803 research outputs found

    A Reusable Component for Communication and Data Synchronization in Mobile Distributed Interactive Applications

    Full text link
    In Distributed Interactive Applications (DIA) such as multiplayer games, where many participants are involved in a same game session and communicate through a network, they may have an inconsistent view of the virtual world because of the communication delays across the network. This issue becomes even more challenging when communicating through a cellular network while executing the DIA client on a mobile terminal. Consistency maintenance algorithms may be used to obtain a uniform view of the virtual world. These algorithms are very complex and hard to program and therefore, the implementation and the future evolution of the application logic code become difficult. To solve this problem, we propose an approach where the consistency concerns are handled separately by a distributed component called a Synchronization Medium, which is responsible for the communication management as well as the consistency maintenance. We present the detailed architecture of the Synchronization Medium and the generic interfaces it offers to DIAs. We evaluate our approach both qualitatively and quantitatively. We first demonstrate that the Synchronization Medium is a reusable component through the development of two game applications, a car racing game and a space war game. A performance evaluation then shows that the overhead introduced by the Synchronization Medium remains acceptable.Comment: In Proceedings WCSI 2010, arXiv:1010.233

    Re-engineering jake2 to work on a grid using the GridGain Middleware

    Get PDF
    With the advent of Massively Multiplayer Online Games (MMOGs), engineers and designers of games came across with many questions that needed to be answered such as, for example, "how to allow a large amount of clients to play simultaneously on the same server?", "how to guarantee a good quality of service (QoS) to a great number of clients?", "how many resources will be necessary?", "how to optimize these resources to the maximum?". A possible answer to these questions relies on the usage of grid computing. Taking into account the parallel and distributed nature of grid computing, we can say that grid computing allows for more scalability in terms of a growing number of players, guarantees shorter communication time between clients and servers, and allows for a better resource management and usage (e.g., memory, CPU, core balancing usage, etc.) than the traditional serial computing model. However, the main focus of this thesis is not about grid computing. Instead, this thesis describes the re-engineering process of an existing multiplayer computer game, called Jake2, by transforming it into a MMOG, which is then put to run on a grid

    Managing Network Delay for Browser Multiplayer Games

    Get PDF
    Latency is one of the key performance elements affecting the quality of experience (QoE) in computer games. Latency in the context of games can be defined as the time between the user input and the result on the screen. In order for the QoE to be satisfactory the game needs to be able to react fast enough to player input. In networked multiplayer games, latency is composed of network delay and local delays. Some major sources of network delay are queuing delay and head-of-line (HOL) blocking delay. Network delay in the Internet can be even in the order of seconds. In this thesis we discuss what feasible networking solutions exist for browser multiplayer games. We conduct a literature study to analyze the Differentiated Services architecture, some salient Active Queue Management (AQM) algorithms (RED, PIE, CoDel and FQ-CoDel), the Explicit Congestion Notification (ECN) concept and network protocols for web browser (WebSocket, QUIC and WebRTC). RED, PIE and CoDel as single-queue implementations would be sub-optimal for providing low latency to game traffic. FQ-CoDel is a multi-queue AQM and provides flow separation that is able to prevent queue-building bulk transfers from notably hampering latency-sensitive flows. WebRTC Data-Channel seems promising for games since it can be used for sending arbitrary application data and it can avoid HOL blocking. None of the network protocols, however, provide completely satisfactory support for the transport needs of multiplayer games: WebRTC is not designed for client-server connections, QUIC is not designed for traffic patterns typical for multiplayer games and WebSocket would require parallel connections to mitigate the effects of HOL blocking

    Distributed game

    Get PDF
    Dissertação de mestrado em Engenharia InformáticaThe demand for online games has risen over the years, expanding multiplayer support for new and different game genres. Among them are Massively Multiplayer Online games, one of the most popular and successful game types in the industry. Nowadays, this industry is thriving, evolving alongside technological advancements and producing billions in revenue, making it an economic importance. However, as the complexity of these games grows, so do the challenges they face when constructing them. This dissertation aims to implement a distributed game, through a proof of concept or an existing game, using a distributed architecture to acquire knowledge in the construction of such complex systems and the effort involved in dealing with consistency, maintaining communication infrastructure, and managing data in a distributed way. It is also intended that this project implements multiple mechanisms capable of autonomously helping manage and maintain the correct state of the system. To evaluate the proposed solution, a detailed analysis is carried out with performance benchmark analysis, stress testing, followed by an examination of its security, scalability, and distribution’s resilience. Overall, the present research work allowed for a greater understanding of the technologies and approaches used in constructing a gaming system, establishing a new set of development opportunities to be further investi gated upon the constructed solution.A procura por jogos online aumentou ao longo dos anos, expandindo o suporte multiplayer para novos e diferentes géneros. Entre estes estão os jogos Massively Multiplayer Online, um dos tipos de jogos mais populares e bem-sucedidos na indústria. Atualmente, esta indústria está a prosperar, evoluindo com os avanços tecnológicos e gerando milhares de milhões em receita, tornando-se uma importância económica. Porém, à medida que a complexidade destes jogos aumenta, também aumenta os problemas encontrados durante a sua construção. Esta dissertação tem como objetivo implementar um jogo distribuído, através de uma prova de conceito ou um jogo existente, usando uma arquitetura distribuída a fim de adquirir conhecimento na construção destes sistemas complexos e o esforço envolvido em lidar com consistência, manter a infraestrutura de comunicação e gerir dados de maneira distribuída. Para isto, é pretendido que este projeto também implemente vários mecanismos capazes de, forma autônoma, ajudar a gerir e manter o correto estado do sistema. Para avaliar o solução proposta, uma análise detalhada é realizada sobre o desempenho, segurança, escalabilidade e resiliência da distribuição do sistema. De forma geral, o presente trabalho de pesquisa permitiu uma maior compreensão das tecnologias e abordagens utilizadas na construção de um sistema de jogos, estabelecendo um novo conjunto de oportunidades de desenvolvimento a serem investigadas sobre a solução construída

    OpenGL|D - A Multi-user Single State Architecture for Multiplayer Game Development

    Get PDF
    Multi-user applications can be complex to develop due to their large or intricate nature. Many of the issues encountered are related to performance and security. These issues are exacerbated when the scale of the application increases. This paper introduces a novel distributed architecture called OpenGL|D (OpenGL Distributed). This technology enables an application to pass through the graphical calls between a Virtual Machine (VM) and the graphics processing unit (GPU) on the native host across a network. This ability allows applications to run inside a virtual machine (VM), whilst still benefiting from hardware accelerated performance from the GPU for the computationally intensive graphical processing. This allows for the development of 3D software requiring no dependencies on specific hardware or technology other than ANSI C and a network stack, demonstrating our approach to platform agnostic development and digital preservation

    Evaluation of Scalability and Communication in MMOGs

    Get PDF
    Massively Multiplayer Online Games (MMOGs) can involve millions of synchronous players scattered across the world and participating with each other within a single shared game. One of the most significant issues in MMOGs is scalability and it is impact on the responsiveness and the quality of the game. In this paper, we propose a new architecture to increase the scalability without affecting the responsiveness of the game, using a hybrid Peer-to-Peer system. This mechanism consists of central servers to control and manage the game state, as well as super-peer and clone-super-peer to control and manage sub-networks of nodes sharing common regions of the game world. We use the OPNET Modeler to simulate the system and compare the results with client/server system to show the difference in delay and traffic received for various applications such as remote login, database, HTTP, and FTP sessions which are all part of an MMOG system. We use four scenarios for each system to evaluate the scalability of the system with different number of peers (i.e.125, 250, 500, and 1000 peers). The results show that the hybrid P2P system is more scalable for MMOGs when compared with client/server system

    NGS: An application layer network game simulator

    Get PDF
    In the last five years the popularity of Massively Multiplayer Online Games (MMOGs) has exploded. Unfortunately, the demand has far outweighed the resources developers can provide. Many MMOGs are suffering from scalability issues, resulting in sharding, down time, and server crashes. To solve these problems, the research community is investigating peer-to-peer (P2P) overlay networks to support MMOGs, as P2P networks are theoretically and practically scalable. The majority of analysis of P2P gaming architectures has been qualitative, making it difficult to understand the strengths and weaknesses of each system. This is partially due to the lack of appropriate simulation tools. To address this problem we have developed an application layer network game simulator - NGS - for modelling network game architectures. NGS includes mechanisms to collect quantitative metrics, which may then be used to perform comparisons with other architectures. NGS is flexible enough to model Client/Server, Region based, Neighbour based, and hybrid architectures. It is extensible and modular, and will enable the research community to evaluate the benefits and weaknesses of existing and new network gaming architectures. Results demonstrating the extensibility and performance of NGS, and comparisons of the performance of several different architectures are included

    Applying Supernode Architecture for Scalable Multiplayer Computer Game

    Get PDF
    Süsteemi skaleeritavus, kiire vastamise aeg ja madal hinnatase on tähtsad atribuudid, mida tuleb arvesse võtta suurte multimängijatega online mitmikmängude loomisel. Sellistes süsteemides mängib suurt rolli arhitektuur. Partnervõrkude arhitektuuridel on madalad hinnad ning need suudavad saavutada järk-järgulise kasvu tänu nende hajususele ja koostööle. Peale selle suudavad nad kiirelt reageerida tänu otseühendustele mängijate vahel. Samas esineb selliste arhitektuuridega mitmeid probleeme. Selles lõputöös uuritakse olemasolevaid partnervõrkude lahendusi suurtele multimängijatega online olevatele mängudele. Veel uurib see lõputöö kahte hübriidarhitektuuri - esimeses on kasutatud supernode punkte koos keskse ühenduspunktiga ning teises on kasutatud keskset võrguharu ühenduspunkti ilma keskse ühenduspunktita. Lisaks sellele esitab see lõputöö lahenduse supernodemultimängijatega online mängudele, mis põhinevad multiedastuse põhimõttel.Selleks, et tulevikus analüüse läbi viia, on kogu süsteem implementeeritud simulatsiooniga.Scalability, fast response time and low cost are of utmost importance in designing a successful massively multiplayer online game. The underlying architecture plays an important role in meeting these conditions. Peer-to-peer architectures, have low infrastructure costs and can achieve high scalability, due to their distributed and collaborative nature. They can also achieve fast response times by creating direct connections between players. However, these architectures face many challenges.Therefore, the paper investigates existing peer to peer architecture solutions for a massively multiplayer online games. The study examines two hybrid architectures. In the first one, a supernode approach is used with a central server. In the contrast in the second one, there is no central server and pure peer to peer architecture is deployed. Moreover, the thesis proposes a solution based on multicast peer discovery and supernodes for a massively multiplayer online game. Also, all system is covered with simulation, that provides results for future analysing
    corecore