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Hierarchy of one-dimensional ergodic chaotic maps with Tsallis type of q -deformation are studied. We 

find that in the chaotic region, these maps with q -deformation are ergodic as the Birkhoff ergodic the- 

orem predicts. q -deformed maps are defined as ratios of polynomials of degree N . Hence, by using the 

Stieltjes transform approach (STA), invariant measure is proposed. In addition, considering Sinai-Ruelle- 

Bowen (SRB) measure, Kolmogorov-Sinai (KS) entropy for q -deformed maps is calculated analytically. The 

new q -deformed scheme have ability to keep previous significant properties such as ergodicity, sensitivity 

to initial condition. By adding q -parameter to the hierarchy in order increase the randomness and one- 

way computation, we present a new scheme for watermarking. The introduced algorithm tries to improve 

the problem of failure of encryption such as small key space, encryption speed and level of security. To 

illustrate the effectiveness of the proposed scheme, some security analyses are presented. By considering 

the obtained results, it can be concluded that, this scheme have a high potential to be adopted for wa- 

termarking. It can be concluded that, the proposed novel watermarking scheme for image authentication 

can be applied for practical applications. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Digital watermarking technique is one of the popular research

fields in signal processing, which can be used for multimedia pro-

tection [1] . The digital watermark should stick to the host data

such that it provides a robust way of protecting digital multimedia

information from illegal manipulation and duplication. The water-

marking of multimedia information such as images [2,3] , video [4,5]

and audio [6] is already well developed. At present, many water-

marking techniques from an aspect of preserving the watermark

in the host data are categorized to three main groups: robust wa-

termarking algorithms, fragile watermarking algorithms and semi-

fragile watermarking algorithms [1,7,8] . On the basis of the infor-

mation required during extraction algorithm, watermarking tech-

niques can be classified into three categorizes: non-blind water-

marking, semi-blind watermarking, and blind watermarking [8,9] .

If the original host image is required to extract the embedded wa-

termark, the technique is non-blind watermarking [10] . 
∗ Corresponding author. Tel.: +90 5534313007; fax: +90 312 266 4579. 

E-mail addresses: s.behnia@sci.uut.ac.ir (S. Behnia), m.yahyavi@bilkent.edu.tr (M. 
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Digital watermarking methods can be broadly categorized as:

ransform domain watermarking, as in [11,12] , and spatial domain

atermarking such as in [13] . In most spatial domain techniques,

atermark data is embedded in the least significant bit of the pix-

ls in the host image [14] . Advantages of this method are their

implicity in embedding and extraction algorithm, improving the

uality of watermarked image using Least Significant Bit (LSB), and

ncreasing the speed of embedding and extraction process. Disad-

antages of LSB method is weak against to common signal pro-

essing attacks on watermarked image [15] . Another method for

atermarking is used transform domain to embedding and ex-

racting the watermark. One of the advantages of this watermark-

ng methods is the possibility to analyze and control their spec-

ral properties and robustness against attacks. Taking more pro-

essing time for transform and inverse transform is disadvantage

f this method. Transform domain watermarking schemes first ap-

ly transformation techniques, such as the discrete cosine trans-

orm (DCT) [16,17] , discrete wavelet transform (DWT) [18,19] , frac-

ional Fourier transform (FrFT) [20,21] and singular value decom-

osition (SVD) [22,23] to an image. Watermark is then embed-

ed by modifying the transform coefficients. The majority of wa-

ermarking schemes are using watermarks generated from pseudo

andom number sequences [15] . There is a large number of digi-

http://dx.doi.org/10.1016/j.chaos.2017.07.020
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
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al watermarking schemes, which the major drawback of them is

ack of safety. For last couple of decades, chaotic functions such

s coupled chaotic maps, skew tent map, Markov maps, Logistic

ap, Arnold map, and Bernoulli maps have been widely used to

enerate watermark sequences [14,15,24,38–40] . These types of wa-

ermark generation schemes require two values, the function seed

nd the initial value, in order to recreate the same watermark at a

ater stage. An advantage of watermarking based on chaotic maps

s their robustness to low pass attacks. In order to enhance the se-

urity in watermarking process, it is desirable to use q -deformed

haotic maps. 

Quantum group theory has greatly contributed by mathemati-

ians and physicists [25] . The mathematical application of quantum

roups theory comeback to the1840’s when Heine found its rela-

ion to the q -hypergeometric functions ( q -series). In fact, promi-

ent mathematicians such as Fermat, Euler and Jacobi ventured

nto the q -functions much earlier. The q -deformed relations of

eisenberg algebra as a model for the noncommutative structure

hat arises from quantum group [26] . The expression q -derivation

as also been used extensively in the case of the q -derivatives

ith the q -Lorentz generators which gives the q -deformation of

oincaré algebra [27] . Generally, there is no unique q -deformation

or a function. Therefore, various q -deformations for the same

unction can be found in different physical and mathematical con-

exts. As of yet, significant strides have been made for studding

f different types of q -deformations for the logistic map, which is

he famous model of discrete dynamical system. For instance, the

uthors of Ref. [28] showed that the co-existence of attractors in

 -logistic maps. Patidar et al. [29–31] compared that the dynam-

cal behavior of the q -deformed Gaussian map. Recently, Shrimali

t al. [32] demonstrated that the effect of delay on two forms of

 -deformations of the logistic map. They also argued that chaotic

ehavior is suppressed in a certain region of delay and deforma-

ion parameter space. In this paper, the hierarchy of q -deformation

aps has been presented based on the generalized Chebyshev

olynomials type I and II. Compared with the well-known q -

eformation chaotic maps, the proposed family of q -deformation

haotic maps have good properties such as co-existence of attrac-

ors, ergodicity, and semigroup property. 

This paper mainly focuses on the application of the q -deformed

aps in encryption schemes of watermark logos. More specifically

t aims at proposing a secure watermarking scheme based on DWT

nd q -deformed chaotic maps. This algorithm tries to address the

hortcoming of the previous watermarking processes such as small

ey space and limited speed. The q -deformed maps are employed

o improve the security of a watermarked image. The q -series of

he introduced dynamical system regarding the level of the secu-

ity and the extra parameter can be used to apply many logos in

atermarking process. Since q -deformed chaotic maps are sensi-

ive to initial values, initial values of the q -deformed maps and

heir q -deformed parameters are exploited as secret keys in our

lgorithm. Experimental results and security analysis demonstrated

hat, the watermarked algorithm based on the q -deformed chaotic

ap is advantageous from the point of view of high level of secu-

ity and large key space. 

The rest of this paper is organized as follows. In Section 2 , a

rief description of basic deformations of one-dimensional chaotic

aps is presented. In Section 3 , it is shown how the degree of the

haoticity in the Tsallis type deformation system can be measured

y KS-entropy. The watermarking scheme based on chaotic maps

s proposed in Section 4 . Also, the selected example and simula-

ion results are discussed in Section 5 . In Section 6 , security of the

haotic encryption algorithm is explored. Section 7 summaries the

aper. Two appendices are also provided, which contain all alge-

raic calculations and proofs. 
f  
. The q -deformation of one-dimensional maps 

The hierarchy of the q -deformed nonlinear maps can be defined

s: 
 

�N (x n +1 , α, q ) = �N ([ x n ] , α) 

[ x ] = 

x 

1 + (1 − q )(1 − x ) 

(1) 

ere q ε (−∞ − 2] for x in the interval [0, 1] and x n denotes the

alue of x after n iterations. In addition, when q → 1 an hierar-

hy of q -deformed nonlinear maps reduces to the original maps.

y considering the �(2) 
N 

(x, α) families (See Appendix A ), we have

roduced the following examples with the substitution 1 − q = ε, 

2 = 

4 α2 (1 + ε) x n (1 − x n ) 

( 1 + ε ) 2 + x n 
(
4(α2 −1) −2 ε 2 −2 ε 

)
+ x 2 n 

(
4(−α2 + 1) + ε 2 

)
(2) 

3 = 

α2 x n ( x n (3 ε + 4) − 3(1 + ε) ) 
2 

α2 x n ( x n (3 ε + 4) − 3(1 + ε) ) 
2 + ( (1 + ε)(1 − x n ) ) ( x n (ε + 4) − (ε + 1) ) 

2 

hich under the limit ε → 0, becomes the canonical maps of Eq.

A.2) . 

Fig. 1 gives the bifurcation diagram of the �2 ( x n , α, ε) for

 = 0 , 4 , −0 . 5 , and −0 . 99 with respect to the different values of

. As it can be seen from Fig. 1 (a), the system has regular be-

avior for parameter values smaller than the critical point α < αc ,

here αc denotes the critical parameter value for the onset of

haos ( αc = 

1 
2 ). As shown in this figure for α ∈ [0, 1/2], the fixed

oint x = 0 is stable in the map �2 ( x n , α, ε) and bifurcates with-

ut period −n −tupling scenario to chaos. Fig. 1 (b) shows the bifur-

ation diagram as a function of control parameter. Obviously, for

xed q -deformation q = 4 , confirms chaos suppression via inverse

angent bifurcation. Chaos born by applying an negative value of

 . Fig. 1 (c) and (d), show that chaos cannot be suppressed in the

egative value of deformation parameter and the stable period-1

otion becomes chaotic ( α < αc ). By using the q -deformed version

f the one-dimensional map, it is found that chaotification of the

ystem is achieved. In this work, we also find that not only the sys-

em is very sensitive to initial conditions and the parameter α but

lso it’s very sensitive to an q -deformation ( q ) parameter. It is an

nteresting phenomenon because generating chaos (also called an-

icontrol of chaos or chaotification) has grown up as a challenging

nd interesting research direction in recent years [33–36] . It can

e observed that generally there are two separate regions in the

eformation parameter space ( ε; α) which are corresponding to

he stable and chaotic states. The stable state is a V-shaped region

t the left-hand side and spread in the whole right of the control

arameter (See Fig. 2 ). Also, we can show that by increasing the

alue of the parameter α the chaotic motion gets suppressed in

he V-shaped region. Using mathematical methods, we may infer

hat the q -deformation of the chaotic one-dimensional map leads

o the suppression of the chaotic region to an stable state (period-

). For odd values of N , these maps have only fixed point attrac-

or x = 0 for α ∈ ( 1 N , N) , again they bifurcate to a chaotic region at

≥ 1 
N , and remain chaotic for α ∈ (0 , 1 

N ) , finally they bifurcate at

= N to have x = 1 as fixed point attractor for all α ∈ ( 1 N , ∞ ) . It

lso shows that for the positive value of q -deformation, the nar-

ow channel is formed between the nonlinear map function and

he diagonal line from the fixed point attractor x = 0 . The regu-

ar behavior or the laminar region corresponds to an evolution of

he system in a narrow region or a channel in the phase space.

uch regular behavior stems from the fact that the system main-

ains a “ghost” of laminar region. It is clear that, the fixed point

 = 1 loses stability for negative ε and the chaotic zone reduces

rom the fixed point x = 1 by decreasing the value of ε until −1 .
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Fig. 1. Bifurcation diagram of the map �2 (x n +1 , α, ε) with respect to α for (a) ε = 0 , (b) ε = 4 , (c) ε = −0 . 5 , (d) ε = −0 . 99 . 

Fig. 2. The parameter space ( α; ε) showing chaotic (red), stable state (blue) (a) �2 (x n +1 , α, ε) (b) �3 (x n +1 , α, ε) . (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 
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Parameter ε ( q -deformation parameter) lets us control the inter-

mittent region and change the lengths of laminar phases. Also, we

can show that middle V-shaped region by increasing the value of

the parameter ε, the chaotic motion being increased. In what fol-

lows, we present the interesting properties of the above-described

hierarchy of q -deformed nonlinear maps in detail Fig. 3 . 

3. Kolmogorov–Sinai entropy 

Shannon entropy, regardless of what types of probabilities we

use in it, cannot by itself identify chaos. A characteristic measure of

chaos is the KS-entropy [37] , which is related to Shannon’s formula.

If P is a (measurable) partition, its entropy H μ( P ) with respect to
he measure μ is defined as: 

 μ(P ) = −
∑ 

AεP 

μ(A ) ln μ(A ) , (3)

or the introduced family, formula Eq. (3) should be rewritten as 

 (μ, �N (x, α)) = 

∫ 
d xμ(x ) ln | d 

d x 
�N (x, α) | , (4)

e obtain the following expression for the entropy of the map

2 (x n +1 , α) : 

 (μ, �2 (x, α, ε)) = 

∫ 1 

0 

n ∑ 

l=1 

lim 

x → x l 
(x − x l ) G μ(x ) δ(x − x l ) 

× ln | d 
dx 

�2 (x, α, ε) | dx 
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Fig. 3. Red dotted surface shows the variation of KS-entropy of �2 ( x, α, ε) in terms of the parameters α and ε, while blue dotted surface shows the variation of LCE of 

�2 ( x, α, ε) in terms of the parameters α and ε. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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y considering 

d 

dx 
�2 = 

4 α2 (1 + ε) 
(
(ε + 2) 2 − 4 α2 (1 + ε) 

)
γ − χ

×
(

χ(1 − χ) 

(x − χ) 2 
+ 

(γ − 1) γ

(x − γ ) 2 

)
(5) 

hen 

 (μ, �2 (x, α, ε)) = 

∫ 1 

0 

n ∑ 

l=1 

lim 

x → x l 
(x − x l ) G μ(x ) δ(x − x l ) 

× ( ln | M(x − γ ) 2 + N(x − χ) 2 | − 2 ln | x − χ | 
− 2 ln | x − γ | ) dx (6) 

here 

 

 

 

 

 

M(γ , χ, α) = 

4 α2 (1 + ε) 

γ − χ
(χ − χ2 ) 

N(γ , χ, α) = 

4 α2 (1 + ε) 

γ − χ
(γ 2 − γ ) 

(7) 

ue to avoid lengthening the present paper, we have considered

nly two terms of polynomial, as it was explained in calculation

nvariant manifold (SRB measure). It is clear that, by increasing

he order of the summation in Eq. (6) the realistic form of KS en-

ropy has been formed. We get the following expression for KS en-

ropy: 

 (α, ε, �2 ) 

= ln 

( √ 

(M(K −γ ) 2 +N(K −χ) 2 )(M(K + γ ) 2 + N(K + χ) 2 ) 

(K −γ ) 2 (K −χ) 2 (K +γ ) 2 (K +χ) 2 

) 

(8) 

here 
 = 

√ √ √ √ √ 

(
4 α2 (1 + ε) 

(
(ε + 2) 2 − 4 α2 (1 + ε) 

))2 

χ2 − γ 2 − α2 

1 −α2 

(
(ε + 2) 2 − 4 α2 (1 + ε) 

)4 ( 3 χ2 (1+γ ) 2 

γ 2 + (1 + χ)(γ + 4) 
)

S entropy and Lyapunov characteristic exponents (LCE) are two

elated ways of measuring ‘disorder’ in an ergodic system. LCE is

he characteristic exponent of the rate of the average magnification

f the neighborhood of an arbitrary point X 0 and it is denoted by

( x 0 ) which is written as: 

(x 0 ) = lim 

n →∞ 

ln | d 
dx 

n ︷ ︸︸ ︷ 
�N (x n +1 , α, ε) ◦ �N . . . . ◦ �N (x K , α, ε) | 

= lim 

n →∞ 

n −1 ∑ 

k =0 

ln | d�N (x k , α, ε) 

dx 
| , (9) 

here x k = 

k ︷ ︸︸ ︷ 
�N ◦ �N ◦ . . . . ◦ �N (x 0 ) . Ther e ar e thr ee possibilities: 

• If 
< 0, trajectories go close to each other → stable radial os-

cillation. 
• If 
 = 0 , the orbits maintain their relative positions, they are

on a stable attractor. 
• If 
> 0, the orbits never falls within the basin of attraction of

any periodic orbits → unstable radial oscillation (chaotic be-

havior). 

For the values of parameters α and ε, such that the deformed

ap �N be measurable, the Birkhoff ergodic theorem implies that

he equality of KS entropy and the Lyapunov number, that is: 

 (μ, �n ) = 
(x 0 , �N ) , (10)

ombining the analytic results of KS entropy Eq. (8) and SRB mea-

ure ( Eq. (B.10) ) with the Lyapunov characteristic exponents ob-

ained by numerical simulation, we deduce that these q -deformed

aps are ergodic in certain values of their parameters ( α and ε)

s the Birkhoff ergodic theorem predicts. 
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Fig. 4. The flowchart of the proposed embedding process. 
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4. Watermarking algorithm 

There are two important properties for the performance of

chaos based watermarked systems, fixed interval and ergodicity of

chaotic orbits, which most of the unimodal maps are lacking [38–

41] . In order to avoid these lacks, the q -deformed maps are sug-

gested as ratios of polynomials of degree N . For first time in this

paper, we use the concept of q -deformed chaotic maps with an in-

variant measure, for increasing the security of discrete chaotic wa-

termarking. Certain characteristics of our proposed watermarking

method which make it distinctive compared to the other schemes,

can be stated as follows: 

• Have a large key space: It is clear that the complexity of attack

is determined by the verification complexity of each key and

the size of the key space. 
• Have a large number of fully developed chaotic maps ( q -

deformed maps are defined as ratios of polynomials of degree

N ). 
• Having interesting property of being ergodic in certain values

of their parameter and in complementary interval of parameter

they have only a single period one attractive fixed point. Also,

all n-cycles except for possible period one fixed point are un-

stable. 
• Having high complexity due to high chaoticity and flexibility

in attributing different values to the control parameters α and

ε. Advantage of using two parameters ( α and ε) is for compu-

tational complexity goal and the structure of the watrmarked

system for diffusion. So that, these parameters can be used as

secret keys as well. 

Furthermore, the efficiency of searching-based chaotic water-

marked system which are based on unimodal maps critically de-

pendent on the invariant measure associated with the orbits of

the chaotic map. In this sense, the q -deformed maps are a good

alternative which has an invariant measure for all values of their

parameters ( α and ε) as the Birkhoff ergodic theorem predicts. 

In following the framework of our proposed algorithm is de-

scribed. The embedding process diagram is shown in Fig. 4 and the
rocess of extraction of the logo also shown in Fig. 5 . Rests of the

aper explain the embedding and extraction process of the pro-

osed algorithm. 

.1. Watermarking embedding process 

In this section the algorithm of embedding are discussed. The

atermark logo encryption can be done through the following

teps: 

• Step1 : Input: cover image, 
• Step2 : By considering the DWT cover image is converted to the

frequency domain, 
• Step3 : Sub-band coefficients are selected, 
• Step4 : Input: logo, 
• Step5 : The logo image for next processes is clones 3 times with

redundancy adding process and store in variable W (An advan-

tage of many logos in watermarking process is the possibility

to analyze and control their spectral properties), 
• Step6 : Where T is threshold value ( T = 0 . 015 ). The size of the

logo is denoted by variables ( m, n ) and coordinate ( i, j ) of wa-

termark pixel is selected by (1, 1), 
• Step7 : Location of the block in the cover image for the embed-

ding process is selected by pseudo random number generator

( Eq. (2) ) based on cellular automat and stores in the variable

block. 
• Step8 : SVD transform on the blocks with size 4 × 4 pixel is done

and U, S, V coefficients are extracted, 
• Step9: U (1, 1) coefficients is updated as follow: {

U(1 , 1) = sign (U(1 , 1) ∗ (U(2 , 1) + T )) If W (i, j) = 1 

U(1 , 1) = sign (U(1 , 1) ∗ (U(2 , 1) − T )) If W (i, j) = 0 

(11)

• Step10 : Inverse of SVD is computed to obtain block pixels as

follow: 

Block [4 ×4] = U × S × V 

T (12)

• Step11 : Increase value of the i and j , 
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Fig. 5. The flowchart of proposed extraction process. 
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• Step12 : If i < m and j < n then go to step 7 else go to step 13, 
• Step13 : Do the inverse discrete wavelet transform, 
• Step14 : The final result is the watermarked image. 

.2. Watermarking extraction process 

Watermark extraction process is very similar to the embedding

rocess. This process consists of the following major parts: 

• Step1 : Input watermarked image, 
• Step2 : The size of the logo [ m × n ] inputted and stores in vari-

able W with size [ m × 3 n ], 
• Step3 : Watermarked image is transferred to the frequency do-

main with discrete wavelet transform, 
• Step4 : Coefficients related to the selected sub-band are selected,
• Step5 : Initialize i, j with the value 1, 
• Step6 : Location of the block in the cover image for the em-

bedding process selected by pseudo random number genera-

tor ( Eq. 2 ) based on cellular automat and stores in the variable

block, 
• Step7 : SVD transform on the blocks with size 4 × 4 pixel done

and U, S, V coefficients extracted, 
• Step8 : If | U (1, 1)| > | U (2, 1)| go to step 9 and else go to step 10, 
• Step9 : The value of the W (i, j) = 1 go to step 11, 
• Step10 : The value of the W (i, j) = 0 go to step 11, 
• Step11 : Increase one unit i and j value, 
• Step12 : If i < m and j < n then go to step 6 else go to step 13, 
• Step13 : Extracted logo has a picture contain 3 same logos beside

each other, 
• Step14 : Extracted logos (3 logo) compared pixel by pixel and

which pixel that have more frequency, selected for creating a

final logo. This step is an error correction step, 
• Step15 : Final logo is created and extracted. 

. Experimental results 

In this section the experimental results of our proposed scheme

re discussed to demonstrate the efficiency of the proposed water-

arking algorithm. The performance of the proposed method by
onsidering the nine standard gray scale pictures (Lena, Zelda, ba-

oon, camera man,...) and one sample picture “MADINEH” has been

ested. The image size selected as 512 × 512 pixels. Logo with size

2 × 32 in binary form have been added to the pictures. This sec-

ion is a review of the visual quality measures and the overview

f attacks in introduced pictures, also we compare the results with

ther methods. 

.1. Visual quality measures 

The visual performance of the proposed method from an aspect

f visual quality, impeccability and quality of extracting logo in this

aper by considering, Peak Signal to Noise Ratio (PSNR), Bit Error

ate (BER) and Normalized Correlation (NC) evaluated. 

.1.1. Peak signal to noise ratio 

This measure shows the effect of the embedding algorithm and

oises on the cover image. PSNR measured by the decibel (dB) unit

n the range 20 dB (low quality) to 40 dB (high quality). PSNR for

ray scale images defined as, 

 SNR = 10 × log 10 

255 

2 

MSE 
(dB ) , (13)

here 

SE = 

1 

M × N 

M ∑ 

i =1 

N ∑ 

j=1 

(H i, j − H́ i, j ) . (14) 

t denotes the mean square error between the original image and

atermark image. In this equation, H i, j and H́ i, j are value of pix-

ls in the position ( i, j ) in the cover image and watermark image

espectively, and M × N is the size of the image. The value of the

SNR for the proposed method is shown in Table. 1 for standard

est images. In this table proposed method compares with similar

ethods like [42,43] . The results show the advantage of the pro-

osed method in most test images. 
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Table 1 

The PSNR (dB) results for different 

watermarked images. 

Image name Proposed method 

Lena 40.89 

Baboon 38.45 

Barbara 36.95 

Boat 37.98 

Couple 38.67 

F-16g 38.90 

Goldhill 40.67 

Peppers 40.08 

Zelda 43.58 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. (a) Original image (b) Watermarked image (c) Histogram of original image 

(d) histogram of watermarked image (e) original watermark logo (f-h) extracted wa- 

termark with incorrect keys and (g) correct keys (Left to right to each mode). 
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5.1.2. Bit Error Rate and Normalized Corrolation 

The quality of the extracted logo from the cover image, evaluate

by BER and NC measure. BER defined with the following formula:

BER = 

B 

M × N 

× 100 (15)

where B is the number of detected error on extracted logo. In this

measure, zero means that the embedding algorithm doesn’t have

any effect on the logo. Also, NC is defined by the following formula,

NC = 

1 

W h × W w 

W h −1 ∑ 

i =0 

W W −1 ∑ 

j=0 

w (i, j) × ẃ (i, j) (16)

Where W h and W w 

are height and width of the watermarked im-

age respectively. w ( i, j ) is declare the inserted logo and ẃ (i, j)

is shows the extracted logo. One is the best value for NC and it

shows the inserted logo extracted without any distortion. The ob-

tained results of exams presented in Tables. 2 and 3 , and compared

with [42,44] . Therefore, there is no obvious perceptual distortion

between watermarked image and original one; the embedded wa-

termark does not degrade the quality of the original host image.

We have to use the same parameters for attacks in order to have a

valid comparison. Tables shows the good performance of the pro-

posed method against attacks such as compression, scaling and

various types of filtering Table 4 . 

5.2. Robustness against attacks 

Stirmark is a powerful tool for measuring and testing the ro-

bustness of watermarking algorithms. In this study by consider-

ing Stirmark benchmark [45] including the geometric and non-

geometric attacks the robustness of watermarking algorithms has

been examined. Tests includes: 

• JPEG compression: It is a universal format of compression in

the images [46,47] . 
• Median filtering: Median filter is a filter that replaces median

of the neighboring pixels to the input pixel [48] . 
• Low-pass filtering: It is a filter that passes (attenuates) sig-

nals with a frequency lower (higher) than a certain cutoff fre-

quency [49] . 
• Gamma correction: It is the name of a nonlinear operation

used to code and decode luminance or tristimulus values in im-

age [49] . 
• Blurring: Blurring is used in preprocessing steps, such as the

removal of small details from an image prior to (large) object

extraction, and bridging of small gaps in lines or curves. Noise

reduction can be accomplished by blurring [49] . 
• Sharpening: Process of enhancing the detail of the image to

clarify the image. 
• Histogram equalization: Histogram equalization is a method in

image processing of contrast adjustment by using the image’s
histogram [49,50] . t  
Geometric attacks include below items: 

• Rotation: Rotation of an input image about an arbitrary pivot

point and can be accomplished by translating the origin of the

image to the pivot point, performing the rotation, and then

translating back by the first translation offset [49] . 
• Gaussian noise: Gaussian noise is a statistical noise that has a

probability density function of normal distribution [50] . 
• Salt & pepper noise: Salt and pepper noise is a form of noise

that represents itself as randomly occurring white and black

pixels [49] . 
• Cropping: This attack is the process to cut part of an image on

different size and shape [51,52] . 

In Fig. 6 we present some example of introduced attacks. The

orresponding extracted watermark have been shown in Fig. 7 .

lso, the test obtained results are presented in Tables 2 and 3 . 

. Security analysis 

When a new image watermarking algorithm is proposed, it

hould always be accompanied by some security analyses. A good

atermarking procedure should be robust against all kinds of at-

acks. In the following, some security analyses have been per-

ormed on the proposed algorithm, which indicated a high security

evel of the new scheme Fig. 8 . 

.1. Key space 

The key space size is the total number of different keys that can

e used in the encryption. It might be defined in term of positive

ntropy. Actually, key space can be generated by the initial condi-

ions and control parameters of q -deformed chaotic maps. A posi-

ive way to describe the key space [53] might be in terms of pos-
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Table 2 

Experimental Bit Error Rate (BER) results for Stirmark attacks (%). 

Attacks name Madineh Lena Baboon Attacks name Madineh Lena Baboon 

AFFINE-2 32.12 38.08 35.15 PSNR (30%) 0.00 0.00 0.00 

AFFINE-4 50.78 46.28 48.04 PSNR (50%) 0.00 0.00 0.00 

AFFINE-6 54.00 47.25 44.23 PSNR (70%) 0.00 0.00 0.00 

AFFINE-8 50.39 46.09 40.91 PSNR (90%) 0.00 0.00 0.00 

CONV-1 46.77 29.56 26.36 PSNR (100%) 0.00 0.00 0.00 

CONV-2 0.19 0.68 1.85 RESC 50 0.00 0.00 0.00 

JPEG (15%) 0.97 12.89 4.39 RESC 75 0.00 0.09 0.00 

JPEG (20%) 0.09 3.90 1.26 RESC 90 0.00 0.29 1.56 

JPEG (40%) 0.00 0.00 0.00 RML 10 0.09 0.58 0.87 

JPEG (60%) 0.00 0.00 0.00 RML 30 0.19 0.68 1.36 

JPEG (80%) 0.00 0.00 0.00 RML 50 0.00 0.58 1.75 

JPEG (100%) 0.00 0.00 0.00 RML 70 0.09 0.68 2.63 

LATEST. 0.95 47.46 54.00 50.29 RML 80 0.00 2.14 3.61 

LATEST. 1.1 49.70 53.71 49.41 RML 90 0.00 0.68 1.46 

LATEST. 1.05 48.53 51.75 51.66 RML 100 0.00 0.39 1.17 

LATEST. 1 49.12 53.12 51.66 RNDDIST 0.95 49.60 52.53 49.21 

MEDIAN [3 × 3] 0.19 1.26 5.07 RNDDIST 1.1 49.12 52.92 52.63 

MEDIAN [5 × 5] 25.68 37.59 38.67 RNDDIST 1.05 47.94 52.83 52.44 

MEDIAN [7 × 7] 49.51 50.09 49.41 RNDDIST 1 47.46 52.44 49.90 

MEDIAN [9 × 9] 40.77 50.78 49.90 ROT (0.5 °) 0.09 0.19 0.68 

NOISE (0%) 0.00 0.00 0.00 ROT (1 °) 0.09 0.19 0.68 

NOISE (20%) 35.74 39.25 40.72 ROT (2 °) 0.19 0.39 0.67 

NOISE (40%) 42.67 44.04 42.96 ROT (5 °) 0.19 0.49 0.39 

NOISE (80%) 46.48 49.41 45.99 ROT (15 °) 0.58 1.07 1.07 

PSNR (0%) 0.00 0.00 0.00 ROT (45 °) 1.07 2.66 1.49 

PSNR (10%) 0.00 0.00 0.00 ROT (90 °) 0.00 0.00 0.00 

Blurring 0.48 1.66 1.75 Gamma Cor. 3.90 3.80 0.97 

Hist. Equalization 0.00 0.00 0.09 Complement 100 100 100 

Low Pass Filter 0.00 0.00 0.00 Sharpening 0.19 0.78 1.75 

Salt and Paper (5%) 0.78 1.56 1.46 

Table 3 

Experimental PSNR results for Stirmark attacks (dB). 

Attacks name Madineh Lena Baboon Attacks name Madineh Lena Baboon 

AFFINE-2 14.97 16.48 14.81 PSNR (30%) 29.59 29.66 29.68 

AFFINE-4 14.82 15.17 15.25 PSNR (50%) 25.67 25.69 25.70 

AFFINE-6 17.71 19.29 17.44 PSNR (70%) 22.94 22.94 22.94 

AFFINE-8 18.29 20.15 17.66 PSNR (90%) 20.86 20.84 20.85 

CONV-1 9.85 8.73 8.30 PSNR (100%) 20.15 20.13 20.13 

CONV-2 4.46 6.81 6.70 RESC 50 25.67 25.60 25.55 

JPEG (15%) 35.11 34.59 32.38 RESC 75 25.67 25.66 25.65 

JPEG (20%) 36.23 35.53 33.71 RESC 90 25.53 25.58 25.07 

JPEG (40%) 38.56 37.00 36.24 RML 10 25.49 25.55 25.28 

JPEG (60%) 38.48 37.81 37.46 RML 30 25.44 25.55 25.19 

JPEG (80%) 38.58 38.94 38.66 RML 50 25.43 25.52 25.19 

JPEG (100%) 39.05 40.03 40.17 RML 70 25.36 25.48 25.13 

LATEST. 0.95 16.58 6.40 10.88 RML 80 25.28 25.46 24.13 

LATEST. 1.1 16.11 6.28 10.27 RML 90 25.46 25.57 25.24 

LATEST. 1.05 16.25 6.32 10.41 RML 100 25.46 25.55 25.24 

LATEST. 1 16.41 6.35 10.54 RNDDIST 0.95 24.42 28.28 28.08 

MEDIAN [3 × 3] 25.08 25.00 24.27 RNDDIST 1.1 24.19 27.87 27.74 

MEDIAN [5 × 5] 24.89 25.22 24.21 RNDDIST 1.05 24.26 28.00 27.85 

MEDIAN [7 × 7] 24.51 25.18 23.35 RNDDIST 1 24.62 28.13 27.96 

MEDIAN [9 × 9] 23.95 25.00 22.30 ROT (0.5 °) 23.09 24.88 19.14 

NOISE (0%) 39.05 40.89 38.45 ROT (1 °) 20.32 21.14 17.37 

NOISE (20%) 6.72 8.43 8.25 ROT (2 °) 18.06 18.06 16.57 

NOISE (40%) 5.31 6.89 6.80 ROT (5 °) 14.64 14.46 14.49 

NOISE (80%) 4.75 6.17 6.15 ROT (15 °) 12.07 11.57 12.32 

PSNR (0%) 39.39 40.10 40.24 ROT (45 °) 10.05 10.45 10.69 

PSNR (10%) 35.96 36.28 36.34 ROT (90 °) 16.61 11.17 13.26 

Blurring 27.79 30.61 23.10 Gamma Cor. 12.37 14.92 14.62 

Hist. Equalization 11.15 19.01 17.08 Complement 7.92 8.49 9.97 

Low Pass Filter 40.14 40.90 40.74 Sharpening 28.72 29.78 27.53 

Salt and Paper (5%) 25.23 25.35 25.40 

Table 4 

The key space analysis of q-deformed map . 

q-deformed parameters best range precision (float) precision (binary bit) 

X [0,1] 10 −14 47 

α [0.5,2] 10 −14 47 

ε [0,1] 10 −14 47 

key space 47 + 47 + 47 = 141 bit 
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Fig. 7. The corresponding best Extracted watermarks for denoted attacks. (a) Jpeg Compression (70%) , (b) Motion blur (45 °) , (c) Cropping (25%), (d)Histogram Equalization, 

(e) Gaussian noise (0, 0.01) , (f) Sharpening, (g) Complement , (h) Salt & Pepper noise 10% , (i) Median filter [3 × 3], (j) Jpeg Compression (60%) , (k) Jpeg Compression (50%) 

, (l) Jpeg Compression (40%) (m) Rotation (5 °) (n) Rotation (45 °) (o)Low-pass filter [5 × 5], (p) RESC 50, (q) RESC 75, (r) RML 10 (s) Gamma Correction (t)AFFINE 1 (Left to 

right to each mode). 

Fig. 8. The corresponding best Extracted Logo for denoted attacks. (a) Jpeg Compression (70%) , (b) Motion blur (45 °) , (c) Cropping (25%), (d)Histogram Equalization, (e) 

Gaussian noise (0, 0.01) , (f) Sharpening, (g) Complement , (h) Salt & Pepper noise 10% , (i) Median filter [3 × 3], (j) Jpeg Compression (60%) , (k) Jpeg Compression (50%) , (l) 

Jpeg Compression (40%) (m) Rotation (5 °) (n) Rotation (45 °) (o)Low-pass filter [5 × 5], (p) RESC 50, (q) RESC 75, (r) RML 10 (s) Gamma Correction (t)AFFINE 1 (Left to right 

to each mode). 
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itive Lyapunov exponents. By considering the suitable control pa-

rameters domain (in positive Lyapunov exponents) this space gen-

erated (See Fig. 6 ). High level security domain begin with 2 128 [14] .

Here, the key space is large enough to resist all kinds of brute-

force attacks [53,54] . In our proposed method, by considering the

control parameters, initial condition and q -parameter is computed

i

s below: 

 (x 0 , α, ε) = θ (X 0 × α × ε) (17)

here ε ∈ [0, 1] , x 0 ∈ [0, 1]( x 0 ∈ [0, ∞ )), and for control parameter

, in selected example ( Eq. (2) ) is varying in α ∈ [ 1 2 , 2) . It is listed

n Table. 1 . 



S. Behnia et al. / Chaos, Solitons and Fractals 104 (2017) 6–17 15 

Table 5 

The 800-22 test result of. 

Statistical Test p -value Result 

Frequency Test 0.6227 Success 

Block Frequency Test (m = 128) 0.7051 Success 

Cumulative-Forward 0.2530 Success 

Cumulative-Reverse 0.5966 Success 

Run Test 0.5607 Success 

Long Runs of Ones 0.5632 Success 

Rank 0.9635 Success 

Spectral DFT 0.5421 Success 

Non-Overlapping Temp.(m = 9,B = 0 0 0 0 0 0 0 01) 0.0626 Success 

Overlapping Temp. (m = 9) 0.9906 Success 

Universal 0.7690 Success 

Approximation Entropy (m = 10) 0.0 0 0 0 Success 

Random Excursions (X = −4) 0.0266 Success 

Random Excursions (X = −2) 0.9621 Success 

Random Excursions (X = −1) 0.9699 Success 

Random Excursions (X = 1) 0.9958 Success 

Random Excursions (X = 2) 0.9426 Success 

Random Excursions (X = 4) 0.9665 Success 

Random Excursions Variant (X = −8) 0.7084 Success 

Random Excursions Variant (X = −6) 0.8146 Success 

Random Excursions Variant (X = −4) 0.5498 Success 

Random Excursions Variant (X = −2) 0.6422 Success 

Random Excursions Variant (X = −1) 0.5198 Success 

Random Excursions Variant (X = 1) 0.4210 Success 

Random Excursions Variant (X = 2) 0.6759 Success 

Random Excursions Variant (X = 4) 0.9757 Success 

Random Excursions Variant (X = 6) 0.7463 Success 

Random Excursions Variant (X = 8) 0.7553 Success 

Serial (m = 16, ∇ψ 

2 
m ) 0.2010 Success 

Linear Complexity (M = 500) 0.5563 Success 
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.2. Random number test 

Encryption process requiring the generation of random num-

ers. Random number generators are based on specific mathemat-

cal algorithms. In this study by considering the hierarchy of q -

eformed maps an effective way to generate random numbers uni-

ormly distributed on the interval [0, 1] is introduced. This family

ould provide the series with good distribution, long period and

ortability, which is common properties of good random number

enerators. We have used National Institute of Standard and Tech-

ology statistical test (NIST) [55] to examine the quality of our

roposed algorithm based on q -deformed chaotic maps ( Eq. (2) ).

here it could produced the random sequences by determinis-

ic processes. As it was shown in Table 5 , they could pass all of

he statistical tests, such as frequency, block frequency, cumulative

ums, runs, longest run, rank, and fast Fourier transform (FFT). In

IST 800-22 tests, if p -value > 0.01, then the PRNG passes this test,

aturally the larger p -value is present the larger randomness. 

. Summary 

In this paper, a scheme for q -deformed (according to the

cheme suggested by Jaganathan et al. [28] ) based on the hierarchy

f chaotic maps is proposed. We particularly expand upon previ-

usly reported results of a hierarchy of dynamical systems [56,57] ,

or construction of a new hierarchy of q -deformation maps with an

nvariant measure. These maps have advantages such as ergodicity

nd the possibility of KS entropy calculation. In these maps the

ontrol parameter is switched to q -deformation control parame-

er and parameter α. Consequently, the hierarchy of q -deformation

aps have richer dynamical phenomena than the canonical hier-

rchy of chaotic maps and all the features of the canonical chaotic

aps can be accessed via changing the deformation parameters ( q )

nd without varying the values of the parameter α. 

Finally, a new watermarking scheme for blind digital image wa-

ermarking based on q -deformed chaotic maps and DWT (powerful

athematical transforms) was proposed. These q -deformed maps
as implemented to increase both the number of keys and com-

lexities involved in the algorithm. Furthermore, the q -deformation

ontrol parameter and the initial values of q -deformed maps are

eemed as necessary keys for correctly restituting watermarks,

hich greatly enhanced the system security. The experimental re-

ults have demonstrated the extracted watermark logo had very

ood quality. In addition to some features aforesaid, the most im-

ortant advantage of these q -deformation maps is the existence of

he two parameters, α and ε. It seems that the excellent efficiency

f the new watermarking scheme is derived from this property.

oreover, based on all experimental results and analysis, the con-

lusion is that, from a watermarking viewpoint, the proposed algo-

ithm is a best candidates for practical applications in information

ecurity fields. 
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ppendix A. One parameter families 

Hierarchy of one-parameter families of chaotic maps with an

nvariant measure can be defined as [56] : 

(x, α) = 

α2 F 

1 + (α2 − 1) F 
. (A.1) 

here F substitutes with Chebyshev polynomial of type one, T N ( x )

or �(1) 
N 

(x, α) and in the case of Chebyshev polynomial of type

wo, U N ( x ) for �(2) 
N 

(x, α) . As an example, some of these maps are

iven below: 

(1) 
2 

= 

α2 (2 x −1) 2 

4 x (1 − x ) + α2 (2 x − 1) 2 
, �(2) 

2 
= 

4 α2 x (1 − x ) 

1 + 4(α2 − 1) x (1 −x ) 
, 

(1) 
3 

= �(2) 
3 

= 

α2 x (4 x − 3) 2 

α2 x (4 x − 3) 2 + (1 − x )(4 x − 1) 2 
. (A.2)

e have derived analytically their invariant measure for arbitrary

alues of the parameter α and any integer values of N : 

�(1 , 2) 
N 

(x,α) 
(x, β) = 

1 

π

√ 

β√ 

x (1 − x ) ( β + ( 1 − β) x ) 
. (A.3) 

ith β > 0 is the invariant measure of the maps �(1 , 2) 
N 

(x, α) pro-

ided that, we choose the parameter α in the following form: 

= 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

�
[ (N−1) 

2 ] 

k =0 
C N 

2 k +1 
β−k 

�
[ N 2 ] 

k =0 
C N 

2 k 
β−k 

for odd values of N 

β�
[ (N) 

2 ] 

k =0 
C N 

2 k 
β−k 

�
[ (N−1) 

2 ] 

k =0 
C N 

2 k +1 
β−k 

for even values of N 

(A.4) 

here the symbol [ ] means the greatest integer part. 

ppendix B. Invariant measure 

There are various methods to find invariant measures [37] . We

ocus on the Stieltjes transform approach to calculate the SRB mea-

ure [58] . Invariant measures remain unaffected by dynamics, so

hey are fixed points of the PF-operator, with the unit eigenvalue:

 

t μ(x ) = 

∫ 
M 

δ(x − �t (y )) μ(y ) = μ(x ) (B.1)

epending on the choice of � t ( x ), there may be no, one, or

any solutions of the eigenfunction condition. Now, by considering
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 + ε

 + 2

 (1 +
dμ(y ) = δ(y − �(x )) dν(x ) the density at the n th time becomes: 

y n dμ(y ) = δ(y − �(x )) y n dν(x ) . (B.2)

By integrating Eq. (B.2) , we have: 

∫ b 

a 

y n dμ(y ) = 

∫ b 

a 

δ(y − �(x )) y n dν(x ) = 

∫ b 

a 

(�(x )) n dν(x ) . (B.3)

that can be presented in the following form either: 

μn = 

∫ b 

a 

x n dμ = 

∫ b 

a 

(�(x )) n dμ. (B.4)

The spectral distribution can be determined in the last step in

terms of x l , based on the following equation (for more details see

Ref. [37,59] ): 

μ = 

∑ 

l 

A l δ(x − x l ) . (B.5)

According to the proposed steps in the Ref. [60] , and also in order

to calculate the invariant measure for �2 ( x, α, ε), we calculate the

moments: 

μn = 

( 

4 α2 
(
(ε + 2) 2 − 4 α2 (1 + ε) 

)
(1 + ε)(1 + γ (ε, α)) 

γ (ε, α) 2 − γ (ε , α) χ(ε , α) 

) n 

×
n ∑ 

k =0 

(
γ (ε, α) + χ(ε , α) γ (ε , α) 

χ(ε, α) + χ(ε, α) γ (ε, α) 

)k 

× (−1) n −k C n k 

n −k ∑ 

k ′ =0 

(−1) k 
′ 
C n −k + k ′ −1 

k ′ 

(
1 

γ (ε, α) 

)k ′ 

×
k ∑ 

k ′′ =0 

C k + k 
′′ −1 

k ′′ 

(
1 

χ(ε, α) 

)k ′′ 

μk ′ + k ′′ (B.6)

where μk ′ + k ′′ = 

∫ 1 
0 x k 

′ + k ′′ dμ(x ) and for n = 0 , 1 , 2 , . . . , k =
0 , 1 , 2 , . . . we find 

μ0 = 1 , 

μ2 = 

(
4 α2 (1 + ε) 

(
(ε + 2) 2 − 4 α

χ2 − γ 2 − α2 

1 −α2 

(
(ε + 2) 2 − 4 α2 (1 + ε) 

)4 
(

3

μ4 = 

(
4 α2 (1+ ε)((ε+2) 2 −4 α2 (1+

γ

(γ − χ) 4 − 1+ χ
1+ γ
(
4 α2 (1 + ε)(1 + γ ) 

)4 
(

35 
γ 6 −

+ 

(
4 α2 ((ε+2) 2 −1)(1+ ε)(1+ γ ) 

γ 2 −γχ

)4 

μ2 

(
10 
γ 2 − 4(γ + γ

χ+ γχ

1 −
(

4 α2 (1+ γ ) 
γ 2 −γχ

)4 (
35 
γ 2 − 80(γ + χγ ) 

χ2 γ 3 + χ2 γ 4 + 

24(γ 2 +
χ2 + χ

μ = 

1 

2 

δ

⎛ 

⎜ ⎝ 

x + 

√ √ √ √ √ 

(
4 α2 (1 + ε) 

(
(ε +

χ2 − γ 2 − α2 

1 −α2 

(
(ε + 2) 2 − 4 α2 (1

+ 

1 

2 

δ

⎛ 

⎜ ⎝ 

x −

√ √ √ √ √ 

(
4 α2 (1 + ε) 

(
(ε

χ2 − γ 2 − α2 

1 −α2 

(
(ε + 2) 2 − 4 α2
 

 

 

 

 

 

 

γ (ε, α) = 

(−ε − 2 + 2 α2 + 2 

√ 

α2 − α4 )(1 + ε) 

(ε + 2) 2 − 4 α2 (1 + ε) 

χ(ε, α) = 

(−ε − 2 + 2 α2 − 2 

√ 

α2 − α4 )(1 + ε) 

(ε + 2) 2 − 4 α2 (1 + ε) 

(B.7)

t should be assumed that, μn = 0 for all odd value of n . As an

xample by considering the first five moments: 

 ε) 
))2 

 γ ) 2 + (1 + χ)(γ + 4) 
) , 

 γ )(γ −χ) 
)4 

 

6 + 

24(1+ χ2 )(1+ γ ) 
χ4 (1+ γ 2 ) γ 4 (1+ χ) 

− 80 
γ 6 χ4 + 

35 
χ8 

)
3 
χ + 

6 
γ 2 

)
+ 6 

(
γ + γχ
χ+ γχ

)2 
(

4 
γχ + 

3 
γ + 

3 
χ2 

))
 1 
χ2 γ 2 − 80 

γχ2 

(
γ + χγ

χ2 γ 3 + χ2 γ 4 

)
+ 

35 
χ4 

(
γ + χγ
χ+ γχ

)4 
) (B.8) 

t the second step, we calculate the coefficients λn according to
q. (8) in Ref. [60] : 

1 = 1 , 

2 = 

(
4 α2 (1 + ε) 

(
(ε + 2) 2 − 4 α2 (1 + ε) 

))2 

χ2 − γ 2 − α2 

1 −α2 

(
(ε + 2) 2 − 4 α2 (1 + ε) 

)4 ( 3 χ2 (1+ γ ) 2 

γ 2 + (1 + χ)(γ + 4) 
)

(B.9)

ow, by considering the general form of P -polynomial ( Eq. (7) in
ef. [60] ), we have: 

 2 (x ) = x 2 −
(
4 α2 (1 + ε) 

(
(ε+ 2) 2 −4 α2 (1 + ε) 

))2 

χ2 −γ 2 − α2 

1 −α2 

(
(ε+ 2) 2 −4 α2 (1 + ε) 

)4 ( 3 χ2 (1+ γ ) 2 

γ 2 + (1 + χ)(γ + 4) 
)

n the next step, according to the definition of the Stieltjes trans-
orm ( Eq. (9) in Ref. [60] ), we can write: 

 μ(x ) = 

1 

x − ω 1 
x 

= 

x ⎛ 

⎜ ⎝ 

x −
√ √ √ √ 

(
4 α2 (1+ ε) 

(
(ε+2) 2 −4 α2 (1+ ε) 

))2 
χ2 −γ 2 − α2 

1 −α2 

(
(ε+2) 2 −4 α2 (1+ ε) 

)4 ( 3 χ2 (1+ γ ) 2 

γ 2 
+(1+ χ)(γ +4) 

)
⎞ 

⎟ ⎠ 

× 1 ⎛ 

⎜ ⎝ 

x + 

√ √ √ √ 

(
4 α2 (1+ ε) 

(
(ε+2) 2 −4 α2 (1+ ε) 

))2 
χ2 −γ 2 − α2 

1 −α2 

(
(ε+2) 2 −4 α2 (1+ ε) 

)4 ( 3 χ2 (1+ γ ) 2 

γ 2 
+(1+ χ)(γ +4) 

)
⎞ 

⎟ ⎠ 

n the last step, with regard to the relation ( Eq. (11) in Ref. [60] ),

he Guass quadrature constants are shaped as follows: 

 l = 

1 

2 

ow, according to the definition of the invariant measure Eq. (B.5) ,

e can write: 

 − 4 α2 (1 + ε) 
))2 

) 
)4 
(

3 χ2 (1+ γ ) 2 

γ 2 + (1 + χ)(γ + 4) 
)
⎞ 
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) 2 − 4 α2 (1 + ε) 
))2 

 ε) 
)4 
(

3 χ2 (1+ γ ) 2 

γ 2 + (1 + χ)(γ + 4) 
)
⎞ 

⎟ ⎠ 

(B.10) 
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n order to avoid boring the reader with dull calculations, we only

resent that the variation of measure until second order for the se-

ected example map. It is clear that the more you can increase the

mount of n , the closer on get the reality. In this case, the infinite

nvariant measure on x = 0 (or x = 1 ) is corresponding to one un-

table fixed point. The probability of distribution around the fixed

oints influenced by the variation of ε and α. Actually, this inter-

sting property is due to the existence of the SRB measure for the

ange of values of the parameter of these maps. 
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