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This paper addresses the synchronization of chaotic gyros with unknown parameters and external
disturbance via an adaptive dynamic neural network control (ADNNC) system. The proposed
ADNNC system is composed of a neural controller and a smooth compensator. The neural
controller uses a dynamic RBF (DRBF) network to online approximate an ideal controller. The
DRBF network can create new hidden neurons online if the input data falls outside the hidden
layer and prune the insignificant hidden neurons online if the hidden neuron is inappropriate.
The smooth compensator is designed to compensate for the approximation error between the
neural controller and the ideal controller. Moreover, the variable learning rates of the parameter
adaptation laws are derived based on a discrete-type Lyapunov function to speed up the
convergence rate of the tracking error. Finally, the simulation results which verified the chaotic
behavior of two nonlinear identical chaotic gyros can be synchronized using the proposedADNNC
scheme.

1. Introduction

Radial basis function (RBF) networks are characterized by a simple structure with rapid com-
putation time and superior adaptive performance [1]. There have been considerable interests
in exploring the applications of RBF network to deal with the nonlinearity and uncertainty
in control systems [2–5]. One main advantage of these RBF-based adaptive neural controllers
is that the online parameter adaptive laws were derived without the requirement of offline
training. Though the favorable control performance can be achieved in [2–5], the structure
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of the used RBF network should be determined by some trial-and-error tuning procedure.
It is difficult to consider the balance between the number of hidden neurons and desired
performance. To solve this problem, a dynamic RBF (DRBF) network was proposed for
the structural adaptation of the RBF network [6–9]. However, some structural learning
algorithms are complex and some structural learning algorithms cannot avoid the structure
of RBF network growing unboundedly.

Another drawback of the RBF-based adaptive neural controller is how to determine
the learning rates of the parameter adaptive laws. For a small value of the learning rates, the
convergence of the tracking error can be easily guaranteed but with slow convergence speed.
If the learning rates are large, the parameter adaptive laws may become system unstable. To
attack this problem, a variable learning rate was studied in [10–13]. A discrete-type Lyapunov
function was utilized to determine the optimal learning rates in [10, 11]; however, the exact
calculation of the Jacobian term cannot be determined due to the unknown control dynamics.
A genetic algorithm and a particle swarm optimization algorithmwere used to determine the
optimal learning rates [12, 13]; however, the computation loading is heavy and their scheme
lacks the real-time adaptation ability.

In the last decade, control and synchronization of chaotic systems have become an
important topic. Chaos synchronization can be applied in the vast areas of physics and
engineering systems such as in chemical reactions, power converters, biological systems,
information processing, and secure communication [14–16]. Many different methods have
been applied to synchronize chaotic systems. Chang and Yan [17] proposed an adaptive
robust PID controller using the sliding-mode approach; however, the phenomenon of
chattering will appear. An adaptive sliding mode control was proposed to cope with
the fully unknown system parameters [18]. To eliminate the chattering, a continuous
control law is used; however, the system stability cannot be guaranteed. The adaptive
control techniques are applied to chaos synchronization in [19]; however, adaptive control
requires the structural knowledge of the chaotic dynamic functions. Yau [20] proposed
a nonlinear rule-based controller for chaos synchronization. The fuzzy rules should be
preconstructed by a time-consuming trial-and-error tuning procedure to achieve the required
performance.

This paper proposes an adaptive dynamic neural network control (ADNNC) system
to synchronize two nonlinear identical chaotic gyros. The proposed ADNNC system is
composed of a neural controller and a smooth compensator. The neural controller uses
a DRBF network to approximate an ideal controller and the smooth compensator is
designed to dispel the approximation error introduced by the neural controller. This
paper has successfully developed a low-computation loading requirement of the online
structural learning algorithm for the DRBF network. To speed up the convergence rate
of the tracking errors, an analytical method based on a discrete-type Lyapunov function
is proposed to determine the variable learning rates of the parameter adaptive laws.
Finally, some simulations are provided to verify the effectiveness of the proposed ADNNC
system.

2. Problem Formulation

In this paper, a symmetric gyro with linear-plus-cubic damping as shown in Figure 1 [15]
is considered. The dynamics of a gyro is a very interesting nonlinear problem in classical
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Figure 1: A schematic diagram of a symmetric gyroscope.

mechanics. According to the study by Chen [15], the dynamics of the symmetrical gyro with
linear-plus-cubic damping of the angle θ can be expressed as

θ̈ + α2 (1 − cos θ)2

sin3θ
− β sin θ + c1θ̇ + c2θ̇

3 = f sinωt sin θ, (2.1)

where θ is the angle; f sinωt is the parametric excitation; c1θ̇ and c2θ̇3 are the linear and
nonlinear damping, respectively; α2(1 − cos θ)2/sin3θ − β sin θ is a nonlinear resilience force.
The open-loop system behavior was simulated with α2 = 100, β = 1, c1 = 0.5, c2 = 0.05,
and ω = 2 for observing the chaotic unpredictable behavior. For the phase trajectory with
f = 33, an uncontrolled chaotic trajectory of period 2 motion can be found, and for the phase
trajectory with f = 36, a quasiperiod motion in the uncontrolled chaotic trajectory happens
[15]. The time responses of the uncontrolled chaotic gyro with initial condition (1, 1) with
f = 33 and f = 36 are shown in Figures 2(a) and 2(b), respectively. It is shown that the
uncontrolled chaotic gyro has different types of trajectories for different system parameters.

Generally, the two chaotic systems in synchronization are called the drive system and
response system, respectively. The interest in chaos synchronization is the problem of how
to design a controller to drive the response chaotic gyros system to track the drive chaotic
gyros system closely. Consider the following two nonlinear gyros, where the drive system
and response system are denoted with x and y, respectively. The systems are given as

Drive System

ẍ = fx sinωt sin x − α2 (1 − cosx)2

sin3x
+ β sinx − c1ẋ − c2ẋ

3 = g(x, ẋ). (2.2)
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Figure 2: Uncontrolled chaotic trajectory for different system parameters.

Response System

ÿ = fy sinωt siny − α2

(
1 − cosy

)2

sin3y
+ β siny − c1ẏ − c2ẏ

3 + u + F
(
ẋ, ẏ
)

= g
(
y, ẏ
)
+ u + F

(
ẋ, ẏ
)
,

(2.3)

where u is the control input and F(ẋ, ẏ) is the coupling term. To achieve the control objective,
the tracking error between the response system (2.3) and the drive system (2.2) is defined as

e = x − y. (2.4)

The error dynamic equation can be obtained as

ë = g(x, ẋ) − g
(
y, ẏ
) − u − F

(
ẋ, ẏ
)
. (2.5)

If the system dynamics g(x, ẋ), g(y, ẏ), and F(ẋ, ẏ) can be obtained, there is an ideal
controller as [21]

u∗ = g(x, ẋ) − g
(
y, ẏ
) − F

(
ẋ, ẏ
)
+ k1ė + k2e, (2.6)

where k1 and k2 are the nonzero constants. Applying the ideal controller (2.6) into error dy-
namic equation (2.5) obtains

ë + k1ė + k2e = 0. (2.7)
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Figure 3: Block diagram of the ADNNC system for the chaos synchronization.

If k1 and k2 are chosen to correspond to the coefficients of a Hurwitz polynomial, it implies
limt→∞e(t) = 0 [21]. The system dynamics of these chaotic systems are always unknown;
thus the ideal controller u∗ cannot be implemented.

3. Design of the ADNNC System

In this paper, an adaptive dynamic neural network control (ADNNC) system as shown in
Figure 3 is introduced where a sliding surface is defined as

s = ė + k1e + k2

∫ t

0
e(τ)dτ (3.1)

with k1 and k2 being nonzero positive constants. The proposed ADNNC system is composed
of a neural controller and a smooth compensator, that is,

uadnc = unc + usc, (3.2)

where the neural controller unc uses a DRBF network to mimic the ideal controller and the
smooth compensator usc is designed to compensate for the differences between the ideal
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controller and neural controller. The output of the DRBF network with n hidden neurons
is given as

unc =
n∑

i=1

αi exp

(

−(s −mi)2

σ2
i

)

=
n∑

i=1

αiθi, (3.3)

where αi represents the ith connection weights between the hidden layer and output layer
and θi, mi, and σi are the firing weight, center, and width of the ith hidden neuron, respec-
tively.

3.1. Structural Learning of DRBF Network

To attack the problem of the structure determination in RBF network, this paper proposed a
simple structural learning algorithm. In the growing process, the mathematical description
of the existing layers can be expressed as clusters [1, 22]. If a new input data falls within
the boundary of the clusters, the DRBF network will not generate a new hidden neuron
but update the parameters of the existing hidden neurons. Find the maximum degree θmax

defined as [1]

θmax = max
1≤i≤n

θi. (3.4)

It can be observed that the maximum degree θmax is smaller as the incoming data is far from
the existing hidden neurons. If θmax ≤ θth is satisfied, where θth ∈ (0, 1) a pregiven threshold,
then a new hidden neuron is generated. The center andwidth of the new hidden neurons and
the output action strength are selected as follows:

mnew
i = s,

σnew
i = σ,

αnew = 0,

(3.5)

where σ is a prespecified constant. Next, the structural learning phase is considered to
determine whether or not to cancel the existing hidden neurons and weights which are
inappropriate. A significance index is determined for the importance of the ith hidden
neurons and can be given as follows [22]:

Ii(N + 1) =

⎧
⎨

⎩

Ii(N) exp(−τ) if θi < ρ,

Ii(N) if θi ≥ ρ,
(3.6)

where N denotes the number of iterations, Ii is the significance index of the ith hidden
neurons whose initial value is 1, ρ is the reduction threshold value, and τ is the reduction
speed constant. If Ii ≤ Ith is satisfied, where Ith a pregiven threshold, then the ith hidden
neuron and weight are cancelled. If the computation loading is an important issue for
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the practical implementation, Ith and ρ are chosen as large values so more hidden neurons
and weights can be cancelled.

3.2. Parameter Learning of DRBF Network

Substituting (3.2) into (2.5) and using (2.6) yield

ṡ = ë + k1ė + k2e = u∗ − unc − usc. (3.7)

Multiplying both sides by s of (3.7) gives

sṡ = s(u∗ − unc − usc). (3.8)

According to the gradient descent method, the weights αi are updated by the following
equation [23]:

Δαi = −ηα
∂sṡ

∂αi
= −ηα

∂sṡ

∂unc

∂unc

∂αi
= ηαsθi, (3.9)

where ηα is the learning rate. Moreover, the center and width of the hidden neurons can be
adjusted in the following equation to increase the learning capability:

Δmi = −ηm
∂sṡ

∂mi
= −ηm

∂sṡ

∂unc

∂unc

∂θi

∂θi
∂mi

= −2ηmsαi
(s −mi)

σ2
i

θi,

Δσi = −ησ
∂sṡ

∂σi
= −ησ

∂sṡ

∂unc

∂unc

∂θi

∂θi
∂σi

= 2ησsαi
(s −mi)2

σ3
i

θi,

(3.10)

where ηm and ησ are the learning rates. For given small values of the learning rates, the
convergence can be guaranteed but the convergence speed of tracking error is slow. On the
other hand, if the selection of learning rates is too large, the algorithm becomes unstable. To
determine the learning rates of the parameter adaptive laws, a cost function is defined as

C =
1
2
s2. (3.11)

According to the gradient descent method, the adaptive law of the weight can be represented
as

Δαi = −ηα
∂C

∂αi
= −ηα

∂C

∂unc

∂unc

∂αi
= −ηα

∂C

∂unc
θi. (3.12)

Comparing (3.9) with (3.12) yields the Jacobian term of the system ∂C/∂unc = −s. Then, the
convergence analysis in the following theorem derives the variable learning rates to ensure
convergence of the output tracking error.
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Theorem 3.1. Let ηα be the learning rate for the weight of the DRBF network and define Pmax
α as

Pmax
α ≡ max‖Pα‖, where Pα = ∂unc/∂αi and ‖ · ‖ is the Euclidean norm. Then, the convergence of

tracking error is guaranteed if ηα is chosen as

0 < ηα <
2

(Pmax
α )2

. (3.13)

Theorem 3.2. Let ηm and ησ be the learning rates of the center and width of the DRBF network,
respectively. Define Pmax

m and Pmax
σ as Pmax

m ≡ max‖Pm‖ and Pmax
σ ≡ max‖Pσ‖, respectively, where

Pm = ∂unc/∂mi and Pσ = ∂unc/∂σi. The convergence of the tracking error is guaranteed if ηm and
ησ are chosen as

0 < ηm, ησ <
σ2
min

2α2
max

, (3.14)

where αmax = max|αi| and σmin = min|σi|.

3.3. Stability Analysis

Since the number of hidden neurons in the DRBF network is finite for the real-time practical
applications, the approximation error is inevitable. So the ideal controller can be reformulated
as

u∗ = u∗
nc + ε, (3.15)

where u∗
nc is the optimal neural controller and ε denotes an estimate approximation error

between the ideal controller and optimal neural controller. This paper proposed a smooth
compensator as

usc = ε̂ + δs, (3.16)

where ε̂ denotes the estimated value of the approximation error and δ is a small positive
constant. Substituting (3.15) and (3.16) into (3.7) yields

ṡ = ε − usc = ε − ε̂ − δs. (3.17)

Then, define a Lyapunov function candidate in the following form:

V (s, ε̃, t) =
1
2
s2 +

1
2ηε

ε̃2, (3.18)
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where ηε is the learning rate with a positive constant and ε̃ = ε − ε̂. Differentiating (3.18)with
respect to time and using (3.17) obtain

V̇ (s, ε̃, t) = sṡ +
1
ηε

ε̃ ˙̃ε

= s(ε̃ − δs) +
1
ηε

ε̃ ˙̃ε

= ε̃

(
s +

1
ηε

˙̃ε
)
− δs2.

(3.19)

For achieving V̇ ≤ 0, the error estimation law is designed as

˙̂ε = − ˙̃ε = ηεs; (3.20)

then (3.19) can be rewritten as

V̇ (s, ε̃, t) = −δs2 ≤ 0. (3.21)

Since V̇ (s, ε̃, t) is negative semidefinite, that is, V (s, ε̃, t) ≤ V (s, ε̃, 0), it implies that s and ε̃ are
bounded. Let function Ω(τ) ≡ δs2 ≤ −V̇ (s, ε̃, t) and integrate Ω(t) with respect to time; then
it is obtained

∫ t

0
Ω(τ)dτ ≤ V (s, ε̃, 0) − V (s, ε̃, t). (3.22)

Because V (s, ε̃, 0) is bounded and V (s, ε̃, t) is nonincreasing and bounded, the following
result can be obtained:

lim
t→∞

∫ t

0
Ω(τ)dτ < ∞. (3.23)

Moreover, since Ω̇(t) is bounded, by Barbalat’s Lemma [21], limt→∞Ω(t) = 0. That is, s → 0
as t → ∞. As a result, the stability of the proposed ADNNC system can be guaranteed. In
summary, the design steps of ADNNC are summarized as follows.

Step 1. Initialize the predefined parameters of the DRBF network.

Step 2. The tracking error e and the sliding surface s are given in (2.4) and (3.1), respectively.

Step 3. Determine whether to add a new node by the θmax ≤ θth condition and determine
whether to cancel an existing node by significance index Ii.

Step 4. The control law is designed in (3.2), in which the neural controller and the smooth
compensator are given as (3.3) and (3.16), respectively.

Step 5. Determine the variable learning rates η∗
α, η

∗
m, and η∗

σ in (3.13) and (3.14), respectively.
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Table 1: Performance measures.
(a)

Methods Error
Average Standard deviation

Adaptive sliding mode control [18] 0.1082 0.2526
ADNNC with ηα = ηm = ησ = 0.01 0.3021 0.2369
ADNNC with ηα = ηm = ησ = 0.1 0.1186 0.1373
ADNNC with ηα = ηm = ησ = 0.2 0.0958 0.1218
ADNNC with variable learning rates 0.0930 0.1245

(b)

Methods Error
Average Standard deviation

Adaptive sliding mode control [18] 0.1170 0.2740
ADNNC with ηα = ηm = ησ = 0.01 0.3036 0.2680
ADNNC with ηα = ηm = ησ = 0.1 0.1129 0.1068
ADNNC with ηα = ηm = ησ = 0.2 0.0663 0.0810
ADNNC with variable learning rates 0.0401 0.0851

Step 6. Update the parameters of the neural controller by (3.9), (3.10), and update the
parameter of the smooth compensator by (3.20).

Step 7. Return to Step 2.

4. Simulation Results

In this section, the proposed ADNNC system is applied to synchronize two identical chaotic
gyros. To investigate the effectiveness of the proposed ADNNC system, two simulation cases
including parameter variation and initial variation are considered as follows.

Case 1. (x, ẋ,y, ẏ) = (1, 1,−1,−1), fx = 33, and fy = 33.

Case 2. (x, ẋ,y, ẏ) = (1, 1, 1, 1), fx = 33, and fy = 36.

According to Theorems 3.1 and 3.2, respectively, the variable learning rates are chosen as

ηα =
λ

(Pmax
α )2

,

ηm = ησ =
σ2
min

2α2
max + γ

,

(4.1)

where λ = 1 and γ = 0.001. The control parameters are chosen as k1 = 2, k2 = 1, ηε = 0.1,
δ = 0.5, σ = 2.5, θth = 0.6, τ = 0.01, ρ = 0.2, and Ith = 0.01. All the gains are chosen
in consideration of the requirement of stability. The simulation results of the proposed
ADNNC system with variable learning rates are shown in Figures 4 and 5 for Cases 1 and 2,
respectively. The tracking responses of states (x,y) are shown in Figures 4(a) and 5(a); the
tracking responses of states (ẋ, ẏ) are shown in Figures 4(b) and 5(b); the associated control
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Figure 4: Simulation results of the ADNNC system with variable learning rates for Case 1.

efforts are shown in Figures 4(c) and 5(c); the numbers of hidden neurons are shown in
Figures 4(d) and 5(d). The simulation results show that the proposed ADNNC system with
variable learning rates not only can achieve favorable synchronization performance but also
an appropriate network size of the DRBF network can be obtained because the proposed
self-structuring mechanism and the online learning algorithms are applied. To demonstrate
the robust control performance of the proposed ADNNC system with variable parameter
learning rates, a coupling term F(ẋ, ẏ) = 0.2[exp(ẋ− ẏ)− 1] is examined here. The simulation
results of the proposed ADNNC system with a coupling term are shown in Figures 6 and 7
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,ẏ

) Drive system
ControlledUncontrolled

Response system

10

5

0

−5

−10

Time (s)
0 2 4 6 8 10 12 14 16 18 20

(b)

Uncontrolled Controlled

C
on

tr
ol

eff
or
t,
u

40

20

0

−20

−40

Time (s)
0 2 4 6 8 10 12 14 16 18 20

(c)

Uncontrolled
6

4

2

0

Time (s)
0 2 4 6 8 10 12 14 16 18 20

Controlled

N
um

be
r
of

hi
d
d
en

ne
ur
on

,ns

(d)

Figure 5: Simulation results of the ADNNC system with variable learning rates for Case 2.

for Cases 1 and 2, respectively. The tracking responses of states (x,y) are shown in Figures
6(a) and 7(a); the tracking responses of states (ẋ, ẏ) are shown in Figures 6(b) and 7(b);
the associated control efforts are shown in Figures 6(c) and 7(c); the numbers of hidden
neurons are shown in Figures 6(d) and 7(d). The simulation results show that the proposed
ADNNC system with variable learning rates which can achieve favorable synchronization
performance under a coupling term is examined.

In addition, since the selection of the learning rates (ηα, ηm, and ησ) for the
online training of the DRBF network has a significant effect on the network performance,
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Figure 6: Simulation results of the proposed ADNNC system for Case 1 with a coupling term.

the performance measures of various learning rates are summarized in Table 1. It shows
that the proposed ADNNC system with variable parameter learning rates possesses the
most accurate synchronization performance. To verify the effect of the varied learning rates
outside the convergence range, the simulation results of the proposed ADNNC system with
ηα = ηm = ησ = 0.4 are shown in Figures 8 and 9 for Cases 1 and 2, respectively. The
tracking responses of states (x,y) are shown in Figures 8(a) and 9(a); the tracking responses
of states (ẋ, ẏ) are shown in Figures 8(b) and 9(b); the associated control efforts are shown
in Figures 8(c) and 9(c); the numbers of hidden neurons are shown in Figures 8(d) and 9(d).
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,ẏ

) ControlledUncontrolled

Response system

10

5

0

−5

−10

Time (s)
0 2 4 6 8 10 12 14 16 18 20

Drive system

(b)

Uncontrolled Controlled

C
on

tr
ol

eff
or
t,
u

40

20

0

−20

−40

Time (s)
0 2 4 6 8 10 12 14 16 18 20

(c)

Uncontrolled
6

4

2

0

Time (s)
0 2 4 6 8 10 12 14 16 18 20

Controlled

N
um

be
r
of

hi
d
d
en

ne
ur
on

,ns

(d)

Figure 7: Simulation results of the proposed ADNNC system for Case 2 with a coupling term.

From the simulation results, the unstable tracking responses are induced due to the selection
of learning rates outside the convergence region.

5. Conclusion

In this paper, an adaptive dynamic neural network control (ADNNC) system is proposed
to synchronize chaotic symmetric gyros with linear-plus-cubic damping. The proposed
ADNNC system is composed of a neural controller and a smooth compensator. The neural
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Figure 8: Simulation results of the ADNNC system with large learning rates for Case 1.

controller uses a dynamic radial basis function (DRBF) network to mimic an ideal controller
in which the DRBF network can automatically grow and prune the network structure.
The smooth compensator is designed to dispel the approximation error between the ideal
controller and neural controller. Moreover, to speed up the convergence of tracking error,
a discrete-type Lyapunov function is utilized to determine the variable learning rates of
the adaptation laws. Numerical simulations have verified the effectiveness of the proposed
ADNNC method.
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Figure 9: Simulation results of the ADNNC system with large learning rates for Case 2.

Appendices

A. Proof of Theorem 3.1

Since

Pα =
∂unc

∂αi
= θi, (A.1)
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a discrete-type Lyapunov function is selected as

VA =
1
2
s2(N). (A.2)

The change in the Lyapunov function is expressed as

ΔVA = VA(N + 1) − VA(N) =
1
2

[
s2(N + 1) − s2(N)

]
. (A.3)

Moreover, the sliding surface difference can be represented by

s(N + 1) = s(N) + Δs(N) = s(N) +
[
∂s(N)
∂αi

]T
Δαi, (A.4)

where Δs(N) is the sliding surface change and Δαi represents the change of weights in the
DRBF network. Using (3.11), (3.12), and (A.1), then

∂s

∂αi
=

∂s

∂C

∂C

∂unc

∂unc

∂αi
= −Pα. (A.5)

Then (A.4) becomes

s(N + 1) = s(N) − PT
α ηαs(N)Pα. (A.6)

Thus,

‖s(N + 1)‖ =
∥∥
∥s(N) − PT

α ηαs(N)Pα

∥∥
∥ ≤ ‖s(N)‖

∥∥
∥1 − PT

α ηαs(N)Pα

∥∥
∥. (A.7)

From (A.3) and (A.7), ΔVA can be rewritten as

ΔVA =
1
2
ηαs

2(N)PT
α Pα

[
ηαP

T
α Pα − 2

]
≤ 1

2
ηαs

2(N)(Pmax
α )2

[
ηα(Pmax

α )2 − 2
]
. (A.8)

If ηα is chosen as 0 < ηα < 2/(Pmax
α )2, then the discrete-type Lyapunov stability of VA > 0

and ΔVA < 0 is guaranteed so the output tracking error will converge to zero as t → ∞. This
completes the proof of Theorem 3.1.

B. Proof of Theorem 3.2

To prove Theorem 3.2, the following lemmas were used [9].

Lemma B.1. Let f(r) = r exp(−r2); then |f(r)| < 1, for all r ∈ R.

Lemma B.2. Let g(r) = r2 exp(−r2); then |g(r)| < 1, for all r ∈ R.
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(1) According to Lemma B.1, |[(s −mi)/σi] exp{−[(s −mi)/σi]2}| < 1, since

Pm =
∂unc

∂mi
=
∂unc

∂θi

∂θi
∂mi

= αi
∂θi
∂mi

≤ max
(
αi

∂θi
∂mi

)
≤ αmax max

(
∂θi
∂mi

)
= αmax max

(
−2 (s −mi)

σi
2 θi

)

≤ 2αmax
1

σmin
max

∣∣∣
∣
(s −mi)

σi
θi

∣∣∣
∣ < 2

αmax

σmin
.

(B.1)

Moreover, the sliding surface difference can be represented by

s(N + 1) = s(N) + Δs(N) = s(N) +
[
∂s(N)
∂mi

]T
Δmi, (B.2)

where Δmi represents a change of the center in the ith hidden neuron. Using (3.11), (3.12),
and (B.1), then

∂s

∂mi
=

∂s

∂C

∂C

∂unc

∂unc

∂mi
= −Pm. (B.3)

Then using (B.3) and (B.2),

s(N + 1) = s(N) − PT
mηms(N)Pm. (B.4)

Thus,

‖s(N + 1)‖ =
∥
∥∥s(N) − PT

mηms(N)Pm

∥
∥∥ ≤ ‖s(N)‖

∥
∥∥1 − PT

mηms(N)Pm

∥
∥∥. (B.5)

If 0 < ηm < 2/(Pmax
m )2 = |σi|2min/[2|αi|2max], the term ‖1 − PT

mηms(N)Pm‖ in (B.5) is less than 1.
Therefore, the discrete-type Lyapunov stability of VA > 0 and ΔVA < 0 by (A.2) and (A.3) is
guaranteed.

(2) According to Lemma B.2, |[(s −mi)/σi]2 exp{−[(s −mi)/σi]2}| < 1, since

Pσ =
∂unc

∂σi
=

∂unc

∂θi

∂θi
∂σi

= αi
∂θi
∂σi

≤ max
(
αi
∂θi
∂σi

)
≤ αmax max

(
∂θi
∂σi

)
= αmax max

[
2
σi

(
s −mi

σi

)2

θi

]

≤ 2αmax
1

σmin
max

∣∣
∣∣∣

(
s −mi

σi

)2

θi

∣∣
∣∣∣
< 2

αmax

σmin
.

(B.6)
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Moreover, the sliding surface difference can be represented by

s(N + 1) = s(N) + Δs(N) = s(N) +
[
∂s(N)
∂σi

]T
Δσi, (B.7)

where Δσi represents a change of the width in the ith hidden neuron. Using (3.11), (3.12),
and (B.6), then

∂s

∂σi
=

∂s

∂C

∂C

∂unc

∂unc

∂σi
= −Pσ . (B.8)

Then using (B.8) and (B.7) becomes

s(N + 1) = s(N) − PT
σ ησs(N)Pσ . (B.9)

Thus,

‖s(N + 1)‖ =
∥∥
∥s(N) − PT

σ ησs(N)Pσ

∥∥
∥ ≤ ‖s(N)‖

∥∥
∥1 − PT

σ ησs(N)Pσ

∥∥
∥. (B.10)

If 0 < ησ < 2/(Pmax
σ )2 = |σi|2min/[2|αi|2max], the term ‖1 − Pσ(N)TησsPσ(N)‖ in (B.10) is less

than 1. Therefore, the discrete-type Lyapunov stability of VA > 0 and ΔVA < 0 by (A.2) and
(A.3) is guaranteed.
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