22 research outputs found

    On The Potential of Image Moments for Medical Diagnosis

    Get PDF
    Medical imaging is widely used for diagnosis and postoperative or post-therapy monitoring. The ever-increasing number of images produced has encouraged the introduction of automated methods to assist doctors or pathologists. In recent years, especially after the advent of convolutional neural networks, many researchers have focused on this approach, considering it to be the only method for diagnosis since it can perform a direct classification of images. However, many diagnostic systems still rely on handcrafted features to improve interpretability and limit resource consumption. In this work, we focused our efforts on orthogonal moments, first by providing an overview and taxonomy of their macrocategories and then by analysing their classification performance on very different medical tasks represented by four public benchmark data sets. The results confirmed that convolutional neural networks achieved excellent performance on all tasks. Despite being composed of much fewer features than those extracted by the networks, orthogonal moments proved to be competitive with them, showing comparable and, in some cases, better performance. In addition, Cartesian and harmonic categories provided a very low standard deviation, proving their robustness in medical diagnostic tasks. We strongly believe that the integration of the studied orthogonal moments can lead to more robust and reliable diagnostic systems, considering the performance obtained and the low variation of the results. Finally, since they have been shown to be effective on both magnetic resonance and computed tomography images, they can be easily extended to other imaging techniques

    3D Object Recognition Using Fast Overlapped Block Processing Technique

    Get PDF
    Three-dimensional (3D) image and medical image processing, which are considered big data analysis, have attracted significant attention during the last few years. To this end, efficient 3D object recognition techniques could be beneficial to such image and medical image processing. However, to date, most of the proposed methods for 3D object recognition experience major challenges in terms of high computational complexity. This is attributed to the fact that the computational complexity and execution time are increased when the dimensions of the object are increased, which is the case in 3D object recognition. Therefore, finding an efficient method for obtaining high recognition accuracy with low computational complexity is essential. To this end, this paper presents an efficient method for 3D object recognition with low computational complexity. Specifically, the proposed method uses a fast overlapped technique, which deals with higher-order polynomials and high-dimensional objects. The fast overlapped block-processing algorithm reduces the computational complexity of feature extraction. This paper also exploits Charlier polynomials and their moments along with support vector machine (SVM). The evaluation of the presented method is carried out using a well-known dataset, the McGill benchmark dataset. Besides, comparisons are performed with existing 3D object recognition methods. The results show that the proposed 3D object recognition approach achieves high recognition rates under different noisy environments. Furthermore, the results show that the presented method has the potential to mitigate noise distortion and outperforms existing methods in terms of computation time under noise-free and different noisy environments

    Watermarking based on discrete wavelet transform and q-deformed chaotic map

    Get PDF
    Hierarchy of one-dimensional ergodic chaotic maps with Tsallis type of q-deformation are studied. We find that in the chaotic region, these maps with q-deformation are ergodic as the Birkhoff ergodic theorem predicts. q-deformed maps are defined as ratios of polynomials of degree N. Hence, by using the Stieltjes transform approach (STA), invariant measure is proposed. In addition, considering Sinai-Ruelle-Bowen (SRB) measure, Kolmogorov-Sinai (KS) entropy for q-deformed maps is calculated analytically. The new q-deformed scheme have ability to keep previous significant properties such as ergodicity, sensitivity to initial condition. By adding q-parameter to the hierarchy in order increase the randomness and one-way computation, we present a new scheme for watermarking. The introduced algorithm tries to improve the problem of failure of encryption such as small key space, encryption speed and level of security. To illustrate the effectiveness of the proposed scheme, some security analyses are presented. By considering the obtained results, it can be concluded that, this scheme have a high potential to be adopted for watermarking. It can be concluded that, the proposed novel watermarking scheme for image authentication can be applied for practical applications. © 2017 Elsevier Lt

    On Improving Generalization of CNN-Based Image Classification with Delineation Maps Using the CORF Push-Pull Inhibition Operator

    Get PDF
    Deployed image classification pipelines are typically dependent on the images captured in real-world environments. This means that images might be affected by different sources of perturbations (e.g. sensor noise in low-light environments). The main challenge arises by the fact that image quality directly impacts the reliability and consistency of classification tasks. This challenge has, hence, attracted wide interest within the computer vision communities. We propose a transformation step that attempts to enhance the generalization ability of CNN models in the presence of unseen noise in the test set. Concretely, the delineation maps of given images are determined using the CORF push-pull inhibition operator. Such an operation transforms an input image into a space that is more robust to noise before being processed by a CNN. We evaluated our approach on the Fashion MNIST data set with an AlexNet model. It turned out that the proposed CORF-augmented pipeline achieved comparable results on noise-free images to those of a conventional AlexNet classification model without CORF delineation maps, but it consistently achieved significantly superior performance on test images perturbed with different levels of Gaussian and uniform noise

    Connected Attribute Filtering Based on Contour Smoothness

    Get PDF

    Simple and secured access to networked home appliances via internet using SSL, BioHashing and single Authentication Server

    Get PDF
    This thesis describes a web-based application that will enable users to access their networked home appliances over the Internet in an easy, secured, accessible and cost effective manner, using the user's iris image only for authentication. As Internet is increasingly gaining significance and popularity in our daily lives, various home networking technologies also started gaining importance from consumers, which helped in facilitating interoperability, sharing of services and exchange of information between different electronic devices at home. As a result, the demand to be able to access home appliances or security cameras over the Internet gradually grew. In this research, we propose an efficient, secured, low-cost and user-friendly method to access networked home appliances over the Internet, providing strong, well integrated, three levels of security to the whole application and user data. According to our design, the user's iris data after hashing (using BioHashing) is sent through a secure communication channel utilizing Secure Sockets Layer v-3.0. The deterministic feature sequence from the iris image is extracted using 1D log-Gabor filters and while performing BioHashing, the orthonormalization of the pseudorandom number is implemented employing Gram-Schmidt orthonormalization algorithm. In addition to this protected data transfer mechanism, we propose the design of an Authentication Server that can be shared among multiple homes, allowing numerous users to access their home appliances in a trouble-free and secured manner. It can also bring down the cost of commercial realization of this endeavor and increase its accessibility without compromising on system security. We demonstrate that the recognition efficiency of this system is computationally effective with equal error rate (EER) of 0% and 6.75% (average) in two separate conditions on CASIA 1 and CASIA 2 iris image datasets

    Digital Filters and Signal Processing

    Get PDF
    Digital filters, together with signal processing, are being employed in the new technologies and information systems, and are implemented in different areas and applications. Digital filters and signal processing are used with no costs and they can be adapted to different cases with great flexibility and reliability. This book presents advanced developments in digital filters and signal process methods covering different cases studies. They present the main essence of the subject, with the principal approaches to the most recent mathematical models that are being employed worldwide

    Attitudes towards old age and age of retirement across the world: findings from the future of retirement survey

    Get PDF
    The 21st century has been described as the first era in human history when the world will no longer be young and there will be drastic changes in many aspects of our lives including socio-demographics, financial and attitudes towards the old age and retirement. This talk will introduce briefly about the Global Ageing Survey (GLAS) 2004 and 2005 which is also popularly known as “The Future of Retirement”. These surveys provide us a unique data source collected in 21 countries and territories that allow researchers for better understanding the individual as well as societal changes as we age with regard to savings, retirement and healthcare. In 2004, approximately 10,000 people aged 18+ were surveyed in nine counties and one territory (Brazil, Canada, China, France, Hong Kong, India, Japan, Mexico, UK and USA). In 2005, the number was increased to twenty-one by adding Egypt, Germany, Indonesia, Malaysia, Poland, Russia, Saudi Arabia, Singapore, Sweden, Turkey and South Korea). Moreover, an additional 6320 private sector employers was surveyed in 2005, some 300 in each country with a view to elucidating the attitudes of employers to issues relating to older workers. The paper aims to examine the attitudes towards the old age and retirement across the world and will indicate some policy implications
    corecore