
NGS: An Application Layer Network Game Simulator

Steven Daniel Webb
webbsd@cs.curtin.edu.au

William Lau
lauhow@cs.curtin.edu.au

Sieteng Soh
soh@cs.curtin.edu.au

Department of Computing
Curtin University of Technology

Perth, Western Australia

ABSTRACT
In the last five years the popularity of Massively Multi-
player Online Games (MMOGs) has exploded. Unfortu-
nately, the demand has far outweighed the resources devel-
opers can provide. Many MMOGs are suffering from scal-
ability issues, resulting in sharding, down time, and server
crashes. To solve these problems, the research community
is investigating peer-to-peer (P2P) overlay networks to sup-
port MMOGs, as P2P networks are theoretically and prac-
tically scalable. The majority of analysis of P2P gaming
architectures has been qualitative, making it difficult to un-
derstand the strengths and weaknesses of each system. This
is partially due to the lack of appropriate simulation tools.
To address this problem we have developed an application
layer network game simulator - NGS - for modelling net-
work game architectures. NGS includes mechanisms to col-
lect quantitative metrics, which may then be used to per-
form comparisons with other architectures. NGS is flexible
enough to model Client/Server, Region based, Neighbour
based, and hybrid architectures. It is extensible and modu-
lar, and will enable the research community to evaluate the
benefits and weaknesses of existing and new network gaming
architectures. Results demonstrating the extensibility and
performance of NGS, and comparisons of the performance
of several different architectures are included.

Categories and Subject Descriptors
I.6.8 [Simulation and Modelling]: Types of Simulation—
Gaming

General Terms
Measurement

Keywords
Simulation, Peer-to-peer, MMOG

1. INTRODUCTION
Massively Multiplayer Online Games (MMOGs) differ from
traditional network games as they present a single universe
in which thousands or tens of thousands of players interact
simultaneously [17]. In the last five years the popularity of
MMOGs has increased dramatically; enabled by the explo-
sive growth of the Internet and the availability of broadband
connections for home users. Unfortunately, current archi-
tectures have limited scalability [5], requiring developers to
provision large amounts of hardware and bandwidth. Fur-
thermore, as more resources cannot be deployed rapidly, de-
velopers often over-provision resources, to allow for a rapid
grow in the number of players [6]. This prevents small com-
panies from developing MMOGs, and even some large de-
velopers struggle to provision enough resources [25].

The vast majority of commercial MMOGs available today
use a centralised architecture. While more servers can be
added, the demand placed upon the system by the users has
polynomial grow, resulting in a bottleneck [1]. Centralised
architectures are not scalable beyond tens of thousands of
players, far below the market potential. A scalable archi-
tecture can support a large number of concurrent players,
and can tolerate a rapid increase in the number of players
without dramatically increasing the usage of centralised re-
sources.

The most common approach used by game developers to
solve scalability issues is sharding [3]. A shard is a complete
and independent copy of the game world. The maximum
number of concurrent players in a shard is bounded. Players
in different shards cannot interact. By adding more shards
the developer can accommodate more players; however, ev-
ery shard remains independent.

World of Warcraft (WoW) is arguably the most popular
MMOG to-date, with over 6 million players world wide [25],
and peak loads of several hundred thousand concurrent play-
ers [22]. The WoW universe is sharded into many mutually
exclusive worlds. Each shard is limited to several thousand
concurrent players. Despite the massive success of WoW and
the huge revenue it is generating, WoW has been plagued
with scalability issues [25]. Shards rapidly reach their player
limits, resulting in long queues of players waiting to join the
shard. Several quests that result in a large number of play-
ers generating a large number of events have been known to
crash the server.

In recent years Peer-to-Peer (P2P) overlay networks have
become a hot research topic [21]. Their primary advantage
over centralised architectures is their scalability. For every
node that joins the system and makes requests, the node
also provides resources to the system to handle the requests
of other nodes. There are real-world P2P systems that can
scale up to millions of concurrent users [21].

Researchers are developing P2P overlays specifically to han-
dle the requirements of network games, such as: SimMud
[17], Zone Fed [14], P2P-MES [15], MIP [7], Solipsis [16],
VON [12], Federated P2P [20], MOPAR [26], etc. In the
context of network games, each player can be considered a
P2P node, providing resources to the system. Unfortunately,
there is very little comparison between architectures and it
is difficult to evaluate the strengths and weaknesses of each
architecture, such as bandwidth, processing requirements,
and the latency introduced by the system.

To allow quantitative comparisons of new architectures, we
have developed an application layer Network Gaming Sim-
ulator (NGS). This simulator was designed to allow rapid
prototyping of architectures, with metric collection for eval-
uation. To reduce the development time of new architec-
tures NGS is written in Java, enabling object orientation
and garbage collection. NGS does not simulate the net-
work stack, as it would add unnecessary processing time and
memory usage, and only provide an insignificant increase in
accuracy.

The remainder of this paper is organised as follows: Sec-
tion 2 provides a background into the different types of P2P
architectures currently available, and highlights the difficul-
ties in making comparisons between them. This section also
provides an overview of current simulators for network ar-
chitectures. Section 3 outlines the design of NGS. Section
4 demonstrates the extensibility of NGS, provides perfor-
mance metrics, and presents initial results of simulating sev-
eral different architectures. Section 5 concludes the paper
and outlines areas of future development for the simulator.

2. BACKGROUND
2.1 Network Gaming Architectures
Table 1 provides a taxonomy of current network game ar-
chitectures. All architectures are classified as either Cen-
tralised, Distributed (P2P), or hybrid - depending on where
the game state is stored. Centralised and distributed ar-
chitectures store the game state on centralised servers and
client machines respectively. Hybrid architectures store the
game state on both centralised and client machines.

A few early network games utilised P2P architectures; how-
ever, the use of flooding to distribute updates made them
unscalable [17]. Client/Server has been the most common
architecture for network games for over a decade - gener-
ally supporting between 8 and 64 players. It will continue
to be the most common architecture for games with small
numbers of players such as First Person Shooters (FPS);
however, this architecture is not scalable and cannot handle
more than a few hundred players.

To handle large numbers of concurrent players developers
use clusters of computers, also known as Federated Client/-

Server. This is the approach used by EVE Online [3], which
holds the record for the greatest number of concurrent play-
ers in one shard: 23000. Each computer in the cluster is
responsible for managing a different portion of the virtual
world. Load balancing transfers players between computers
in the cluster, keeping every machine’s processing and band-
width requirements from reaching saturation. Federated
Client/Server is the most common architecture for commer-
cial MMOGs; however, hardware resources can only grow
linearly due to economic reasons, while the required resource
growth is polynomial to the number of simultaneous players.
This limits the maximum number of concurrent players per
shard, typically less than 10000.

P2P systems are both theoretically and practically scalable,
as every node that joins the network and starts making re-
quests also provides resources to the system - processing
power, bandwidth, storage, etc. If the resource requirements
of every node are bounded the system is infinitely scalable
[12]. P2P network game architectures are categorised as ei-
ther: neighbour based, region based, or hybrid [9].

Neighbour based schemes are true P2P systems where every
node has the same responsibilities. Every node is responsible
for sending updates about events to its neighbours. Neigh-
bour based architecture use either neighbour-list exchange -
such as P2P-MES [15] and MIP [7] - or mutual notification -
such as Solipsis [16] and VON [12]. The bandwidth required
for neighbour based schemes is a function of the density of
avatars, rather than the nodes in the system. Neighbour
based systems can achieve excellent scaling; however, they
may suffer from network partitioning. The effect of network
partitioning is that a node moves within another node’s Area
of Interest (AoI), but neither node is made aware of the
other. If partitioning occurs the game mechanics will not
execute correctly.

Region based techniques divide the virtual world into geo-
metric shapes - usually rectangles or hexagons [26]. The re-
gions may be dynamic or static; however, most approaches
use static regions for simplicity, even though dynamic re-
gions offer superior load balancing. For every region a coor-
dinator or super-peer is assigned. This node is responsible
for managing players entering and leaving the region. The
regions are used to control the AoI of players. Events gener-
ated by avatars in a region will only be propagated to other
nodes within that region - except when a node is moving
between regions, in which case the event is propagated to
both regions. The coordinator’s avatar does not need to be
a member of the region, allowing high-capacity nodes to be
selected as coordinators.

Region based P2P systems often use a lookup mechanism
such as a Distributed Hash Table (DHT) [9]. This makes
maintaining connectivity far easier than in neighbour based
systems, but requires additional overhead to run the DHT.

Region size is an important factor when developing a region
based architecture. The smaller the region the tighter the
match to a players AoI; therefore, fewer unnecessary updates
will be sent to the player. However, this results in avatars
moving between regions rapidly, which incurs a large over-
head as transitions require using the lookup mechanism of

Table 1: Taxonomy of current network game architectures.
Classification Type Examples

Centralised
Client/Server Quake [13], Torque [11]

Federated Array (cluster) World of Warcraft (WoW) [2], EVE Online [3]

Distributed (P2P)
Neighbour Based VON [12], Solipsis [16], P2P-MES [15], MIP [7]

Region Based SimMud [17], Zone-Fed [14]
Hybrid MOPAR [26]

Hybrid Federated P2P [20]

the DHT. The region size should approximate the players
AoI, without producing excessive DHT overhead.

2.2 Problems
Most analysis of architectures is qualitative, making direct
comparisons very difficult. Furthermore, fundamental dif-
ferences pose questions about the validity of any compari-
son. Three examples are: when comparing neighbour based
architectures with region based architectures how does AoI
compare with region size? End System Multicast (ESM)
allows high capacity nodes to forward messages onto multi-
ple receivers for low capacity nodes, reducing the required
capacity for the sender [8]. By reducing the required band-
width, larger regions can be used, reducing the overlay over-
head; however, ESM introduces latency into the system.
Most region based architecture use ESM, while most neigh-
bour based architecture do not. Can a meaningful com-
parisons be made between an architectures using ESM and
one without? Does the mobility model favour one architec-
ture over another? NGS was developed to help answer these
questions.

2.3 Previous work on simulation
There are several excellent network simulators already avail-
able to the research community [4]. These simulators accu-
rately model all layers of the protocol stack, and are designed
to aid the development of new protocols, and model the in-
teraction of protocols between layers. However, the process-
ing and memory requirements of simulating the entire proto-
col stack are considerable, greatly reducing the scalability of
the simulator. Furthermore, developing network gaming ar-
chitectures using current network simulators is difficult due
to the need for careful memory management, and the com-
plexity of debugging a protocol stack. Moreover, network
game architecture developers are only interested in applica-
tion layer events, and are not concerned with the details of
the underlying protocols.

Most network games researchers creating new architectures
develop a specific simulation prototype, rather than using
existing tools, which shows that current simulators are in-
appropriate. Simulation prototypes are designed specifically
for the intended application, making them very inflexible
and unsuitable to simulate other architectures. There are
several open-source game networking libraries such as the
Torque Network Library (TNL) [11], and the Quake source
code [13]. However, these libraries are very complex to use
and debug, and not suitable for simulating all architectures.
To effectively model thousands of nodes requires a flexible
and light-weight application layer simulator.

3. NGS: NETWORK GAME SIMULATOR
3.1 Goals
Our objective is to develop a single framework/simulator
that captures quantitative metrics, such as bandwidth and
latency, which can be used to compare different architec-
tures. NGS can be used to evaluate new architectures and
features. To meet this objective, NGS must be: (1) Flexible
- able to model centralised, distributed, and hybrid archi-
tectures; (2) Extensible - allow new architectures & features
to be easily incorporated; (3) Modular - allow components
to be interchanged for comparison; (4) Simple - allow re-
searchers to rapidly prototype without concern for details;
(5) Scalable - able to run simulations with thousands of
nodes.

3.2 Design
A simulation consists of a series of nodes that interact. Ev-
ery node contains several modules that determine its func-
tionality and behaviour. The modules loaded are specified
by command line arguments, allowing multiple simulations
to be run in parallel without re-compilation or consistency
issues. Figure 1 shows the components of a node. The core
of a node is the Manager, which is responsible for loading the
required modules and passing information between them.
Every type of module - Application Layer Router, Mobility
Model, Compressions, etc. - has a corresponding Factory
class to construct objects of the correct type. To develop a
new module the appropriate abstract class is extended and
6 lines of code are added to the Factory.

Every node requires an Application Layer Router (ALR)
module, to communicate with the other nodes in the system.
The ALR is specific to the architecture being simulated,
and may provide different functionality depending on the
responsibility of the node - client, server, peer, etc. Clients
send events to the server and receive updates, servers receive
events and propagate them to interested nodes, and peer
nodes broadcast events and maintain the network overlay.

Every avatar requires a mobility model to generate move-
ment; while nodes without a virtual presence - such as servers
- do not. Different compression modules may also be loaded
such as Delta Encoding (Dead Reckoning) and Message Ag-
gregation. This design allows new modules to be developed
without affecting the system, and new types of modules to
be incorporated into the system (Modules A, B, ..., Z).

3.3 Implementation
The current modules implemented are: Client/Server, VON,
DHT, DHTMultiRegion, Random Walk, and NGMM.

Figure 1: The components that provide the node
functionality

The Client/Server module implements the traditional client
server architecture. The first node constructed acts as the
server and all other nodes are clients. The clients update the
server every time they perform an action. When the server
receives an update it uses Euclidean Distance to calculate
the AoI and only update interested clients.

We selected VON as a representative neighbour based ar-
chitecture. VON has a strong mathematical base by using
voronoi diagrams [12] to dynamically divide the world into
regions. The voronoi diagram is used to determine which
nodes must be sent event updates. We selected VON as
it does not suffer from partitioning, which is disastrous for
MMOGs. The authors have developed an open-source im-
plementation of VON called VAST [24], which we have mod-
ified to make it compatible with NGS. VAST supports a dy-
namic AoI; however, we disabled this for our comparison as
none of the other architectures support a dynamic AoI. In
addition to this, dynamic AoI is only allowable for certain
types of games, based upon the game mechanics/play.

When developing a region based architecture we use a DHT
to maintain global connectivity. Although there are several
open-source implementations of DHTs [17], we decided that
using one would require considerable effort compared to the
benefits. Instead we made an assumption that a DHT mech-
anism is available, and it requires log2(n) messages to reach
any other node in the overlay, where n is the number of
nodes in the overlay. The log2(n) messages are distributed
randomly to all nodes in the DHT. This assumption is rea-
sonable as there are several DHTs that offer logB(n) worst
case performance - where B is a constant - such as Tapestry
and Pastry [19].

The world is divided into rectangular regions of fixed size.
The region that a node is occupying is its AoI. For every re-
gion there is a coordinator which is responsible for sending
and receiving notifications about nodes entering and leaving
the region. Each region uses End System Multicast (ESM)
[8] to propagate updates to all interested nodes. The coor-
dinator is responsible for building and maintaining the mul-
ticast graph for nodes joining and leaving the region. The
coordinator’s avatar does not need to be located within the
region, making it possible to select high bandwidth nodes to
be coordinators; however, the simulator currently assumes
that all nodes have equal bandwidth.

When a node joins the simulation it selects a random region

and contacts the coordinator. If this is the first node in the
simulation it becomes the coordinator for every region in
the simulation. If the new node is not the first node, the
coordinator responds by dividing the number of regions it
controls in half and assigning responsibility of half to the
newly joined node, balancing the load across both nodes.
The greater the number of regions a node is controlling the
greater the probability that a node entering the system will
take some of the workload. If the existing coordinator only
controls one region the new node does not become the coor-
dinator for any regions. Only coordinators are members of
the DHT to reduce the hop count of queries.

DHTMultiRegion is an extension to DHT, allowing nodes to
subscribe to multiple regions. This allows nodes to receive
updates from adjacent regions, presenting the player with a
seamless world.

Previous studies have found that over 80% of events gener-
ated by network games are movement updates [23]; there-
fore, when developing a simulator we are primarily inter-
ested in movement updates. NGS currently has two mobil-
ity models: Random Walk and NGMM. Every time Random
Walk is executed the current (x, y) coordinates are updated
by two randomly generated distances - ∆x & ∆y to create
the new location of the avatar (x′, y′). Random Walk can
be considered a sequence of random steps. NGMM is a sta-
tistical mobility model based on 100 Quake game traces. A
comprehensive discussion is found in [23].

To keep the comparison between architectures simple, com-
pression modules for delta encoding and message aggrega-
tion have not been implemented for NGS.

4. RESULTS AND DISCUSSION
The results presented in this section use the following con-
stants. All units are relative. The world size is 1000 × 1000
units. The total time simulated was 1000 seconds. The
Random Walk mobility model was used. Every node is ca-
pable of up to five connections, as the average bandwidth
required per node is 40Kbps [10], and the average available
upstream bandwidth is 212Kbps [18]. The AoI has a 50
unit radius. For the remainder of this paper, n is the num-
ber of players in the simulation. Except for the server node
in the Client/Server architecture, every node corresponds
to one player; therefore, when discussing the complexity of
each game architecture, the terms player and node are in-
terchangeable.

4.1 Extensibility of the Simulator
The DHT architecture presented in Section 3.3 is unsuitable
for some network games as it does not present the user with a
seamless world. When a player is crossing into a new region
they would not be aware of avatars that are within their
AoI, but located in an adjacent region. If region transitions
should not influence game mechanics a seamless world is
necessary.

To achieve a seamless world players must subscribe to re-
gions adjacent to the one their avatar is in [17] (DHTMulti-
Region). By subscribing to the eight adjacent regions, play-
ers receive updates about events in neighbouring regions,

 0

 2000

 4000

 6000

 8000

 10000

 12000

 200 300 400 500 600 700 800 900 1000

S
im

ul
at

io
n

T
im

e
(S

ec
on

ds
)

Number of players

DHT
DHT Multi Region

Client/Server
VAST

(a) Simulation time

 10

 15

 20

 25

 30

 35

 40

 200 300 400 500 600 700 800 900 1000

M
em

or
y

(M
b)

Number of players

DHT
DHT Multi Region

Client/Server
VAST

(b) Memory

Figure 2: Simulation times and memory requirements for NGS architectures

and transitions between regions will not cause avatars to
magically appear and vanish on the players screen.

Due to the extensibility of NGS only trivial changes were
required to implement DHTMultiRegion. The DHT class is
extended to allow nodes to join multiple regions and the Ap-
plicationLayerRouterFactory is updated for the new class.

As there is no advantage in implementing the mobility model
directly in Java, we implemented a trace driven mobility
model that reads a trace file for every avatar and moves
it accordingly. This allows other mobility models, such
as NGMM [23], to be used by generating new traces, and
also allows different avatars to use different mobility models
within a simulation. This extension was trivial to implement
due to the use of inheritance in the simulator.

We have shown that adding new architectures, mobility mod-
els, and features is a trivial task. This is supported by the
ease in which the VAST source code was incorporated into
NGS.

4.2 Efficiency of the Simulator
To demonstrate the efficiency of NGS we ran simulations
with varying numbers of players. The real-world time taken
to simulate each architecture for 1000 seconds is shown in
Figure 2(a). The system was an Intel Pentium 4 - 3.4GHz,
with 512MB of RAM, running Fedora Core 4. The process-
ing required per node is dependent on the number of avatars
within its AoI; therefore, the time growth for the simulator
is polynomial compared to the number of nodes. Figure
2(a) demonstrates that NGS is very light weight - able to
simulate the DHT architecture with 1000 nodes in only 69
seconds - and that the time to run a simulation is directly
dependent on the complexity of the architecture. We have
successfully run simulations of 10000 nodes using the DHT
architecture.

Figure 2(b) shows the memory requirements for simulat-
ing each architecture. The DHT, DHTMultiRegion, and
Client/Server architecture scale extremely well as they were

specifically developed for NGS. VAST requires considerably
more memory for its internal data structures; however, it
still scales approximately linearly with respect to the num-
ber of nodes.

4.3 Architecture Comparison
In this section we present some initial results from using
the simulator. It should be noted that the results should
not be considered as exact values, as there would be unfore-
seen additional overhead in a real application. The shape
of each graph is of greater interest, as it should accurately
demonstrate the scalability of a system.

Figure 3 shows the bandwidth requirements for the client
and server game traffic in a Client/Server architecture. As
noted by other researchers [1], the bandwidth requirement
for clients is O(n); however, the server bandwidth increases
polynomial to the number of players. Even when using AoI
filtering, every update must be forwarded to all other nodes
within the AoI. As the number of players grows, so does
the number of players that must receive updates; hence, the
bandwidth is O(n2). Using a federated client/server archi-
tecture only provides a temporary solution, as adding hard-
ware only provides a linear increase in resources - insufficient
for hundreds of thousands of players.

Examining the results for the DHT architecture in Figure
4, it is clear that game state propagation requires far more
bandwidth than signalling traffic. ESM successfully limits
the number of connections per node to five; however, it also
introduces considerable delay for propagating updates. This
is compounded by the absence of a self-improvement algo-
rithm for the multicast graph, resulting in O(m) worst case
performance, where m is the number of nodes in a region.
The Optimal Hops line is the theoretical minimum number
of hops for a region with the corresponding number of nodes.
While the DHT system is scalable, the long propagation de-
lays do not make it practical for most real-time applications
such as games.

Figure 5 compares the bandwidth and latency for DHT and

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 500 1000 1500 2000 2500

B
yt

es
 p

er
 ti

m
e

un
it

Number of players

Average Inbound Game Traffic Average Outbound Game Traffic

(a) Client Bandwidth

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 9e+06

 1e+07

 0 500 1000 1500 2000 2500

B
yt

es
 p

er
 ti

m
e

un
it

Number of players

Server Inbound Game Traffic Server Outbound Game Traffic

(b) Server Bandwidth

Figure 3: The game traffic requirements for a Client/Server architecture

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 500 1000 1500 2000 2500

B
yt

es
 p

er
 ti

m
e

un
it

Number of players

Average DHT Traffic
Max DHT Inbound Traffic

Max DHT Outbound Traffic

Average Game Traffic
Max Inbound Game Traffic

Max Outbound Game Traffic

(a) Overlay and Game Traffic

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 0 500 1000 1500 2000 2500

ho
ps

Number of players

Max Hops Average Hops Optimal Hops

(b) Multicast propagation delay

Figure 4: Bandwidth requirements and latency for the DHT architecture

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 0 500 1000 1500 2000 2500

B
yt

es
 p

er
 ti

m
e

un
it

Number of players

MultiRegion Average Overlay Traffic
MultiRegion Average Game Traffic

MultiRegion Max Outbound Game Traffic
SingleRegion Average Overlay Traffic

SingleRegion Average Game Traffic
SingleRegion Max Outbound Game Traffic

(a) Overlay and Game Traffic

 0

 10

 20

 30

 40

 50

 60

 0 500 1000 1500 2000 2500

ho
ps

Number of players

MultiRegion Max Hops
MultiRegion Average Hops

SingleRegion Max Hops
SingleRegion Average Hops

(b) Multicast propagation delay

Figure 5: Bandwidth requirements and latency comparison for single and multi-region architectures

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 500 1000 1500 2000 2500

B
yt

es
 p

er
 ti

m
e

un
it

Number of players

Average Traffic Maximum traffic

(a) Game Traffic

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 500 1000 1500 2000 2500

N
um

be
r

of
 c

on
ne

ct
io

ns

Number of players

Maximum connections Average connections

(b) Connections made

Figure 6: Bandwidth requirements and the number of connections made for the VAST Architecture

DHTMultiRegion. As expected, the DHTMultiRegion ar-
chitecture generates nine times the game traffic generated
by the DHT architecture; and the average latency increases
by approximately 1.55, as every node propagates updates
received to four of its neighbours.

VAST does not support any form of ESM or message ag-
gregation. Every node must connect to every other node
within its AoI. This results is very low latency (1 hop), but
unrealistically high connection rates. The connection rates
in Figure 6 far exceed the capabilities of typical broadband
hosts [18], making VAST unscalable. The authors [12] at-
tempted to address this by using a variable AoI; however,
this is not a suitable solution for many games.

5. CONCLUSIONS
We have developed NGS, an application layer Network Game
Simulator, and have successfully simulated Client/Server,
Region based, and Neighbour based architectures. The sim-
ulator is very flexible and can easily be extended to include
new features and architectures. This is primarily due to the
use of modules and Object Orientation, as shown by the
extension of the DHT architecture, the development of the
trace driven mobility model, and the incorporation of the
VAST source code with only minor modifications. As NGS
does not simulate the protocol stack it is very simple. There
are no complex routing algorithms or APIs to learn, and de-
bugging is easy. Finally, we have run simulations of up to
10000 nodes, and there is no technical reason preventing
simulations with more than 10000 nodes.

We are currently performing a full comparison of network
game architectures. This will involve determining a set of
metrics that can be used for a fair comparison across archi-
tectures. This is not a trivial task due to the fundamental
differences between architectures.

Currently processing overhead is not captured by the simu-
lation. This is not important for current desktop machines;
however, it may be critical for other devices such as mobile
phones and wireless sensor networks.

To encourage applicable research we intend to implement
topology features to more accurately measure latency, and
promote the development of architectures that minimise the
latency between nodes, rather than just the end system hop
count. This will also include modelling nodes with differ-
ent link qualities, an important consideration for ESM. The
topology will be read in from a file generated by a topology
generator.

While we have only performed a preliminary evaluation it
appears that the greatest factor effecting scalability is the
multicast mechanism used to propagate updates. The Client
/ Server model places O(n2) requirements on the server
bandwidth and processing power, making it fundamentally
unscalable. For P2P systems - whether they are region based
or neighbour based - an ESM method must be developed
that has very low latency, while remaining within the band-
width requirements of the nodes. Until this is achieved P2P
systems may not be scalable enough for many types of real-
time applications and games.

6. ACKNOWLEDGEMENTS
We would like to thank the anonymous reviewers for their
helpful suggestions.

7. REFERENCES
[1] T. Alexander, editor. Massively Multiplayer Game

Development 2. Charles River Media, Inc, Hingham,
Massachusetts, 2005.

[2] Blizzard Entertainment. World of Warcraft.
http://www.worldofwarcraft.com/.

[3] D. Brandt. Networking and scalability in EVE Online.
Slide Show, Oct 2005. http://www.research.ibm.com/-
netgames2005/papers/brandt.pdf.

[4] L. Breslau, D. Estrin, K. Fall, S. Floyd, J. Heidemann,
A. Helmy, P. Huang, S. McCanne, K. Varadhan,
Y. Xu, and H. Yu. Advances in network simulation.
IEEE Computer, 33(5):59–67, May 2000.

[5] F. R. Cecin, R. Real, R. de Oliveira Jannone, C. F. R.
Geyer, M. G. Martins, and J. L. V. Barbosa.
FreeMMG: A scalable and cheat-resistant distribution
model for Internet games. In IEEE Int. Sym. on
Distributed Simulation and Real-Time Applications,
pages 83–90, Oct 2004.

[6] C. Chambers, W. Feng, S. Sahu, and D. Saha.
Measurement-based characterization of a collection of
on-line games. In Internet Measurement Conf., 2005.

[7] J.-F. Chen, W.-C. Lin, H.-S. Bai, and S.-Y. Dai. A
message interchange protocol based on routing
information protocol in a virtual world. In Int. Conf.
on Advanced Information Networking and
Applications, pages 377–384, Mar 2005.

[8] Y. Chu, S. G. Rao, and H. Zhang. A case for end
system multicast (keynote address). In Proc. ACM
SIGMETRICS int. conf. on Measurement and
modeling of computer systems, pages 1–12, 2000.

[9] S. Douglas, E. Tanin, A. Harwood, and
S. Karunasekera. Enabling massively multi-player
online gaming applications on a P2P architecture. In
Proc. IEEE Int. Conf. on Information and
Automation, pages 7–12, 2005.

[10] W. Feng, F. Chang, W. Feng, and J. Walpole.
Provisioning on-line games: a traffic analysis of a busy
counter-strike server. In Proc. ACM SIGCOMM
Workshop on Internet measurment, pages 151–156,
2002.

[11] GarageGames. Torque Network Library (TNL).
http://www.opentnl.org/.

[12] S.-Y. Hu, J.-F. Chen, and T.-H. Chen. VON: A
scalable peer-to-peer network for virtual environments.
IEEE Network, 20(4), July/August 2006.

[13] id Software. http://www.idsoftware.com/.

[14] T. Iimura, H. Hazeyama, and Y. Kadobayashi. Zoned
federation of game servers: a peer-to-peer approach to
scalable multi-player online games. In Proc. ACM
SIGCOMM workshop on Network and system support
for games, pages 116–120, 2004.

[15] Y. Kawahara, T. Aoyama, and H. Morikawa. A
peer-to-peer message exchange scheme for large-scale
networked virtual environments. Telecommunication
Systems, 25(3):353–370, Mar 2004.

[16] J. Keller and G. Simon. Solipsis: A massively
multi-participant virtual world. In Parallel and
Distributed Processing Techniques and Applications,
pages 262–268, 2003.

[17] B. Knutsson, H. Lu, W. Xu, and B. Hopkins.
Peer-to-peer support for massively multiplayer games.
In Joint Conf. IEEE Computer and Communications
Societies, volume 1, page 107, March 2004.

[18] K. Lakshminarayanan and V. N. Padmanabhan. Some
findings on the network performance of broadband
hosts. In Proc. ACM SIGCOMM conf. on Internet
measurement, pages 45–50, 2003.

[19] E. K. Lua, J. Crowcroft, M. Pias, R. Sharma, and
S. Lim. A survey and comparison of peer-to-peer
overlay network schemes. Communications Surveys &
Tutorials, IEEE, pages 72–93, 2005.

[20] S. Rooney, D. Bauer, and R. Deydier. A federated
peer-to-peer network game architecture. Research
report, IBM Research GmbH, Zurich Research
Laboratory 8803 Ruschlikon Switzerland, Jan 2004.

[21] D. Stutzbach, R. Rejaie, and S. Sen. Characterizing
unstructured overlay topologies in modern P2P
file-sharing systems. In Internet Measurement Conf.,
pages 49–62, 2005.

[22] T. Surette. World of Warcraft sells more than 600,000
units, Jan 2005. http://www.gamespot.com/pc/rpg/-
worldofwarcraft/news.html?sid=6116075.

[23] S. A. Tan, W. Lau, and A. Loh. Networked game
mobility model for first-person-shooter games. In
Proc. ACM SIGCOMM workshop on Network and
system support for games, pages 1–9, 2005.

[24] V. D. Team. VAST: VON-based Adaptive Scalable
Transfer. http://vast.sourceforge.net/.

[25] D. Terdiman. World of Warcraft battles server
problems, Apr 2006.
http://news.com.com/World+of+Warcraft+battles-
+server+problems/2100-1043 3-6063990.html.

[26] A. P. Yu and S. T. Vuong. MOPAR: a mobile
peer-to-peer overlay architecture for interest
management of massively multiplayer online games. In
Proc. int. workshop on Network and operating systems
support for digital audio and video, pages 99–104,
2005.

