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PRESCRIBED PERFORMANCE CONTROL
OF UNDERACTUATED SURFACE VESSELS’ TRAJECTORY
USING A NEURAL NETWORK AND INTEGRAL TIME-
DELAY SLIDING MODE

Yun Chen and Hua Chen

To tackle the underactuated surface vessel (USV) trajectory tracking challenge with input
delays and composite disturbances, an integral time-delay sliding mode controller based on
backstepping is discussed. First, the law of virtual velocity control is established by coordinate
transformation and the position error is caused to converge utilizing the performance function.
At the same time, based on the estimation of velocity vector by the high-gain observer (HGO),
radial basis function (RBF) neural network is applied to compensate for both the uncertainty
of model parameters and external disturbances. The longitudinal and heading control laws are
presented in combination with the integral time-delay sliding mode control. Then, on the basis
of Lyapunov - Krasovskii functional and stability proof, virtual velocity error is guaranteed to
converge to 0 in finite time. Finally, the outcomes of the numerical simulation demonstrate the
reliability and efficiency of the proposed approach.

Keywords: underactuated surface vessels, trajectory tracking, time-delay, external distur-
bances, sliding mode, backstepping, radial basis function(RBF)

Classification: 93A30, 93Dxx

1. INTRODUCTION

Considering the safety of human operation in the marine environment and the econ-
omy of marine equipment, the application and development of underactuated surface
vessels(USVs) is of great significance. USV has a wide range of applications, including
marine oil and gas exploration, oceanographic mapping, coastal surveillance, etc. [9, 18].
Due to the uncertainty and complexity of the marine environment, the key technology
for USV to achieve autonomous navigation is the reliability, stability and accuracy of
trajectory tracking control [15]. Different from path tracking, trajectory tracking re-
quires the vessel to track time-varying trajectory on time and has strict requirements
on velocity and time [16]. However, actuator delays will cause control force and torque
delays in the specific implementation of the USV, which will impact the reliability of
the system. Consequently, the concern of input delay becomes one of the main points of
this paper. Meanwhile, due to nonlinear dynamics with high coupling and time-varying
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disturbances constraints of ocean currents [10], accurate model parameters cannot be
obtained. Hence, delays, imprecise constraints, and disturbances bring challenges to
USV controller design and system stability.

The common methods of trajectory tracking control are multivariable model decou-
pling and system local linearization. For the problem of trajectory tracking caused
by external disturbances and model parameter uncertainty, Lyapunov control, output
feedback control, backstepping control and sliding mode control are mainly adopted at
present [4, 13]. A single control mechanism typically has shortcomings, though. An
trouble with backstepping control is that it needs to calculate the derivatives of vir-
tual variables for many times, the calculation process is complicated, and the vehicle
needs to provide sufficient acceleration, which is difficult to achieve in practice. Al-
though the sliding mode method has the advantages of fast response and insensitivity
to parameters and disturbances change, the chattering phenomenon always exists in the
sliding mode control, which will cause the wear of the actuator cite2020Overview. In
recent years, compound control has attracted more and more attention. In [14], An
adaptive backstepping controller is mentioned to estimate the entire nonlinear damp-
ing and disturbances simultaneously without accurately knowing the parameter vector
dimension of model uncertainty. Zou et al. used RBF neural network to estimate the
model parameter uncertainty, and adopted backstepping control and predefined perfor-
mance functions to converge the tracking error [28]. Similarly, Qiu et al. constructed
a radial basis neural network using the minimum learning parameter(MLP) method to
approach the uncertain system dynamics online [20]. Unfortunately, it is challenging for
the forward neural network to represent the impact of time series of input and output
elements, and it takes a long time for trajectory transition when trajectory mutation
occurs. In [24], external disturbances are observed by nonlinear disturbance observer.
Yao designed fixed-time sliding mode control has strong robustness to centralized uncer-
tainties [19]. Nevertheless, the controller proposed in [19] requires a known upper bound
of centralized uncertainties, which is difficult to realize in practice. Meanwhile, due to
the variability and abruptness of the marine working environment, it is impossible to
measure the vehicle velocity once the sensor fails. Therefore, this paper estimates the
velocity with a high-gain observer.

In actual marine operations, the movement of USV is operated by a controlled voltage
signal that serves as the control input to the actuator. As the control force, control
voltage and velocity of USV are in a complex nonlinear mapping relationship [1], the
input delay of actuators will lead to hysteretic changes in position and attitude of the
USV. Therefore, in the actual USV controller design process, directly ignoring the time
delay will generate the increase of system overshoot [26] and the decrease of trajectory
tracking control accuracy. Based on the above analysis, time delays are added into the
controller design of the USV to improve the stability and reliability of trajectory tracking.
Lakhekar et al. adopted time delay estimator(TDE) to identify unknown nonlinear
dynamics and perturbations through state derivatives and each delay information of
control inputs [11]. In [8], Feng et al. partitioned the delay interval into multiple
nonuniform subintervals to study the stability of continuous time-delay systems. Aiming
at the problem of input time delay, Zhou et al. realized synchronous tracking of the
desired trajectory by establishing a state predictor [27]. Druzhinina et al. proposed
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convex optimization problems for the system with feedback delays, states, and control
constraints to obtain estimates of control parameters and initial condition domains [6].
Although there are many researches on the stability of systems with time delays, the
researches on USV trajectory tracking control with time delays are few.

Motivated by the above discussion, the trajectory tracking problem of USV with
delays and external disturbances is studied in this paper. Inspired by the RBF algo-
rithm for autonomous underwater vehicles(AUVs) in [27], nonlinear terms with unknown
disturbances and model parameter uncertainty are estimated with fewer adjustment pa-
rameters. Different from [5, 21], the former does not consider chattering of sliding mode
while combining neural network and sliding control method. In this paper, saturation
function is used in sliding mode control to reduce chattering. Combined with coordi-
nate transformation, we propose an integral time-delay sliding mode control (ITDSMC)
method based on backstepping. The following is a summary of this paper’s significant
contributions:

1. ITDSMC based on backstepping and Barbalat’s lemma guarantees the position
and velocity error convergence and the stability of the system.

2. For the model parameter uncertainty and external disturbances of the USV, RBF
neural network and HGO are adopted to estimate the velocity vector and composite
disturbances. Compared with other control schemes based on neural network
approximation techniques, this paper approximates the centralized uncertainties
with fewer parameters and has strong robustness.

3. According to the performance requirements and constraints of the system, ensure
that the position tracking error enters and remains within the preset steady-state
error band.

The remainder of this essay is structured as follows. The kinematic and dynamic
models of USV are described in section 2 and the trajectory tracking error equations
are established. The ITDSMC controller is designed in section 3. The stability of the
pertinent closed-loop tracking error system is examined in section 4. Section 5 displays
the simulations and correlation analysis. Finally, section 6 summarizes this paper.

2. PROBLEM STATEMENT

In this section, kinematic and dynamic models of underactuated surface vessels with
input delays and uncertain model parameters are proposed. Then, for simplicity, the
internal and external disturbances are regarded as composite disturbances to simplify
the dynamic model. The desired position vector’s kinematic model is then established.
Enabling the underactuated surface vessel track the appropriate location and velocity is
the goal of this work.

2.1. USV 3-degree-of-freedom(DOF) mathematical model

Different from the general 6-DOF USV model, this paper simplified the USV into a
3-DOF model was used under the supposition that heave, roll, and pitch motions were
ignored, and the actuators’ generated surge force and yaw moment functioned as the
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reduced order model’s control input (propeller and rudder)[12]. In addition, the earth-
fixed frame (E) and the body-fixed frame (B) are defined for motion and force analysis
of the USV, as shown in Figure 1.

B
X

B
Z

B
Y

Yaw(r)

Surge(u)

Body-fixed

Earth-fixed

E
X

E
Y

E
Z

y

Fig. 1. Body-fixed frame and earth-fixed reference frame for USV.

This paper considers that the USV is symmetric in XOY, YOZ and XOZ planes, so the
influence of off-diagonal terms of inertia matrix M and damping matrix D is neglected.
The matrix vectors for the mathematical model of the kinematic and dynamic of the
horizontal USV are described as:{

η̇ = J(ψ)ν

Mν̇ = −C(ν)ν −D(ν)ν + τω + τc(t− T ) + δ
(1)

where J(ψ) =

 cosψ − sinψ 0
sinψ cosψ 0

0 0 1

 , M =

 m11 0 0
0 m22 0
0 0 m33

 ,
C(ν) =

 0 0 −m22υ
0 0 m11u

m22υ −m11u 0

 , D(ν) =

 d11 0 0
0 d22 0
0 0 d33

 ,
where η = [x, y, ψ]T depicts the USV’s position and orientation in the earth-fixed frame,
J(η) denotes the matrix of change from the body-fixed frame to the earth-fixed frame,
ν = [u, υ, r]T represents the velocity vectors in the body-fixed frame, M denotes the in-
ertia matrix, which contains additional mass terms, C(ν) is the Centripetal and Coriolis
forces matrix, D(ν) is the hydrodynamic damping matrix, τω = [τωu, τωυ, τωr]

T denotes
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the external time-varying disturbance, τc(t − T ) = [τu(t − T ), 0, τr(t − T )]T denotes
control input of the system, δ = [δu, δυ, δr]

T denotes the vector of uncertain model pa-
rameters, often known as the ”internal disturbance.” To facilitate processing, internal
disturbance τω and external disturbance δ are combined into composite disturbances,
that is, d = τω + δ. Rewriting the equation (1) as:{

η̇ = J(ψ)ν

Mν̇ = −C(ν)ν −D(ν)ν + τc(t− T ) + d
(2)

where d = [du, dυ, dr]
T , T ∈ R+ represents bounded input delay constant, satisfying

T ≤ T̄ , T̄ is the upper bound.
By expanding the matrix form of equation (2), the USV’s dynamic and kinematic

models are developed as [26]: 
ẋ = u cosψ − υ sinψ
ẏ = u sinψ + υ cosψ

ψ̇ = r
(3)


u̇ = m22

m11
υr − d11

m11
u+ 1

m11
τu(t− T ) + du

m11

υ̇ = −m11

m22
ur − d22

m22
υ + dυ

m22

ṙ = m11−m22

m33
uυ − d33

m33
r + 1

m33
τr(t− T ) + dr

m33

(4)

where m11 = m − Xu̇, m22 = m − Yv̇, m33 = Iz − Nṙ, d11 = Xu + Xu|u||u|, d22 =
Yυ + Yυ|υ||υ|, d33 = Nr +Nr|r||r|, where Iz is the component of the moment of inertia,
Xu̇, Yv̇, Nṙ, Xu, Xu|u|, Yυ, Yυ|υ|, Nr, Nr|r| are hydrodynamic damping coefficients.

To make the design process simpler, the nonlinear system studied in this paper sat-
isfies the following assumptions [3, 26, 27]:

Assumption 1. The desired position vector [xd, yd]
T is differentiable.

Assumption 2. The USV’s control inputs and velocity terms are bounded.

Assumption 3. The external disturbance τω of the USV is time-varying and bounded,
that is, satisfying ‖τωu‖ ≤ τ̄ωu, ‖τωυ‖ ≤ τ̄ωυ, ‖τωr‖ ≤ τ̄ωr, where τ̄ωu, τ̄ωυ, τ̄ωr are known.

Assumption 4. The parameter perturbations have upper limits.

2.2. USV trajectory tracking error equation model

At first, defining [xd, yd, ψd]
T as the desired position state vector of the USV at earth-

fixed frame. Therefore, the position error variables of the USV are follows:{
xe = x− xd
ye = y − yd

where E1 = [xe, ye]
T .

Through coordinate transformation, the position error variables of USV at body-fixed
frame are obtained [

ex
ey

]
=

[
cosψ sinψ
− sinψ cosψ

] [
xe
ye

]
, (5)
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where EB = [ex, ey]T .
To improve USV’s performance and capability, the system error enters the preset

steady-state error band. The preset performance of USV trajectory tracking control is
defined as follows:

− ei(t) < ei(t) < ei(t), i = x, y (6)

where ei(t), ei(t) are the upper and lower bounds on the preset performance function.
In this paper, the maximum steady state, terminal time and convergence rate are

combined to adopt the following performance function [7]

ei(t) =

{
(ei,0 − ei,tf ) exp(−pi tf ttf−t ) + ei,tf , 0 ≤ t < tf

ei,tf , t ≥ tf

− ei(t) =

{
−(ei,0 − ei,tf ) exp(−pi tf ttf−t )− ei,tf , 0 ≤ t < tf

−ei,tf , t ≥ tf
(7)

where ei,0, ei,0 represent the initial values of the performance function, ei,tf , ei,tf are the
boundary values of the preset trajectory tracking error band within the predefined time
tf , and pi is the convergence rate of the performance function.

Remark 1. The proposed new preset performance function Eq.(7) can preset the ex-
pected time tf according to the performance requirements and constraints of the system
to ensure that its function value reaches ei,tf and−ei,tf respectively at the expected time
tf , so that the controller designed based on this performance function can realize that
the position tracking error of the USV enters within the preset expected time tf and no
longer exceeds the preset steady-state error band [−ei,tf , ei,tf ].

Deriving equation (5) and substituting equation (3) into it, the USV’s error tracking
model can be written as: {

ėx = u− vp cosψe + rey
ėy = υ + vp sinψe − rex

(8)

where ψe = ψ − ψd denotes the heading angle error of the USV, ψd = arctan(ẋd/ẏd),
vp =

√
ẋ2
d + ẏ2

d represents the desired heading angle and desired velocity of the USV.
For the convenience of subsequent proof and calculations, we introduce the following

lemma.

Lemma 2.1. (Barbalat [17]) For differentiable function f(t) ∈ L∞, t ≥ 0, its derivative
is bounded and f(t) ∈ Lp, where p ∈ [1,∞), then limt→∞ f(t) = 0.

3. CONTROLLER DESIGN

After establishing the mathematical model of USV, the trajectory control problem is
converted into the controller design of the kinematic and dynamic systems. For the
kinematic system, virtual velocity control law is designed by backstepping method. In
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order to estimate the composite interference and minimize the system’s reliance on time
delays, the ITDSMC law is devised for the dynamic system, and the RBF neural network
algorithm is employed to estimate the composite interference. In summary, the control
structure diagram of this paper is shown in Figure 2

Desired 

trajectory

Trajectory 

errors

Conversion 

errors

Virtual 

control law

Virtual 

control errors

Integral time-delay 

SMC

RBFNN

Control input

High gain 

observer

USV system

Composite 

disturbances

,d dh hd dhd dd d

,e ex y ,x ye e ,d du n

,ue e
n 1 2,S S ,u rt t

ˆˆ,u n

,x y

Fig. 2. The structure of the proposed control scheme for the USV.

3.1. Kinematic system control law

Designing the error conversion function as follows:

zi =
eieiei

(ei − ei)(ei + ei)
, (9)

where zi, i = x, y is the converted error.
Deriving zi and we obtain

żi = Qiėi −Ri, (10)

where Qi =
eieie

2
i + e2

i e
2
i

(ei − ei)2(ei + ei)
2
, Ri =

e3
i (ėiei + eiėi)

(ei − ei)2(ei + ei)
2

+
e2
i (ėie

2
i + e2

i ėi)

(ei − ei)2(ei + ei)
2
.

For the surge velocity u and sway velocity v, the following virtual control laws ud, vd
are designed [

ud
υd

]
=

[
vp cosψe − rey −Q−1

x (k1zx −Rx)
−vp sinψe + rey −Q−1

y (k2zy −Ry)

]
, (11)
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where k1, k2 > 0 are adjustable control gains.
While ud → u, υd → υ, the equation (8) can be rewritten as{

ėx = −Q−1
x (k1zx −Rx)

ėy = −Q−1
y (k2zy −Ry)

. (12)

Substituting the equation (12) into (10), we have

żx = −k1zx, ży = −k2zy. (13)

The Lyapunov function is constructed as

V1 =
1

2
z2
x +

1

2
z2
y . (14)

Substituting (13) into V̇1, we obtain

V̇1 = −k1z
2
x − k2z

2
y . (15)

It is obvious from equation (15) that V̇1 ≤ 0, under circumstance of u = ud, υ = υd,
if and only if (xe, ye) = 0, V̇ = 0, the Lyaponov stability theory predicts that xe, ye will
asymptotically convergence.

3.2. Dynamic system control law

The controller is constructed in four steps in this part. Firstly, RBF neural network is
introduced and applied to estimate unknown terms. Then, the dynamic system with
time delays is transformed. Finally, the ITDSMC law is designed as the actual control
law for the virtual velocity error.

Step 1. As a forward neural network [23], the radial basis function neural network has a
mapping between the input and output, nonetheless, there is a linear mapping between
the hidden layer and the output, which improves the learning rate. The architecture
of RBFNN is shown as Figure 3. As a result, the properties of the RBF are its simple
structure, excellent nonlinear approximation ability, and quick convergence rate. Also,
it can approximate arbitrary function with arbitrary precision.

For the smooth nonlinear function f : Ω → R, its neural network output expression
is:

f = W ∗TH(x) + ς(x),

where x = [u, υ, r]T ∈ Ω is the neural network’s input, Ω is the compact set on Rn, W ∗ ∈
R
n×1

is the optimum neural network weight, ς(x) is the neural network’s approximation

error, satisfying ‖ς‖ ≤ ς̄ , ς̄ > 0. H(x) ∈ Rn×1

is the neural network’s radial basis function
vector, hn(x) is the Gaussian basis function output, which is selected as follows:

hj(x) = exp

(
‖x− cj‖

2b2j

)
, (j = 1, 2, . . . , n), (16)
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where j is the jth node of the neural network’s hidden layer, cj is the center point vector
of neuron in jth hidden layer.

1x 2x n
x

å

1W

2W
j

W

y

Input layer

Hidden layer

Output layer

Fig. 3. The architecture of RBF neural network.

Regarding the Gaussian function (16), we introduce the following important lemma.

Lemma 3.1. (Guoqing et al. [25]) For the Gaussian function (16), if x̂ = x−gψ̄, where
g > 0 is a constant and ψ̄ is a bounded vector, that is, |ψ̄k| ≤ bk, bk > 0, k = 1, . . . , n for
all t > t∗ > 0. Then, we obtain

H(x̂) = H(x)− gIt, (17)

where It is a bounded vector.

Assuming ‖W ∗‖ ≤ W̄ , W̄ ∈ R+ is the upper bounded. The estimated value of W ∗

that minimizes ς(x) in compact set Ω, is defined as:

W ∗ , arg min
W∈Rn

{sup
x∈Ω
|ŴTH(x)− f |}.

Since the ideal weight value W ∗ is often difficult to obtain in practice, Ŵ ∈ Rn×1

is used to represent its estimated value, and W̃ is the estimated error, satisfying W̃ =
Ŵ −W ∗. Consequently, the following is the estimates of the unknown nonlinear term:

f̂ = WTH(x). (18)
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The RBF neural network’s weight adaptive law is designed as

˙̂
W = Γ[STH(x̂) + µŴ + %ST It], (19)

where Γ, µ are the design constants to be selected, S is the sliding surface.

Step 2. Considering that the velocity of USV may be unmeasurable, to estimate the
vehicle velocity with composite disturbances, we use a high gain observer, and introduce
the following lemma.

Lemma 3.2. (Behtash [2]) For the liner system (20){
%ξ̇k = ξk+1, k = 1, . . . , n− 1

%ξ̇n = −w̄1ξn − . . .− w̄n−1ξ2 − ξ1 + η(t)
(20)

where η(t) is the system’s output vector, ξk are the HGO’s state variables, and % > 0
is a tiny constant. The parameters w̄k, k = 1, . . . , n − 1 can fulfill the polynomial
sn + w̄1s

n−1 + . . .+ w̄n−1s+ 1 being Hurwitz.

Assuming that η(t) is bounded and |η(k)| < Mk, k = 0, . . . , n−1, where k = 0, . . . , n−
1 are the first order to the (n− 1)th derivatives, then it holds

ξk+1

%k
− η(k) = −%ψ̄(k+1), k = 0, . . . , n− 1, (21)

where ψ̄ = ξn + w̄1ξn−1 + . . .+ w̄n−1ξ1.
Next, the high gain observer of USV system is constructed. In practice, both the

output vector and its first derivative have limited bounds. Taking the following linear
system into account {

%ξ̇1 = ξ2,

%ξ̇2 = −$1ξ2 − ξ1 + η,
(22)

where $1 is positive constant. Therefore, ˆ̇η = π2/% may be used to calculate the estimate
of η̇, substituting it into equation (1), we obtain

ν̂ = JT (ψ)(
π2

%
). (23)

According to Lemma 3, then the following property holds

ν̂ − ν = JT (ψ)(
π2

%
− η̇) = −%JT (ψ)ψ̄(2). (24)

Taking the norm of both sides and substituting ‖JT (ψ)‖ = 1 into it, we have

‖ν̂ − ν‖ = %‖ψ̄(2)‖ ≤ %bν , (25)

where bν > 0 is a constat.
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Step 3. The first-order nonlinear sliding surface is defined as follows:

S1 = eu + λ1

∫ t

0

eu(l) dl, (26)

where λ1 > 0 is constant.
Derived from equation (26) and referencing [3]:

Ṡ1 =ėu + λ1eu

=
m22

m11
υ(t− T )r(t− T )− d11

m11
u(t− T ) +

1

m11
τu − u̇d + λ1eu +

du
m11

,
(27)

substituting ω1 = du
m11

, κ̂ = m̂22

m̂11
υ(t− T )r(t− T )− d̂11

m̂11
u(t− T )− u̇d + λ1eu into Ṡ1:

Ṡ1 =
τu
m11

+ κ̂+ ω1. (28)

Chattering caused by sliding mode prevents continuous USV operation in practical
engineering applications. The below saturation function is implemented to lessen the
chattering impact of sliding mode:

sat(Si/∆) =


1, Si > ∆i

Si/∆, |Si/∆| ≤ 1

−1, Si < ∆i

, (29)

where ∆i is a smaller positive constant. establishing an arbitrarily thin boundary layer
around Si.

Considering the parameter uncertainty of equation (27), the system’s constant veloc-
ity approximation law is intended to eliminate the detrimental effect.

β1 =
m̃22

m̃11
|v(t− T )r(t− T )| − d̃11

m̃11
|u(t− T )| − |u̇d|+ λ1|eu|+ ρ1, (30)

where ρ1 > 0 is the design constant.
According to the design principle of sliding mode control method and in combination

with (28) and (30), the design of the longitudinal control legislation is as follows:

τu = m11[−κ̂− β1sat(S1/∆1)−A1S1 −G1S1(t− T̄ )− ω̂1 − ε(ST1 )−1W̄ 2
1 ], (31)

where A1 > 0, The gain factor matrix to be chosen is represented by G1., ω̂1 is the
estimated value of ω1, ε ≥ µ is the positive constant, and W̄1 ≥ ‖W ∗1 ‖ is the upper
bound of W ∗1 .

Step 4. For virtual velocity error eυ, the second-order nonlinear sliding surface shown
below is established:

S2 = ėυ + 2λ2eυ + λ2
2

∫ t

0

eυ dl, (32)

where λ2 is positive constant.
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Derived from equation (32):

Ṡ2 = ëυ + 2λ2ėυ + λ2
2eυ. (33)

The derivatives of equation (10) can be obtained:

ëυ =− m11

m22m33
u(t− T )[(m11 −m22)υ(t− T )u(t− T )− d33r(t− T )

+ τr + dr]−
m11

m22
u̇r(t− T )− d22

m22
υ̇ +

1

m22
ḋυ − ϋd,

(34)

Substituting equation (34) into equation (33) to obtain:

Ṡ2 =
o

m22m33
τr −

ι̂

m22m33
+ ω2, (35)

where o = −m11(eu + ud), ω2 = − m11

m22m33
u(t− T )dr + 1

m22
ḋυ and

ι̂ =− m̂11(eu + ud)[(m̂11 − m̂22)u(t− T )υ(t− T )− d̂33r(t− T )]

− m̂11m̂33u̇r(t− T )− m̂33d̂22υ̇.

Similar to Step 3, to counteract the detrimental impacts of parameter uncertainty,
the constant velocity approximation law β2 is established.

β2 =
ι̃

m̃22m̃33
+ ρ2, (36)

where ρ2 > 0 is the design constant to be determined.
Combined with equation (35), the design of the heading control law is as follows:

τr =
m̂22m̂33

ô
[

ι̂

m̂22m̂33
− β2sat(S2/∆2)−A2S2

−G2S2(t− T̄ )− ω̂2 − ε(ST2 )−1W̄ 2
2 ],

(37)

where A2 is the positive constant and G2 is the gain coefficient matrix to be selected,
ω̂2 is the estimated value of ω2, and W̄2 ≥ ‖W ∗2 ‖ is the upper bound of W ∗2 .

4. STABILITY ANALYSIS

In this section, the time-varying disturbances term is estimated by RBF neural network
and ITDSMC law for the trajectory tracking control law with input delays.

Theorem 1. For the underactuated surface vessel (USV) trajectory tracking system
(2) with time delays and composite time-varying disturbances, on condition that the
USV’s kinematic model (3) and dynamic model (4) meet the Assumption 1-4, adopting
the integral sliding surface which is designed by (26) and (32), and the corresponding
virtual velocity control laws depicted in (31) and (37),the system is finally uniformly
bounded stable and the desired nonlinear sliding surface converges.
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Selecting the following Lyapunov - Krasovskii function with time-delay integral term:

V2 =
1

2
ST1 S1+

1

2
Γ−1

1 W̃T
1 W̃1+

∫ t

t−T̄
ST1 P1S1 dσ+

1

2
ST2 S2+

1

2
Γ−1

2 W̃T
2 W̃2+

∫ t

t−T̄
ST2 P2S2 dσ,

(38)
where P = diag(P1, P2) is positive matrix, it is obvious from equation (38) that V ≥ 0.
The derivative of the above formula is:

V̇2 = ST1 Ṡ1+Γ−1
1 W̃T

1
˙̃W1+ST1 (t−T̄ )P1S1(t−T̄ )+ST2 Ṡ2+Γ−1

2 W̃T
2

˙̃W2+ST2 (t−T̄ )P2S2(t−T̄ ).
(39)

From W̃i = Ŵi −W ∗i , i = 1, 2 and the designed controller (28), (31), (35), (37), we
obtain:

V̇2 =ST1 [−β1sat(S1/∆1)−A1S1 −G1S1(t− T̄ ) + ω̃1 − ε1(ST1 )−1W̄ 2
1 ]− Γ−1

1 W̃T
1

˙̂
W1

+ ST1 P1S1 + ST1 (t− T̄ )P1S1(t− T̄ ) + ST2 [−β2sat(S2/∆2)−A2S2 −G2S2(t− T̄ )

+ ω̃2 − ε2(ST2 )−1W̄ 2
2 ]− Γ−1

2 W̃T
2

˙̂
W2 + ST2 P2S2 + ST2 (t− T̄ )P2S2(t− T̄ ).

(40)

For ω̃, it is estimated by RBF neural network, that is,

ω̃i = W̃T
i Hi(x), i = 1, 2. (41)

Substituting equations (17),(19) and (41)into V̇2

V̇2 =ST1 [−β1sat(S1/∆1)−A1S1 −G1S1(t− T̄ ) + W̃T
1 (H1(x̂) + %1It1)− ε1(ST1 )−1W̄ 2

1 ]

− W̃T
1 [ST1 H1(x̂) + µ1Ŵ1 + %1S

T
1 It1] + ST1 P1S1 + ST1 (t− T̄ )P1S1(t− T̄ )

+ ST2 [−β2sat(S2/∆2)−A2S2 −G2S2(t− T̄ ) + W̃T
2 (H2(x̂) + %2It2)− ε2(ST2 )−1W̄ 2

2 ]

− W̃T
2 [ST2 H2(x̂) + µ2Ŵ2 + %2S

T
2 It2] + ST2 P2S2 + ST2 (t− T̄ )P2S2(t− T̄ )

=ST1 [−β1sat(S1/∆1)−A1S1]− ST1 G1S1(t− T̄ )− ε1W̄
2
1 − µ1W̃

T
1 Ŵ1 + ST1 P1S1

+ ST1 (t− T̄ )P1S1(t− T̄ ) + ST2 [−β2sat(S2/∆2)−A2S2]− ST2 G2S2(t− T̄ )

− ε2W̄
2
2 − µ2W̃

T
2 Ŵ2 + ST2 P2S2 + ST2 (t− T̄ )P2S2(t− T̄ ).

(42)

Using Young’s inequality, for a, b ∈ R, satisfying ab ≤ 1
2qa

2 + 1
2q b

2, (q > 0), we have:

− µiW̃T
i Ŵi ≤ −

1

2
µiW̃

T
i W̃i +

1

2
µi‖W ∗i ‖2, i = 1, 2. (43)

Similarly, for any y, z and positive definite symmetric matrix X, satisfying −2zT y ≤
zTX−1z + yTXy,adopting Jensen integral inequality [22], we obtain:

− STi GiSi(t− T̄ ) ≤ 1

2
STi (t− T̄ )GiSi(t− T̄ ) +

1

2
STi GiSi, i = 1, 2. (44)
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Substituting inequalities (43) and (44) into (42), we get:

V̇2 ≤ −β1|S1| − β2|S2| − ST1 A1S1 +
1

2
ST1 (t− T̄ )G1S1(t− T̄ ) +

1

2
ST1 G1S1 − δ1

− 1

2
µ1W̃

T
1 W̃1 + ST1 P1S1 + ST1 (t− T̄ )P1S1(t− T̄ )− ST2 A2S2 +

1

2
ST2 (t− T̄ )G2S2(t− T̄ )

+
1

2
ST2 G2S2 − δ2 −

1

2
µ2W̃

T
2 W̃2 + ST2 P2S2 + ST2 (t− T̄ )P2S2(t− T̄ )

≤ −β1|S1| − β2|S2| − ST1 (A1 − P1 −
1

2
G1)S1 − ST1 (P1 −

1

2
G1)S1(t− T̄ )− δ1

− 1

2
µ1W̃

T
1 W̃1 − ST2 (A2 − P2 −

1

2
G2)S2 − ST2 (P2 −

1

2
G2)S2(t− T̄ )− δ2 −

1

2
µ2W̃

T
2 W̃2

,

(45)
where δi = εiW̄

2
i − 1

2µi‖W
∗
i ‖2, i = 1, 2, because of ‖W ∗‖ ≤ W̄ , and ε ≥ µ > 0, it’s clear

that δ > 0.
In order for the sliding surface to converge and the system to be globally stable and

finally confined, from inequality (45) it is obvious that the designed gain matrix must
satisfy the following inequality{

Ai − Pi − 1
2Gi > 0

Pi − 1
2Gi > 0

i = 1, 2. (46)

Therefore, considering inequality (44), when V ≥ 0, we have V̇ ≤ 0, then S ∈ L∞.
Changing Ṡ to the intended control law τ :

Ṡi = −βisat(Si/∆i)−AiSi −GiSi(t− T̄ ) + ω̃i − εi(STi )−1W̄ 2
i , i = 1, 2. (47)

According to equation (47) and Lemma 3, we obtain Ṡ ∈ L∞, that is, t→∞, S → 0.
Hence, the convergence of sliding surface with time-delay integral term is established.
From equations (26) and (32), the virtual velocity tracking error eu, eυ also converges.
On the basis of Theorem 1, the position error xe, ye converges. The closed-loop system
is hence uniformly globally stable and finally bounded.

5. SIMULATION

To verify how well the suggested ITDSMC tracks trajectories, the uncertainty of model
parameters and the robustness of the system with input delays, the USV model is sim-
ulated by using MATLAB. The USV parameters considered in the simulation are as
follows[15]: m11 = 100kg,m22 = 80kg,m33 = 120kg, Iz = 50kg ·m2, Xu̇ = −30kg, Yυ̇ =
−80kg,Nṙ = −30kg,Xu = 70kg/s,Xu|u| = 100kg/s, Yυ = 100kg/m, Yυ|υ| = 200kg/m,Nr =
50kg ·m2/s,Nr|r| = 100kg ·m2/s. In addition, this paper assumes that input delay is 0.5
s. In practice, USVs typically operate in complex environment. Therefore, 0.52 s is the
time delay’s maximum bound. In order to simulate the uncertainty of hydrodynamic
coefficients of underactuated surface ships, a parametric disturbance of 10% is added to
each nominal hydrodynamic coefficient.τωu = 3 sin(0.4t)N, τωυ = 1.2 cos(0.3t)N, τωr =
4 sin(0.25t)N. The radial basis function neural network has 31 hidden nodes, all the
initial weights are selected as zero, the width of the basis function b1 = 5, b2 = 2, b3 = 4,
and the Gaussian function of the center point is evenly distributed between [−8, 8].
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Fig. 4. Position tracking error xe with time delays.
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Fig. 5. Position tracking error ye with time delays.

Figures 4 through 10 illustrate the simulation findings.
Figure 4, Figure 5 and Figure 6 are the curves of position tracking error and virtual
velocity tracking error respectively under circumstance of input delays. Considering that
the initial state value of the system is: x0 = 3, y0 = 2.5, ψ0 = −3rad, and the control
parameters are: β1 = 4×10−3, β2 = 5×10−3, A1 = 3.94×10−2, A2 = 3.1475×10−2, G1 =
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1.5× 10−4, G2 = 1.5× 10−4, ε = 5× 10−2. Meanwhile, setting the performance function
parameters as follows: e1,0 = e2,0 = 3, e1,0 = e2,0 = 6, ei,tf = ei,tf = 0.1, i = 1, 2, tf =
10. The simulation results of the application of the integral sliding mode control law
demonstrate that the position error quickly converges to the performance function, and
the error in virtual velocity tracking can react quickly to track the intended location.
Meanwhile, it is obvious that the position tracking error of USV enters and no longer
exceeds the preset steady-state error band when tf < 10s. After 20 s, the USV achieved
the control goal of tracking the desired trajectory. Although the virtual velocity error
of USV converges to 0, the position tracking error oscillates during fast response and
cannot converge smoothly to the origin.
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Fig. 6. Position tracking error ψe with time delays.

It can be seen from Figure 7 that the response curves of control force and torque
gradually smooth after 20 s, in line with the needs of practical engineering. In fact,
the time delay of the real actuator is very small, but ignoring the delay to design the
controller can lead to severe oscillations.
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Fig. 8. Control input force and moment with time delays.

Figure 9 and Figure 10 show the error curve of RBF neural network’s estimation of the
composite disturbance terms ω1, ω2. As can be seen from figures, the estimated curve
almost coincides with the actual disturbance curve, and the estimation error is small,
indicating that the designed RBF neural network algorithm has a excellent estimation
effect on composite disturbance.
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Fig. 9. Estimation curve of composite disturbance term ω1 by RBF

neural network
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Fig. 10. Estimation curve of composite disturbance term ω2 by RBF

neural network.

6. CONCLUSION

The trajectory tracking for the USV with time delays and composite disturbances is
addressed in this work using an backstepping-based integral time-delay sliding mode
controller. Firstly, the virtual velocity control law is constructed utilizing coordinate
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transformation and the backstepping approach to stabilize the position tracking error.
Then, in order to counteract the effects of the disturbance on the system, the RBF
neural network is built to estimate the nonlinear term with composite disturbances. For
stabilizing the virtual velocity tracking error, the longitudinal control law and the yaw
control law are built using the integral time-delay sliding mode approach. The stability
theory and Lyapunov–Krasovskii functional serve as a foundation for the controller’s
assured resilience and convergence. The simulation results demonstrate that, if the
assumptions are met, the controller proposed in this study is successful in achieving the
control aim of trajectory tracking.
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