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Information abounds in all fields of the real life, which is often recorded as digital data in computer systems and treated as a kind
of increasingly important resource. Its increasing volume growth causes great difficulties in both storage and analysis. The massive
data storage in cloud environments has significant impacts on the quality of service (QoS) of the systems, which is becoming
an increasingly challenging problem. In this paper, we propose a multiobjective optimization model for the reliable data storage
in clouds through considering both cost and reliability of the storage service simultaneously. In the proposed model, the total
cost is analyzed to be composed of storage space occupation cost, data migration cost, and communication cost. According to
the analysis of the storage process, the transmission reliability, equipment stability, and software reliability are taken into account
in the storage reliability evaluation. To solve the proposed multiobjective model, a Constrained Multiobjective Particle Swarm
Optimization (CMPSO) algorithm is designed. At last, experiments are designed to validate the proposed model and its solution
PSO algorithm. In the experiments, the proposed model is tested in cooperation with 3 storage strategies. Experimental results
show that the proposed model is positive and effective. The experimental results also demonstrate that the proposed model can
perform much better in alliance with proper file splitting methods.

1. Introduction

The rapidly increasing information resources, which are
often recorded in form of data and stored in computer
systems, are a kind of new resources and becoming more
and more important nowadays. The rapid development of
Internet technologies andmobile communication equipment
allows more and more people to have opportunity to access
various Internet networks, such as Twitters, Amazon, and
Taobao sites. While visiting these websites, massive acces-
sion information which is very important to the service
providers to make business decisions will be produced.
The massive accession information is often collected by the
service providers and recorded as data resources stored in
cloud systems. The storage of such massive data is of great
significance for the quality of service of computing systems
and poses many challenges to storage service providers.
Recently, cloud storage is getting more and more competitive
and popular, which is becoming a trend of future storage

technique. Various cloud storage products are springing up
in the high-tech market, such as Cloud Drive of Amazon and
Live Mesh of Microsoft.

The main goal of cloud storage is to provide users with
low-cost, infinitely extensible, and high-reliability storage
platform, which can also support various data storage types.
A cloud storage system also has abilities to satisfy the different
requirements of different users. With the development of the
era of service economy, customers no longer seek storage
products or services with cheap price and high quality but
are more concerned about quality of service, which makes
the data storage providers concentrate on promoting both of
the quality of service and storage efficiency simultaneously.
Therefore, optimizing the data storage process is of great
importance to the quality of service of the cloud storage
systems. However, with the development of cloud storage
techniques, various data processing techniques and appli-
cations need to be deployed in combination with cloud
storage, so that different aspects should be considered while
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optimizing the storage process. Users usually select suitable
storage service according to the issues of storage cost and
reliability.The service providers also do their best to enhance
product competitiveness by saving the storage costs and
promoting the storage reliability.

Nowadays, the quality of service of cloud storage is
being influenced by the following 7 categories of risks or
challenges [1]: privileged access, auditing, storage location,
data isolation, data disaster recovery, survey, and long-term
viability. Among these risks, data disaster recovery is a very
significant issue for both cloud storage providers and users.
Users choose cloud storage providers to store their sensitive
and significant business data [2–4]. Once their data were lost,
it will not only lead to fetal disasters to the companies but
also bring legal disputes between users and storage service
providers. For instance, in a banking system, the clients’ data
is of great importance to both banks and clients. If lost or
unable to be recovered, it will lead to immeasurable losses for
both banks and their clients [5, 6]. Hence, it should be one of
the business objectives for cloud storage providers to ensure
the reliability and recovery for the stored data.

In cloud storage systems, the datacenters are the vital
components used to house computer systems and associ-
ated components, such as servers, telecommunications, and
storage system [7]. Compared with personal computers, the
main advantages of the datacenter are over its continuously
powerful operation, storage, and network communication,
faster crash recovery, and broader convenient expanse space
[8]. In almost all the computer systems, data resources are
stored on the devices called hard disks, which have direct
impacts on the quality of service of the storage process. The
storage capacity of a cloud storage system is significantly
limited by the volume of the hard disks in its datacenters.
In a datacenter, various hard disks with different properties
are deployment for certain purposes on storage or analysis
of the data files, such as SSD (Solid State Disk), HDD (Hard
Disk Drive), and HHD (Hybrid Hard Disk). In datacenters,
the mixture of HDDs and SSDs is becoming more and more
popular in enterprise-class disk arrays. Practically, datacen-
ters are often located at different places (cities) and connected
with each other via Internet or high-performance routers.The
geographical distance is another important factor which will
influence the data storage process.The cloud storage is getting
more and more popular, so more and more individuals
and enterprises decide to migrate their business or the data
management works to datacenters aiming to cut operating
costs. As is well known, the value of data lies not only in
its contents but also in the potential business benefits for the
business development. Thus, the quality of service of a cloud
storage system is conditioned by many different factors.

From the user’s point of view, different data files submit-
ted for possible storage often need different storage service
accordingly [9]. To meet such demand, the storage service
providers have to develop diverse storage products and
invest large quantities of human inputs and various storage
devices. Hence, an important issue for the providers to
consider is how to save the service cost and improve the
storage reliability. Many operators have employed different
technologies to realize the purpose of reducing the cost and

improving the reliability [10–12]. During the storage of the
data files, the cost and reliability are influenced by many
factors, such as communication and transmission. In this
paper, these factors will be quantified to evaluate the cost
and reliability of the storage service.Throughminimizing the
storage cost and maximizing the storage reliability simulta-
neously, a multiobjective optimization model for the massive
data storage in cloud environment is proposed. Various
solutions that have reference value for decision-makers will
be obtained by solving this multiobjective model, so that
more reasonable decisions might be made. Then, a particle
swarm optimization (PSO) algorithm is designed to solve the
proposed model.

The remainder of this paper is organized as follows:
Section 2 briefly reviews the state of the art of the research
on the cloud storage optimization. Then, the multiobjective
optimization model for reliable cloud storage is proposed
through analyzing the storage processes in Section 3. Sec-
tion 4 briefly introduces the PSO algorithm and a tailor-
made multiobjective PSO algorithm is designed to solve the
proposed model. Experiments and results analysis are made
in Section 5. At last, conclusions of this paper are drawn in
Section 6.

2. Related Work

In recent years, with the increasing usage of the cloud storage
service, more and more efforts have been made to improve
the quality of service via managing resources in clouds. Since
the resources in the cloud environment are provided on a pay-
as-you-go basis, high efficiency utilization of the resources is
necessary. Efficient resource management in cloud datacen-
ters has attracted more and more attentions with different
objectives, such as reducing cloud computational cost or
energy budget, improving the quality of service of the cloud
systems, and optimizing the data storage. Various techniques
have been developed to achieve these objectives.

Virtualization technique is a kind of efficient resource
management techniques employed in datacenters to reduce
the computational cost or energy budget. Virtual machines
play significant roles in the cloud computing systems, which
can bemigrated between different systems or infrastructures.
Through migrating, these virtual machines can efficiently
manage the resources in the cloud environment. The recent
research on virtual machine migration problems mainly
focuses on maximizing the resources utilization or mini-
mizing the migration cost. Zhang et al. [13] proposed a
multiobjective optimization model to maximize the resource
utilization and minimize the migration cost simultaneously,
in which the factors of storage capacity, bandwidth, etc.
are considered. Ahmad et al. [14] summarized the virtual
machine migration schemes in aspects of the network band-
width optimizations, server consolidation frameworks,DVFS
energy optimization, and storage optimization for cloud
datacenters in the Internet links. Dong et al. [15] proposed
a virtual machine scheduling strategy aiming at reducing the
number of the active virtual machines and network devices,
inwhich the resources in IaaS cloud, such as the storage space,
bandwidth, and network connectivity, are considered.
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Cloud storage optimization [16–22] is another issue to
improve the quality of service of the cloud computing
systems. In [16], optimizations are proposed to reduce the
volume of data to be transferred per data access for the
respects of privacy and security, which did not consider the
storage cost. Guo and Fang [17] proposed an optimization
model with the objective of minimizing the total electricity
cost of multiple datacenters for cloud service providers, in
which the available energy storage capabilities in datacenters
were considered to be further used to reduce the electricity.
Then, an online algorithm based on Lyapunov optimization
technique was developed for this model. However, solving
this single objective optimization model, only one solution
can be obtained, which cannot help service providers develop
customized products. Mao et al. [18] proposed a SAR model
to improve the read performance of the cloud storage system.
In this model, the high efficiency of the random read perfor-
mance of SSDs was utilized to improve the read performance
of the cloud system converting the read requests on HDDs
to the read requests on the SSDs. Liu et al. [19] proposed a
security-aware intermediate data placement strategy for data
intensive scientific workflows in cloud environment with the
aim of storing large volumes of the intermediate datasets
cost-effectively, in which the security factor of the datasets
is considered. In [20], the efforts on improving the energy
efficiency of data accesses and storage were made. Aiming to
improve the storage utilization and workflow scheduling per-
formance in the cloud, Wang et al. [21] proposed a user-level
file system and a scheduling algorithm for scientific workflow
computation in the cloud, in which the storage utilization
was improved by using the workflow-aware file system and
the scheduler to control the number of concurrent workflow
instances at runtime. Jarrah et al. [22] proposed a hierarchical
optimization model for energy data flow in smart grid power
systems aiming to minimize daily electricity cost through
maximizing the used percentage of renewable energy.

However, most of the existing works focus on either the
cost (or energy) or the storage safety by scheduling the data
storage tasks or the storage devices. Few work considers both
the storage cost and reliability simultaneously. The storage
reliability is of great significance to the quality of service of
the cloud storage systems.

3. Multiobjective Optimization Model for
Massive Data Storage

As a kind of open service IT systems, cloud storage systems
are usually with the structure as Figure 1. Choosing an open
cloud environment to store data files, users often take into
account not only the price of data storage services but also
the reliability when they send their data files to the cloud
computing systems [23–25]. The users’ privacy or profit is
often involved in their data files to be stored. The users
might probably select different storage services for different
purposes according to their demands. Therefore, the storage
service providers should provide plentiful storage service
to satisfy different users’ requirements. When pricing the
storage service, the providers should have knowledge of the
cost and reliability of the certain storage service. Or, given

the price of a certain storage service, the providers need to
do their best to reduce the storage cost and keep the storage
reliability. Aiming to solve this problem, we proposed a new
multiobjective optimization model for massive data storage
in cloud environment considering storage cost and reliability
simultaneously.

3.1. Assumptions. Each server in datacenters of a cloud
storage system can be treated as a node, and the linkage
between servers can be represented by edges. Therefore, we
can have a complete graph to represent the networks of
the servers. The data files with different security level have
different storage cost. Except for the costs of encryption
processing and special device usage, another issue is that
data files with high security level may have more backups
around different locations. Hence, the monitor system needs
to communicate with the servers located in different places
and transfer these backups.These processes will not only cost
much more but also make the storage unreliable.

Let 𝑆 = {𝑠1, 𝑠2, . . . , 𝑠𝑁} be the servers in the data-
centers of a cloud storage system. These servers might be
arranged in different places. The distance between these
servers is denoted by the matrix (𝑑(𝑠𝑖, 𝑠𝑗))𝑁×𝑁, in which, ∀𝑖 ∈{1, 2, . . . , 𝑁}, 𝑑(𝑠𝑖, 𝑠𝑖) = 0 and, ∀𝑖, 𝑗 ∈ {1, 2, . . . , 𝑁} and 𝑖 ̸= 𝑗,𝑑(𝑠𝑖, 𝑠𝑗) ≥ 0. The data files submitted by users are denoted
as 𝐹 = (𝑓1, 𝑓2, . . . , 𝑓𝑀), in which 𝑓𝑖 denotes an indivisible
data file. Each data file has its own security level, denoted as𝐿(𝑓𝑖), 𝑖 = 1∼𝑀. For convenience, other parameters are listed
in Nomenclature.

3.2. Total Service Cost for Massive Data Storage. In each
server, the data files with different security levels usually
have different storage price denoted as 𝐶𝑠(𝑠𝑖, 𝐿(𝑓𝑗)), which is
in proportion to the security level. The number of backups
for data file 𝑓𝑖 with different security levels is often set to
be proportional to its security level. Hence, the higher the
security level a data file has, the higher the storage cost it will
need. The total service cost for storing a set of data files 𝐹 is
divided into three parts in this paper: storage cost, migration
cost, and communication cost.

3.2.1. Storage Cost. The storage cost of data file 𝑓𝑖 per unit
time can be treated as rental cost for data store space, which
is the product of the volume of the data files, the price of the
related storage service in the target server, and the storage
time.Therefore, the storage cost of data file𝑓𝑖 can be evaluated
through the following formula:

𝜁𝑠 (𝑓𝑖) = 𝑁∑
𝑗=1

𝐶𝑠 (𝑠𝑗, 𝐿 (𝑓𝑖))𝑋 (𝑓𝑖, 𝑠𝑗) . (1)

Thus, the storage cost of storing the data file set 𝐹 in time𝑡 is the sum of the storage cost of each data file 𝑓𝑖 in the cloud
storage system, which can be formulated as follows:

𝜁𝑠 (𝐹, 𝑡) = 𝑀∑
𝑖=1

𝜁𝑠 (𝑓𝑖) ⋅ 𝑡
= 𝑀∑
𝑖=1

𝑁∑
𝑗=1

𝐶𝑠 (𝑠𝑗, 𝐿 (𝑓𝑖))𝑋 (𝑓𝑖, 𝑠𝑗) ⋅ 𝑡.
(2)
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Figure 1: Structure of cloud storage systems.

3.2.2. Migration Cost. As is well known, users can access and
upload their data files via Internet to a cloud system almost
everywhere. The data files are often uploaded by the users to
the servers located at themanagement layer of a cloud system
to decide which target storage servers will be chosen to store
these data files. Therefore, some data files might be migrated
to other servers located at different places. The migration
cost will be required, which is basically proportional to the
migration distance and the data volume. Suppose that the
data files are uploaded at server 𝑠𝑏, the migration cost of a
data block 𝑓𝑘 from 𝑠𝑏 to 𝑠𝑗 can be calculated as follows:

𝜁mig (𝑓𝑘, 𝑠𝑏, 𝑠𝑗) = 𝐶𝑚𝑋(𝑓𝑘, 𝑠𝑏) 𝑑 (𝑠𝑏, 𝑠𝑗) , (3)

in which 𝐶𝑚 is the migration price. Thus, the migration cost
of the data files𝐹 during the storage process can be calculated
as follows:

𝜁𝑚 (𝐹) = 𝑀∑
𝑘=1

𝑁∑
𝑗=1

𝜁mig (𝑓𝑘, 𝑠𝑏, 𝑠𝑗)

= 𝑀∑
𝑘=1

𝑁∑
𝑗=1

𝐶𝑚𝑋(𝑓𝑘, 𝑠𝑗) 𝑑 (𝑠𝑏, 𝑠𝑗) .
(4)

3.2.3. Communication Cost. During the whole process of
migrating the data files to the cloud system, the storage
management system should collect the storage information
of the candidate servers to make sure whether the certain
data file can be stored, verify the integrity of the migrated
data files, and monitor the storage process. Therefore, the
communication is throughout the whole storage process.The
required communication cost is proportional to the distance
between the server 𝑠𝑚 where the management system located
and the target server 𝑠𝑖 candidated to store the data file𝑓𝑘.The
communication cost of storing data file 𝑓𝑘 can be formulated
as follows:

𝜁com (𝑓𝑘) = 𝑁∑
𝑖=1

[𝑋 (𝑓𝑘, 𝑠𝑖) 𝜔 (𝑠𝑖, 𝑠𝑚) 𝑑 (𝑠𝑖, 𝑠𝑚)] . (5)

Therefore, the total communication cost of the set of data
files 𝐹 submitted for storage is calculated as the following
formula:

𝜁𝑐 (𝐹) = 𝑀∑
𝑘=1

𝜁com (𝑓𝑘)
= 𝑀∑
𝑘=1

𝑁∑
𝑖=1

[𝑋 (𝑓𝑘, 𝑠𝑖) 𝜔 (𝑠𝑖, 𝑠𝑚) 𝑑 (𝑠𝑖, 𝑠𝑚)] .
(6)
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3.2.4. Total Cost of Storage Service. The dataset 𝐹 is supposed
to be submitted via terminal server 𝑠𝑏. Let 𝜁(𝐹, 𝑆) be the
total cost of storing the dataset 𝐹 in the cloud storage
system, which is considered to be the sum of storage cost,
communication cost, and migration cost. The formula is as
follows:

𝜁 (𝐹, 𝑆, 𝑡) = 𝜁𝑠 (𝐹, 𝑡) + 𝜁𝑚 (𝐹) + 𝜁𝑐 (𝐹)
= 𝑀∑
𝑗=1

𝑁∑
𝑖=1

𝐶 (𝑠𝑖, 𝐿 (𝑓𝑗))𝑋 (𝑓𝑗, 𝑠𝑖) ⋅ 𝑡

+ 𝑀∑
𝑘=1

𝑁∑
𝑗=1

𝐶𝑚𝑋(𝑓𝑘, 𝑠𝑗) 𝑑 (𝑠𝑏, 𝑠𝑗)

+ 𝑀∑
𝑘=1

𝑁∑
𝑖=1

[𝑋 (𝑓𝑘, 𝑠𝑖) 𝜔 (𝑠𝑖, 𝑠𝑚) 𝑑 (𝑠𝑖, 𝑠𝑚)] .

(7)

3.3. Storage Reliability. The reliability of a storage system
is one of the most important measures of the service of
quality and the calculation of the reliability is so difficult that
very few attention has been paid. During the data storage
process, the reliability is influenced bymany factors (e.g., data
transmission rate, equipment stability, and service system
stability). However, it is difficult to determine the quantitative
criteria to evaluate these impactors. The evaluation of these
factors is essentially predictions of these factors according to
their historic behavior. In this paper, the data transmission
reliability, equipment stability, and software reliability are
considered in the evaluation of the storage reliability.

3.3.1. Transmission Reliability. This factor is used to estimate
the stability of the networks in practice. To store a set of date
files into a cloud storage system, the data transmission in the
network is necessary and very important for the distributed
storage. The transmission reliability is of crucial importance
for successful data storage.

In networks, the information and data with large data-
grams are broken up into several small packets which will
be transferred along with different network paths in one or
several networks and reassembled at the target end. However,
when one ormore packets of data traveling across a computer
network fail to reach their destination, some packets may be
lost. Packet loss is one of the common faults in the network
and typically caused by a number of factors that can corrupt
or lose packets in transit, such as network congestion, radio
signals that are too weak due to distance or multipath fading
(in radio transmission), faulty networking hardware, or
faulty network drivers. What is more, packets are sometimes
intentionally dropped by normal routing routines (such as
Dynamic Source Routing in ad hoc networks [26]) and
through network dissuasion technique for operational man-
agement purposes [27]. Packet loss can reduce throughput
for the senders, whether unintentionally due to network
malfunction or intentionally as a means to balance available
bandwidth between multiple senders when a given router or
network link reaches near its maximum capacity [28].

This kind of network fault is measured as a percentage of
packets lost with respect to packets sent.Therefore, the packet
loss rate is an important criterion to measure the stability of
networks.

Packet loss rate = input packets − output packets
input packets

× 100%.
(8)

When reliable delivery is necessary, packet loss increases
latency due to additional time needed for retransmission.
Assuming no retransmission, packets experiencing the worst
delays might be preferentially dropped (depending on the
queuing discipline used) resulting in lower latency overall at
the price of data loss. The acceptable amount of packet loss
depends on the type of data being sent [29]. Therefore, the
packet loss rate is used to evaluate the network reliability.
However, packet loss often happens randomly. It is difficult
to determine the exact rate for current usage. In this paper,
the average packet loss rate in a period of time is used to
measure the reliability of the candidate path. The packet loss
rate can be easily obtained via log files.Thus, the transmission
reliability between servers 𝑠𝑖 and 𝑠𝑗 can be measured as
follows:

𝑅𝑇 (𝑠𝑖, 𝑠𝑗) = 1𝑡∑𝑡 Packet loss rate (𝑠𝑖, 𝑠𝑗) . (9)

3.3.2. Equipment Stability. A datacenter is an integrated sys-
tem composed of equipment systems and software systems.
The stability of the equipment in the cloud storage system is
tomeasure the reliability of the physical devices while storing
data files. There are many devices in a datacenter, which
includes infrastructure (electric generators, uninterruptible
power system, air conditioners, etc.), IT equipment (servers,
switchers, etc.), and networks. All the computing and storage
services are implemented upon these devices and the funda-
mental premise of the successful service implementation is
the trouble-free operation of the critical equipment, which is
measured by mean time between failures (MTBF).

The operating ratio is used to measure the equipment
stability in this paper. Given a device, its operating ratio
during intervalΔ𝑡 can be calculated as the following formula:

Operating ratio = MTBFΔ𝑡 × 100%, (10)

where MTBF denotes mean time between failures during
the interval Δ𝑡. The operating ratio of the storage process is
evaluated to be the minimal ratio among all involved devices:

𝑅𝐸 (𝑠𝑖, 𝑠𝑗) = mindevice(𝑠𝑖→𝑠𝑗) {MTBF}
Δ𝑡 × 100%, (11)

where device(𝑠𝑖 → 𝑠𝑗) denotes the devices involved in the
path from 𝑠𝑖 to 𝑠𝑗. The number of MTBF of each device can
be found in the operating log files.

3.3.3. Software Reliability. Software reliability ismore difficult
to be ensured than hardware reliability in computing service
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field, which will impact the reliability of the whole system.
In cloud storage systems, the service providers usually pay
more attention to the speed of the data processing, the
correctness of the results, and the amiability of the interface
of the software but less attention to the reliability. However,
reliability problems emerging during the employment of
the software often increase the difficulties and effort of the
software maintenance. Serious reliability problems might
cause the system paralysis.

Software reliability is defined to be the probability of
failure-free operation for a software system in a given envi-
ronment [30] or the ability of a system or component to
perform its required functions under stated conditions for a
specified period of time [31], which is of great importance
for the safety-critical systems and influenced by both the
software itself and software operating environment. Before
or during the storage process, the data files are usually
processed using different software for various purposes (e.g.,
file encryption, file splitting, and merging). A reliable soft-
ware should have abilities to run without fault and output
correct results. Hence, the software reliability is an important
factor that should be considered when evaluating the data
storage reliability. There are various metrics to specify the
software reliability, such as failure rate, mean time to failure
(MTTF), and reliability function [32]. In this paper, the
software reliability is evaluated to be the mission success rate,
which can be calculated to the ratio of allocating tasks to
the successfully completed tasks. For software, the numbers
of allocating tasks and successfully completed tasks can be
obtained via its log files.

In this paper, the software reliability is to measure the
behavior of software in recent time interval Δ𝑡. Let the
number of the allocating tasks be 𝑛𝑎 and the successfully
completed tasks be 𝑛𝑠. Hence, the software reliability 𝑅𝑆 will
be calculated as

𝑅𝑆 = 𝑛𝑠𝑛𝑎 × 100%, (12)

where 𝑛𝑎 and 𝑛𝑠 can be obtained from the log files of the
software or the operation system. What is more, the failure
rate 𝑅𝑓 can be easily formulated as follows:

𝑅𝑓 = 𝑛𝑎 − 𝑛𝑠𝑛𝑎 = 1 − 𝑅𝑠. (13)

3.3.4. Service Reliability of Cloud Storage. Storage reliability
is a significant metric to measure the quality of service of a
storage strategy. After being submitted to the storage system,
both clients and service providers expect that the data files
can be stored with high reliability. The evaluation of the
reliability of storage strategies is essential before making
reasonable decisions.

For each inseparable data file 𝑓𝑖, its storage reliability is
influenced by not only the transmission reliability, software
reliability, and equipment stability involved in the uploading

server 𝑠𝑏 to the destination server 𝑠𝑗 but also the physical
storage mediums in the destination server, which can be
formulated as follows:

𝜉𝑟 (𝑓𝑖, 𝑠𝑗, 𝑠𝑏) = 𝑁∑
𝑗=1

𝑅𝑡 (𝑠𝑗, 𝑠𝑏) × 𝑅𝐸 (𝑠𝑗, 𝑠𝑏) × 𝑅𝑆 (𝑠𝑗, 𝑠𝑏)
× 𝑃 (𝑌𝑖𝑗) .

(14)

The reliability of a storage strategy for dataset 𝐹 is calcu-
lated to be the product of the reliability of each inseparable
data file as follows:

𝜉 (𝐹, 𝑆) = 𝑀∏
𝑖=1

𝜉𝑟 (𝑓𝑖, 𝑠𝑗, 𝑠𝑏) = 𝑀∏
𝑖=1

( 𝑁∑
𝑗=1

𝑅𝑡 (𝑠𝑗, 𝑠𝑏)

× 𝑅𝐸 (𝑠𝑗, 𝑠𝑏) × 𝑅𝑆 (𝑠𝑗, 𝑠𝑏) × 𝑃 (𝑌𝑖𝑗)) .
(15)

3.4. Multiobjective Reliable Storage Model. As a matter of
fact, the storage strategies are often limited by various real
restrictions or limitations, such as storage capacity, off-site
backup, impacts of storage devices, storage security, and data
integrity. These constraints should be considered inevitably
during the determination of storage strategies.

The constraints can be stated as follows:

(1) During storage, the original data files and the backup
files are treated to be the same. In a feasible storage
strategy, each inseparable data file (including the
backup file) should be assigned to only one server.

(2) For an inseparable data file 𝑓𝑖, the number of its
backups should not be less than the number 𝐿(𝑓𝑖)
for the backup with the same security level. This
constraint can be formulated as ∑𝑁𝑗=1 sign(𝑌𝑖𝑗) ≥𝐿(𝑓𝑖).

(3) The data file 𝑓𝑖 and its backups should be assigned
to be stored at different servers in different places
between each other. This constraint can also be
reflected via the inequality∑𝑁𝑗=1 sign(𝑌𝑖𝑗) ≥ 𝐿(𝑓𝑖).

(4) If data file 𝑓𝑖 was assigned to be stored in server 𝑠𝑗,
the available storage space in 𝑠𝑗 should be enough to
store the assigned data file with the corresponding
reliability. This constraint can be expressed as 𝐿(𝑓𝑖) ≤𝑅(𝑌𝑖𝑗).

Based on the above analysis, the multiobjective optimiza-
tion model for massive data storage can be formulated as
follows:



Mathematical Problems in Engineering 7

min 𝜁 (𝐹, 𝑆, 𝑡) = 𝜁𝑠 (𝐹, 𝑡) + 𝜁𝑚 (𝐹) + 𝜁𝑐 (𝐹)
= 𝑀∑
𝑖=1

𝑁∑
𝑗=1

𝐶 (𝑠𝑗, 𝐿 (𝑓𝑖))𝑋 (𝑓𝑖, 𝑠𝑗) ⋅ 𝑡 + 𝑀∑
𝑘=1

𝑁∑
𝑗=1

𝐶𝑚𝑋(𝑓𝑘, 𝑠𝑗) 𝑑 (𝑠𝑢, 𝑠𝑗) + 𝑀∑
𝑘=1

𝑁∑
𝑖=1

[𝑋 (𝑓𝑘, 𝑠𝑖) 𝜔 (𝑠𝑖, 𝑠𝑚) 𝑑 (𝑠𝑖, 𝑠𝑚)]

max 𝜉 (𝐹, 𝑆) = 𝑀∏
𝑖=1

𝜉𝑟 (𝑓𝑖, 𝑠𝑗, 𝑠𝑏) = 𝑀∏
𝑖=1

( 𝑁∑
𝑗=1

𝑅𝑡 (𝑠𝑗, 𝑠𝑏) × 𝑅𝐸 (𝑠𝑗, 𝑠𝑏) × 𝑅𝑆 (𝑠𝑗, 𝑠𝑏) × 𝑃 (𝑌𝑖𝑗))
s.t. 𝐿 (𝑓𝑖) ≤ 𝑅 (𝑌𝑖𝑗) , 𝑖 = 1, 2, . . . ,𝑀,

𝑓𝑖 ≤ 𝐴𝑌𝑖𝑗 (𝑠𝑗) , 𝑖 = 1, 2, . . . ,𝑀,
𝑁∑
𝑗=1

sign (𝑌𝑖𝑗) ≥ 𝐿 (𝑓𝑖) , 𝑖 = 1, 2, . . . ,𝑀,
𝑅 (𝑠𝑖) ∈ [0, 1) , 𝑖 = 1, 2, . . . ,𝑀,
𝑃 (ℎ) ∈ [0, 1) , ℎ = 1, 2, . . . , 𝐾.

(16)

The proposed multiobjective optimization model for
reliable cloud storage is a constrained multiobjective com-
bination optimization problem, which is too difficult to be
solved by traditional optimization algorithms. To solve this
problem, one has to design a specific optimization algorithm
using some particular but effective optimization technique.
In this paper, we design a multiobjective particle swarm
optimization algorithm to solve this proposed model.

4. Multiobjective Particle Swarm Optimization

As is well known, it is difficult to solve a constrained multi-
objective problem using traditional optimization algorithms.
Hence, researchers or engineers often turn to intelligent
approaches to solve such multiobjective optimization prob-
lems. The mathematical model proposed in this paper for
massive data storage in cloud environment is an obviously
constrained multiobjective optimization problem.

Swarm or population intelligence inspired optimization
techniques are becoming more and more popular. They
simulate the evolution process of the nature, or the social
behavior of insects swarms, flocks of birds, or schools of
fish. The advantages of these optimization approaches over
traditional techniques are their robustness and flexibility.
These properties make swarm intelligence a successful design
paradigm for algorithms that deal with increasingly complex
problems.Thus,we employ a swarm intelligence optimization
algorithm to solve the above model in this paper.

4.1. Brief Introduction of PSO. Particle swarm optimization
(PSO), derived from the research of birds predation [33–
36], is essentially an evolutionary computation technique,
which optimizes the problems by iteratively improving the
candidate solutions dubbed particles according to one or sev-
eral given quality measurements. When solving optimization
problems, PSO moves the particles around in the decision

space by utilizing simple mathematical formulae over the
position and velocity of the particles. The movement of each
particle is under direct control of its local best knownposition
and the global best position found so far by the population
[37]. It is expected to move the particles toward the best
solutions. Algorithm 1 represents a simple PSO algorithm
[38].

Similar to the genetic algorithm (GA), PSO algorithms
need very little additional mathematical information of the
problems to be solved, start the search process from randomly
generated initial population, use fitnessmechanisms to evalu-
ate the particles, do stochastic search according to evaluation
value of the particle, and so on. PSO and GAs do not use the
gradient information of the problem being optimized, so that
they can solve a wider range of optimization problems than
the classic gradient-based optimization methods.

Unlike GAs, the PSO algorithm has different informa-
tion sharing mechanism. GAs share information among the
chromosomes, which makes the whole population approach
optimal regions uniformly. But in PSO algorithms, there are
no crossover and mutation operators, and the information is
provided to other particles via the current global best par-
ticles. Therefore, such one-way information sharing makes
the update processes follow the current best solutions, which
might help the swarm converge to the optimal solutions
fast. Compared to GAs, PSO algorithms have fewer param-
eters and are easier to be implemented. PSO has found a
wide range of applications in function optimization, neural
network, fuzzy systems, and many other fields [39–41]. An
extensive survey of PSO applications has been made by Poli
and Engelbrecht [42, 43]. In [36, 41], several variations of
PSO algorithms formultiobjective optimization problems are
introduced and their convergence is also analyzed. Also, the
convergence of PSO algorithm had been studied empirically
in [43, 44]. Thus, according to the guidance and analysis in
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(1) Randomly generate an initial swarm
(2) while termination criterion is not satisfied do
(3) for each particle 𝑖 do
(4) if the particle 𝑖 is better than 𝑝𝑏𝑒𝑠𝑡 then
(5) 𝑝𝑏𝑒𝑠𝑡𝑖 ← position of 𝑖
(6) end if
(7) 𝑔𝑏𝑒𝑠𝑡 = min (𝑝neighbours)
(8) Update velocity of particle 𝑖
(9) Update position of particle 𝑖
(10) end for
(11) end while
(12) Return the results

Algorithm 1: The PSO algorithm.

[36, 41], we construct a simple PSO algorithm to solve the
proposed storage model.

4.2. PSO for the Proposed Model

4.2.1. Encoding. One of the most important issues in design-
ing a PSO algorithm to solve the proposed model is to
determine reasonable encoding of the solutions.The particles
in the swarm of the PSO algorithm is a candidate storage
strategy. In this paper, we use a matrix 𝐺 = (𝑔𝑖𝑗)𝑀×𝑁 to
express a possible storage strategy, in which

𝑔𝑖𝑗 = {{{
0, 𝑓𝑖 is not stored in 𝑠𝑗,
ℎ, 𝑓𝑖 is stored in the ℎth HDD of 𝑠𝑗, (17)

where ℎ = 1, 2, . . . , 𝐾.
However, using matrices to express the particles in the

swarm often makes the evolution process difficult to imple-
ment. As is well known, the matrix 𝐺 can be converted to
a 𝑀𝑁-vector 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑀⋅𝑁), in which 𝑥(𝑖−1)⋅𝑁+𝑗 =𝑔𝑖𝑗. Therefore, we use the 𝑀𝑁-dimensional vector to take
the place of the matrix for coding the candidate storage
strategies in the PSO algorithm. Another issue is to decode
the results obtained by the PSO algorithm to be readable
storage strategies. For ∀𝑘 ∈ {1, 2, . . . ,𝑀𝑁}, 𝑥𝑘 can be
decoded as follows:

𝑔𝑖𝑗 = 𝑥𝑘, (18)

where 𝑖 = ⌈𝑘/𝑁⌉ and 𝑗 = 𝑘 − (⌈𝑘/𝑁⌉ − 1)𝑁. Here, ⌈𝛼⌉ is
the function that its value is the smallest integer larger than
or equal to 𝛼.
4.2.2. Evolution and Selection. The evolution process in the
PSO algorithm is essentially to update the individuals in
population. This process is controlled by the velocity of each
particle in PSO, which is updated iteratively by its coordinates
in the search space associated with the best solution it has
achieved so far and the best position found by its neighbors.
Let 𝑝𝑏𝑒𝑠𝑡 be the best position of a particle, 𝑙𝑏𝑒𝑠𝑡 the best
position of the neighbors of the particle, and 𝑔𝑏𝑒𝑠𝑡 the best
position of all particles in the population. At each generation,

the particle swarm optimization changes the velocity of each
particle toward its𝑝𝑏𝑒𝑠𝑡 and𝑔𝑏𝑒𝑠𝑡 locations.The acceleration
toward 𝑝𝑏𝑒𝑠𝑡 and 𝑔𝑏𝑒𝑠𝑡 locations is generated randomly and
separately.

Let 𝑥 be the position of current particle in the designed
PSO algorithm. Let 𝑝𝑏𝑒𝑠𝑡 be the best position that 𝑥 has
found, 𝑔𝑏𝑒𝑠𝑡 the global best position of the population, and V
the velocity. The particle 𝑥 in the 𝑡th generation is updated as
follows [33]:

V (𝑡 + 1) = 𝜔V (𝑡) + 𝑐1𝑟1 (𝑡) (𝑝𝑏𝑒𝑠𝑡 (𝑡) − 𝑥 (𝑡))
+ 𝑐2𝑟2 (𝑡) (𝑔𝑏𝑒𝑠𝑡𝑖 (𝑡) − 𝑥 (𝑡)) , (19)

𝑥 (𝑡 + 1) = 𝑥 (𝑡) + V (𝑡 + 1) , (20)

where the parameters 𝑟1(𝑡) and 𝑟2(𝑡) are two separate random
functions according to the generation 𝑡 returning a random
value uniformly generated in [0, 1], respectively. 𝑐1, 𝑐2 ∈[0, 2] are the acceleration coefficients. 𝜔 is a coefficient
inertiaweight set to be time-varying and gradually decreasing
typically from 0.9 to 0.4 [45].

It has been studied in many literatures [46, 47] that
elitism has advantages in achieving better convergence in
MOEAs. Hence, during the evolution process of the designed
PSO algorithm, a tournament based selection strategy is
employed to select particle to be updated. So as to ensure
the convergence of the designed PSO algorithm, we employ
the elitism strategy to select the next population from the
offspring and parents and follow the guidance in [36, 41, 43].

4.2.3. Constraint Handling. When solving the constrained
multiobjective model proposed in this paper, infeasible solu-
tions will be produced inevitably. Infeasible solutions have so
significant impacts on the performance of the solution PSO
algorithm that they often result in failure of finding feasible
solution of the optimization problem. It is necessary to handle
the constraints reasonably to improve the performance of the
solution PSO algorithm. Therefore, the constraint handling
method in [46] is employed in the solution of PSO algorithm
in this paper.

Suppose 𝐴 and 𝐵 are two given storage strategies. 𝐴 is
called to be better than 𝐵, if and only if one of the following
conditions is satisfied:

(i) Both 𝐴 and 𝐵 are feasible, and the strategy 𝐴 is with
better objective value.

(ii) Both𝐴 and 𝐵 are infeasible, and the strategy𝐴 is with
smaller constraint violation value.

(iii) 𝐴 is feasible and 𝐵 is infeasible.
According to these comparison rules and Pareto domination,
the individuals in the population can be sorted.

4.2.4. Designed PSO Algorithm. According to the analysis on
the proposedmultiobjective reliable cloud storage model and
the above operators, we design a constrained multiobjective
PSO algorithm (CMPSO) as Algorithm 2.
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(1) Randomly generate an initial swarm 𝑆0
(2) Initialize the parameters, 𝑝𝑏𝑒𝑠𝑡 and 𝑔𝑏𝑒𝑠𝑡 for each particle in 𝑆0
(3) archive← 0, 𝑡 ← 0
(4) while termination criterion is not satisfied do
(5) 𝑡 ← 𝑡 + 1
(6) 𝑂𝑡 ← 0
(7) archive = non dominate(𝑆𝑡−1)
(8) for each particle 𝑥𝑖 in 𝑆𝑡−1 do
(9) for each particle 𝑦𝑗 in archive do
(10) if 𝑦𝑗 dominates 𝑝𝑏𝑒𝑠𝑡𝑖 then
(11) 𝑝𝑏𝑒𝑠𝑡𝑖 ← 𝑦𝑗
(12) end if
(13) 𝑔𝑏𝑒𝑠𝑡 = min(𝑝𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠)
(14) Update velocity of 𝑥𝑖 using Eq. (19)
(15) Update position of 𝑥𝑖 using Eq. (20)
(16) Put the new position of 𝑥𝑖 in 𝑂𝑡
(17) end for
(18) end for
(19) Select 𝑆𝑡 from 𝑆𝑡−1 ∪ 𝑂𝑡
(20) end while
(21) return the nondominated solutions

Algorithm 2: The designed CMPSO algorithm.

5. Experiments

5.1. Experimental Settings

5.1.1. Experiment Design. The experiments are designed
based on the storage prices of two cloud companies, which
have different storage prices for 3 different places of company
A. The detailed price can be found in Tables 1–3. When
storing high security level data files, special storage devices
or related encryption algorithm will be needed to process
these data files. Thus, it will cost much CPU time and high
level storage disk usage. It is assumed that there are 4 types
of storage disks in each datacenter and the storage price is as
listed in Tables 1 and 4. Table 1 lists the storage price of normal
disks and Table 4 the storage price of high level disks.

In the experiments, the total size of the set of data files
is set to be 120 TB, which is composed of 10 subfiles with
different size and different security level. To store these data
files, we conduct three storage strategies: the integral storage
strategy, separate storage strategy, and splittable storage
strategy. For the integral storage strategy, all the data files
in a storage task are treated as an integral file to be stored.
For the separate storage strategy, each subfile can be stored
separately inwhich the subfile cannot be split. In the splittable
storage strategy, the data files can be partitioned into several
smaller files using the file splitters when needed. These three
storage strategies are used to confirm the effectiveness of
the proposed model and further investigate the influences of
different storage strategies on the storage cost and reliability.

5.1.2. Parameter Settings of the Designed PSO Algorithm.
According to the model in this paper, the other parameters
in the PSO algorithm are adopted as follows:

(i) Population size:𝑁 = 200

(ii) Acceleration coefficients: 𝑐1 = 𝑐2 = 2.0 and 𝜔 =0.9 − 𝑡/2MAXgen, where 𝑡 is current generation and
MAXgen is the maximum generation

(iii) Selection strategy: the next population is selected
using elitism strategy according to the fast nondomi-
nated sorting approach [46]

(iv) Stopping criterion: the algorithm will be stopped
when the evolution generation reaches 2000 or the
solutions found by the algorithm do not change in 30
continuous generations.

5.2. Experimental Results. In the experiment of the integral
storage, the PSO algorithm is employed to solve the proposed
multiobjective model, in which all the test data files are
treated as an integral file.The feasible storage solutions found
by the PSO algorithm are as shown in Figure 2 and Table 5.
Under this storage strategy, all data files were stored in the
same disk of a server. The total cost has direct relationship
with the storage reliability and the data security level. In order
to satisfy the constraint 𝐿(𝑓𝑖) ≤ 𝑅(𝑌𝑖𝑗), all the data files should
be stored in the HD which can fit the highest security level
among all the data files. It can be seen vividly from Figure 2
that the total cost of storing the test data files is increasing
rapidly with the storage reliability. Practically, the higher the
storage reliability is, the more it will cost. The storage cost is
proportional to the highest level of the data files, which has
also direct impacts on the storage reliability. It is because the
suitable target servers should be explored when storing these
files into certain disk and the transformation process of these
data files will significantly reduce the storage reliability. What
is more, if the suitable target server cannot be found, this
storage strategy will not be able to be carried out. Therefore,
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Table 1: Storage price of cloud company A.

Name CPU (s) Memory (GB) Price ($/hour)
Place 1 Place 2 Place 3

m1.small 1 1.7 0.085 0.095 0.095
m1.large 4 7.5 0.34 0.38 0.38
m1.xlarge 8 15 0.68 0.76 0.76
c1.medium 5 1.7 0.17 0.19 0.19
c1.xlarge 20 7 0.68 0.76 0.76
m2.xlarge 6.5 7 0.50 0.57 0.57
m2.2xlarge 13 34.2 1.00 1.14 1.14
m2.4xlarge 26 68.4 2.00 2.28 2.28

Table 2: Storage price of cloud company B.

Name CPU (s) Memory (GB) Price ($/hour)
Place 3

X-small 0.5 0.5 0.095
Small 1 1 0.19
Medium 2 2 0.38
Large 4 4 0.76
X-large 8 8 1.52
XX-large 16 16 3.04

Table 3: Transmission price.

Cloud service providers Price ($/GB)
Data incoming Data outgoing

Company A (all) 0.10 0.15
Company B 0.00 0.29

Table 4: Price of high level storage disks.

Type Volume (GB) Price ($/month) Throughput (MB/second)
P10 128 27.19 100
P20 512 100 150
P30 1024 186.45 200

it is unpractical and unreasonable to store all the data files as
an integral file.

Another storage strategy is that each subfile is treated to
be inseparable and can be stored independently. The data
files submitted by the client might be stored in different
servers or places. Hence, data files with different security level
can be handled specifically, so that the cost can be saved.
Also, it is easy to find feasible storage solutions with higher
utilization rates of storage spaces. The experimental results
are as shown in Figure 3 and Table 5. Using the proposed
storage model to store these test data files, one can find
feasible storage solutions easily. From Figure 3, it can be seen
that when the storage reliability is less than 0.95, the total cost
grows smoothly. When the storage reliability is more than
0.95, the total cost will increase rapidly. Compared with the
integral storage strategy, it can be found from Table 5 that the
cost of the separable storage strategy with each subfile to be
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Figure 2: Integral storage of data files.
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Figure 3: Separable storage strategy with indivisible subfiles.

inseparable is much lower than that of the integral storage
strategy. These results indicate that the separable storage
strategy is much practical and the proposed multiobjective
model is correct and effective.

As there are many file splitting techniques, each data
file can be partitioned into smaller data files by using these
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Table 5: Storage cost of data files with different storage strategies.

Storage reliability Integral storage ($) Separable storage with divisible subfiles ($) Separable storage with indivisible subfiles ($)0.50–0.70 1.21𝑒 + 4 7.54𝑒 + 3 6.93𝑒 + 30.70–0.80 1.23𝑒 + 4 7.71𝑒 + 3 7.08𝑒 + 30.80–0.85 1.25𝑒 + 4 7.99𝑒 + 3 7.26𝑒 + 30.85–0.90 1.27𝑒 + 4 8.39𝑒 + 3 7.49𝑒 + 30.90–0.95 1.35𝑒 + 4 8.58𝑒 + 3 7.71𝑒 + 30.95–1.00 1.46𝑒 + 4 1.06𝑒 + 4 8.69𝑒 + 3
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Figure 4: Separable storage strategy with divisible subfiles.

techniques while being stored. In the further experiment of
the separable storage strategy, each data file is treated to
be divisible. When storing these files, each data file will be
partitioned according to the available storage space in servers.
While storing, each subfile will be partitioned into several
parts with the same security level when needed. Therefore,
the data file can be divided for any usable space during the
storing process, which can make the solution algorithm find
feasible solution much easier. This way can also improve the
space utilization rates effectively. The experimental results
can be found in Table 5 and Figure 4. Comparing the results
shown in Figures 3 and 4, one can find vividly that, with the
storage reliability growing, the total cost in Figure 4 grows
more slowly. Also, in this experiment, the PSO algorithm
can find much more storage solutions. As shown in Figure 4,
the solutions obtained by the PSO algorithm are uniformly
distributed, which indicates that many more varied storage
schemes can be obtained with high probability coupled with
the splittable storage strategy. From Table 5, it can be seen
that the storage strategy with divisible subfiles can reduce the
storage cost efficiently.

Comparing the results listed in Table 5, we can find that,
to achieve given storage reliability, splittable storage strategy
costs the least among the 3 storage strategies conducted in
the experiments. Figure 5 intuitively shows the differences
among these three storage strategies. Furthermore, the results
of these experiments can demonstrate the validity and cor-
rectness of the proposed multiobjective data storage model,
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Figure 5: Comparisons of the average costs of the storage schemes
obtained by the storage strategies.

which can also indicate that the PSO algorithm can solve the
proposed multiobjective model effectively.

6. Conclusions

Data has become a kind of important resources, which
has increasingly significant effects on the Internet compa-
nies and telecommunication enterprises. The volume of the
data resources is growing so rapidly that their storage is
challenging the quality of service of the storage systems
significantly. Based on the analysis of data storage in the
cloud environment, we built a multiobjective optimization
model considering storage cost and reliability simultaneously.
To store a set of data files, the total cost is composed of
storage cost, communication cost, and migration cost. The
device stability and transmission reliability are considered in
the evaluation of storage reliability. To solve the proposed
multiobjective optimization model and find feasible storage
solutions, a PSO algorithm is tailor-made. Different experi-
ments are made to validate the correctness of the proposed
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model. In the experiments, the data files to be stored are
handled in different ways in advance. Experimental results
confirm that the proposed model is positive and effective for
cloud storage.

Furthermore, an obvious phenomenon that emerged
during the experiments is that how to preprocess the data
files has significant effect on the experimental results or
storage strategies obtained by the PSO algorithm. If the data
files submitted by the clients are treated as an integral file,
all the data files need to be stored in a server which has
enough available storage space with the reliability meeting
the demand of the highest security level among the data files.
Hence, it costs much in searching the servers with sufficient
available storage space of certain reliability. However, when
the available storage fragments in the cloud storage systems
were too small and scattered, itmight lead to failure in finding
a suitable fragment to store all these data files. These data
files preprocessing strategy will lead to low utilization ratio
of the storage space. The other two preprocessing strategies
can effectively raise the storage space utilization, because each
data file can find suitable storage fragment easily. Therefore,
there will be more possible storage schemes and the best
scheme can be found by using the model and PSO algorithm
proposed in this paper.

The main goal of the model proposed in this paper is to
find optimal storage scheme for storing the submitted data
files. From the experiments, it can be seen vividly that the
cost and reliability of the storage scheme for the submitted
data files strongly depend on the preprocessing strategies of
the data files, which also impacts the utilization efficiency of
the storage space. The proposed model in this paper should
be coupled with reasonable data file preprocessing method,
so that it can improve the quality of service and the resource
utilization efficiency of the cloud storage system effectively.

Nomenclature

𝑁: Number of severs𝑀: Number of files to be stored𝑓𝑖: 𝑖th file to be stored𝐿(𝑓𝑖): Security level of 𝑓𝑖𝐴 𝑖(𝑠𝑗): Available storage space of 𝑗th HD in 𝑠𝑖𝑃(ℎ): Storage reliability of ℎth HD𝜔(𝑠𝑖, 𝑠𝑗): Communication price between 𝑠𝑖 and 𝑠𝑗
sign(⋅): Sign function, where

sign(𝑦) = {1, 𝑦 > 0; 0, 𝑦 ≤ 0}𝜁𝑠(𝑓𝑖): Storage cost of 𝑓𝑖𝜁mig(𝑓𝑘, 𝑠𝑢, 𝑠𝑗): Migration cost of 𝑓𝑘 from 𝑠𝑢 to 𝑠𝑗𝜁com(𝑓𝑘): Communication cost of storing 𝑓𝑘𝜁(𝐹, 𝑆, 𝑡): Total cost of storage service cost for 𝐹𝑅𝐸(𝑠𝑖, 𝑠𝑗): Equipment stability of link 𝑠𝑖 ↔ 𝑠𝑗𝜉(𝑓𝑖, 𝑠𝑗, 𝑠𝑏): Storage reliability of 𝑓𝑖𝑠𝑖: 𝑖th server𝑑𝑖𝑗: Distance between 𝑠𝑖 and 𝑠𝑗𝐹: Set of files to be stored𝑌𝑖𝑗: 𝑓𝑗 is stored in 𝑌𝑖𝑗th HD of 𝑠𝑖𝐾: Number of the types of HDs in a datacenter𝑅(𝑠𝑖): Reliability of 𝑠𝑖

TR(𝑠𝑖, 𝑠𝑗): Transmission reliability between 𝑠𝑖 and 𝑠𝑗𝐺: Candidate storage strategy𝑋(𝑓𝑖, 𝑠𝑗): Data volume of 𝑓𝑖 stored in 𝑠𝑗𝜁𝑠(𝐹, 𝑡): Storage cost of storing 𝐹𝜁𝑚(𝐹): Migration cost in storing 𝐹𝜁𝑐(𝐹): Total communication cost of storing 𝐹𝑅𝑇(𝑠𝑖, 𝑠𝑗): Transmission reliability of link 𝑠𝑖 ↔ 𝑠𝑗𝑅𝑆(𝑠𝑖): Reliability of software in 𝑠𝑖𝜉(𝐹, 𝑆): Reliability of storing 𝐹.
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This paper is an extended version of our conference paper
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Competing Interests

The authors declare that they have no competing interests.

Acknowledgments

This work was supported by the National Natural Sci-
ence Foundation of China (61502371 and 61472311), the
Fundamental Research Funds for the Central Universities
(BDZ011401, JB151005, and JB161003), the Novel Technology
Research of Universities Cooperation Project sponsored by
the State Key Laboratory of Satellite Navigation System
and Equipment Technology (KX152600027), Fundamental
Research Project sponsored by State Administration of
Science, Technology and Industry for National Defense
(JCKY2016110C006), and the Basic Research Program of
Sichuan Province of China (2017JY0209).

References

[1] J. Brodkin, Gartner: Seven Cloud-computing Security Risks,
Infoworld, 2008.

[2] S. Zhang, S. Zhang, X. Chen, and S. Wu, “Analysis and research
of cloud computing system instance,” in Proceedings of the 2nd
International Conference on Future Networks (ICFN ’10), pp. 88–
92, IEEE, Hainan, China, 2010.

[3] B. Hayes, “Cloud computing,”Communications of the ACM, vol.
51, no. 7, pp. 30–34, 2008.

[4] S. Gurumurthi, “Architecting storage for the cloud computing
era,” IEEE Micro, vol. 29, no. 6, pp. 68–71, 2009.

[5] J. Y. Wu, L. D. Ping, and X. P. Ge, “Cloud storageas the infras-
tructure of cloud computing,” in Proceedings of the International
Conference on Intelligent Computing and Cognitive Informatics
(ICICCI ’10), pp. 380–383, 2010.

[6] P. Buxmann, T. Hess, and S. Lehmann, “Software as a service,”
Wirtschaftsinformatik, vol. 50, no. 6, pp. 500–503, 2008.



Mathematical Problems in Engineering 13

[7] L. A. Barroso and U. Hölzle, The Datacenter as a Computer:
An Introduction to the Design of Warehouse-Scale Machines,
Morgan & Claypool Publishers, 2009.

[8] L. Fan, S. Meng, X. Liu, and Y. Liang, “Improved CTT-SP
algorithm with critical path method for massive data storage
in scientific workflow systems,” International Journal of Pattern
Recognition and Artificial Intelligence, vol. 30, no. 8, Article ID
1659023, 22 pages, 2016.

[9] S. Ghemawat, H. Gobioff, and S. T. Leung, “The Google file
system,” ACM SIGOPS Operating Systems Review, vol. 37, no. 5,
pp. 29–43, 2003.

[10] S. Aameek, M. Korupolu, and D. Mohapatra, “Server-storage
virtualization: integration and load balancing in data centers,” in
Proceedings of the ACM/IEEE Conference on High Performance
Computing (SC ’08), pp. 1–12, Austin, Tex, USA, November
2008.

[11] M. Vukolic and I. Z. Laboratory, “Reliable distributed storage,”
Computer, vol. 42, no. 4, p. 6067, 2009.

[12] Y. Deng, F. Wang, N. Helian, S. Wu, and C. Liao, “Dynamic and
scalable storage management architecture for Grid Oriented
Storage devices,” Parallel Computing, vol. 34, no. 1, pp. 17–31,
2008.

[13] X. Y. Zhang, K. Q. Li, and Y. Zhang, “Minimum-cost virtual
machine migration strategy in datacenter,” Concurrency and
Computation-Practice & Experience, vol. 27, pp. 5177–5187, 2015.

[14] R.W.Ahmad,A.Gani, S.H.A.Hamid et al., “A survey on virtual
machine migration and server consolidation frameworks for
cloud data centers,” Journal of Network and Computer Applica-
tions, vol. 52, pp. 11–25, 2015.

[15] J. Dong, H. Wang, Y. Li, and S. Cheng, “Virtual machine
scheduling for improving energy efciency in IaaS cloud,” China
Communications, vol. 11, no. 3, Article ID 6825253, pp. 1–12,
2014.

[16] M. Sanchez-Artigas, “Toward efficient data access privacy in the
cloud,” IEEE Communications Magazine, vol. 51, no. 11, pp. 39–
45, 2013.

[17] Y. X. Guo andY.G. Fang, “Electricity cost saving strategy in data
centers by using energy storage,” IEEE Transactions on Parallel
and Distributed Systems, vol. 24, no. 6, pp. 1149–1160, 2013.

[18] B. Mao, H. Jiang, S. Wu, Y. Fu, and L. Tian, “Read-performance
optimization for deduplication-based storage systems in the
cloud,” ACM Transactions on Storage (TOS), vol. 10, no. 2, pp.
193–206, 2014.

[19] W. Liu, S. Peng, W. Du, W. Wang, and G. S. Zeng, “Security-
aware intermediate data placement strategy in scientific cloud
workflows,” Knowledge and Information Systems, vol. 41, no. 2,
pp. 423–447, 2014.

[20] M. Y. Guo, “Static and dynamic locality optimizations using
integer linear programming,” ACM SIGPLAN Notices, vol. 49,
no. 5, p. 83, 2014.

[21] Y. Wang, P. Lu, and K. B. Kent, “WaFS: a workflow-aware
file system for effective storage utilization in the cloud,” IEEE
Transactions on Computers, vol. 64, no. 9, pp. 2716–2729, 2015.

[22] M. Jarrah, M. Jaradat, Y. Jararweh, M. Al-Ayyoub, and A.
Bousselham, “A hierarchical optimization model for energy
data flow in smart grid power systems,” Information Systems,
vol. 53, pp. 190–200, 2015.

[23] C. Wang, Q. Wang, K. Ren, and W. Lou, “Ensuring data
storage security in cloud computing,” in Proceedings of the 17th
International Workshop on Quality of Service (IWQoS ’09), pp.
1–9, IEEE, July 2009.

[24] M. Alves, C. V. Damasio, W. Nejdl, and D. Olmedilla, “A
distributed tabling algorithm for rule based policy systems,” in
Proceedings of the 7th IEEE International Workshop on Policies
for Distributed Systems and Networks, pp. 123–132, June 2006.

[25] T. C. Jepsen, “The basics of reliable distributed storage net-
works,” IT Professional, vol. 6, no. 3, pp. 18–24, 2004.

[26] C. E. Perkins, Ad Hoc Networking, Addison-Wesley, Boston,
Mass, USA, 2001.

[27] V. PournaghshbandL, L. Kleinrock, P. Reiher, and A. Afanasyev,
“Controlling applications by managing network character-
istics,” in Proceedings of the IEEE International Conference
on Communications (ICC ’12), pp. 1085–1090, IEEE, Ottawa,
Canada, June 2012.

[28] F. Kurose James and W. Ross Keith, Computer Networking: A
Top-Down Approach, Pearson Education, 6th edition, 2012.

[29] K. C. Mansfield and J. L. Antonakos, Computer Networking
from LANs to WANs: Hardware, Software, and Security, Course
Technology Cengage Learning, Boston, Mass, USA, 2010.

[30] S. Krishnamurthy and A. P.Mathur, “On the estimation of relia-
bility of a software system using reliabilities of its components,”
in Proceedings of the 8th International Symposium on Software
Reliability Engineering, pp. 146–155, Albuquerque, NM, USA,
November 1997.

[31] IEEE Std 1633, “IEEE Recommended Practice on Software
Reliability,” IEEE, 2008.

[32] D.W. Carman, A. A. Dolinsky,M. R. Lyu, and J. S. Yu, “Software
reliability engineering study of a large-scale telecommunica-
tions software system,” in Proceedings of the 6th International
Symposium on Software Reliability Engineering, pp. 350–359,
Toulouse, France, October 1995.

[33] J. Kennedy and R. Eberhart, “Particle swarm optimization,”
in Proceedings of the IEEE International Conference on Neural
Networks, vol. 4, pp. 1942–1948, Perth, Australia, November
1995.

[34] J. Kennedy, “The particles warm: sociala daptation of knowl-
edge,” in Proceedings of the IEEE International Conference
on Evolutionary Computation, pp. 303–308, Indianapolis, Ind,
USA, April 1997.

[35] Y. Shi and R. C. Eberhart, “A modified particle swarm opti-
mizer,” in Proceedings of the IEEE International Conference on
Evolutionary Computation, pp. 69–73, IEEE Press, Anchorage,
Alaska, USA, May 1998.

[36] M. Mussetta, P. Pirinoli, S. Selleri, and R. E. Zich, “Meta-PSO
for multi-objective EM problems,” in Multi-Objective Swarm
Intelligent Systems: Theory & Experiences, N. Nedjah, L. dos
Santos Coelho, and L. de Macedo Mourelle, Eds., vol. 261 of
Studies in Computational Intelligence, pp. 125–150, Springer,
Berlin, Germany, 2010.

[37] J. Kennedy and R. C. Eberhart, Swarm Intelligence, Morgan
Kaufmann, 2001.

[38] C. Blum and X. Li, “Swarm intelligence in optimization,”
in Swarm Intelligence, Natural Computing Series, pp. 43–85,
Springer, Berlin, Germany, 2008.

[39] M. Kotinis, “A particle swarm optimizer for constrained multi-
objective engineering design problems,” Engineering Optimiza-
tion, vol. 42, no. 10, pp. 907–926, 2010.

[40] X. Wang, C. Wang, and M. Yu, “Swarm intelligence algorithm
for interconnect model order reduction with sub-block struc-
ture preserving,” International Journal of Systems Science, vol.
47, no. 9, pp. 2178–2192, 2016.



14 Mathematical Problems in Engineering

[41] S. Selleri, M.Mussetta, P. Pirinoli, R. E. Zich, and L. Matekovits,
“Differentiated meta-PSO methods for array optimization,”
IEEE Transactions on Antennas and Propagation, vol. 56, no. 1,
pp. 67–75, 2008.

[42] R. Poli, “Analysis of the publications on the applications of
particle swarm optimisation,” Journal of Artificial Evolution and
Applications, vol. 2008, Article ID 685175, 10 pages, 2008.

[43] A. P. Engelbrecht, “Particle swarm optimization with crossover:
a review and empirical analysis,” Artificial Intelligence Review,
vol. 45, no. 2, pp. 131–165, 2016.

[44] Y. Shi and R. C. Eberhart, “Empirical study of particle swarm
optimization,” in Proceedings of the Congress on Evolutionary
Computation (CEC ’99), pp. 1945–1960, Washington, DC, USA,
July 1999.

[45] R. Eberhart and Y. Shi, “Comparing inertia weights and con-
striction factors in particle swarm optimization,” in Proceedings
of the Congress on Evolutionary Computation (CEC ’00), pp. 84–
88, IEEE, San Diego, Calif, US, 2000.

[46] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast
and elitist multiobjective genetic algorithm: NSGA-II,” IEEE
Transactions on Evolutionary Computation, vol. 6, no. 2, pp. 182–
197, 2002.

[47] E. Zitzler, K. Deb, and L.Thiele, “Comparison of multiobjective
evolutionary algorithms: empirical results,” Evolutionary Com-
putation, vol. 8, no. 2, pp. 173–195, 2000.

[48] X. Liu, L. Fan et al., “PSO based multiobjective reliable opti-
mization model for cloud storage,” in Proceedings of the IEEE
International Conference on Computer and Information Technol-
ogy; Ubiquitous Computing and Communications; Dependable,
Autonomic and Secure Computing; Pervasive Intelligence and
Computing, pp. 2263–2269, Liverpool, UK, October 2015.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


