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Abstract In this paper, a neural network adaptive sliding
mode control is proposed for an MEMS triaxial gyroscope
with unknown system nonlinearities. An input-output
linearization technique is incorporated into the neural
adaptive tracking control to cancel the nonlinearities, and
the neural network whose parameters are updated from
the Lyapunov approach is used to perform the
linearization control law. The sliding mode control is
utilized to compensate the network’s
approximation errors. The stability of the closed-loop
system can be guaranteed with the proposed adaptive
neural sliding mode control. Numerical simulations are
investigated to verify the effectiveness of the proposed
adaptive neural sliding mode control scheme.

neural

Keywords Neural Network, Sliding Mode Control, Robust
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1. Introduction

A gyroscope is a commonly used sensor for measuring
angular velocity in many areas of application, such as
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navigation, homing and control stabilization. The
performance of the MEMS gyroscope is deteriorated by
the effects of time-varying parameters as well as noise
sources, quadrature errors, parameter variations and
external disturbances, which generate a frequency of
oscillation mismatch between the two vibrating axes.

It is necessary to control the MEMS gyroscope using
advanced control approaches, such as adaptive control,
sliding mode control and intelligent control. In the last few
years, various control approaches have been presented to
control the MEMS gyroscope. Increasing attention has been
given to the tracking control of the MEMS gyroscope. Batur
et al. [1] developed a sliding mode control for a MEMS
gyroscope system. Sun et al. [3] derived a phase-domain
design approach to study the mode-matched control of a
gyroscope. Park et al. [4] presented an adaptive controller
of a MEMS gyroscope which drives both axes of vibration
and controls the entire operation of the gyroscope. John et
al. [5] proposed a novel concept for an adaptively
controlled triaxial angular velocity sensor device. Fei [6-7]
derived an adaptive sliding mode controller and a robust
adaptive controller for a MEMS vibrating gyroscope.
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Model reference adaptive control (MRAC) methods have
been widely applied to robotic systems. Detailed physical
descriptions regarding to the robotic system using MRAC
have been discussed [8-10]. Recently, much research has
been done to apply intelligent control approaches such as
neural networks and fuzzy controls that do not require
mathematical models and have the ability to approximate
nonlinear Therefore, intelligent
approaches have been applied to represent complex plants
and to construct advanced controllers. Wang [11] proposed
a universal approximation theorem and demonstrated that
an arbitrary function of a certain set of functions can be
approximated with arbitrary accuracy using a fuzzy
system on a compact domain. Adaptive fuzzy sliding
mode control schemes have been developed for robotic
manipulators [12-13]. A neural network has the ability to
approximate any nonlinear function over a compact input
space. Therefore, a neural network’s learning ability to
approximate arbitrary nonlinear functions makes it a useful
tool for adaptive application. Tracking controls using neural
networks for nonlinear dynamic systems have become a
promising research topic. Lewis et al. [14] developed neural
network approaches for robotic manipulators. Horng [15]
proposed a neural adaptive tracking control for a DC
motor with unknown system nonlinearities where neural
network approximation errors are compensated for by
using the sliding mode scheme. Yu et al. [16] presented a
direct adaptive neural control with a sliding mode method
for a class of uncertain switched nonlinear systems. Lin et
al. [17] used a neural network-based robust nonlinear
control for a magnetic levitation system. Neural network
sliding mode control approaches have been developed for
robotic manipulators [18-19].

systems. control

This paper focuses on the design of an adaptive neural
sliding mode control based on input-output linearization. A
robust adaptive neural sliding mode tracking control
approach is presented for a MEMS gyroscope. By employing
radial-basis-function neural networks to account for system
uncertainties, the proposed scheme is developed by
combining feedback linearization techniques and neural
learning properties. The control scheme integrates the theory
of sliding mode control and the nonlinear mapping of a neural
network. A RBF neural network is used to adaptively learn
the linear control component. The key property of this scheme
is that the weights of the neural network are estimated
adaptively and the velocity and position of the MEMS
gyroscope are forced to follow any arbitrary trajectory.

The paper is organized as follows. In section 2, the
dynamics of a triaxial MEMS gyroscope are introduced.
In section 3, a feedback linearization procedure is
described and a sliding mode control using a feedback
linearization approach is proposed to guarantee the
asymptotic stability of the closed loop system. In section
4, an adaptive neural network sliding mode control is
developed. The simulation results are presented in
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section 5 to verify the effectiveness of the proposed
control. Conclusions are provided in section 6.

2. Description of a motion equation
of a mems triaxial gyroscope

Assume that the gyroscope is moving with a constant
linear speed with respect to an inertial system of
reference; that the gyroscope is rotating at a constant
angular velocity; that the centrifugal forces are assumed
negligible; that the gyroscope undergoes rotations along
the x,yand z axis. The nonlinear motion equations of

such a triaxial gyroscope can be derived as:

mi+d g+d y+d_z+k x+k,y+k_z—m(Q+Q )x
+mQ Q y+mQ Q. z =u, +2m. y—-2mQ z

my+d x+d, y+d z +kxyx+kwy+kyzz—m(ﬂi +Q)y O
+mQyQXx +mQ },sz =u, - 2mQ X +2m€d z

mi+d _x+d y+d_z+k x+k_y+k z—m(Q +Q )z

+mQ Q x+mQ Q. y =u, +2mQ x—2mC, y

where m is the mass of proof mass fabrication
imperfections contributing mainly to the asymmetric

spring terms k,, k_and k. and asymmetric damping

k
and d_ are damping terms; Q , Q

xy/

terms d,, ,d, and d k, and k_ are spring

xz / xx 7 »y

terms; d, dyy

and Q. are angular velocities; u,, u, and u, are the

control forces in the x, y and z directions respectively.

Dividing the equation by the reference mass, and because
of the non-dimensional time ¢* = wyt , then dividing
both sides of the equation by the reference frequency wé
and the reference length ¢, and rewriting the dynamics

in vector forms result in:

4. D ¢ K qa, % q__u ,Q4q @

9y MW, 4, mwg ‘0 mwg 9 mwg% Wo 9o
X u, 0 -Q Q
where g=|y |,u= u, | Q= Q. 0o -Q,
- " -Q, Q0
dxx dxy dxz kxx k Xy Xz
D=|d, d, d_|.K,=|\k, k, k|
de d}z dZZ ka k vz zz
2 2
-(@l+Ql) 0, 00
2 2
Q,=|-(2L+Q) Q0 00
2 2
-(Ql+Q)) Q0 Q0
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We define the new parameters as follows:

* q * D * Q * u
qg =—, D = s Q' =— > Uy = H
99 mw, Wo mwy {4,
= u, « U,
u, = u, =
mwy 4o mwy 4,
w = kxx W = k}'}’ w o= kzz
x 2 2y T 2 2 Wz T 2 0
mw, mw, mw,
— k"} _ kyz _ krz
Wy = 2 > Wy = 70 We = 2
mw, mw, mw,

The final form of the non-dimensional equation of motion
can be obtained by ignoring the superscript:

G+Dqg+kqg+Q,q=u—2Qq )
2
W.X X_); Xz
where K, = Xy y vz
sz yz sz

3. Sliding mode control

The sliding mode control is a robust control technique
which has many attractive features, such as robustness to
parameter variations and to external
disturbance. The sliding mode controller is composed of
an equivalent control part that describes the behaviour of
the system when the trajectories stay over the sliding
manifold and a variable structure control part that
enforces the trajectories to reach the sliding manifold and
prevent them leaving the sliding manifold. The sliding

insensitivity

mode has some limitations, such as chattering and high
frequency oscillation in practical applications.

In this section, a novel sliding mode controller can be
designed for the MEMS gyroscope with unknown system
nonlinearities so as to guarantee the asymptotic stability
of the closed loop system.

Consider the dynamics with parametric uncertainties and
external disturbance as:

G+(D+2Q+AD)g+(K,+AK, )g+Q,g=u+d (4)

where AD is the unknown parameter uncertainty of the

D+2Q, AK,

uncertainty of the matrix K,, and d is the external

matrix, is the unknown parameter

disturbance of the system .
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Rewriting (4) as:
G+(D+2Q)g+K,q=u+d, )

where dl represents the lumped model uncertainties

and external disturbances which are

d,=d—-ADg—-AK,q

given by

Rewriting (5) as:
G=(-D-2Q)g—k,q+Q,g+u+d, (6)
define:

1(4:4:) =(=D=-2Q)q~k,q-Q,q+d, ()

where f (q, q, t ) is an unknown nonlinear function.

Therefore, (6) becomes

G=f(q,q,t)+u ®)

The control target for the MEMS gyroscope is to maintain
the proof mass so as to oscillate in the X, ¥ and z

directions at a
x, = A sin(wt),

given frequency and
v, = A4, sin(@,t),  and

amplitude:

z, =4, sin(a)3t). Then, the reference model can be
defined as:

4g,+K,q,=0 )

where ¢ =[x, , zm]T, K, =diagio’, 0,0} .
Define the tracking error and sliding surface as follows:

e=q-gq, (10)

s(q,q,t)=Ce+eé (11)

According to feedback linearization technique, the sliding
mode controller can be designed as:

u :R_f(qvq’t)
= E(q,q,t)—pSgH(S)—f(q, QJt) (12)
=4, —Cé—psgn(s) - 1(q.4,1)

where R = g(q,q,t) - psgn(s), p>0 and
S(q, qst) = Qm —Ce.
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Define the Lyapunov function:
1

V=—s"s (13)
2

The derivative of the Lyapunov function with respect to
time becomes:

V=s"5=s"(6+Cé)

(14)
=s"(§-4,+Ce)=s"[f(q.4.0) +u—g, +Cé]
Substituting (12) into (14) yields:

V=s"[-psgn(s)]=-pl|s| <0 (15)

V becomes negative and semi-definite, implying that the
trajectory reaches the sliding surface in a finite time and
remains on the sliding surface. It can be shown that s(¢)

will asymptotically converge on zero, lims(¢)=0,
>

lime(r) = 0.

t—w
4. Adaptive Neural Sliding mode controller

We will address the design of an adaptive RBF network
based sliding mode control problem. Because of the great
advantages of neural networks in dealing with nonlinear
systems, an adaptive neural sliding mode controller is
designed and its stability is analysed in this section.
Adaptive neural network sliding mode control is adopted
to facilitate the adaptive tracking control of the MEMS
gyroscope. In the practical application of the MEMS

gyroscope, f (q,q,t ) in (13) is an unknown function,
therefore the controller (18) cannot be implemented
directly and it is necessary to replace f(q,q,t) by the
RBF neural network output f(g,q,t) to realize the

adaptive neural sliding mode control.

The structure of the RBF neural network is a three-layer
feedforward network shown as in Fig. 1. The block
diagram of the RBF network is shown as follows: the

AT
input of the neural network is X = [q, q] ' hl , h2 , h3

and h4 are Gaussian functions, @,,®,,®; and @,
are the weights of the RBF neural network, the output of

the RBF network is the unknown nonlinear function f .

The input layer is the set of source nodes. The second
layer is a hidden layer of a high dimension. The output
layer gives the response of the network to the activation
patterns applied to the input layer. The input into an RBF
network is nonlinear while the output is linear, thus
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greatly accelerating the learning speed and avoiding the
local minimum problem. The block diagram of the sliding
mode control using the RBF neural network is shown in
Fig. 2.

Sliding
Controller

Figure 2. Block Diagram of the sliding mode control using the
RBF network

A

The estimate of f is:
f=o"¢(x) (16)

where x:[q q] is the input of the RBF neural

network, a)T are weights of the RBF neural network

and @(x) isa Gaussian function:

2
Q(x):exp(—M),izl, 2, 3 (17)
O,

1

where m, is the centre of the number I neurons, O ;

is width of number i neurons.

Assumption. There exists a coefficient’s weight @ such

that f approximates the continuous function f with

an accuracy &, thatis:
maXHf (9.9, 0)~ /(g q‘)H <¢ (18)

Suppose @, is the estimate of @ at time f, then the

control law becomes:

u(t)=R~-f(¢,9,®) (19)
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where:

f(q.d.0)=ah (20)

The derivative of the sliding surface is:

S:C€+q_qm :Cé+f(qaq:t)+u_qn1

. . (21)
= f(qaqat)+u_€(qaq7t)

Substituting ¥ =R — f(q,q,t) as in (18) into (27)
yields:

$=£(q.4.6)+ R~ £(4,4,0)~ £(q,4,1)

= [f(qs qa t) - /}(q’ qs a)t)] + 8(q’ qs t) - pSgIl(S) - g(qs qa t)
=[/(4.4,0)~ 1 (4,4, @)1 +[f(4:4:1) ~ [ (q,d, @)] - psgn(s)
= 6f((2’z’w)| o, + af(cgi’w)I @ — psgn(s)

12}

(22)
Define the weights’ error of the RBF neural network as:
()=, -o (23)
Then the sliding dynamics of (22) becomes:
§=[-@"J +n(t)]- psgn(s) (24)

where:

;¥ (4.4.0)

” () =o(|@])+o(e) (25

Define a Lyapunov function:
Vs,o)= ES s +5a)(t) a(t) (26)

The derivative of the Lyapunov function with respect to
time becomes:

V=s"s+a0t) o) =—pls||+s"T-a@)" T +n)]+a) d)
=—pls||+s"nO1+[-s" ()" J + d(0) @(1)]
(27)

To make ¥V <0 ,we choose the adaptive laws as:

a;)(t) =Js (28)
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Substituting (28) into (27) and choosing ,0>|T](t)|
yields:

V==pls|+s"n0 < =pls| +In@)Is| =~Co=|r@p]is| <0
29)

V becomes negative and semi-definite, implying that the
trajectory reaches the sliding surface in a finite time and

remains on the sliding surface. Vis negative and definite
which implies that V,s,@ converges on zero. V is
negative and semi-definite which ensures that V,s,®

are all bounded. Equation (24) implies that § is also
bounded. The inequality (29) implies that s is integrable

t 1
as t<—[V(0)=V(t)]. Since V(0) is
[ [l ] @V @1 sinee 10

bounded and V(t) is non-increasing and bounded, it

can be concluded that limJ‘t”s"dt is bounded. Since
t—0 ¢ 0

limJ‘;”s"dt is bounded and s is also bounded,

—>o

according to the Barbalat lemma, s(¢) will

asymptotically converge on zero, }1_)1’2 s(t)=0, then

according to the definition of the sliding surface (11),
e(t) also converges on zero asymptotically.

Remark 1. In order to reduce the chattering problem in
the sliding mode control, in the implementation of the

sliding mode force, the continuous function Sy is

chosen to replace sgn(s) :

S
s+

S5 = (30)

where O = 50 + 51 ||e

p 50,51 are constants.

5. Simulation study

In this section, we will evaluate the proposed adaptive
neural network sliding mode approach on the lumped
MEMS gyroscope sensor model [1] [4] [5]. The parameters
of the MEMS gyroscope sensor are as follows:

m=0.57e-8kg,®, = 1kHz,q, =10"°m
d.=0429¢—-6Ns/m,d, =0.0429¢—6Ns/m,
d.=0.895¢—-6Ns/m,d , =0.0429¢—6Ns / m,
d.=0.0687¢—6Ns/m,d, =0.0895¢—6Ns/m,
k. =8098N /m,k,=5N/m,k, =71.62N/m,
k.=60.97N/m,k_=6N/mk_=TN/m.
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Since the general displacement range of the MEMS
gyroscope sensor in each axis is at the sub-micrometer
level, it is reasonable to choose 1 um as the reference

length g, . Given that the usual natural frequency of each
axle of a vibratory MEMS gyroscope sensor is in the KHz
range, @, is chosen as 1k Hz. The unknown angular

velocity s Q. = 5.0rad /s,
Q,=3.0rad /s and Q,=2.0rad /s. The desired

assumed to Dbe

motion trajectories are X, = sin(a)lt),

v, =12sin(w,t), =z, =1.5sin(wyt)
w, =6.71kHz, @, =5.11klz,

, where

;= 4.17kHz . The initial values of the neural network
weight: a{O):[O,l 01 01 0,1].Ir1 the Gaussian function
(17), the initial values of ¢;and bi are FO 10 10 10}

10 10 10 10
and [10 10 10 10]T respectively , & =0.3,6=5 -
The the MEMS dynamics
000000

initial states of are

There are £ 10% parameter variations for the spring and
damping coefficients with respect to their nominal values
and * 10% magnitude changes in the coupling terms
with respect to their nominal values. The sliding

60 0 O
parameter in (11) is C=| 0 60 0| , external
0 0 60

disturbances is d(¢) =100sin(27¢), and sliding gain in
2000 O 0
(12)is p=| 0 2000 0
0 0 2000

Fig.3 depicts the position tracking of the x, y and z
directions with the sliding mode control. Fig.4 plots the
tracking error of x, y and z. It can be observed from Figs.
3-4 that the position of x, y and z can track the position of
the reference model in a very short time and that the
tracking errors converge on zero asymptotically. In other
words, the MEMS gyroscope can maintain the proof mass
so as to oscillate in the x, y and z directions at a given
frequency and amplitude by using the adaptive neural
network sliding mode control. It can be seen from Fig.5
that the chattering problem can be diminished by using
the smooth adaptive neural sliding mode controller .

It is demonstrated that the parameters of RBF network
are on-line adjusted based on Lyapunov stability analysis
and the proposed RBF controller incorporated with
adaptive control can guarantee the asymptotical stability
of the closed loop system. The advantage of the proposed
robust adaptive RBF controller is that it does not depend
on accurate mathematical models, which are difficult to
obtain and may not give satisfactory performance under
parameter variations.the simulation results prove that the
system is capable of tracking the desired vibration
trajectory determined by the reference model output; the
performance of the adaptive neural network sliding mode
control is satisfactory in the presence of unknown system

nonlinearities.

X Position tracking

time(second)

Y Position tracking
o

Yer®
O
-2 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 10

time(second)

Z Position tracking

time(second)

Figure 3. Position tracking of X ,Y and Z using the adaptive neural sliding mode control
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_002 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 10
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0.02
(o2} - R N, —— e e — — — —
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-0.02 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 10
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Figure 4. Convergence of the tracking error e(t) using the adaptive neural sliding mode control

10000
5000 B
-
5
0 /\/\/\/\/\/\/\/\//\/\/’\
_5000 1 1 1 1 1 1 1 |
0 1 2 3 4 5 6 7 8 9 10
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10000
5000 | B
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S
0 (\_/\/\/\/\/W\/
_5000 L L L L L L L L L
0 1 2 3 4 5 6 7 8 9 10
time(second)
10000
5000 B
(o2}
>
0 /\/\/\/\/\/\/\
-5000 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 10

time(second)
Figure 5. Control input using the smooth adaptive neural sliding mode controller.
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