184 research outputs found

    Preference-Based Evolutionary Many-Objective Optimization for Agile Satellite Mission Planning

    Get PDF
    With the development of aerospace technologies, the mission planning of agile earth observation satellites has to consider several objectives simultaneously, such as profit, observation task number, image quality, resource balance, and observation timeliness. In this paper, a five-objective mixed-integer optimization problem is formulated for agile satellite mission planning. Preference-based multi-objective evolutionary algorithms, i.e., T-MOEA/D-TCH, T-MOEA/D-PBI, and T-NSGA-III are applied to solve the problem. Problem-specific coding and decoding approaches are proposed based on heuristic rules. Experiments have shown the advantage of integrating preferences in many-objective satellite mission planning. A comparative study is conducted with other state-of-the-art preference-based methods (T-NSGA-II, T-RVEA, and MOEA/D-c). Results have demonstrated that the proposed T-MOEA/D-TCH has the best performance with regard to IGD and elapsed runtime. An interactive framework is also proposed for the decision maker to adjust preferences during the search. We have exemplified that a more satisfactory solution could be gained through the interactive approach.Algorithms and the Foundations of Software technolog

    Evolutionary Game Theoretic Multi-Objective Optimization Algorithms and Their Applications

    Get PDF
    Multi-objective optimization problems require more than one objective functions to be optimized simultaneously. They are widely applied in many science fields, including engineering, economics and logistics where optimal decisions need to be taken in the presence of trade-offs between two or more conicting objectives. Most of the real world multi-objective optimization problems are NP-Hard problems. It may be too computationally costly to find an exact solution but sometimes a near optimal solution is sufficient. In these cases, Multi-Objective Evolutionary Algorithms (MOEAs) provide good approximate solutions to problems that cannot be solved easily using other techniques. However Evolutionary Algorithm is not stable due to its random nature, it may produce very different results every time it runs. This dissertation proposes an Evolutionary Game Theory (EGT) framework based algorithm (EGTMOA) that provides optimality and stability at the same time. EGTMOA combines the notion of stability from EGT and optimality from MOEA to form a novel and promising algorithm to solve multi-objective optimization problems. This dissertation studies three different multi-objective optimization applications, Cloud Virtual Machine Placement, Body Sensor Networks, and Multi-Hub Molecular Communication along with their proposed EGTMOA framework based algorithms. Experiment results show that EGTMOAs outperform many well known multi-objective evolutionary algorithms in stability, performance and runtime

    Evolutionary Algorithms for

    Get PDF
    Many real-world problems involve two types of problem difficulty: i) multiple, conflicting objectives and ii) a highly complex search space. On the one hand, instead of a single optimal solution competing goals give rise to a set of compromise solutions, generally denoted as Pareto-optimal. In the absence of preference information, none of the corresponding trade-offs can be said to be better than the others. On the other hand, the search space can be too large and too complex to be solved by exact methods. Thus, efficient optimization strategies are required that are able to deal with both difficulties. Evolutionary algorithms possess several characteristics that are desirable for this kind of problem and make them preferable to classical optimization methods. In fact, various evolutionary approaches to multiobjective optimization have been proposed since 1985, capable of searching for multiple Paretooptimal solutions concurrently in a single simulation run. However, in spite of this variety, there is a lack of extensive comparative studies in the literature. Therefore, it has remained open up to now

    A Multi-objective Evolutionary Algorithm to solve Complex Optimization Problems

    Get PDF
    Multi-objective optimization problem formulations reflect pragmatic modeling of several real-life complex optimization problems. In many of them the considered objectives are competitive with each other; emphasizing only one of them during solution generation and evolution incurs high probability of producing a one-sided solution, which is unacceptable with respect to other objectives. An appropriate solution to the multi-objective optimization problem is to investigate a set of solutions that satisfy all of the competing objectives to an acceptable extent, where no solution in the solution set is dominated by others in terms of objective optimization. In this work, we investigate well known Non-dominated Sorting Genetic Algorithm (NSGA-II), and Strength Pareto Evolutionary Algorithm (SPEA-II), to find Pareto optimal solutions for two real-life problems: Task-based Sailor Assignment Problem (TSAP) and Coverage and Lifetime Optimization Problem in Wireless Sensor Networks (CLOP). Both of these problems are multi-objective problems. TSAP constitutes five multi-directional objectives, whereas CLOP is composed of two competing objectives. To validate the special operators developed, these two test bed problems have been used. Finally, traditional NSGA-II and SPEA-II have been blended with these special operators to generate refined solutions of these multi-objective optimization problems

    Multiobjective Reliable Cloud Storage with Its Particle Swarm Optimization Algorithm

    Get PDF
    Information abounds in all fields of the real life, which is often recorded as digital data in computer systems and treated as a kind of increasingly important resource. Its increasing volume growth causes great difficulties in both storage and analysis. The massive data storage in cloud environments has significant impacts on the quality of service (QoS) of the systems, which is becoming an increasingly challenging problem. In this paper, we propose a multiobjective optimization model for the reliable data storage in clouds through considering both cost and reliability of the storage service simultaneously. In the proposed model, the total cost is analyzed to be composed of storage space occupation cost, data migration cost, and communication cost. According to the analysis of the storage process, the transmission reliability, equipment stability, and software reliability are taken into account in the storage reliability evaluation. To solve the proposed multiobjective model, a Constrained Multiobjective Particle Swarm Optimization (CMPSO) algorithm is designed. At last, experiments are designed to validate the proposed model and its solution PSO algorithm. In the experiments, the proposed model is tested in cooperation with 3 storage strategies. Experimental results show that the proposed model is positive and effective. The experimental results also demonstrate that the proposed model can perform much better in alliance with proper file splitting methods

    Distributed Power Generation Scheduling, Modelling and Expansion Planning

    Get PDF
    Distributed generation is becoming more important in electrical power systems due to the decentralization of energy production. Within this new paradigm, new approaches for the operation and planning of distributed power generation are yet to be explored. This book deals with distributed energy resources, such as renewable-based distributed generators and energy storage units, among others, considering their operation, scheduling, and planning. Moreover, other interesting aspects such as demand response, electric vehicles, aggregators, and microgrid are also analyzed. All these aspects constitute a new paradigm that is explored in this Special Issue

    Multi-objective optimisation methods applied to complex engineering systems

    Get PDF
    This research proposes, implements and analyses a novel framework for multiobjective optimisation through evolutionary computing aimed at, but not restricted to, real-world problems in the engineering design domain. Evolutionary algorithms have been used to tackle a variety of non-linear multiobjective optimisation problems successfully, but their success is governed by key parameters which have been shown to be sensitive to the nature of the particular problem, incorporating concerns such as the number of objectives and variables, and the size and topology of the search space, making it hard to determine the best settings in advance. This work describes a real-encoded multi-objective optimising evolutionary algorithm framework, incorporating a genetic algorithm, that uses self-adaptive mutation and crossover in an attempt to avoid such problems, and which has been benchmarked against both standard optimisation test problems in the literature and a real-world airfoil optimisation case. For this last case, the minimisation of drag and maximisation of lift coefficients of a well documented standard airfoil, the framework is integrated with a freeform deformation tool to manage the changes to the section geometry, and XFoil, a tool which evaluates the airfoil in terms of its aerodynamic efficiency. The performance of the framework on this problem is compared with those of two other heuristic MOO algorithms known to perform well, the Multi-Objective Tabu Search (MOTS) and NSGA-II, showing that this framework achieves better or at least no worse convergence. The framework of this research is then considered as a candidate for smart (electricity) grid optimisation. Power networks can be improved in both technical and economical terms by the inclusion of distributed generation which may include renewable energy sources. The essential problem in national power networks is that of power flow and in particular, optimal power flow calculations of alternating (or possibly, direct) current. The aims of this work are to propose and investigate a method to assist in the determination of the composition of optimal or high-performing power networks in terms of the type, number and location of the distributed generators, and to analyse the multi-dimensional results of the evolutionary computation component in order to reveal relationships between the network design vector elements and to identify possible further methods of improving models in future work. The results indicate that the method used is a feasible one for the achievement of these goals, and also for determining optimal flow capacities of transmission lines connecting the bus bars in the network

    Advanced Sensing, Fault Diagnostics, and Structural Health Management

    Get PDF
    Advanced sensing, fault diagnosis, and structural health management are important parts of the maintenance strategy of modern industries. With the advancement of science and technology, modern structural and mechanical systems are becoming more and more complex. Due to the continuous nature of operation and utilization, modern systems are heavily susceptible to faults. Hence, the operational reliability and safety of the systems can be greatly enhanced by using the multifaced strategy of designing novel sensing technologies and advanced intelligent algorithms and constructing modern data acquisition systems and structural health monitoring techniques. As a result, this research domain has been receiving a significant amount of attention from researchers in recent years. Furthermore, the research findings have been successfully applied in a wide range of fields such as aerospace, manufacturing, transportation and processes

    System Architecture Design Using Multi-Criteria Optimization

    Get PDF
    System architecture is defined as the description of a complex system in terms of its functional requirements, physical elements and their interrelationships. Designing a complex system architecture can be a difficult task involving multi-faceted trade-off decisions. The system architecture designs often have many project-specific goals involving mix of quantitative and qualitative criteria and a large design trade space. Several tools and methods have been developed to support the system architecture design process in the last few decades. However, many conventional problem solving techniques face difficulties in dealing with complex system design problems having many goals. In this research work, an interactive multi-criteria design optimization framework is proposed for solving many-objective system architecture design problems and generating a well distributed set of Pareto optimal solutions for these problems. System architecture design using multi-criteria optimization is demonstrated using a real-world application of an aero engine health management (EHM) system. A design process is presented for the optimal deployment of the EHM system functional operations over physical architecture subsystems. The EHM system architecture design problem is formulated as a multi-criteria optimization problem. The proposed methodology successfully generates a well distributed family of Pareto optimal architecture solutions for the EHM system, which provides valuable insights into the design trade-offs. Uncertainty analysis is implemented using an efficient polynomial chaos approach and robust architecture solutions are obtained for the EHM system architecture design. Performance assessment through evaluation of benchmark test metrics demonstrates the superior performance of the proposed methodology
    corecore