2,921 research outputs found

    RBF Neural Network of Sliding Mode Control for Time-Varying 2-DOF Parallel Manipulator System

    Get PDF
    This paper presents a radial basis function (RBF) neural network control scheme for manipulators with actuator nonlinearities. The control scheme consists of a time-varying sliding mode control (TVSMC) and an RBF neural network compensator. Since the actuator nonlinearities are usually included in the manipulator driving motor, a compensator using RBF network is proposed to estimate the actuator nonlinearities and their upper boundaries. Subsequently, an RBF neural network controller that requires neither the evaluation of off-line dynamical model nor the time-consuming training process is given. In addition, Barbalat Lemma is introduced to help prove the stability of the closed control system. Considering the SMC controller and the RBF network compensator as the whole control scheme, the closed-loop system is proved to be uniformly ultimately bounded. The whole scheme provides a general procedure to control the manipulators with actuator nonlinearities. Simulation results verify the effectiveness of the designed scheme and the theoretical discussion

    Online Bearing Remaining Useful Life Prediction Based on a Novel Degradation Indicator and Convolutional Neural Networks

    Full text link
    In industrial applications, nearly half the failures of motors are caused by the degradation of rolling element bearings (REBs). Therefore, accurately estimating the remaining useful life (RUL) for REBs are of crucial importance to ensure the reliability and safety of mechanical systems. To tackle this challenge, model-based approaches are often limited by the complexity of mathematical modeling. Conventional data-driven approaches, on the other hand, require massive efforts to extract the degradation features and construct health index. In this paper, a novel online data-driven framework is proposed to exploit the adoption of deep convolutional neural networks (CNN) in predicting the RUL of bearings. More concretely, the raw vibrations of training bearings are first processed using the Hilbert-Huang transform (HHT) and a novel nonlinear degradation indicator is constructed as the label for learning. The CNN is then employed to identify the hidden pattern between the extracted degradation indicator and the vibration of training bearings, which makes it possible to estimate the degradation of the test bearings automatically. Finally, testing bearings' RULs are predicted by using a ϵ\epsilon-support vector regression model. The superior performance of the proposed RUL estimation framework, compared with the state-of-the-art approaches, is demonstrated through the experimental results. The generality of the proposed CNN model is also validated by transferring to bearings undergoing different operating conditions

    A New Computed Torque Control System with an Uncertain RBF Neural Network Controller for a 7-DOF Robot

    Get PDF
    A novel percutaneous puncture robot system is proposed in the paper. Increasing the surgical equipment precision to reduce the patient\u27s pain and the doctor\u27s operation difficulty to treat smaller tumors can increase the success rate of surgery. To attain this goal, an optimized Computed Torque Law (CTL) using a radial basis function (RBF) neural network controller (RCTL) is proposed to improve the direction and position accuracy. BRF neural network with an uncertain term (URBF) which is able to compensate the system error caused by the imprecision of the model is added in the RCTL system. At first, a 7-DOF robotic system is established. It consists of robotic arm and actuator control channels. Now, the RBF compensator is added to the CTL to adjust the robot arm to reduce the position and direction errors. The angle and velocity errors of the robot arm are compensated using the RBF controller. According to the Lyapunov theory, the accuracy of torque control system depends on path tracking errors, inertia of robot, dynamic parameters and disturbance of each joint. Compared to general CTL approaches, the precision of a 7-DOF robot could be improved by adjusting the RBF parameters

    Prescribed performance control of underactuated surface vessels' trajectory using a neural network and integral time-delay sliding mode

    Get PDF
    summary:To tackle the underactuated surface vessel (USV) trajectory tracking challenge with input delays and composite disturbances, an integral time-delay sliding mode controller based on backstepping is discussed. First, the law of virtual velocity control is established by coordinate transformation and the position error is caused to converge utilizing the performance function. At the same time, based on the estimation of velocity vector by the high-gain observer (HGO), radial basis function (RBF) neural network is applied to compensate for both the uncertainty of model parameters and external disturbances. The longitudinal and heading control laws are presented in combination with the integral time-delay sliding mode control. Then, on the basis of Lyapunov - Krasovskii functional and stability proof, virtual velocity error is guaranteed to converge to 0 in finite time. Finally, the outcomes of the numerical simulation demonstrate the reliability and efficiency of the proposed approach

    Chaos Synchronization Using Adaptive Dynamic Neural Network Controller with Variable Learning Rates

    Get PDF
    This paper addresses the synchronization of chaotic gyros with unknown parameters and external disturbance via an adaptive dynamic neural network control (ADNNC) system. The proposed ADNNC system is composed of a neural controller and a smooth compensator. The neural controller uses a dynamic RBF (DRBF) network to online approximate an ideal controller. The DRBF network can create new hidden neurons online if the input data falls outside the hidden layer and prune the insignificant hidden neurons online if the hidden neuron is inappropriate. The smooth compensator is designed to compensate for the approximation error between the neural controller and the ideal controller. Moreover, the variable learning rates of the parameter adaptation laws are derived based on a discrete-type Lyapunov function to speed up the convergence rate of the tracking error. Finally, the simulation results which verified the chaotic behavior of two nonlinear identical chaotic gyros can be synchronized using the proposed ADNNC scheme

    A vehicle stability control strategy with adaptive neural network sliding mode theory based on system uncertainty approximation

    Get PDF
    Modelling uncertainty, parameter variation and unknown external disturbance are the major concerns in the development of an advanced controller for vehicle stability at the limits of handling. Sliding mode control (SMC) method has proved to be robust against parameter variation and unknown external disturbance with satisfactory tracking performance. But modelling uncertainty, such as errors caused in model simplification, is inevitable in model-based controller design, resulting in lowered control quality. The adaptive radial basis function network (ARBFN) can effectively improve the control performance against large system uncertainty by learning to approximate arbitrary nonlinear functions and ensure the global asymptotic stability of the closed-loop system. In this paper, a novel vehicle dynamics stability control strategy is proposed using the adaptive radial basis function network sliding mode control (ARBFN-SMC) to learn system uncertainty and eliminate its adverse effects. This strategy adopts a hierarchical control structure which consists of reference model layer, yaw moment control layer, braking torque allocation layer and executive layer. Co-simulation using MATLAB/Simulink and AMESim is conducted on a verified 15-DOF nonlinear vehicle system model with the integrated-electro-hydraulic brake system (I-EHB) actuator in a Sine With Dwell manoeuvre. The simulation results show that ARBFN-SMC scheme exhibits superior stability and tracking performance in different running conditions compared with SMC scheme

    Radial basis function neural network control for parallel spatial robot

    Get PDF
    The derivation of motion equations of constrained spatial multibody system is an important problem of dynamics and control of parallel robots. The paper firstly presents an overview of the calculating the torque of the driving stages of the parallel robots using Kronecker product. The main content of this paper is to derive the inverse dynamics controllers based on the radial basis function (RBF) neural network control law for parallel robot manipulators. Finally,  numerical simulation of the inverse dynamics controller for a 3-RRR delta robot manipulator is presented as an illustrative example
    corecore