Observers Design for a Class of Lipschitz Discrete-Time Systems with Time-Delay

Abstract

The observer design problem for nonlinear time-delay systems becomes more and more a subject of research in constant evolution Germani et al. (2002), Germani & Pepe (2004), Aggoune et al. (1999), Raff & Allgöwer (2006), Trinh et al. (2004), Xu et al. (2004), Zemouche et al. (2006), Zemouche et al. (2007). Indeed, time-delay is frequently encountered in various practical systems, such as chemical engineering systems, neural networks and population dynamic model. One of the recent application of time-delay is the synchronization and information recovery in chaotic communication systems Cherrier et al. (2005). In fact, the time-delay is added in a suitable way to the chaotic system in the goal to increase the complexity of the chaotic behavior and then to enhance the security of communication systems. On the other hand, contrary to nonlinear continuous-time systems, little attention has been paid toward discrete-time nonlinear systems with time-delay. We refer the readers to the few existing references Lu & Ho (2004a) and Lu & Ho (2004b), where the authors investigated the problem of robust H∞ observer design for a class of Lipschitz time-delay systems with uncertain parameters in the discrete-time case. Their method show the stability of the state of the system and the estimation error simultaneously. This chapter deals with observer design for a class of Lipschitz nonlinear discrete-time systems with time-delay. The main result lies in the use of a new structure of the proposed observer inspired from Fan & Arcak (2003). Using a Lyapunov-Krasovskii functional, a new nonrestrictive synthesis condition is obtained. This condition, expressed in term of LMI, contains more degree of freedom than those proposed by the approaches available in literature. Indeed, these last use a simple Luenberger observer which can be derived from the general form of the observer proposed in this paper by neglecting some observer gains. An extension of the presented result to H∞ performance analysis is given in the goal to take into account the noise which affects the considered system. A more general LMI is established. The last section is devoted to systems with differentiable nonlinearities. In this case, based on the use of the Differential Mean Value Theorem (DMVT), less restrictive synthesis conditions are proposed

    Similar works