential or the fractional Laplacian – their potential in

this area has yet to be fully explored and is work in progress. Furthermore, while Tikhonov

regularization remains the standard approach to improving the stability of first kind prob-

lems, it may be worthwhile to investigate the existence of more specialized regularization

schemes for this problem type. On the analytic side, the numerical experiments performed

using these methods hint at various as of yet unproven uniqueness and existence results

and may also help in forming conjectures about the analytic nature of the void formation

boundary as a function of the attractive and repulsive powers as well as dimension of the

problem. Finally, equilibrium measure problems of interest in applications are not limited

to logarithmic and power law kernel type, with some other kernels of interest such as Morse

kernels being discussed in e.g. [26, 24]. No numerical methods to work with these types of
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kernels in the continuous problem are known as of now.
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