3,554 research outputs found

    Robust stability and stabilization of discrete singular systems: An equivalent characterization

    Get PDF
    This note deals with the problems of robust stability and stabilization for uncertain discrete-time singular systems. The parameter uncertainties are assumed to be time-invariant and norm-bounded appearing in both the state and input matrices. A new necessary and sufficient condition for a discrete-time singular system to be regular, causal and stable is proposed in terms of a strict linear matrix inequality (LMI). Based on this, the concepts of generalized quadratic stability and generalized quadratic stabilization for uncertain discrete-time singular systems are introduced. Necessary and sufficient conditions for generalized quadratic stability and generalized quadratic stabilization are obtained in terms of a strict LMI and a set of matrix inequalities, respectively. With these conditions, the problems of robust stability and robust stabilization are solved. An explicit expression of a desired state feedback controller is also given, which involves no matrix decomposition. Finally, an illustrative example is provided to demonstrate the applicability of the proposed approach.published_or_final_versio

    Observers Design for a Class of Lipschitz Discrete-Time Systems with Time-Delay

    Get PDF
    The observer design problem for nonlinear time-delay systems becomes more and more a subject of research in constant evolution Germani et al. (2002), Germani & Pepe (2004), Aggoune et al. (1999), Raff & Allgöwer (2006), Trinh et al. (2004), Xu et al. (2004), Zemouche et al. (2006), Zemouche et al. (2007). Indeed, time-delay is frequently encountered in various practical systems, such as chemical engineering systems, neural networks and population dynamic model. One of the recent application of time-delay is the synchronization and information recovery in chaotic communication systems Cherrier et al. (2005). In fact, the time-delay is added in a suitable way to the chaotic system in the goal to increase the complexity of the chaotic behavior and then to enhance the security of communication systems. On the other hand, contrary to nonlinear continuous-time systems, little attention has been paid toward discrete-time nonlinear systems with time-delay. We refer the readers to the few existing references Lu & Ho (2004a) and Lu & Ho (2004b), where the authors investigated the problem of robust H∞ observer design for a class of Lipschitz time-delay systems with uncertain parameters in the discrete-time case. Their method show the stability of the state of the system and the estimation error simultaneously. This chapter deals with observer design for a class of Lipschitz nonlinear discrete-time systems with time-delay. The main result lies in the use of a new structure of the proposed observer inspired from Fan & Arcak (2003). Using a Lyapunov-Krasovskii functional, a new nonrestrictive synthesis condition is obtained. This condition, expressed in term of LMI, contains more degree of freedom than those proposed by the approaches available in literature. Indeed, these last use a simple Luenberger observer which can be derived from the general form of the observer proposed in this paper by neglecting some observer gains. An extension of the presented result to H∞ performance analysis is given in the goal to take into account the noise which affects the considered system. A more general LMI is established. The last section is devoted to systems with differentiable nonlinearities. In this case, based on the use of the Differential Mean Value Theorem (DMVT), less restrictive synthesis conditions are proposed

    A looped-functional approach for robust stability analysis of linear impulsive systems

    Full text link
    A new functional-based approach is developed for the stability analysis of linear impulsive systems. The new method, which introduces looped-functionals, considers non-monotonic Lyapunov functions and leads to LMIs conditions devoid of exponential terms. This allows one to easily formulate dwell-times results, for both certain and uncertain systems. It is also shown that this approach may be applied to a wider class of impulsive systems than existing methods. Some examples, notably on sampled-data systems, illustrate the efficiency of the approach.Comment: 13 pages, 2 figures, Accepted at Systems & Control Letter

    Robust Η∞Control for a Class of Discrete Time-Delay Stochastic Systems with Randomly Occurring Nonlinearities

    Get PDF
    Copyright © 2014 Yamin Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.In this paper, we consider the robust Η∞ control problem for a class of discrete time-delay stochastic systems with randomly occurring nonlinearities. The parameter uncertainties enter all the system matrices; the stochastic disturbances are both state and control dependent, and the randomly occurring nonlinearities obey the sector boundedness conditions. The purpose of the problem addressed is to design a state feedback controller such that, for all admissible uncertainties, nonlinearities, and time delays, the closed-loop system is robustly asymptotically stable in the mean square, and a prescribed Η∞ disturbance rejection attenuation level is also guaranteed. By using the Lyapunov stability theory and stochastic analysis tools, a linear matrix inequality (LMI) approach is developed to derive sufficient conditions ensuring the existence of the desired controllers, where the conditions are dependent on the lower and upper bounds of the time-varying delays. The explicit parameterization of the desired controller gains is also given. Finally, a numerical example is exploited to show the usefulness of the results obtained.This work was supported in part by the National Natural Science Foundation of China under Grants 61374010, 61074129, and 61175111, the Natural Science Foundation of Jiangsu Province of China under Grant BK2012682, the Qing Lan Project of Jiangsu Province (2010), the 333 Project of Jiangsu Province (2011), and the Six Talents Peak Project of Jiangsu Province (2012)

    Robust moving horizon H∞ control of discrete time-delayed systems with interval time-varying delays

    Get PDF
    In this study, design of a delay-dependent type moving horizon state-feedback control (MHHC) is considered for a class of linear discrete-time system subject to time-varying state delays, norm-bounded uncertainties, and disturbances with bounded energies. The closed-loop robust stability and robust performance problems are considered to overcome the instability and poor disturbance rejection performance due to the existence of parametric uncertainties and time-delay appeared in the system dynamics. Utilizing a discrete-time Lyapunov-Krasovskii functional, some delay-dependent linear matrix inequality (LMI) based conditions are provided. It is shown that if one can find a feasible solution set for these LMI conditions iteratively at each step of run-time, then we can construct a control law which guarantees the closed-loop asymptotic stability, maximum disturbance rejection performance, and closed-loop dissipativity in view of the actuator limitations. Two numerical examples with simulations on a nominal and uncertain discrete-time, time-delayed systems, are presented at the end, in order to demonstrate the efficiency of the proposed method

    Robust stability for stochastic Hopfield neural networks with time delays

    Get PDF
    This is the post print version of the article. The official published version can be obtained from the link below - Copyright 2006 Elsevier Ltd.In this paper, the asymptotic stability analysis problem is considered for a class of uncertain stochastic neural networks with time delays and parameter uncertainties. The delays are time-invariant, and the uncertainties are norm-bounded that enter into all the network parameters. The aim of this paper is to establish easily verifiable conditions under which the delayed neural network is robustly asymptotically stable in the mean square for all admissible parameter uncertainties. By employing a Lyapunov–Krasovskii functional and conducting the stochastic analysis, a linear matrix inequality (LMI) approach is developed to derive the stability criteria. The proposed criteria can be checked readily by using some standard numerical packages, and no tuning of parameters is required. Examples are provided to demonstrate the effectiveness and applicability of the proposed criteria.This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant GR/S27658/01, the Nuffield Foundation of the UK under Grant NAL/00630/G, and the Alexander von Humboldt Foundation of German

    Stochastic stability of uncertain Hopfield neural networks with discrete and distributed delays

    Get PDF
    This is the post print version of the article. The official published version can be obtained from the link below - Copyright 2006 Elsevier Ltd.This Letter is concerned with the global asymptotic stability analysis problem for a class of uncertain stochastic Hopfield neural networks with discrete and distributed time-delays. By utilizing a Lyapunov–Krasovskii functional, using the well-known S-procedure and conducting stochastic analysis, we show that the addressed neural networks are robustly, globally, asymptotically stable if a convex optimization problem is feasible. Then, the stability criteria are derived in terms of linear matrix inequalities (LMIs), which can be effectively solved by some standard numerical packages. The main results are also extended to the multiple time-delay case. Two numerical examples are given to demonstrate the usefulness of the proposed global stability condition.This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant GR/S27658/01, the Nuffield Foundation of the UK under Grant NAL/00630/G, and the Alexander von Humboldt Foundation of Germany
    corecore