
OpenGL|D - A Multi-user Single State Architecture for Multiplayer Game
Development

Karsten Pedersen
Department of Creative Technology,
Faculty of Science and Technology

Bournemouth University, UK
Email: pedersenk@bournemouth.ac.uk

Wen Tang
Department of Creative Technology,
Faculty of Science and Technology

Bournemouth University, UK
Email: wtang@bournemouth.ac.uk

Christos Gatzidis
Department of Creative Technology,
Faculty of Science and Technology

Bournemouth University, UK
Email: cgatzidis@bournemouth.ac.uk

Abstract—Multi-user applications can be complex to develop
due to their large or intricate nature. Many of the issues en-
countered are related to performance and security. These issues
are exacerbated when the scale of the application increases.
This paper introduces a novel distributed architecture called
OpenGL|D (OpenGL Distributed). This technology enables
an application to pass through the graphical calls between
a Virtual Machine (VM) and the graphics processing unit
(GPU) on the native host across a network. This ability allows
applications to run inside a virtual machine (VM), whilst still
benefiting from hardware accelerated performance from the
GPU for the computationally intensive graphical processing.
This allows for the development of 3D software requiring no
dependencies on specific hardware or technology other than
ANSI C and a network stack, demonstrating our approach to
platform agnostic development and digital preservation.

Index Terms—Multiplayer Games, Multi-user Applications,
Digital Preservation, Portability and Platform Agnostic

1. Introduction

Online multiplayer games, it can be argued, are one
of the most popular entertainment media in recent years.
However, the software infrastructure to support these multi-
player games is very large and complex [1]. Issues regarding
real-time performance of user interactions and graphics ren-
dering remain challenging even with today’s state of the
art software technology [2] [3]. Common to multiplayer
games are problems associated with server workload latency,
scalable communication costs plus real-time localisation and
replication of player interaction. Specifically, large-scale
games involving tens and thousands of players require a
range of solutions to address the problem from design,
implementation and evaluation.

The rapid development and evolution of computer ar-
chitecture often fails to provide an infrastructure in order
to ensure that older software can continue to run on recent
platforms. These (potentially) standards compliant and well-
implemented programs are often still valid for many industry

standard applications. Thus, the lack of infrastructure in
place to cater for these sometimes mission critical software
packages may cause a failure in the uptake of the new
platform. Being able to run existing or legacy applications
has the benefits of saving costs and reducing the risk of
introducing bugs during the development of the replacement
software [4]. Currently, VM technology is one of the few
ways to do this.

In this paper, we introduce a novel distributed archi-
tecture for multiplayer games; OpenGL|D (OpenGL Dis-
tributed), which is an evolving attempt at addressing the
aforementioned challenging issues. In addition to this,
OpenGL|D is also aimed at improving the lifespan of
software. In particular, through OpenGL|D, 3D software
applications such as Virtual Reality (VR) and Augmented
Reality (AR) applications are allowed to be run from inside a
virtual machine (VM), whilst still benefiting from hardware
accelerated performance from the graphical processing unit
(GPU). This is achieved by forwarding out the graphical
calls from the virtual environment into a WebGL enabled
web browser via websockets.

OpenGL|D can offer more beyond potential success in
the area of digital preservation as it can also open up new
possibilities for the architecture of multi-user, collaborative
tools and gaming software. Of particular interest is the fact
that even though the graphics are processed on the GPU
of the individual connected client machines, the software
itself and the logic contained within is running on a single
machine, the server. This means that each client implicitly
shares a single application state which completely eliminates
the need to synchronise the clients. This not only simplifies
the development of multi-user network software, but can
also potentially reduce bandwidth [5] [6].

2. Related Work in Client Synchronisation

Existing online multiplayer games utilize a client-server
model which not only introduces latency but also a sin-
gle point of failure to a game. Distributed architectures
eliminate these issues but add additional complexity in the
synchronisation and robustness of the shared data. The work

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bournemouth University Research Online

https://core.ac.uk/display/84339263?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

carried out by Cronin et al [7] introduces an alternative
synchronisation mechanism (called Trailing State Synchro-
nisation) which offers a hybrid approach between the tra-
ditional client-server model and a distributed approach. It
allows clients to share data in a peer to peer manner whilst
periodically checking with the central server to confirm their
state is correct. Their results appear promising but in the
worst case scenario, their system has resulted in multiple
inconsistencies and delays due to the rollback mechanism.

We have previously undertaken research work in the
similar area of multiplayer synchronisation but with a very
different approach to what we propose in this paper [8]. In
order to create a protocol which reduces player cheating,
we proposed the idea of using a node based approach to lay
out shared data in memory. Each of these nodes then had an
owner attached and respective permissions. This allowed for
a flexible protocol to be built which was potentially trivial
to maintain and extend. It also performed efficiently where
players could interact with the world and make changes to
any object or data they owned whilst also preventing others
from modifying unauthorised objects. Thus, this achieves
protecting the server and other players from any poten-
tial cheating. The technology performed well and, as part
of a prototype, was integrated with three existing games
an independent games development studio developed for
LEGO. The fact that it could easily integrate with existing
software, as opposed to software being built from scratch,
demonstrated that this approach was very easy to maintain
and extend.

However, we discovered a number of complexities with
the protocol, described in Section 3, so our solution started
to become hard to manage. The node ownership system
works well for a number of scenarios but transferring own-
ership (i.e as part of a trade) still felt overly complex. This
very fact is what prompted us to look into new ways to
reduce the need to synchronise the state entirely and move
towards streaming technologies such as the one we propose
in this paper.

3. Complexities Involved in Client Synchroni-
sation

Developing a multi user application is a more compli-
cated and expensive process than single user software [9].
The main reason for this is because there are more entry
points for the incorrect handling of data. Since there is
effectively more than one unit of execution operating at a
time, in a similar way to a multi-threaded application, it
opens up the possibilities of race conditions and other time
dependent bugs. This can cost time and effort to debug.

With the increasingly complex network interactions seen
in games today, including all the underlying data that needs
to be synchronised, it soon becomes evident that without an
effective design, performing this process for similar events
could provide a large number of potential entry points for
bugs and synchronisation issues. Whilst it is certainly possi-
ble to write a game with a large number of synchronisations

taking place, it will require a large amount of care from
experienced and disciplined programmers. However, with a
technology such as OpenGL|Distributed, all of these steps
needed to synchronise client states can be avoided.

4. Inner Workings of OpenGL|D

OpenGL|D implements a client/server architecture where
rather than have the running 3D program calling the
OpenGL API to communicate with the GPU to rasterize a
scene on the local machine, it, instead, creates a server for
clients to connect to via a web browser. Once connected,
the OpenGL calls are translated to a protocol and back on
the client to finally be executed by the WebGL equivalents.
Technically this creates a partition in the technology stack
which is almost entirely independent from the hardware it
is run on. This can be seen in Figure 1. From a technical
viewpoint this architecture has the benefit that complexity
can be encapsulated.

Figure 1. Diagram describing the layers that OpenGL is built upon
compared to OpenGL|D. Notice that OpenGL|D has additional layers of
abstraction.

From a digital preservation viewpoint, this architecture is
useful because the 3D software can be run in a VM running
an old operating system as a guest. The host can then run a
web browser and simply connect to the server through the
virtual machine boundary. However, from a multi-user col-
laboration viewpoint, the additional benefit is that multiple
clients can connect to this server and render out the same
scene. This provides the foundation for OpenGL|D’s use as
a multi-user solution.

4.1. Protocol Overview

The OpenGL|D protocol is fairly straightforward. This is
largely due to the fact that it can mimic how the computer
and GPU communicate in a largely faithful manner. This
also allows for traditional graphics programming optimisa-
tions to remain valid. When an OpenGL command is called,
the server library encodes the command and data into a
smaller message and forwards it onto the client. The client
then decodes this message and executes it on the underlying

platform, whether that is OpenGL, OpenGL|ES, WebGL or
even other graphics APIs such as DirectX. Any necessary
response is then sent back to the awaiting server. This is
demonstrated in Figure 2.

Figure 2. Diagram demonstrating a typical yet simplified communication
between the client and server components of OpenGL|D in order to upload
a texture.

Due to the fact that OpenGL|D is designed to support
a large number of connected clients, it is important that no
specific operation blocks or waits for a response. This means
that work undertaken to handle a client request must cause
minimal delay for the other connected clients. In practice
this means that the example given in Figure 2, which demon-
strates synchronous requests, utilized a command buffer,
storing commands until such a time that the current task
is complete and commands can be resumed.

The clients themselves retain almost no state other than
the OpenGL|D graphics state such as glEnable(), glEnable-
ClientState() etc. This has the benefit of almost no com-
plexity when syncing a new client. Once vertex buffers and
textures are uploaded, the newly connected client is ready
for future frames. If a potentially complex action occurs , it
happens only in one place, the server. Nothing will need to
be synced to the clients to handle this event. They will re-
ceive their rendering commands as usual and continue. This
behavior was demonstrated in a simple multiplayer football
game (Figure 3) where players would knock each other away
from the ball whilst applying forces or "grabbing" the ball.
Typically, this ownership of the ball and the forces applied
upon it would be complex to synchronise between clients
but, with OpenGL|D, was not required at all.

4.2. Client Specific Rendering / Cheat Prevention

Other than perhaps some of the more basic collaboration
software, it is important that even though clients share the
same state with OpenGL|D, it is still possible for them
to display different outputs, such as a camera view from
another position. This functionality is expressed very nat-
urally with OpenGL|D in that whilst the update function

Figure 3. Screenshots of a number of tech demos developed using
OpenGL|D. The platforms running these programs included OpenBSD
(x86_64) or Plan 9 (ARM / APE Layer) running within VirtualBox. The
graphics are then streamed out of the guest VM and into the WebGL
enabled Internet Explorer web browser running on the Windows 10 host.

is called just once per frame in OpenGL|D, the display
callback is called multiple times for each connected client.
This means that during the display function path, it is very
easy to query which client ID is the current active one (via
gldCurrentClientId()) and then either use the view matrix
from its assigned camera to get a unique view port or go
down a path of logic that displays the GUI for that client.
The whole process could even be described akin to an
extension to rendering to a texture, which is a common
technique that developers have been using for years. A
simple example can be seen in Figure 3 where a player
select dialog is shown to a newly connected client without
obstructing the view of existing players.

Perhaps one of the more interesting features of using
OpenGL|D as a solution for multi-user applications and
games is that cheating can be eliminated. The clients them-
selves are akin to dumb terminals [10] and do no processing
themselves. All they do is execute OpenGL commands and
respond to key presses or mouse motion commands. This
means that any modifications to the client cannot adversely
affect the server because all it reads back from the client is
a key press.

5. Performance Evaluation

Compared to existing solutions involving manually sync-
ing client state [11] [12], there is virtually no network
overhead when using OpenGL|D because, as discussed
previously, there is no actual game state to synchronise.
However, there certainly is a cost on bandwidth because
we are effectively dealing with streaming technology and
this means we must send enough data to generate a new
image each frame. An additional overhead also needs to
be considered when dealing with Websockets (so that the
output can be rendered in a web browser). Websockets have
a much larger header than standard packets so require more
data to be sent across the network. Websockets also do not
support UDP technology so TCP is enforced even though,
as with other streaming technology, the occasional dropped
packet can be easily handled.

That said, compared to other streaming technology such
as VNC which deals with rasterized images, OpenGL|D has
the potential to be a much faster solution because it uses
an intelligent protocol which sends the commands which
can generate the output image on the destination hardware

rather than send over a pre-rendered image each frame. This
can be seen in Figure 4. If there are few models in the
scene much less data needs to be transferred through to the
client whereas with VNC a map of the rasterized pixels
is sent regardless. The bandwidth requirements when using
OpenGL|D only start to match that of VNC when dealing
with a large number of shapes (almost 10K). This is rarely
the case in games due to optimization techniques used to
reduce the number of draw calls.

Figure 4. Graph comparing the bandwidth requirements between
OpenGL|D and VNC with a varying number of objects in the scene.

In general, network synchronisation via OpenGL|D will
have the best performance compared to other solutions when
only dealing with a small number of OpenGL draw calls and
a large complex game state. Such examples could potentially
include software with complex inventory systems that need
to be interacted with via simple GUI systems in the client.
It will also perform better than most rasterized streaming
solutions at higher resolutions. OpenGL|D does not need
to send through each pixel to the client, the clients do the
actual rasterization, therefore there is no additional costs to
bandwidth using OpenGL|D at higher resolutions. This is
demonstrated in Figure 5.

Figure 5. Graph comparing the bandwidth requirements between
OpenGL|D and VNC with an increasing image resolution.

Network synchronisation via OpenGL|D will compare
worse against other solutions when dealing with simple
states to share (such as just synchronising projectiles and
player positions) or large complex game worlds with many
objects to render. Such examples could include real-time
strategy (RTS) games or open world shooters.

6. Conclusion

The process of developing a multi-user project can be
greatly simplified by using OpenGL|D. Not only is the
developer released from the error-prone task of manually
synchronising objects within the game but also new develop-
ment architectures are made available. Rather than build up
hierarchies of objects in a manner ready to be serialized and
shared, the development process can invest a greater focus
on the logic to carry out tasks in a natural manner. A reduced
number of callbacks and rules needs to be applied because
the logic is effectively developed in exactly the same way
as a single user experience.

References

[1] P. Laurens, R. F. Paige, P. J. Brooke, and H. Chivers, “A novel
approach to the detection of cheating in multiplayer online games,”
in 12th IEEE International Conference on Engineering Complex
Computer Systems (ICECCS 2007), July 2007, pp. 97–106.

[2] D. Wu, Z. Xue, and J. He, “icloudaccess: Cost-effective streaming
of video games from the cloud with low latency,” IEEE Transactions
on Circuits and Systems for Video Technology, vol. 24, no. 8, pp.
1405–1416, Aug 2014.

[3] T. Karachristos, D. Apostolatos, and D. Metafas, “A real-
time streaming games-on-demand system,” in Proceedings of
the 3rd International Conference on Digital Interactive Media
in Entertainment and Arts, ser. DIMEA ’08. New York,
NY, USA: ACM, 2008, pp. 51–56. [Online]. Available: http:
//doi.acm.org/10.1145/1413634.1413648

[4] K. Bassin and P. Santhanam, “Managing the maintenance of ported,
outsourced, and legacy software via orthogonal defect classification,”
in Proceedings IEEE International Conference on Software Mainte-
nance. ICSM 2001, 2001, pp. 726–734.

[5] J. D. Pellegrino and C. Dovrolis, “Bandwidth requirement and state
consistency in three multiplayer game architectures,” in Proceedings
of the 2nd workshop on Network and system support for games.
ACM, 2003, pp. 52–59.

[6] A. I. Wang, M. Jarrett, and E. Sorteberg, “Experiences from imple-
menting a mobile multiplayer real-time game for wireless networks
with high latency,” Int. J. Comput. Games Technol., vol. 2009, pp.
6:1–6:14, Jan. 2009.

[7] E. Cronin, B. Filstrup, A. R. Kurc, and S. Jamin, “An efficient
synchronization mechanism for mirrored game architectures,” in Pro-
ceedings of the 1st workshop on Network and system support for
games. ACM, 2002, pp. 67–73.

[8] K. Pedersen, C. Gatzidis, and B. Northern, “Distributed deepthought:
Synchronising complex network multi-player games in a scalable and
flexible manner,” in Proceedings of the 3rd International Workshop
on Games and Software Engineering: Engineering Computer Games
to Enable Positive, Progressive Change, ser. GAS ’13. Piscataway,
NJ, USA: IEEE Press, 2013, pp. 40–43. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2662593.2662601

[9] S. R. James and B. D. Gillam, “Network multiplayer game,” Oct. 12
1999, uS Patent 5,964,660.

[10] D. C. Bulterman and R. Van Liere, “Multimedia synchronization and
unix,” in International Workshop on Network and Operating System
Support for Digital Audio and Video. Springer, 1991, pp. 105–119.

[11] J. Smed, T. Kaukoranta, and H. Hakonen, “A review on network-
ing and multiplayer computer games,” Turku Centre for Computer
Science, 2002.

[12] J. Smed, T. Kaukoranta, and H. Hakonen, “Aspects of networking in
multiplayer computer games,” The Electronic Library, vol. 20, no. 2,
pp. 87–97, 2002.

