
CRANFIELD UNIVERSITY

John M. Oliver

Multi-Objective Optimisation

Methods Applied to Complex

Engineering Systems

SCHOOL OF ENGINEERING

PhD

Academic Year: 2013 - 2014

Supervisor: Professor A. Mark Savill

Co-supervisor: Dr Timoleon Kipouros

September 2014

CRANFIELD UNIVERSITY

SCHOOL OF ENGINEERING

PhD
Academic Year: 2013 - 2014

John M. Oliver

Multi-Objective Optimisation Methods

Applied to Complex Engineering

Systems

Supervisor: Professor A. Mark Savill

Co-supervisor: Dr Timoleon Kipouros

September 2014

This thesis is submitted in partial fulfillment of the requirements for

the degree of Doctor of Philosophy

© Cranfield University, 2014-2016. All rights reserved. No part of
this publication may be reproduced without the written permission

of the copyright owner.

Declaration of Authorship

I, John M. Oliver, declare that this thesis titled, ‘Multi-Objective Optimisation

Methods Applied to Complex Engineering Systems’ and the work presented in it

are my own. I confirm that:

� This work was done wholly or mainly while in candidature for a research

degree at this University.

� Where any part of this thesis has previously been submitted for a degree or

any other qualification at this University or any other institution, this has

been clearly stated.

� Where I have consulted the published work of others, this is always clearly

attributed.

� Where I have quoted from the work of others, the source is always given.

With the exception of such quotations, this thesis is entirely my own work.

� I have acknowledged all main sources of help.

� Where the thesis is based on work done by myself jointly with others, I have

made clear exactly what was done by others and what I have contributed

myself.

Signed:

Date:

3

“Nothing at all takes place in the universe in which some rule of maximum or

minimum does not appear.”

Leonhard Euler

“It always takes longer than you expect, even when you take into account Hofs-

tadter’s Law.”

Douglas Hofstadter, Gödel, Escher, Bach: An Eternal Golden Braid, 1979

“What limit can be put to this power, acting during long ages and rigidly scru-

tinising the whole constitution, structure, and habits of each creature, favouring

the good and rejecting the bad? I can see no limit to this power, in slowly and

beautifully adapting each form to the most complex relations of life.”

Charles Darwin, On the Origin of Species by Means of Natural Selection, 1859

Abstract

This research proposes, implements and analyses a novel framework for multi-

objective optimisation through evolutionary computing aimed at, but not re-

stricted to, real-world problems in the engineering design domain.

Evolutionary algorithms have been used to tackle a variety of non-linear multi-

objective optimisation problems successfully, but their success is governed by key

parameters which have been shown to be sensitive to the nature of the particular

problem, incorporating concerns such as the number of objectives and variables,

and the size and topology of the search space, making it hard to determine the best

settings in advance. This work describes a real-encoded multi-objective optimising

evolutionary algorithm framework, incorporating a genetic algorithm, that uses

self-adaptive mutation and crossover in an attempt to avoid such problems, and

which has been benchmarked against both standard optimisation test problems in

the literature and a real-world airfoil optimisation case.

For this last case, the minimisation of drag and maximisation of lift coefficients

of a well documented standard airfoil, the framework is integrated with a free-

form deformation tool to manage the changes to the section geometry, and XFoil,

a tool which evaluates the airfoil in terms of its aerodynamic efficiency. The

performance of the framework on this problem is compared with those of two

other heuristic MOO algorithms known to perform well, the Multi-Objective Tabu

Search (MOTS) and NSGA-II, showing that this framework achieves better or at

least no worse convergence.

5

The framework of this research is then considered as a candidate for smart

(electricity) grid optimisation. Power networks can be improved in both techni-

cal and economical terms by the inclusion of distributed generation which may

include renewable energy sources. The essential problem in national power net-

works is that of power flow and in particular, optimal power flow calculations of

alternating (or possibly, direct) current. The aims of this work are to propose and

investigate a method to assist in the determination of the composition of optimal

or high-performing power networks in terms of the type, number and location of

the distributed generators, and to analyse the multi-dimensional results of the

evolutionary computation component in order to reveal relationships between the

network design vector elements and to identify possible further methods of im-

proving models in future work. The results indicate that the method used is a

feasible one for the achievement of these goals, and also for determining optimal

flow capacities of transmission lines connecting the bus bars in the network.

Keywords

Evolutionary, Algorithm, Self-Adaptive, Framework, Electrical Power, Plexos,

Power Flow, Network, Grid, MOOEA, Multi-Objective, Optimization, MOO,

MOOP, Airfoil

Acknowledgements

This research was carried out at the School of Engineering of Cranfield University

and was enabled and supported by funding from the Engineering and Physical

Sciences Research Council (EPSRC), for which I am glad to have this opportunity

to express my gratitude.

I acknowledge gratefully and give my wholehearted thanks to:

My PhD supervisor, Professor Mark Savill, for the opportunity to undertake this

work, his support, and his invaluable guidance.

My co-supervisor, Dr Timoleon Kipouros, for his insights, suggestions and liaising

with colleagues in other institutions.

My fellow PhD students past and present with whom I was lucky to share an office,

for discussions, their support and friendship, and other colleagues in Professor

Savill’s group, for the same reasons.

My wife, for support, love and tea.

7

Contents

Declaration of Authorship 3

Abstract 5

Acknowledgements 7

List of Figures 13

List of Tables 17

Glossary 19

Physical Constants 21

Symbols 23

1 Introduction 27

1.1 Thesis organisation . 27

1.2 Background and motivation . 28

1.3 Thesis aims and objectives . 30

1.4 Publications . 31

1.5 Software Produced . 32

2 Heuristic multi-objective optimisation algorithms 33

2.1 Introduction . 33

2.2 Features of real-world optimisation 33

2.3 Optimisation . 36

2.3.1 Optimisation overview . 36

2.3.2 Multi-objective optimisation 41

2.4 Performance of optimisation algorithms 47

2.5 Heuristics and meta-heuristics . 51

2.5.1 Heuristics . 51

2.5.2 Meta-heuristics . 52

2.6 Evolutionary algorithms . 56

2.6.1 Algorithm adjuncts and concerns 62

9

Contents 10

2.6.2 Self-adaptation . 67

2.7 Optimisation frameworks . 70

2.7.1 Synopsis . 70

2.7.2 Non-commercial frameworks 71

2.7.3 Commercial frameworks . 72

3 The self-adaptive MOOEA 77

3.1 Introduction . 77

3.2 Ganesh: Framework and algorithm 79

3.2.1 The GA Algorithm . 79

3.2.1.1 Simplified non-dominated sorting 82

3.2.2 Self-adaptation . 89

3.2.3 Framework and architecture 92

3.2.4 Algorithm characteristics, benefits and novelty 95

3.2.4.1 Synopsis . 96

3.2.4.2 Self-adaptivity . 97

3.2.4.3 Crossover mechanisms 97

3.2.4.4 Chromosome types 97

3.2.4.5 Plug-in experiment code 98

3.2.4.6 Using external software as (supplier of) objective
functions . 98

3.2.4.7 Callable from external software 99

3.2.4.8 Duplicate solutions control 99

3.2.4.9 Constraints . 99

3.2.4.10 Chromosome Initialisers 100

3.2.4.11 Population Initialisers 101

3.2.4.12 Operator Configuration 101

3.2.4.13 Problem-specific parameters 102

3.2.4.14 Resume from previous run 103

3.2.4.15 Command line run-time parameters 105

3.2.4.16 Conclusion . 105

3.3 Benchmark test problems and results 107

3.3.1 Problem definitions . 107

3.3.2 Benchmark test results . 109

3.4 Comparison with random search . 114

3.4.1 Random search algorithm 115

3.4.2 Further optimisation test problems 117

3.4.2.1 DTLZ1 . 117

3.4.2.2 DTLZ2 . 118

3.4.2.3 DTLZ3 . 118

3.4.2.4 DTLZ4 . 119

3.4.2.5 DTLZ5 . 119

3.4.2.6 DTLZ6 . 120

3.4.2.7 DTLZ7 . 120

Contents 11

3.4.2.8 DTLZ8 . 121

3.4.2.9 DTLZ9 . 122

3.4.2.10 MOKP 0/5 . 122

3.4.3 Results . 123

3.4.4 Summary . 130

3.5 Experiments in self-adaptation . 131

3.5.1 Summary . 132

3.6 Methods and materials . 134

4 A real-world airfoil application test case 137

4.1 Introduction to airfoil optimization 137

4.2 Airfoil geometry . 138

4.3 Modifying XFoil . 140

4.4 Defining the optimisation . 141

4.5 Results . 144

4.5.1 Comparing algorithms . 144

4.5.2 Alternative crossover operator 167

4.6 Airfoil comparison with other work 171

4.6.1 Comparison summary . 178

4.7 Summary . 180

5 Multi-objective optimisation of an electrical power network 183

5.1 Electrical power networks . 183

5.2 Distributed generation . 185

5.3 Integrating with power market simulation 189

5.4 Defining the optimisation . 190

5.4.1 Optimising for DG allocation by generation cost 193

5.4.2 Optimising for DG allocation by sum of DG units 195

5.4.3 Optimising for DG allocation by sum of DG units and line
capacities . 198

5.5 Results . 200

5.5.1 Optimising for DG allocation by generation cost 200

5.5.2 Optimising for DG allocation by sum of DG units 210

5.5.3 Optimising for DG allocation and line capacities 216

5.6 Comparison with random search . 227

5.7 Summary . 227

6 Conclusions and recommendations 231

6.1 Contributions . 231

6.2 Limitations . 232

6.3 Recommendations for further work 233

6.3.1 Power optimisation . 233

6.3.2 Directed mutation . 234

6.3.3 Hybridise with a genetic program to act as a surrogate model235

6.4 Acknowledgements . 235

Contents 12

6.5 Concluding remarks . 236

A Poster 237

B Software information 239

B.1 Ganesh . 239

B.1.1 Ganesh Parameters . 239

B.2 Utility programs produced . 240

B.2.1 GADataCollect . 240

B.2.2 GAResultPlot . 241

B.2.3 GA-EvalFile . 242

B.2.4 PXmlTest . 243

B.2.5 Rastrigin’s function script 243

C Tables for power optimisation 245

References 257

List of Figures

2.1 Euler diagram for P, NP , NP -complete, and NP -hard problems . . 36

2.2 solution spaces . 37

2.3 Global and local extrema . 38

2.4 Rastrigin’s function surface plot . 39

2.5 Rastrigin’s function contour plot . 40

2.6 General black box optimiser . 40

2.7 The effect of constraints . 42

2.8 Pareto front of a bi-objective problem 43

2.9 Bi-objective optimisation Pareto front quadrants 44

2.10 Pareto ranking example . 47

2.11 Nature-inspired metaheuristics . 55

2.12 EA sub-classes . 58

3.1 High level flow-chart of Ganesh . 81

3.2 Flow-chart of novel SAUBC operator. 91

3.3 Ganesh & Plugins UML . 93

3.4 UML for Plugins . 95

3.5 Benchmark test SCH . 110

3.6 Benchmark test FON . 110

3.7 Benchmark test POL . 111

3.8 Benchmark test KUR . 111

3.9 Benchmark test ZDT1 . 111

3.10 Benchmark test ZDT2 . 111

3.11 Benchmark test ZDT3 . 112

3.12 Benchmark test ZDT4 . 112

3.13 Benchmark test ZDT5 . 112

3.14 Benchmark test ZDT6 . 112

3.15 Benchmark test CONSTR . 113

3.16 Benchmark test BZDT2 . 113

4.1 NACA 0012 Airfoil . 139

4.2 Airfoil shown enclosed in free-form deformation hull 139

4.3 Schematic diagram showing the interaction of Ganesh, FFD and
XFoil. 139

4.4 An airfoil showing strengthening spars and vertical stiffeners. 142

4.5 Photograph of cross-section of aircraft wing 142

13

List of Figures 14

4.6 Diagram of Angle of Attack . 142

4.7 Results for range ±0.3. showing all samples of Ganesh, MOTS &
NSGA-II. 149

4.8 Results for range ±0.3. showing all samples of Ganesh & MOTS only.150

4.9 Results for range ±0.6. showing all samples of Ganesh, MOTS &
NSGA-II. 150

4.10 Results for range ±0.8. showing all samples of Ganesh, MOTS &
NSGA-II. 151

4.11 Results for range ±1.0. showing all samples of Ganesh, MOTS &
NSGA-II. 151

4.12 Results for range ±1.0. showing Ganesh, MOTS & NSGA-II, and
GaneshG863 . 153

4.13 Results for range ±1.0. showing Ganesh, MOTS & NSGA-II, and
GaneshG863 with added airfoils. 154

4.14 Xfoil plot of an optimised airfoil ffd-2867 154

4.15 Xfoil plot of the unoptimised NACA 012 airfoil 155

4.16 Trends of the means of the pM & ηM control parameters against
generation number for all ranges for all samples for Ganesh. 156

4.17 Trends of the means of the pC & ηC control parameters against
generation number for all ranges for all samples for Ganesh. 156

4.18 Trends of the standard deviations of pM & ηM control parameters
against generation number for all ranges for all samples for Ganesh. 156

4.19 Trends of the standard deviations of pC & ηC control parameters
against generation number for all ranges for all samples for Ganesh. 157

4.20 ‖-coords plot of Ganesh results for range ±1.0. at generation 863 . 159

4.21 ‖-coords plot of Ganesh results for range ±1.0. at generation 863
with selected airfoil . 160

4.22 ‖-coords plot showing Ganesh results for range ±0.3, for all 20 sam-
ples. samples . 160

4.23 ‖-coords plot showing normalised and scaled data from all samples
of all ranges of all algorithms . 162

4.24 ‖-coords plot showing normalised and scaled data from all samples
of all ranges of all algorithms with highlighted Ganesh range ±0.3 . 162

4.25 ‖-coords plot showing normalised and scaled data from all samples
of all ranges of all algorithms with highlighted Ganesh range ±1.0 . 163

4.26 ‖-coords plot as in Figure 4.25, but with MOTS data for all ranges
highlighted in green and superimposed 164

4.27 ‖-coords plot as in Figure 4.26, with parameter 6 space covered by
Ganesh but not by MOTS . 164

4.28 ‖-coords plot as in Figure 4.27, with parameter 6 space covered by
NSGA-II but not Ganesh or MOTS 165

4.29 ‖-coords plot zoom in of Figure 4.28 showing CD detail 165

4.30 ‖-coords plot for all samples of all ranges of all algorithms showing
best CD values . 167

4.31 State of the art airfoil performance 174

List of Figures 15

4.32 Ganesh results for range ±1.0 at generation 863, at α = 15◦, Re =
2× 106 . 176

4.33 Xfoil plot of airfoil ffd-2268 at α = 3◦ 177

4.34 Xfoil plot of airfoil ffd-3308 at α = 5◦, Re = 3× 105 177

4.35 Xfoil plot of airfoil ffd-3328 at α = 5◦, Re = 3× 105 178

4.36 Xfoil plot of airfoil ffd-3351 at α = 5◦, Re = 3× 105 178

5.1 Schematic diagram of a general large scale grid network 185

5.2 A giant photovoltaic array, Nellis, Nevada USA. 186

5.3 Section of the American Electric Power System, Midwestern US,
December 1961 . 187

5.4 IEEE 30-bus test system single line diagram 188

5.5 Integration of Plexos with the self-adaptive MOOEA 194

5.6 Integration of Plexos with the self-adaptive MOOEA 196

5.7 Scatter plots for genCost/HC = 70 201

5.8 ‖-coords plot for genCost/HC = 70 202

5.9 Scatter plots for genCost/HC = 200 result 203

5.10 & ‖-coords plots for genCost/HC = 200 result 204

5.11 Scatter plots for gencost/HC = 35 205

5.12 Scatter & ‖-coords plots for gencost/HC = 35 206

5.13 ‖-coords plot of the entire data set for genCost/HC = 70 result . . 207

5.14 ‖-coords plot of the entire data set for genCost/HC = 70 result,
best genCost . 208

5.15 ‖-coords plot of the data set for genCost/HC = 35 result 209

5.16 ‖-coords plot for R008 in which V11 has 5 units, sumU,HC = 35 . . 212

5.17 ‖-coords plot for R003 in which V11 has 5 units, sumU,HC = 35 . . 213

5.18 Scatter plot for R008 showing sumU vs spotPrice, sumU,HC = 35 . 214

5.19 ‖-coords plot for R008 showing filtered results on V11, sumU,HC = 35215

5.20 ‖-coords plot of line capacities LC/sumU,HC = 35 221

5.21 ‖-coords plot of line capacities, LC,sumU,HC = 35 222

5.22 LC,sumU,HC = 35, final generation LC genes 223

5.23 LC,sumU,HC = 35, best solutions’ LC genes 224

5.24 LC,sumU,HC = 35, best solutions’ DG genes 224

5.25 LC, HC = 35, varying line 6 capacity 225

5.26 LC, HC = 35, varying line 22 capacity 226

A.1 Poster for airfoil optimisation . 237

C.1 Node connections, ranked by number of connections per node, in
node order. 253

C.2 Data model for extracting Plexos line information. 254

List of Tables

2.1 Extended dominance relations to include approximation sets, from
the perspective of objective vectors 46

2.2 Extended dominance relations to include approximation sets, from
the perspective of approximation sets 46

3.1 Benchmark test problems . 107

3.2 Mann-Whitney results for DTLZ1 comparison 124

3.3 Means of ε- and hypervolume indicators for DTLZ1 test 124

3.4 Mann-Whitney results for DTLZ2 comparison 124

3.5 Means of ε- and hypervolume indicators for DTLZ2 test 125

3.6 Mann-Whitney results for DTLZ3 comparison 125

3.7 Means of ε- and hypervolume indicators for DTLZ3 test 125

3.8 Mann-Whitney results for DTLZ4 comparison 126

3.9 Means of ε- and hypervolume indicators for DTLZ4 test 126

3.10 Mann-Whitney results for DTLZ5 comparison 126

3.11 Means of ε- and hypervolume indicators for DTLZ5 test 126

3.12 Mann-Whitney results for DTLZ6 comparison 127

3.13 Means of ε- and hypervolume indicators for DTLZ6 test 127

3.14 Mann-Whitney results for DTLZ7 comparison 127

3.15 Means of ε- and hypervolume indicators for DTLZ7 test 128

3.16 Mann-Whitney results for DTLZ8 comparison 128

3.17 Means of ε- and hypervolume indicators for DTLZ8 test 128

3.18 Mann-Whitney results for DTLZ9 comparison 129

3.19 Means of ε- and hypervolume indicators for DTLZ9 test 129

3.20 Mann-Whitney results for MOKP 0/5 comparison 129

3.21 Means of ε- and hypervolume indicators for MOKP 0/5 test 129

3.22 Mann-Whitney results for self-adaptation vs non-self-adaptation
comparison . 132

3.23 Means and standard deviations of ε- and hypervolume indicators of
Ganesh in self-adaptive mode . 132

3.24 Means and standard deviations of ε- and hypervolume indicators of
Ganesh in non-self-adaptive mode 132

17

List of Tables 18

4.1 Kruskal-Wallis tests results for 3 independent data sets, comparing
20 sample runs per range for each of Ganesh (G), MOTS (M) &
NSGA-II (N), showing p-values for α = 0.05. See also continuation
table 4.2. 148

4.2 Continuation of table 4.1, for Ganesh, MOTS, & NSGA-II, giving
the interpretation of their relative performance. 148

4.3 Means of the ε- and hypervolume indicators provided by PISA for
Ganesh results. 148

4.4 Means of the ε- and hypervolume indicators provided by PISA for
MOTS results. 149

4.5 Means of the ε- and hypervolume indicators provided by PISA for
NSGA-II results. 149

4.6 Select airfoil design vectors from G863 of Ganesh for range ±1.0 . . 153

4.7 Mann-Whitney results for operator comparison 169

4.10 Airfoil performance at α = 3◦. 175

4.11 Airfoil performance at α = 5◦. 175

4.12 Ganesh airfoil performance at α = 5◦ for Reynolds number 3× 105 . 176

4.13 Selected airfoils from G863 of Ganesh for range ±1.0 referenced in
this section. 176

5.1 The nodes (buses), their generator types, and associated variable
number in which the quantity of assigned DG units of that generator
type is given. 193

5.2 New and previous best objective function results, from any solution,
optimising with OF1 = sumU . 210

C.1 Line limits of Plexos model . 245

C.2 The nodes and their total capacities determined by summing their
connected line capacities, in descending capacity order. The line
capacity is counted at each node it is attached to, and the LowLimits
have been rounded to the nearest integer. G,W & S are the DG unit
types, heading their variables. 251

C.3 Node connections, ranked by number of connections per node, in
descending rank order, with DG variables. 252

C.4 OCGT fixed central generator characteristics. 255

C.5 Distributed Generation (DG) generator type characteristics 255

Glossary

ACO Ant Colony Optimisation.

CD Coefficient of Drag.

CAD Computer-aided design.

CAE Computer-aided Engineering.

CFD Computational Fluid Dynamics.

CL Coefficient of Lift.

CP Coefficient of Pressure.

DE Differential Evolution.

DG Distributed Generation or Generators; also describes the variables

(gene alleles) that hold the number of units of generators of each

type.

DoE Design of Experiments.

EA Evolutionary Algorithm.

EC Evolutionary Computing.

EP Evolutionary Programming.

ES Evolutionary Strategies.

FE Function Evaluation.

FEM Finite Element Methods.

GA Genetic Algorithm.

GUI Graphical User Interface.

ISO Independent System Operator.

JRE Java run-time environment.

JVM Java Virtual Machine.

19

Glossary 20

LC Line Capacities - The Maximum Flow ratings, in MW, of trans-

mission lines; also describes the variables (gene alleles) that hold

the values.

LMP Locational Marginal Pricing.

MaOOP Many objective optimisation.

MOO Multi-Objective Optimisation.

MOOEA Multi-Objective Optimising Evolutionary Algorithm.

MOGA Multi-Objective Genetic Algorithm.

MOOP Multi-Objective Optimisation Problem.

MOTS Multi-Objective Tabu Search.

NFL No Free Lunch - theorem.

OCGT Open-Cycle Gas Turbine.

OF Objective Function.

OPF Optimal Power Flow.

PFapprox Approximate Pareto front - not the globally optimal front.

PFopt Pareto-optimal front - the globally optimal front.

PSC Pseudo-code.

PSO Particle Swarm Optimisation.

PT Polynomial Time.

PV Photovoltaic, of solar power generation.

RDO Robust Design Optimisation.

SA Simulated Annealing.

SAMPSC Self-Adaptive Multi-point Swap Crossover.

SAUBC Self-Adaptive Uniform Blend Crossover.

SBX Simulated Binary Crossover.

Plugin A software component that adds a specific feature to an existing

software application.

UCP Unit Commitment Problem.

Physical Constants

Speed of light c = 2.997 924 58× 108 m−s (exact)

Elementary positive charge e = 1.602176565(35)× 10−19 C (approx.)

21

Symbols

P power MW (Js−1 x 106)

v voltage kV (V x 103)

I current kA (A x 103)

23

Dedicated to my parents

to my mother, for the sacrifices she made for me

to my father, for the love of books

25

Chapter 1

Introduction

This chapter is intended to address the following:

� To describe the structure of the thesis.

� To introduce the research of the thesis.

� To provide the motivation for the research.

� To highlight the novelties of the work.

1.1 Thesis organisation

The thesis is organised as set out below:

Chapter 1, here, sets out to describe the organisation of the thesis and to

briefly introduce the work.

Chapter 2 provides a literature review of the subject areas encompassed in the

research, considering the background and recent literature and identifying areas

for the new research presented herein to be worthwhile and commensurate with

the thesis objectives.

27

Chapter 1 - Introduction 28

Chapter 3 sets out the value and description of the framework and multi-

objective optimising evolutionary algorithm (MOOEA) produced in the course of

this research, and reports on the benchmarks used and their outcomes.

Chapter 4 describes the optimisation of an airfoil using the framework and

MOOEA of this work and an analysis and exploration of the results obtained.

Chapter 5 describes the optimisation of a model electrical power grid using

the framework and MOOEA of this work, and analyses the results obtained.

Chapter 6 considers the work as a whole, describing its limitations, offering

conclusions, and the possibilities of further work.

1.2 Background and motivation

Engineering design is a discipline that, through its applicability to so many areas

(Rao, 1996) of our societies that are built upon technology, has a major impact

upon contemporary living.

The increasing complexity of engineering designs, especially power and propul-

sion systems, require the use of advanced computer modelling techniques to repre-

sent such systems in an accessible manner, and the deployment of multi-

dimensional analysis techniques to visualise their complex interdependencies in

the most easily understandable manner.

Bloebaum and McGowan (2010) describe complex engineering systems as those

systems in which the “. . . tightly coupled interacting phenomena yield a collective

behavior [sic] that cannot be derived by the simple summation of the behavior

[sic] of the parts”, where such systems tend to exhibit the following properties:

� Have very many parameters defining the design

� Have a challenging design space - constraints, discontinuities, non-linear

� Have emergent behaviour - that behaviour which is not designed in

Chapter 1 - Introduction 29

� Challenge a priori preferences

� Require trade-off compromises between goals of the system

The availability of relatively low cost computing hardware and software means

that there is a greater possibility of improving engineering designs through the

exploitation of optimisation in wider subject domains than in previous decades

(Forrester et al., 2008). The targeting of multi-objective optimisation techniques at

industrial engineering (Zalzala and Fleming, 1997) has been shown to be tractable

and successful and they have emerged, together with the techniques mentioned

above, as key tools for establishing the appropriate degrees of complexity with

which to replace previous simpler descriptions and solutions of designs and models.

This is particularly true with regards to establishing design trade-offs, performing

complex risk analysis, and ensuring the requisite variety to avoid and manage

emerging tipping points.

Evolutionary computing (EC) techniques have been used to tackle a variety

of non-linear (Nicolis, 1995) multi-objective optimisation problems successfully

(Haupt and Haupt, 2004, p. 174), and have been specifically applied to real-world

complex engineering system optimisation problems (Gen and Cheng, 2000), but

their success is governed by key parameters which have been shown to be sensitive

to the nature of the particular problem, incorporating concerns such as the number

of objectives and variables, and the size and topology of the search space, making it

hard to determine the best settings in advance. The works of this thesis attempts

to address this issue.

Improving electrical power grids, as an engineering design problem and as

a matter of concern in many technological societies due to the relative fragility

fo such networks, (Amin, 2003) taken together with the diminution of fossil fuel

supplies and the need to cut pollution emissions, particularly of greenhouse gases,

has become a matter of high research interest (Rylatt et al., 2013). This work seeks

to add an optimisation based-approach as a facilitator of design in the inception

of (smart) power grids.

Chapter 1 - Introduction 30

1.3 Thesis aims and objectives

This work therefore set out to create an evolutionary algorithm framework that

is able to work on real-world engineering design problems, having the above char-

acteristics, with the aim of being able to self-adapt in order to at least partially

obviate the problem of determining the best parameter settings in advance. While

work has been done in this area, commencing with Evolutionary Strategies (ES)

by Schwefel and Genetic Algorithms (GA), as described by Bäck (1992), this work

creates both a novel framework advantageous to real-world situations, and an evo-

lutionary algorithm (EA) with novelty in its self-adaptability, and certain other

aspects, as detailed in Chapter 3. The EA is a multi-objective optimising EA

(MOOEA) that is not limited by its construction in being able to work on any

number of objective function dimensions, while the framework incorporates the

MOOEA and provides means of applying it to new optimisation problems in a

manner that enables the framework to be independent of the particular problem,

as well as providing means of overriding certain default behaviours. However, al-

though not architecturally limited in the number of objective functions (OFs) it

can handle, in practice it has been found, as set out further in Chapter 2, that for

a general EA, the more OFs are present, especially above three, the more likely

the algorithm will find it hard to converge to an optimal set of solutions.

The framework of this research is then considered as a candidate for (smart)

electrical power grid optimisation. Power networks can be improved in both tech-

nical and economical terms by the inclusion of distributed generation which may

include renewable energy sources. This work therefore sets out to propose and

investigate a method to assist in the determination of the composition of optimal

or high-performing power networks in terms of the type, number and location of

the distributed generators, and to analyse the multi-dimensional results of the

evolutionary computation component in order to reveal relationships between the

network design vector elements and to identify possible further methods of im-

proving models in future work.

Chapter 1 - Introduction 31

In order to achieve the aims set out above, the evolutionary algorithm frame-

work produced is benchmarked with standard tests from the literature (Zitzler

et al., 2000), to establish both correct functionality and its ability to converge

with acceptable or better performance. A complex real-world engineering prob-

lem is then to act as a further more exacting test of its capabilities, for which an

airfoil optimisation case is used. The case chosen had been used in other studies

of a similar nature, for which results of other algorithms were available to also act

as benchmarks.

The airfoil optimisation case concerned the minimisation of drag and maximi-

sation of lift coefficients of a well documented standard airfoil. The framework is

integrated with a free-form deformation tool to manage the changes to the section

geometry, and XFoil, a tool which evaluates the airfoil in terms of its aerody-

namic efficiency. The performance of the framework/EA on this problem is com-

pared with those of two other heuristic MOO algorithms known to perform well

(Kipouros et al., 2012), the Multi-Objective Tabu Search (MOTS) and NSGA-II.

1.4 Publications

The following peer-reviewed papers were produced and published or accepted for

publication in the course of this research:

1. A Self-adaptive Genetic Algorithm Applied to Multi-Objective Optimization

of an Airfoil, (Oliver et al., 2013), presented by the author at the Evolve

2013 1 conference in Leiden, NL, published in the book of the proceedings.

2. An Evolutionary Computing-based Approach to Electrical Power Network

Configuration, (Oliver et al., June 2015), presented by the author at an

ECCS’13 2 conference satellite workshop, in Barcelona; published in the

journal Emergence: Complexity and Organization.

1EVOLVE - A Bridge between Probability, Set Oriented Numerics, and Evolutionary Com-
putation

2European Conference on Complex Systems : Integrated Utility Services IUS’13 workshop

Chapter 1 - Introduction 32

3. Electrical Power Grid Network Optimisation by Evolutionary Computing,

(Oliver et al., 2014), presented on the author’s behalf at the ICCS’14 3

conference in Cairns, AU, published in a special issue of the journal Procedia

Computer Science.

4. Multi-Objective Optimization by Self-Adaptive Evolutionary Algorithm,

(Oliver et al., expected 2016), an invited chapter in the book: EVOLVE

- A Bridge between Probability, Set Oriented Numerics, and Evolutionary

Computation 5, Series: Studies in Computational Intelligence, publication

expected 2016.

1.5 Software Produced

There were two main software items produced in the course of this PhD, these

being:

1. The self-adaptive multi-objective optimising evolutionary algorithm frame-

work (named Ganesh, for brevity).

2. The set of plugins4 comprising the various optimisation problem definitions

used in this work, which are available to be dynamically loaded and executed

by Ganesh.

A number of utilities were also produced, to facilitate data manipulation and

plotting, and these are detailed in Appendix B.

All these codes were produced with the intention that they be open source

and are made available with an open-source licence, currently at: http://www.

logiprime.com/ganesh/.

3The International Conference on Computational Science
4Although correctly spelled ‘plug-in’, it is commonly referred to as ‘plugin’ in technical con-

texts (see Glossary).

http://www.logiprime.com/ganesh/
http://www.logiprime.com/ganesh/

Chapter 2

Heuristic multi-objective

optimisation algorithms

2.1 Introduction

This chapter provides a literature review of the general subject areas germane to

this research, namely optimisation, heuristics, evolutionary computing, and related

topics. In doing so, the context of the motivation for the aims of thesis are also

made apparent.

Specific optimisation subject domains, namely airfoils and electrical power,

are dealt with in those specific chapters.

2.2 Features of real-world optimisation

Optimisation is applicable to all areas of engineering which is inherently an area

of real-world interaction, consequently engineers and researchers in all areas need

to be aware of the possibilities in both theory and practice of optimisation (Rao,

1996). The engineering discipline sectors utilising optimisation include: structural,

33

Chapter 2 - Heuristic multi-objective optimisation algorithms 34

thermal systems, chemical and metallurgical, electronics and electrical, mechani-

cal, Aerodynamics, Combustion, propulsion, control, power and general engineer-

ing design.

Rao (1996) notes that one way of classifying optimisation problems is by the

nature of the decision vector elements, where static problems are those dependent

upon some function of the decision vector, whereas dynamic problems are those

in which each element of the design vector is a function of one or more other

non-decision problem parameters. He gives the following characteristics in his

assessment of real-world engineering design problems:

� The design is in some way amenable to optimisation.

� At least one of the objective functions of the optimisation is non-linear.

� There are constraints that need to be adhered to.

� At least some components of the design vector require real numbers.

� The objective function outputs real numbers.

Gen and Cheng (2000) add that real-world complex engineering system prob-

lems tend to be optimisation problems with complex constraints, and that such

problems are often multi-dimensional in both decision space and objective space.

Engineering may include unusual real-life matters that can be hard to model

such as health and safety factors, aesthetics and other concerns, or may be com-

putationally complex and could be classed as NP -complete, meaning they could

be both in NP and NP -hard problem classes (Michalewicz et al., 1999).

Computational complexity (Garey and Johnson, 1979) is concerned with the

inherent difficulty of problems, giving P as those decision problems1 that can

be solved in polynomial time (PT) deterministically (by a deterministic Turing

machine), which implies their time complexity function is given by O(p(n)) where

p is some polynomial function and n denotes the size of the input. Problems not in

1decision problems have solutions: true or false

Chapter 2 - Heuristic multi-objective optimisation algorithms 35

P are only solvable in exponential time, given by O(cn) (where c is some constant),

which means their solution time increases exponentially as n increases. P type

problems may be solvable through deep insight, while those not in P require some

kind of exhaustive search approach. Problems not in P are considered intractable

for other than small n, with some exceptions; exceptions arise where the worst-case

does not occur generally, such as for the Simplex linear programming algorithm.

The class of NP problems is then defined as those decision problems that can

be solved by PT nondeterministic algorithms2, which implies that their solution

when = true is verifiable in deterministic PT. NP -hard problems are those ‘at

least as hard as the hardest problems in NP ’, implying that they might not be

solvable in PT. Figure 2.1 illustrates these set relationships, with the split between

left and right being the unsolved question ‘P 6= NP?’ which essentially means

whether every problem whose solution can be verified in PT can be solved in PT.

If P 6= NP , then there are NP problems (such as the NP -complete ones) that

might not be solvable in PT, but whose solution can be verified in PT.

A decision problem can be derived from an optimisation problem (Garey and

Johnson, 1979), whether it is maximising or minimising, by re-framing the problem

as a bounded one and asking whether a solution exists within that bound B, for

example in the Travelling Salesman problem, is there a tour having length ≤ B, or

in a maximisation, is there a solution with utility≥ B. If the objective function can

be evaluated ‘quickly’ (in PT at the most), then the decision problem is no harder

than the original problem and can be possibly solved by a PT nondeterministic

algorithm.

Thus real-world engineering problems often deal with NP -complete problems,

and require algorithms with characteristics that give them a chance in tackling

them pragmatically.

2nondeterministic algorithms have two parts: a stochastic solver and a deterministic verifier

Chapter 2 - Heuristic multi-objective optimisation algorithms 36

Figure 2.1: Euler diagram for P, NP , NP -complete, and NP -hard set of
problems, where left side shows P 6= NP and right side P = NP .

2.3 Optimisation

2.3.1 Optimisation overview

Stated informally, optimisation is the process by which the minimum or maximum

of a proposed function is found, and also the conditions, which means the values

of the decision variables that the function takes as inputs, under which the result

is obtained (Rao, 1996). The result of the function, which is termed the objective

function (OF), thus represents the best outcome. When the optimisation seeks

a minimum, the OF is often termed the cost function as one generally seeks to

lower costs. Conversely, when seeking a maximum value, the OF is often termed

the utility or fitness function, since these are naturally seen as ‘good’ and hence

desirable.

However, there are essential limitations imposed upon candidate solutions that

may otherwise be considered optimal; a solution must be both feasible and legal

(Gen and Cheng, 2000). A legal solution is one that can successfully be translated

from the internal representation of the optimiser into the problem domain, whereas

a feasible one is legal and resides in the feasible solution region of the domain, as

in Figure 2.2. For example, a solution could represent a theoretically possible wing

Chapter 2 - Heuristic multi-objective optimisation algorithms 37

and hence be legal, but not generate sufficient lift for it to be feasible in the real

world.

Figure 2.2: Coding & solution spaces showing illegal and infeasible regions.

Without loss of generality, optimisation can be taken to be a minimisation,

since by the principle of duality (Rao, 1996), a minimum can be transformed into

a maximum, and vice-versa, by multiplying the result by −1, as the maximum of

a function is equal to the minimum of the negative of that function. Henceforth

unless specifically declared otherwise, minimisation will be assumed, as it indeed

is in the internal mechanisms of the produced MOOEA (see Chapter 3).

A formal statement of optimisation can therefore be made as follows (Bäck

et al., 1997):

~x ∈M

f : M → R

f(~x)→ min. (2.1)

in which ~x is a vector of M parameters for the system, such that the objective

function f(~x) is minimised. To find the global optimum (2.1) it is necessary to:

find the vector ~x∗

such that ∀~x ∈M : f(~x) ≥ ~x∗ = f ∗. (2.2)

Chapter 2 - Heuristic multi-objective optimisation algorithms 38

Optimisation problems occur in two broad classes: continuous and discrete,

in which the former encompasses problems where M is infinite and M = Rn or

where M is defined by equations and inequalities, and where the latter is defined

by M being in some way finite or in which points are isolated from each other,

examples of which are combinatorial and integer problems (Bertsekas, 1999).

Non-linear problems are of the continuous class, and can be thought of in two

different ways, from a mathematics (a) or physics (b) viewpoint: (a) equations

in which the unknowns are variables of a polynomial of degree two or more, or

in the argument of a function which is not a polynomial of degree one; (b) The

superposition principle does not hold, so have output not directly proportional to

the input (Nicolis, 1995).

Having defined the process of global optimisation, in which the best solution

from the entire search space is sought, it is then necessary to note that there

may be regions within the solution space that have small values locally, the local

minima, that may deceive an optimiser into taking one of those as the global

minimum, erroneously. Figure 2.3 illustrates.

Figure 2.3: Global and local minima and maxima

There is also the possibility that the objective function has two or more locally

optimal solutions, in which case it is known as multimodal (Deb et al., 1993). An

Chapter 2 - Heuristic multi-objective optimisation algorithms 39

extreme example is given in Figure 2.4 which shows a surface plot from the R

language of Rastrigin’s function in its 2D form (Mühlenbein et al., 1991), being a

highly multimodal function having many local minima and maxima, and the global

minimum (equation 2.3). Figure 2.5 shows a contour plot of the same function.

Multimodal optimisation seeks to obtain a set of good solutions, comprising the

best of the local optima along with, ideally, the global optimum if it can be found.

When using methods which do not guarantee to find the global optimum, then it

is more important to have a set to choose from since the global optimum may not

be present and there may be different advantages and disadvantages between one

local optimum and another.

Figure 2.4: Rastrigin’s 2D function as a surface plot, showing its many local
minima and maxima, where the global minimum is at (0,0) and equal to 0.

Rastrigin’s function in general form of n dimensions

f(x) = An+
n∑
i=1

[x2i − Acos(2πxi)] (2.3)

where A = 10 and xi ∈ (−5.12, 5.12)

f(x) = 0 at x = 0

Chapter 2 - Heuristic multi-objective optimisation algorithms 40

Figure 2.5: Rastrigin’s 2D function as a contour plot, showing the many
minima and maxima as countour lines with colour indicating the amplitude.

In some optimisation problems the optimiser has no (or little) in-built ‘knowl-

edge’ about the subject domain of the problem upon which it works, thus the

optimiser acts as a black-box process (Schaefer and Nolle, 2006), transforming the

input into an output (Figure 2.6). On these types of investigations, evolutionary

computing is of particular relevance, and this is dealt with below in its own section.

Figure 2.6: A general black-box optimiser that finds the appropriate settings
of x to yield the best value for y, in which x and y can take any form.

The “No free lunch” (NFL) investigation by Wolpert and Macready (1997)

addresses the issue of choosing the best algorithm for a class of problems or even

a particular problem, and whether such a choice is a priori possible. Their inves-

tigation shows that not only is there no best algorithm, but that any algorithm

that performs especially well on a particular problem class, will perform corre-

spondingly worse than another on all other problem classes. This is true even for

purely random search strategies. In particular, it is shown that if some knowl-

edge of the problem can be incorporated, then performance tends to be better,

although such knowledge is not always available. Uncertainty, in the form of lack

of exact knowledge, about the precise objective function, f, can be expressed as a

Chapter 2 - Heuristic multi-objective optimisation algorithms 41

probability distribution, P (f), and the performance of the optimiser then depends

on how well its strategies are aligned with P (f) (Wolpert, 2012).

For example, in the electrical grid optimisation of Chapter 5, three of the ob-

jective functions are effectively ‘black-box’, as they themselves depend on iterative

procedures inside Plexos (commercial software that performs power calculations),

about which the MOOEA has no information. The MOOEA can therefore not be

stated to be a priori the best algorithm for this work; however it is not readily

apparent that any other algorithm could substantiate that claim either. The fu-

ture work described in Chapter 6, section 6.3.3 suggests a hybrid that could treat

the GA as the originator of training examples for supervised learning by a genetic

program (GP), with the goal of making the GA run in shorter overall times by

using fast OFs produced by the GP.

Similarly, the airfoil optimisation of Chapter 4 is also effectively black-box, as

it is the XFoil codes which perform the airfoil assessment for the MOOEA.

2.3.2 Multi-objective optimisation

So far this work has been concerned with the optimisation of a single quality

criterion, a given problem’s objective function (OF), whereas in Chapter 1 it was

noted that many real-world complex engineering systems tend to have more than

one OF to be concerned about. This section therefore addresses the area of multi-

criterion optimisation, which is more usually termed multi-objective optimisation

(MOO), contemporarily.

Fonseca and Fleming (1998) made the point that optimisation constraints can

also be taken as hard objectives, needing to be satisfied prior to the optimisation

of the further, soft, objectives, and that on the other hand, problems having many

objectives have in the past been transformed into single objective ones, with hard

constraints, in order to solve them. Their proposed framework enabled constraints

and OFs, both treated as functions, to be manipulated together. The effect of

constraints can be visualised as in Figure 2.7.

Chapter 2 - Heuristic multi-objective optimisation algorithms 42

Figure 2.7: Visualising the effect of constraints in a 2D objective space, Z
(Rao, 1996).

However, the essence of MOO, is that there are two or more conflicting objec-

tive functions that need to be simultaneously optimised, such that each is satisfied.

Systems having many OFs that are not competing, are not effectively MOO. An

optimisation with OFs that are not in competition with each other, even where

this has not been recognised, will naturally give rise to one solution to the problem,

as is the case in single objective optimisation.

In problems that do have conflicting objectives, it naturally arises that there

are a set of optimal solutions rather than just one, because no one solution can

be better than all of the others with respect to all OFs, since to improve one

OF necessarily degrades the other OFs (Deb, 1999). The global optimal set (in

decision space) is known as the Pareto-optimal set, but other solution sets which

approximate the global one, may be found and would be termed the local Pareto

set or front. In objective space, the optimal set is known as the non-dominated

set, since each solution cannot be said to be dominated (be more optimal) by any

other. Hence MOO requires trade-offs to be made, by some higher-level decision

Chapter 2 - Heuristic multi-objective optimisation algorithms 43

maker (whether human or otherwise), in choosing a compromise solution to be the

answer to the problem, as Figure 2.8 illustrates. Bearing in mind the Principle

of Duality introduced at the start of 2.3, a two-dimensional (2D) MOO problem

(MOOP), can be optimised in a number of ways, as Figure 2.9 illustrates, in which

the direction of the convergence of the solutions are depicted depending upon the

type of optimisation being performed.

Figure 2.8: The Pareto-optimal front of a bi-objective minimising optimisation
problem.

A corollary is that, unlike single objective optimisation, MOO gives rise to a

new multi-dimensional space called the objective space, Z, in which the values of

the OFs exist. There is then, a mapping between a given solution in decision space

and its corresponding point in the objective space, noting that their vectors are of

different dimensions, the former being of n decision variables, and the latter of M

objective functions.

Moreover, Coello et al. (2006) note, referencing Bäck (1995), that for a general

MOOP (and many particular ones), searching for the global optimum is an NP -

complete problem (Garey and Johnson, 1979) for any system that is of more than

minimal complexity, due to the exponential increase in the size of the search space,

Chapter 2 - Heuristic multi-objective optimisation algorithms 44

Figure 2.9: Bi-objective optimisation Pareto front quadrants for OFs f1 & f2,
depending on the optimisaton of each OF being maximisation or minimisation

(Deb, 2013).

which depends upon the cardinality of both the decision vector and the permitted

range of its components.

To formally define Multi-objective optimisation, the following can be stated,

without loss of generality (Fonseca and Fleming, 1998):

Minimise simultaneously n components fj, j = 1, · · · , n of a function f of a

general decision variable x in a universe U , where:

f(x) = (f1(x), · · · , fn(x)) (2.4)

The Pareto dominance relation can then be defined as follows (assuming minimi-

sation as above): A given vector u = (u1, · · · , un) is said to dominate another

vector v = (v1, · · · , vn) if and only if u is at least partly less than v(up < v); stated

formally thus:

∀i ∈ {1, · · · , n}, ui ≤ vi ∧ ∃i ∈ {1, · · · , n} : ui < vi. (2.5)

Chapter 2 - Heuristic multi-objective optimisation algorithms 45

Pareto optimality is then defined as: A solution xu ∈ U is said to be Pareto-optimal

if and only if there is no xv ∈ U for which v = f(xv) = (v1, · · · , vn) dominates

u = f(xu) = (u1, · · · , un).

In practice, optimisation problems may be subject to restrictions on the values

that one or more of their decision variables may take, or on the values held to

be useful in the problem solution. Such constraints can usually take the form

expressed as a function inequality: f(x) ≤ c, or f(x) < c, where c is a constant

value and f is real-value function of x.

An inequality constraint function g(x) can manage a ≤ 0 constraint (or vice-

versa) by multiplying both sides of the inequality by −1 or swapping one side of the

inequality for the other (Deb, 2012). For example, g(x) ≤ y becomes −g(x) ≥ −y,

or y ≥ g(x).

Equality constraints are harder to deal with, should be avoided if possible, and

are a subject in their own right, especially in robust design optimisation (RDO),

in which uncertainties are modelled to minimise their effects. Rangavajhala et al.

(2007) examine approaches in RDO for equality constraint handling and provide

a strategy, but here it is noted that if possible, relax an equality f(x) = c by

replacing it with a combination of inequalities for special cases.

A constrained multi-objective optimisation problem, having functions

(f1, · · · , fk), can thus be expressed without loss of generality as:

(fk+1(x), · · · , fn(x)) ≤ (gk+1, · · · , gn)

. . . in which x is a generic decision variable, in the universe U , and is subject

to a positive number of constraints n − k applied component-wise (Fonseca and

Fleming, 1998). It is not necessarily true that a solution exists in U which satisfies

such a constrained problem.

Zitzler et al. (2003) extended the definition of dominance by recognising that

in practice, it is often very difficult to obtain the true global Pareto-optimal set,

Chapter 2 - Heuristic multi-objective optimisation algorithms 46

whereas there may be one or more local Pareto sets, which they term approxi-

mation sets, that may suffice to provide a choice of good enough solutions. The

existence of two or more approximation sets motivates the definition for further

dominance relations, as follows:

Approximation Set - Let A ⊆ Z be a set of objective vectors for which A is an

approximation set if any element of A does not dominate or is not equal to any

other vector in A, and for which the set of approximation sets is given by Ω. This

enables all dominated solutions to be simply disregarded.

There then may exist the following dominance relations (Tables 2.1 and 2.2),

considering objective vectors (solutions) z1 and z2, and approximation sets A &

B:

Table 2.1: Extended dominance relations to include approximation sets, from
the perspective of objective vectors

Relation Symbol Description

strictly dominates z1 �� z2 z1 is better than z2 in all objectives
dominates z1 � z2 z1 is not worse than z2 in all objectives

and better in at least one objective
weakly dominates z1 � z2 z1 is not worse than z2 in all objectives
incomparable z1 ‖ z2 neither z1 weakly dominates z2 nor vice-

versa

Table 2.2: Extended dominance relations to include approximation sets, from
the perspective of approximation sets

Relation Symbol Description

strictly dominates A �� B every z2 ∈ B is strictly dominated by at
least one z1 ∈ A

dominates A � B every z2 ∈ B is dominated by at least one
z1 ∈ A

better A B B every z2 ∈ B is weakly dominated by at
least one z1 ∈ A and A 6= B

weakly dominates A � B every z2 ∈ B is weakly dominated by at
least one z1 ∈ A

incomparable A ‖ B neither A weakly dominates B nor vice-
versa

Chapter 2 - Heuristic multi-objective optimisation algorithms 47

The Pareto dominance relation, defined in equation 2.5, can then be used

to compare solutions within a population and rank them by how dominant and

non-dominated they are with respect to the rest of the population (Fonseca and

Fleming, 1993). Figure 2.10 shows an example ranking in which ‘level 1’ is the

best performing set.

Figure 2.10: Pareto ranking example showing successive ranks

2.4 Performance of optimisation algorithms

The requirement to define what is meant by performance and to understand how

algorithms perform arises from the desire to design algorithms and to gain insight

into how well they work in practice, which in turn means how to measure their

performance. Obtaining metrics for performance enables the comparison of algo-

rithms, provides input into the design process, which may also include producing

estimates of time and computational complexity and to assist in deciding how the

algorithm should terminate.

Fundamentally, performance comprises both the quality of solutions produced

and the effort (CPU time) or time (elapsed) required to elucidate them (Fonseca

and Fleming, 1996). Effort is naturally a reflection of the time complexity of the

algorithm running on the problem itself, usually expressed as ‘Big O’ notation, in

which the time needed to run the algorithm is a function of the size of its input,

where O(n) indicates a linear relationship (Garey and Johnson, 1979). Other

Chapter 2 - Heuristic multi-objective optimisation algorithms 48

considerations include computational complexity (a measure of the theoretical

difficulty of the problem), and resource usage such as memory, and possibly disk

space.

The quality of the solutions achieved essentially means their objective function

values in the final generation or iteration. If the global optima are known a priori

then the quality is relative to their closeness to them.

A necessary step in defining performance is to draw a distinction between

the utility or cost function, more generally termed the objective function (OF),

and the concept of fitness of solution. The optimisation problem is defined by

the specification of the OF, whereas fitness is a measure of the desirability of

a candidate solution at a given point in the execution of the algorithm. While

the value of one may be equal to the value of the other in some single objective

algorithms, the distinction is certainly necessary when considering algorithms in

which the assessment of a given solution is dependent upon a vector of objective

values (Fonseca and Fleming, 1997), and in MOOPs this is the case by definition.

For MOOPs then, ‘performance’ encompasses a number of considerations, fore-

most of which are those related directly to the Pareto optimal (PFopt) front which

is the set of solutions which are globally optimal. Thus convergence to the PFopt

front, both in terms of being able to achieve it and the rate of progress towards

it, are basic concerns. The other primary concern is the diversity and spread of

solutions along the PFopt front, or along the locally optimal approximation sets

prior to convergence, since it is desirable, in the absence of knowledge about the

possible solution set (that a domain expert might have), to obtain results from

across the width of the (hyperplane of the) front (Fleming and Purshouse, 2001).

The subsidiary concern of maintaining a degree of lateral diversity of solutions

across objective space, in which solutions are perpendicular to the PFopt front,

can be seen as a putative mechanism of performance improvement rather than as

a direct measure of performance itself. Both cases of diversity are important in

the performance of a GA as potentially good solutions should not be lost, where

possible (Laumanns et al., 2001). Diversity of solutions helps prevent premature

Chapter 2 - Heuristic multi-objective optimisation algorithms 49

convergence in the earlier stages of the process, and ameliorates the tendency to

search in non productive directions later.

It is the case that the PFopt front may not be known, thus whether maximal

convergence has been achieved is not always knowable, in which case performance

in this regard can only be measured from an alternative known reference, such as

an existing approximation front or a pre-defined set, typically of low quality points

in objective space.

There are a variety of quantitative metrics for determining the spread or den-

sity of solutions in objective space, which are required both for a quality measure

of the algorithm final solution set (the wider and more even the spread, the better)

but also to help the algorithm while running to assign a fitness to a solution, since

it is usually the case that an algorithm wants to remove one or more solutions

from a densely clustered location and allow more solutions at sparsely populated

locations.

A density/crowding/sparsity metric may require finding the distance between

two or more given solutions in objective space and there are a number of ways

such a thing can be calculated, for example the distances of Manhattan, Eu-

clidean, Chebyshev, Minkowski, among others. Normalisation of the objective

function values may be necessary where OFs are scaled differently, in order that

the distances computed for one dimension do not swamp those of another. These

values may then be used to define a region in which other solutions are to be

counted, or for example by summing for a given solution the distances of all other

solutions to it (Deb et al., 2000). Diversity of solutions, however, comes at the

price of increased computational expense (Deb et al., 2003). The fitness of a so-

lution can then be derived as a function of both its quality and its proximity to

other solutions, either through a sharing scheme (Fonseca and Fleming, 1995a) in

which fitness is degraded as a function of higher population density, or through

the secondary application of density as a criterion when ranking would otherwise

be the same.

Chapter 2 - Heuristic multi-objective optimisation algorithms 50

Measures of convergence are calculated for the approximation front(s), in

which diversity of solutions may be taken into account. Such metrics include:

Hypervolume (Zitzler and Thiele, 1998) was originally described as “the size of

the space covered”, is a measure of how much space (area or hypervolume,

depending on the dimensionality of the objective space), is dominated by an

approximation front, thus it is not only an indicator of convergence but also

of breadth of front.

(Unary) ε-indicator (Zitzler et al., 2003) is a measure of the minimum distance

of translation needed to move every solution in the discovered front, so that

the front weakly dominates the most converged front found, thus is an intu-

itive measure of Pareto dominance.

R indicators Hansen and Jaszkiewicz (1998) are three different but related met-

rics that provide an assessment of the difference between approximation

fronts, but do not work in all cases. R1 estimates the number of times

the solutions of one front are better than the other. R2 is a graded esti-

mate of the superiority of one front over the other, and R3 indicates the

proportion by which one front is better than the other. They require a set of

utility functions together with assumed probabilities of their occurrence and

a numerical integration technique to solve the integral. Deb and Jain (2002)

suggest a weighted set of Tchebycheff metrics for the utility functions.

It is important to remember that each convergence metric is in some way

deficient by itself in that they may not always be applicable, depending on the

distribution of points in the approximation or reference fronts being compared,

or may not provide all the information required. Where fronts are comparable,

different metrics may indicate opposite conclusions, again depending on the nature

of the fronts, for example a wide spread of solutions related to a front which is

only partially better converged. Thus it is advisable to use more than one metric

in such comparisons, with both qualitative (better) but also quantitative (better

by how much) metrics being available (Zitzler et al., 2003). Zitzler et al. (2002)

Chapter 2 - Heuristic multi-objective optimisation algorithms 51

showed that at least M metrics are needed to compare two or more fronts of an

M objective problem.

2.5 Heuristics and meta-heuristics

2.5.1 Heuristics

It has been noted above that MOOPs are often hard to solve as they tend not

to be amenable to analytical methods due to their usual non-linearity and multi-

dimensionality (both in decision and objective space), and also often or usually,

having very large search spaces from which solutions must be picked. The sizes

of the search spaces of such problems tends to preclude the use of exhaustive and

complete searching, which would take too long to be practical, or even possible

(since they may in theory take many years).

Moreover, multimodality tends to occur as soon as the number of OFs exceed

one, for non-trivial competing objectives, even where each OF by itself is of single

modality and is a convex function (Fonseca and Fleming, 1995b).

The inherent characteristics of these problems leads to the adoption of other

methods which are determinedly less than complete explorers of the problem space,

with the corollary that solutions found may not always be the best, but either

the method returns the best solution often enough, or approximate solutions are

deemed “good enough”.

Heuristics then, are “criteria, methods, or principles for deciding which among

several alternative courses of action promises to be the most effective in order to

achieve some goal.”, (Pearl, 1984). Heuristic methods require knowledge about

the problem domain, and may be of a stochastic nature, but tend to have sim-

ple, incomplete or unreliable information about the exact problem. There is an

essential dichotomy at the heart of these methods: to be simple, yet effective.

A common phrase used to describe them is “rule of thumb”, which in turn may

Chapter 2 - Heuristic multi-objective optimisation algorithms 52

imply some sort of summation or scoring of elements or steps in the problem. The

so-called Greedy heuristic (Atallah and Blanton, 2009) is a good example of such

a method: it adopts the general strategy of adopting the locally optimal choice

at each decision point with the hope that this will eventually find the global op-

timum, while accepting that this will not always be the case; yet it needs specific

knowledge about the problem in order to be used. The book of Polya (2004) is it-

self a heuristic guide to solving problems generally, even though aimed specifically

at mathematical problems.

The term meta-heuristic was introduced by Glover (1986) in his discussion of

the Tabu search algorithm, which uses a heuristic, as above, but upon which is im-

posed a further strategy - that of penalizing moves that take a path already taken,

and an organised memory mechanism. Various metaheuristic implementations

have found use in the real-world, tackling necessary tasks such as job scheduling

and vehicle or network routing (Sörensen and Glover, 2013), in which any solution

that works is “good enough” even if such may not be the global optimum.

It is frequently the case that in pursuing difficult problems, especially real-

world engineering ones, that the Pareto-optimal set, PFopt, is neither known,

nor indeed knowable analytically (Veldhuizen and Lamont, 2000), therefore until

proven otherwise, it is usually necessary to assume that a given set of solutions

obtained in a front, is an approximation to the global: PFapprox.

2.5.2 Meta-heuristics

The term metaheuristic is often found in the literature and as it is by nature inher-

ently general, the definitions given for it tend to vary, nevertheless the following

set of common properties are fundamental in describing it (Blum and Roli, 2003)

:

� Have strategies that in some way influence the direction of search.

Chapter 2 - Heuristic multi-objective optimisation algorithms 53

� Have a goal of exploring the search space efficiently to find (near) optimal

solutions.

� Use a variety of techniques from local searches to complex learning strategies.

� Are often, or usually, non-deterministic, and approximate.

� May possess mechanisms to avoid becoming trapped in local minima.

� Are often described at a level of abstraction from a specific problem.

� Are not problem-specific.

� May be hybridised with some domain-specific knowledge as heuristics that

are controlled by a higher level strategy.

� May use organised memory to leverage search experience to determine the

direction of the search.

A metaheuristic thus is both a framework and a set of concepts, strategies and

mechanisms that are consistent, for the design of heuristic algorithms. Sörensen

and Glover (2013) refine the definition metaheuristic to be “a high-level problem-

independent algorithmic framework that provides a set of guidelines or strategies to

develop heuristic optimization algorithms”. They also note that problem-specific

implementations of heuristic algorithms within a metaheuristic framework, are

also metaheuristics.

Figure 2.11 depicts the broad categories of metaheuristcs that have been in-

spired by nature, with the common thread that living organisms in some way

necessitate optimisation in the struggle to survive long enough to reproduce, ex-

cept for the simulated annealing (SA) algorithm (Kirkpatrick et al., 1983), which

uses the metaphor of the annealing process of metallurgy, as a system having

multiple potential energy states therefore being amenable to statistical mechanics

(analysis of aggregate properties of atoms in solids or liquids).

Chapter 2 - Heuristic multi-objective optimisation algorithms 54

Particle Swarm optimisation (PSO) introduced by Kennedy and Eberhart

(1995) is based on velocities of moving particles in 2, 3 or n-dimensional (hyper-

)spaces, and acceleration towards solutions nearer to the global optima, where

behaviour was inspired by flocking and foraging of birds and fish, but also the

desire to model human social behaviour. However, there are similarities with evo-

lutionary algorithms (EA), in that: it is stochastic; there is an operator (agent

velocity adjustment) similar in effect to that of crossover in genetic algorithms

(GA); the concept of fitness of a solution is used; and the group ‘knowledge’ of

the best position found so far (gbest), being analogous to elitism. Each particle,

termed agent, stores the coordinates of the best solution location it has visited

(pbest) and tracks other agents in its vicinity, while maintaining a minimum sep-

aration, that it is informed are the current local optima (lbest). At each step, the

agent evaluates its fitness and is accelerated towards pbest and lbest positions, with

weighted random adjustments to its acceleration vector. A significant difference

to GAs is that a PSO agent only has access to lbest in other agents, whereas GAs

swap chromosomes with many individuals. Another significant difference is that

a PSO can be considered to be a “directed mutation” method, in that individu-

als may be modified, related to their fitness, but no re-sampling occurs, unlike in

evolutionary methods. Re-sampling is the creation of new solutions from existing

ones; in canonical PSOs the population is fixed.

Ant colony optimization (ACO) (Dorigo et al., 1996), (Dorigo and Blum, 2005)

and its derivatives, share some common themes with PSO of animal behaviour

and foraging, in which colonies of the same species attempt to maximise their

net energy gain (food consumption versus the energy expended to acquire it) over

time. In ACO, the agents are metaphorical ants that move stochastically over

a landscape, communicating with each other by assigning values to the paths

they have taken that are relative to their fitness (the metaphor has it that the

fitness is indirectly proportional to the distance to the food and the path value

is a pheromone trail, for example when used for the Travelling Salesman problem

(TSP), shorter paths are travelled by more ants in a given time, thus acquire

higher values). The path values are adjusted by the number of agents travelling

Chapter 2 - Heuristic multi-objective optimisation algorithms 55

them, and by a deterministic degradation function (a metaphorical pheromone

evaporation) that helps to prevent premature convergence, thus the path value

provides a bias guiding the agents in their decision to take it.

Various comparisons have been performed to investigate the relative perfor-

mance of these approaches, but as specific algorithm details vary (for example,

whether a GA is real or binary encoded, if elitism is used, and so on), and as the

NFL theorem necessitates that a given algorithm will always be out-performed by

another on some problems, it cannot be said of any specific metaheuristic algo-

rithm that it is “better” than the others, generally.

Figure 2.11: Nature-inspired metaheuristics.

However, so many derivative metaheuristics have arisen that are inspired by

nature, from EAs through various insect and bacterial foraging, to flocking or

swarming, shark hunting strategies using Lévy flights (Chechkin et al., 2008) and

even music-based metaphors, that it becomes a matter of intrigue to wonder how

much such strategies really differ fundamentally, given that they are all attempting

essentially the same thing: to both search widely in a very large space and yet to

home in on regions containing good solutions in the hope of finding better ones;

also known as the diversify/intensify or explore/exploit dichotomy. For example,

Bäck (1995, p. 257) declares that “Evolutionary Algorithms are representatives

of the mathematical concept of a Markov process (respectively chain, in discrete

Chapter 2 - Heuristic multi-objective optimisation algorithms 56

spaces)”. Although diversify and explore both have the meaning of searching

more widely in the search space, while intensify and exploit have the meaning of

focusing in on promising regions, the pair diversify/intensify now are largely used

in the context of some deliberate strategy, often involving specific memory caches

or divisions, whereas explore/exploit tend to be more associated with stochastic

undirected approaches (Blum and Roli, 2003).

Along with Sörensen (2013), the conclusion could be reached that it would be

better to research existing approaches to refine them or define them analytically,

in the sense of analysing how they work, rather than introduce new derivative

methods that are not really novel in their fundamentals unless they can provably

be shown to contribute to the field.

Therefore, the following section considers the Evolutionary Algorithm class of

metaheuristics that has shown itself to be particularly useful in tackling MOOPs,

and the Genetic Algorithm in particular, as a refinement was identified that was

novel and potentially of use for MOOPs in general and complex engineering sys-

tems in particular.

2.6 Evolutionary algorithms

The “classic” optimisation approaches such as those derived from Simplex or

gradient-based methods, are not inherently adaptable to MOOPs as they were

designed with single objectives in mind, which means a MOOP needs to be trans-

formed in some way into a single OF problem if such methods are to be used, and

this is always a compromise, as it biases the result to one objective or another.

This transformation also means that each run produces but one solution, when

we know that a MOOP by definition (see above) gives rise to many candidate

solutions. It is not only the “classic” optimisation methods that struggle with

MOOPs; metaheuristics such as simulated annealing, which were also conceived

for single objective problems, are subject to the same issues too.

Chapter 2 - Heuristic multi-objective optimisation algorithms 57

The Evolutionary computing (EC) field historically had problems with recog-

nising names and terminology from one sub-discipline to another, but now it is

generally recognised that EC is synonymous with EA and the categories in the

given figure are now generally accepted. EA is a class of metaheuristic that encom-

passes a number of different type of algorithms that have been inspired, at different

times and in various ways, by evolutionary biology, in particular neo-Darwinian

natural selection (Figure 2.12).

The defining characteristics of algorithms in the EA field is that they:

� are composed of a population of potential candidate solutions, which in the

canonical case is created stochastically initially.

� have some way of selecting good solutions from the population.

� have some way of using the decision vectors of selected solutions to create

new solutions.

� may provide some way to change the decision vectors of existing solutions.

� through some or all of the above, the solutions are able to improve over time

without external influence.

Essentially then, the solutions are evaluated and compared; good ones are

allowed to persist and the less good are ignored or discarded, and new ones are

created from the existing ones, iteratively. In this way, solutions evolve over time

to become better, in terms of their OFs. The various algorithm types (see Figure

2.12) have different strategies to accomplish these broad and general goals.

Because EAs contain a population of solutions, rather than just one, they

are inherently more suitable to MOOPs which must also, by definition, provide

multiple solutions, as this enables EAs to provide many solutions per run. Indeed,

one EA run can theoretically find all the possible Pareto optima, whereas non EA

approaches would be able to find one only per run and have to be run n times to

find n further optima (Coello, 2006).

Chapter 2 - Heuristic multi-objective optimisation algorithms 58

Figure 2.12: The main sub-classes of evolutionary algorithms

EAs are able to manage discontinuous, non-differentiable, multi-modal, noisy,

and otherwise unconventional response surfaces Schwefel (1997), and because of

this robustness are able to cope with a broad field of applications. Fonseca and

Fleming (1995b) also note that EAs are inherently able to be parallelised due to

being population-based. EAs according to Bäck et al. (1997) are “especially well

suited for solving difficult optimization problems”, and all these attributes of EAs

provide good reasons for using them to tackle real world-engineering problems.

Of course, EAs have their limitations and when considering MOOPs, those EAs

using a Pareto-dominance strategy can struggle on problems that have four or more

objectives to be solved simultaneously (Ishibuchi et al., 2008). The performance of

convergence can deteriorate as a large proportion of the solutions in the population

become non-dominated, which has the effect of decreasing the pressure of selection

upon them. This phenomenon occurs since each new objective adds a degree of

freedom in which the solution could excel, and the way dominance relations are

defined means an otherwise poor solution can be non-dominated if it is ‘good’

in just one objective. In these hyper-dimensional objective spaces, exponentially

more solutions are needed to approximate the Pareto-optimal front.

However, despite these challenges, EAs remain among the best approaches

to tackle such problems, and there are strategies that can be used to at least

ameliorate such problems in some circumstances as described further in 2.6.1.

Most implementations of EAs descend from the closely related approaches

which were proposed independently in different places although at similar times,

Chapter 2 - Heuristic multi-objective optimisation algorithms 59

these being genetic algorithms (GA), evolutionary programming (EP), and evo-

lution strategies (ES), as depicted in Figure 2.12. Genetic programming (Koza,

1998) is fundamentally different to the other approaches, in that its purpose is

to produce a set of optimal computer programmes, rather than a set of optimal

decision vectors as the others do.

ES was introduced by Rechenberg and refined by Schwefel (Rechenberg, 1973,

and Schwefel, 1981, cited in Bäck, 1992), and EP was first posited by Fogel (Fogel,

Owens, and Walsh, 1966, cited in Bäck and Schwefel, 1993). The three main

classes, ES, EP and GA, are quite similar from a broad perspective (Fogel, 1994),

since each consists of a population of candidate solutions that may be changed

stochastically, and from which some are selected based on some quality related to

‘fitness’ while others may be in some way discarded. Originally GAs were binary-

encoded while ES and EP were based on real values, and GAs had both mixing

(crossover) and mutation operators, while ES and EP had just mutation, but over

time they have become functionally more similar as ESs adopted crossover and

GAs adopted real-encoding.

Beyer and Schwefel (2002) describe ESs as steady-state algorithms in which

the population is constant with members being replaced by better offpsring as

they occur, depending on the exact scheme used, giving the following ES types:

(1 + 1): has just two solutions at each iteration: an old parent and a new child.

Mutation occurs to all parent decision variables with random change and if

the offpsring is better than the parent it is kept, and if not, discarded.

(µ+ 1): 2 parents produce 1 offpsring which replaces one of the parents if the

latter is worse, or is discarded otherwise.

(µ+ λ): in which not only one offspring is created at a time or in a generation,

but λ ≥ 1 descendants, and, to keep the population size constant, the λ

worst out of all µ+ λ individuals are discarded.

Chapter 2 - Heuristic multi-objective optimisation algorithms 60

(µ, λ): in which the selection takes place among the λ offspring only, whereas their

parents are forgotten no matter how good or bad their tness was compared

to that of the new generation. This scheme must ensure λ > µ.

Schwefel (1997) found that GAs were the most popular type of EA among EA

researchers, at that time, and that the Building Block (BB) concept, descended

from Holland’s (Holland, 1992) Schema explanation of GA performance although

he also noted that the BB theory had never been proved, and this remains the

case. Some research has shown the Schema theory to not hold true for all cases,

in particular Mühlenbein (1991) showed, using a deceptive function3, that “The

estimate of the fitness of a schema is equal to the exact fitness in very simple

applications only. Therefore interpretations using the exact fitness cannot be

applied in connection with the schema theorem. But if the estimated fitness is

used in the interpretation, then the schema theorem is almost a tautology, only

describing proportional selection”; a comparison is also made with (Grefenstette

and Baker, 1989) whose criticism is said to be of a similar vein.

The GA is a very flexible kind of EA, because its ability to be targeted at

a particular problem, NFL theory notwithstanding, is primarily dependent upon

the data structure (and associated functions) of its problem representation, or

chromosome as the metaphor has it. Thus GAs can be used on discrete and

continuous problems and objective spaces of all sorts of topologies, for example

convex or concave function spaces. ESs however, are more naturally associated

with parameter optimisation, due to their being continuous in nature, while EPs

flexiblity lies between the ES and the GA (Bäck and Schwefel, 1993).

Moreover, Deb and Agrawal (1999) found that using GAs with tournament se-

lection and both recombination and mutation operators, with an adequate but not

excessive population size, were able to not only tackle difficult optimisation prob-

lems, but were also not necessarily overly computationally expensive, in contrast

to popular belief.

3A deceptive function has a low-order schema fitness average that favours a particular local
optimum, but has a global optimum located at that optimum’s complement (Goldberg et al.,
1989).

Chapter 2 - Heuristic multi-objective optimisation algorithms 61

The GA is thus used as the template for this work, as it has been shown to be

effective on real world problems in a variety of domains, in science and engineering

(Gen and Cheng, 2000), (Fleming and Purshouse, 2002), (Deb, 2012), and the

GA of this work adopts a variety of chromosomes to enable it to be of general

applicability, and the mechanism of doing so is another aspect of its novelty.

Genetic Algorithms (GA) are a class of evolutionary algorithm (EA) that first

were used in incipient form by Rosenberg (1967) and subsequently systematised by

Holland (1992) for the binary form, then expanded upon by Schaffer (1984) who

introduced the first MOGA (called VEGA), and then Goldberg (1989). They are

stochastic and characterized by populations of potential solutions that converge

towards local or global optima through evolution by algorithmic selection (Jones

et al., 2002) as inspired by neo-Darwinian (Coello, 2006) evolutionary processes.

An initial population of random solutions is created and through the evaluation of

their fitnesses for selection for reproduction, and by the introduction of variation

through mutation and recombination (crossover), the solutions are able to evolve

towards the optima.

The biological metaphor is used heavily in usual discussion of GA mechanisms

and structures, in which a given candidate solution to the optimisation problem

is termed an individual or organism. The decision vector of the solution is termed

the chromosome which in turn is composed of a set of genes, each of which is a

variable of the appropriate data type (which may be primitive or a class4) and

whose value is an allele. The result of the evaluation of the OFs, which depends

on the chromosome, is then the fitness. The chromosomes may then be subject to

manipulation by certain functions, termed operators, the most common of which

are crossover and mutation. Crossover, also known as recombination in the bio-

logical domain, occurs during the creation of new solutions, in which two existing

solutions (parents) are combined to create one or more new ones (children) by mix-

ing the chromosomes in certain defined but stochastic ways. This is metaphorical

sexual reproduction. Mutation is the process of altering one or more genes in one

solution’s chromosome. A variety of other similar operators exist which in some

specific way also alter the chromosome(s) or gene(s) in order to explore the search

Chapter 2 - Heuristic multi-objective optimisation algorithms 62

space, and whose quality depends upon the specific details of the problem con-

cerned. The operators are given a certain probability of being invoked, as part of

the GA run parameters.

Fonseca and Fleming (1993) implemented a rank-based fitness scheme, inspired

by Goldberg, in their MOGA that also enabled an external decision maker to

choose solutions; further research over more recent years by Fonseca and Fleming

(1998), Fleming et al. (2005), Deb (2001), Zitzler et al. (2003), and others, has

improved their ability in handling multi-objective optimization problems.

GA performance on a given problem has been shown, since De Jong (De Jong,

1975), to be extremely sensitive to the settings of its parameters, these being

the probabilities of mutation and crossover occurring, the population size and the

number of players in a tournament selection (when this selection method is used).

Moreover, for certain real/continuous encoded GAs, it is necessary to consider

operators’ polynomial distribution indices (Deb and Agrawal, 1995).

2.6.1 Algorithm adjuncts and concerns

Evolutionary algorithms, such as GAs, can be improved upon by a variety of

further tactics (not discussed as yet) which have the purpose to in some way

explore the search space more effectively or exploit good solutions in order to find

better ones or other solutions in regions not populated as was discussed previously

under diversity in performance.

Selection is the term used to describe which solutions are chosen to either

derive new ones from (‘breed’) or which ones persist into the next generation,

depending on the life-cycle scheme used. Goldberg (1989) described the Roulette

Wheel approach in which the probability of a solution being selected (to breed with

another) is proportional to its fitness, under stochastic choice. This was found to

lead to genetic drift due to the bias of the procedure. The Tournament variation

4A class being a complex data type, in the sense of the object-oriented analysis and design
methodology of software development (Rumbaugh et al., 1991).

Chapter 2 - Heuristic multi-objective optimisation algorithms 63

(Goldberg and Deb, 1991) chooses two (or more) solutions at random, compares

them (for fitness5) and chooses the most fit for breeding. This has been shown

to be less biased and good for parallel implementation. Gen and Cheng (2000)

provide references to other possible methods of selection: the µ & λ methods are

deterministic ones that select the best of (parents and offspring); truncation and

block are deterministic also, ranking in order of fitness and choosing the best, while

the steady state and generational selections take the similar approach, choosing

a subset of the population to replace, where the subset might be all, or replacing

the worst n with n offspring.

Elitism, first proposed by De Jong (1975), acts as adjunct to selection, in that

it archives the best solutions (or some subset of them) and allows (some of) them

to be re-inserted into the population for comparison or breeding. This prevents

these best solutions from being lost through normal action of genetic operators or

random loss due to non-selection.

A variety of archiving schemes are used in different algorithms, having the

common characteristic of maintaining some subset of best solutions, and differing

in how solutions enter and exit the archive; exit might be by time (or generation

number) expiry, or replacement by better solutions; entry might be governed by

quality criteria or by archive size. For example, Knowles and Corne (2000) in

their PAES algorithm, use a size-limited archive to which entry is gained by an

offspring when it is better than its parent or when it is better than a solution in

the archive in which case it replaces the one it is better than.

An alternative, one might say opposite, approach to elitism and archiving

is that of restart (Fukunaga, 1998) in which one run is halted and instead a

new one begun with a (probably) different starting population. In this case it is

the multiplicity of runs which leads to the best solutions found, as more initial

conditions are experienced and it is known that with stochastic algorithms, some

starting populations lead to better results than others. The ‘new’ runs can of

course be carried out in the same run, by discarding the final population (having

5which might be by rank then distance, for example

Chapter 2 - Heuristic multi-objective optimisation algorithms 64

written it out to storage or archived it internally) and generating another starting

population.

The time complexity of an optimisation problem can be exacerbated by objec-

tive functions which themselves are computationally expensive, as is the case, for

example, in computational fluid dynamics (CFD), in which a (very) large number

of equations need to be solved numerically per function evaluation. Under such

circumstances, an objective function might take many minutes, or even hours or

days to calculate. Population based algorithms such as some Evolutionary ones

suffer from this due to the large numbers of function evaluations (population size

× number of generations) needing to be performed.

Surrogate models (Forrester et al., 2008) are one way to circumvent this prac-

tical problem. These models, which might also be known as metamodels, once

created act as alternative objective function sources, but being much cheaper com-

putationally in use, perhaps orders of magnitude cheaper, through curve-fitting or

response surface modelling depending upon the number of decision variables. As

well as being less time complex, surrogate models also need a useful degree of

accuracy.

The models are created as data in a bottom-up manner, through sampling of

well considered data points (through a design of experiments) using the expensive

computational route. The model is assessed at various quality points (such as

noise, constraints, robustness), with data being replaced or additionally created

as necessary for the validity of the final model. It is assumed that the (engineering)

function behaves in a smooth continuous way, such that non-sampled data points

can be calculated with requisite accuracy.

An alternative to a surrogate model is to use the Kriging method which acts as

the surrogate, as created by Krige, and as discussed by Forrester et al. (2008). In

this approach, it is assumed that the observed responses (the objective functions)

derive from a stochastic process even though they may arise from deterministic

codes. A set of random vectors is generated from the sample data and a set of

correlation values is created between them using the Kriging basis function, from

Chapter 2 - Heuristic multi-objective optimisation algorithms 65

which a correlation matrix is created for all the sample and observed response

data, along with a covariance matrix. The covariances then govern a Gaussian

process modelling interpolated values for data points not in the sampled set. This

method has been shown to be the best (linear) unbiased predictor of interpolated

values.

Evolutionary algorithms have been applied successfully to a variety of multi-

objective optimisation problems to various extents, where multi had tended to

be between 2 objective functions (OFs) and up to around 4. Problems having

more than this number of OFs are now commonly referred to as many to highlight

this boundary, above which success has been seen to diminish either in ability to

converge or in providing diversity of solutions, or with requisite longer run times

(Khare et al., 2003).

A study by Hughes (2005) found that the hypervolume quality metric indicated

that the Pareto ranking method tends to inhibit algorithm performance compared

to those which use other than Pareto ranking methods. That study also found

that while it is better to generate an entire Pareto set in one run where it is

possible, splitting a many objective optimisation problem (MaOOP), especially

for the higher dimensions, into a collection of single objective problems, works

better (for convergence) than their Pareto ranking algorithm equivalent MOOPs,

such as NSGA-II.

Knowles and Corne (2007) found that for MaOOPs with ten or more OFs, a

purely random search could show better convergence than an MOEA. This seems

to be largely because with more OFs, the more likely it is that a solution is non-

dominated in at least one dimension thus reducing the Pareto ranking hierarchy.

The study found that the mode rank shifted away from 1, tending to lead to middle

ranks given a higher fitness than warranted, and selection pressure being reduced.

They also found that MOEAs could be efficient for MaOOPs with 10 or more

OFs, if part of the Pareto front could be discarded/ignored, through preference

direction. They noted that investigation of degeneracy might be fruitful, in which

several distinct decision vector points map to the same objective vector, where less

Chapter 2 - Heuristic multi-objective optimisation algorithms 66

uniform degeneracy has a greater effect on possible out performance of random

search.

With the above in mind, approaches based on the supplanting of Pareto dom-

inance with alternative techniques have been variously proposed, as outlined by

Purshouse and Fleming (2007) in which they also use standard ranking and di-

versity techniques to illustrate the concepts of dominance resistance and active

diversity promotion. The work showed that techniques for promoting diversity,

as well as being very influential on outcome, could be in some cases deleterious.

As noted above, in higher dimensions it is more likely that solutions become non-

dominated, leading to selection based solely upon the secondary diversity criterion,

and they noted that even in an enumeration of search space, the proportion of non-

dominated soltions could be very high, and that standard operators struggle to

find newly dominant solutions. As Knowles and Corne (2007) found that prefer-

ence direction could be way to enable MOEAs to work in higher dimensions, they

highlight the potential merit of preferability operators and suggest investigation

of non-Pareto dominance comparators such as using perfomance indicators e.g.

hypervolume, as criteria.

The Ishibuchi et al. (2008) review gives an alternative dominance ranking that

eliminates more solutions, thus increasing selection pressure, and a ranking scheme

which takes account of the number of objectives by which one a solution may be

better than another. Decreasing the dimensionality of objective space by bundling

up objectives together may be possible, where a translation between domains is

feasible.

Saxena and Deb (2007) showed that MOEAs could work well in higher di-

mensions using an approach based on principal components analysis (PCA) with

non-linear dimensionality reduction. This has been shown to be effective for prob-

lems with up to 50 objectives. They suggest that their parameter ‘k‘ for their

“MVU-PCA-NSGA-II” proposal, should take the value ‘k‘ = d
√
Me not only for

the problems they tests, but for use in general (where M is the number of objec-

tives.)

Chapter 2 - Heuristic multi-objective optimisation algorithms 67

2.6.2 Self-adaptation

Real-encoded GAs can be thought of as being similar to ESs, depending on the

details of the operators, where ESs are able to adapt their control parameter (or

strategy parameter as it was called). The GA described in this work adopts this

extra capability to adapt the control parameters but in a self-adaptive manner.

The mechanism used by ESs originally was not self-adaptive as they used a

meta-mutation rate to control the rate of change of the mutation rate control

itself. The term self-adaptive used here is meant in the sense of that coined by

Eiben et al. (2006b), to indicate control parameters of the GA that are encoded

in the chromosome along with the problem definition parameters applying to the

objective functions (the main parameters), and that these control parameters are

subject to change along with the main parameters due to mutation and crossover.

This is different from a purely adaptive control parameter strategy as in that case

the change is instigated algorithmically by some feedback at the higher level of the

GA rather than the lower level of each chromosome/solution in the population.

The deterministic approach is rule-based and is not considered adaptive.

Bäck et al. (2000) used an initial random mutation rate in which the mutation

rate of each solution was initialised to a random number in the range (0.001, 0.25),

however they suspected that this randomness slowed down convergence to some

extent. Problems can be highly sensitive to the mutation rate, so starting off from

ones which are ‘far’ from the ideal would indeed likely inhibit progress.

Eiben et al. (2006a) showed how population size and tournament selection

size can be made to be self-adaptive, although in the former case to the detriment

of performance of the optimization. Nonetheless, the latter case was shown to

improve performance, and the method by which a parameter whose context is

the population can be set through the aggregation of its representation at the

individuals within the population, can be extended to other parameters having

the same high-level context. However, the above work only uses mutation to affect

each self-adapting parameter gene, rather than including the parameter genes in

Chapter 2 - Heuristic multi-objective optimisation algorithms 68

the crossover of the chromosome as a whole, and the model used is a steady-state

GA (SSGA) with relatively low replacement strategy rather than a generational

one (GGA). This work uses a fixed tournament size in order to restrict all the self-

adaptation occurring to the level of the individual, rather than by aggregation,

since this is the focus of the work.

Smith and Fogarty (1996) Discuss their steady-state GA having adaptive mu-

tation, in which mutation first occurs to the gene encoding the mutation rate and

then the new mutation rate is applied to the main genome. This is similar to the

(real-encoded) steady-state ESs described by Beyer and Schwefel (2002).

Zhang and Sanderson (2008), (Zhang and Sanderson, 2007) describe differ-

ential evolution (DE) algorithms that use self-adaptation, including their multi-

objective (MO) JADE2 and JADE algorithms, that generate new values for muta-

tion factors and crossover probabilities based on probability distributions governed

by self-adapting means. DEs (Storn and Price, 1997) are similar to GAs but new

solutions are produced by adding the weighted difference of two population vectors

to a third, to create a new donor vector which is recombined (crossover) with a

target (parent) vector to produce the trial (child) vector. Differences between GAs

and DEs, both algorithmic and from a performance perspective, are discussed in

Tusar and Filipic (2007). In a DE scheme, the mutation factor is a weight rather

than a probability as in a GA, and notably crossover acts on whole parameters

(the genes in a GA) rather than parts of parameters (Holland’s schemas).

Sareni et al. (2004) describe self-adaptation in a multi-objective genetic al-

gorithm (MOGA) in which there is a self-adaptive choice between three different

crossover operators for crossover, and in which mutation is self-adapted by the

standard deviation of the amount of perturbation applied to a gene. Both of these

mechanisms are different to the ones employed by the MOOEA in this work.

Tan et al. (2006) expounded their binary MOGA in which their mutation

operator (adoptive mutation or AMO) modifies the mutation rate deterministically

as a function of time. Their AMO is a modified bit flip operator, and acts upon

a binary-encoded chromosome with each decision variable (DV) having the same

Chapter 2 - Heuristic multi-objective optimisation algorithms 69

probability of undergoing change. This probability is set so that on average 1

DV is changed per chromosome, and the mutation rate is the probability of a

bit of the DV changing if selected for change. The mutation rate is set by a

deterministic function proportionally to the generation number, such that it tends

to start off relatively high and diminishes over time. The mutation rate is thus a

global one applying to all chromosomes equally. Their scheme has the property

that the start rate is much higher than normal (0.8) and that it is switched to

a lower one (0.05 or less) suddenly rather than having a smooth decrease over

time. Also of interest is their ‘enhanced exploration strategy’ (EES), which is

essentially a deterministically adaptive diversity promoter that acts by creating

a sub-population whose purpose is to explore lesser populated areas. The size

of the sub-population is determined at each generation deterministically and is a

function of the rate of progress towards convergence, where progress is measured

by the ratio (epr) of new non-dominated solutions in g + 1 to the total number

of non-dominated solutions in g. The number of solutions in the exploring sub-

population is set higher when epr is low and conversely lower when epr is higher.

Their results showed both improved performance. The EES approach is probably

applicable to real-encoded algorithms too.

Tan et al. (2009) discuss a binary MOGA in which they define an ‘adaptive

variation operator’ having two elements: (1) a deterministic control to modulate

the degree of exploration or exploitation; (2) an adaptive control that coordinates

crossover and mutation operators. Each gene (DV) of each chromosome has its

own control parameter for the rates of crossover and mutation, which are deter-

ministically assigned by (1) with the intention that they change linearly over time

(starting higher and decreasing). They have a scheme to modify bits relative to

their position in the gene, which is specific to the binary chromosome; that bits

towards the high end (most signigicant bit (MSB)) change more at the beginning

and less at the end due to the size of the effect they have, and other bits change

proportionally to their position. Their adaptive control (2) is predicated on the

idea that mutation and crossover should not be independent operations as mu-

tation can destroy valuable schema swapped in crossover (remembering that it

Chapter 2 - Heuristic multi-objective optimisation algorithms 70

is a binary chromosome), and that the performance of crossover, and mutation,

varies throughout the life-cycle. They suppose in general that dissimilar chromo-

some structures are often more dominant in the initial stages while similar ones

dominate in the later stages as fitness selection or drift direct. Thus the con-

trol considers the chromosome content and only allows mutation to occur when

crossover occurs and only for regions in each chromosome which are similar. Their

test results showed these approaches would work well.

It seems reasonable to suppose that having two control parameters per gene is

effectively extending the search space by a possibly signigicant factor, leading to

the adaptive behaviour needing more time in which to improve itself. It is arguable

whether there is a theoretical equivalent scheme for control (2) in a real-encoded

chromosome.

Ho et al. (1999) used a binary GA for single objective optimisation in which

sub-population groups adapted their mutation or crossover rates based on feedback

from average fitness increase, while Li et al. (2004) investigated diversity-guided

mutation and deterministically adaptive mutation and crossover rates in a binary

single-objective GA. These works all found their implementations of the various

adaptive methods provided advantages on mathematically based benchmark prob-

lems.

2.7 Optimisation frameworks

2.7.1 Synopsis

Optimisation frameworks are pre-existing software codes that provide a way to

more or less easily add optimisation problems into them. Their purpose is com-

monly to provide an optimisation algorithm (or a choice of them) with which to

run newly constructed problems. These have been produced in a variety of lan-

guages to run on a variety of platforms. Their existence enables researches to use

MOEAs, whose primary purpose is not the investigation of MOEAs necessarily.

Chapter 2 - Heuristic multi-objective optimisation algorithms 71

There are many EA resources available in some shape or form, but not all take

the framework approach. There are a growing number of frameworks supporting

solely genetic programming, but these are considered out of scope here.

The work of this thesis provides such a framework and is described in Chapter

3 and in particular in section 3.2.4.

2.7.2 Non-commercial frameworks

Within this section are those frameworks which are available on a non-commercial

basis.

MOEA Framework (Hadka, 2016) is a Java-based comprehensive library sup-

plying a variety of EA algorithms and also particle swarm and genetic program-

ming options. It can interact with jMetal libraries and also PISA, and provides

problems also. Although it has a quick start guide, the documentation is not

free which although reasonable given what is on offer, is nevertheless a hurdle,

especially in making an assessment of how easy it is to use in practice.

jMetal (Durillo and Nebro, 2015) is a framework implemented in Java which

is focused on running MOOPs and it supplies a good number of EA algorithms for

both MOO and single objective problems, and it also supplies some problems too.

It has the particular ability to run parallel algorithms. It provides the ability to mix

real and binary encodings, and provides quality indicators. Not as comprehensive

as the MOEA Framework but still offering much.

Evolving Objects (Evolving Objects Team - various, 2015) is described as an

Evolutionary Computation Framework, and is implemented with C++. It is said

to run on Linux and Windows and provides a comprehensive set of facilities for

someone who knows C++. In addition to EAs it also provides other algorithm

options such as particle swarm, ESs, a variety of operators, parallelisation tools

and a Mersenne random number generator for better randomisation performance.

It seems to be more of a library than a framework and seems more targeted at

Linux.

Chapter 2 - Heuristic multi-objective optimisation algorithms 72

EvA2 (Zell et al., 2016) is a framework in Java also offering EA algorithms

along with others such as particle swarm, DE, ES, and also classical ones such

as simulated annealing (SA) and others. It offers the ability to run algorithms

distributed over network nodes and is GUI rather than command line based.

Opt4J (Lukasiewycz et al., 2016) is a seemingly simpler framework in Java also

offering EA algorithms along with particle swarm, DE, and simulated annealing,

along with some optimisation problems, and is GUI based.

2.7.3 Commercial frameworks

Within this section are those frameworks which are available on a commercial only

basis.

It is common, indeed even usual, that commercial software is not open source

in the sense that its source code is not available for inspection, with a prominent

exception being in the case of some security products. The Free Software Founda-

tion, Inc (2016) extends the definition of open source to “software that gives you

the user the freedom to share, study and modify it” and calls this free in the sense

of freedom rather than cost (although there is a debate about the definitions and

benefits of both open and free).

The existence of free (cost), free (freedom) and open source software to science

and engineering academics, is a great benefit not only because issues of licenses,

terms and conditions of use, financing and availability are obviated, but also be-

cause the correctness of the code itself, in terms of the science or engineering

theory being addressed, can be inspected (or even changed), and where the code

may be considered to be part of the experimental design. The lack of a commercial

goal also decreases or obviates conflicts of interest which otherwise can inhibit col-

laboration (Jacob, 2016). Some commercial software may made available (binary

executables and much more rarely, source code) to academics, but licence terms

and conditions can prove limiting.

Chapter 2 - Heuristic multi-objective optimisation algorithms 73

However, while it is generally preferable to have open source/free software

for research purposes, specifically required functionality may not necessarily be

available, in which case commercial codes may be the only recourse. It may also

be the case that commercial software is simply better, in terms of quality or

more extensive functionality, through being well-funded, hence having many more

person-hours of development, or providing more or higher quality documentation.

Many of these products provide GUI front-ends or GUI data visualisations, and

this is the case for the products given below.

MATLAB (The MathWorks, Inc., 2016a) is an environment and programming

language which supports operations on vectors and matrices, enabling set oper-

ations to be performed by single language instructions which in other languages

such as C++, Fortran or Java, would require loops to be coded for. As an addi-

tional product requiring purchase, the Optimization Toolbox� (The MathWorks,

Inc., 2016b) is available, which provides solvers for linear programming, mixed-

integer linear programming, quadratic programming, nonlinear optimization, and

nonlinear least squares. These solvers can find optimal solutions to continuous and

discrete problems and perform trade-off analyses. This product does not provide

a framework as such, but the codes can be made to be called from other software,

though it does have a GUI.

The modeFrontier product (ESTECO SpA, 2016) provides both an optimi-

sation framework and a workflow pipeline for multi-disciplinary design optimisa-

tion, enabling computer aided engineering (CAE), computational fluid dynam-

ics (CFD), or finite element methods (FEM), to be brought together along with

post-processing, visualisation and statistical analysis. The integration of specific

examples of the aforementioned tool types are given, but it is not readily appar-

ent that other types of software codes can be integrated. The product also has a

response surface method functionality, enabling meta-models to be produced for

faster online optimisations. There seems to be a comprehensive set of single and

multi objective optimisation algorithms available, from various heuristic global

searches (GA, ES, PSO, SA), through deterministic (Simplex, game theory) and

gradient-based searches.

Chapter 2 - Heuristic multi-objective optimisation algorithms 74

Optimus (Noesis Solutions, 2016) is a process integration and design optimisa-

tion platform for design space exploration, engineering optimisation and robustness

and reliability. It has seemingly similar functionality to modeFrontier, in that it

provides workflow, a variety of specific external product integration possibilities,

and single and multi objective optimisation algorithms (differential evolution, sim-

ulated annealing, particle swarm optimization and covariance matrix adaptation

evolution strategy, and a small number of others it says are evolutionary in nature

but for which the description is vague). It also provides an interactive optimisation

capability, enabling designers to direct progress through preference choices.

OptiY (OptiY GmbH, 2016) is a multi-disciplinary analysis and optimisation

product with a focus on computer-aided design (CAD) and CAE, robust design,

reliability analysis, and optimisation, along with workflow. Integration of external

products is available, although since the interface architecture is dependent on

Microsoft’s (MS) “.Net” architecture, these are limited to MS Windows� operating

systems. A variety of design of experiments (DoE) and post-processing analyses

are also available. The optimisation possibilities include single and multi objective

codes Hooke-Jeeves local search, grid-Search, adaptive response surface, ES, GA,

Pareto strength evolutionary algorithm and surrogate modelling.

The optiSLang product (Dynardo GmbH, 2016) is robust design optimisation

software focused around CAE, with multi-disciplinary workflow and interfaces to

a variety of other products. It provides the following multi-objective optimisation

algorithms: gradient methods, genetic algorithms, evolutionary strategies, and

Adaptive Response Surface Methods. It has the facility of Python and C++

interfaces allowing further integration to other products having compatibility with

those alternatives, though there is no immediately available information about

binary compatibility.

Kimeme (Cyber Dyne s.r.l, 2016) is a platform for multi-objective and multi-

disciplinary optimisation, providing process integration, workflows, experimen-

tal design, and optimisation heuristics (which they say are NSGA-III, MOjDE,

Chapter 2 - Heuristic multi-objective optimisation algorithms 75

BOBYQA and BFGS, and unspecified others). It is not readily apparent what

external interfaces it provides.

Chapter 3

The self-adaptive MOOEA

3.1 Introduction

As part of the work of this thesis, a meta-heuristic framework and multi-objective

optimising evolutionary algorithm were designed and implemented in the Java lan-

guage (Oracle, 2014), which for ease of reference are collectively named Ganesh1.

The framework provides an environment in which the MOOEA runs, and a novel

mechanism for incorporating the problems upon which the algorithm operates, as

well as mechanisms for interacting with the external environment in which the

framework runs. Sections 3.2.3 and 3.6 provide further details about aspects of

the latter.

Apart from any specific novelty Ganesh offers, the development of the codes

was of benefit to the author as it enabled full understanding and control of the

codes and in itself provided insight into the issues of MOOEAs.

The MOOEA part of Ganesh is enabled to be independent of the optimisation

problems it runs, by having the problems defined as separately compiled plugins

which are given as parameters to the MOOEA at run time, to dynamically load

them and execute them in the appropriate way.

1The name Ganesh comes from borrowing some letters from ‘GA with non-domination ranking
and elitism’, roughly.

77

Chapter 3 - The self-adaptive MOOEA 78

The MOOEA part of Ganesh is a genetic algorithm (GA) employing elitism

and Pareto non-domination ranking, originally posited by Goldberg (1989), first

implemented by Fonseca and Fleming (1993), and subsequently developed by Deb

(2001). This GA adopts the general principle but implements it in a simplified

manner which is nonetheless of similar performance in terms of computational

complexity.

In writing about the MOOEA part of Ganesh, the biological metaphor is used

extensively, as explained in Section 2.6. Here, a distinction is drawn between a

solution’s decision vector, which following the biological metaphor are termed the

main genes, and the control parameters governing the self-adaptation, which are

termed the control genes. In the self-adaptation scheme described further below,

both main and control genes are encoded within the chromosome, wherein the

control genes are themselves also subject to both mutation and crossover, along

with the main genes.

The GA uses a novel crossover mechanism in order to recombine the mutation

and crossover rates, as well as each of their perturbation control parameters, and

unlike other GAs, provides a novel tunable control for the number of duplicate

chromosomes in each generation. Benefits and novelties of the framework and

algorithm are set out in section 3.2.4.

Through the mechanism of providing a choice of chromosome types, Ganesh

caters for a variety of possible data types for MOOP’s decision vectors. The

chromosome consists of the set of genes, each of which stores the value of one

component of the vector, and which are usually of the same type.

Ganesh provides the choice of using real-encoded chromosomes, in addition

to that of the binary type in which each gene is either a 1 or 0, and furthermore

provides a mixed type (for Reals and Integers) which has the novelty of allowing

discrete value sets, in which a gene can take one of a set of defined values, whose

definition is given as part of the optimisation problem definition.

Chapter 3 - The self-adaptive MOOEA 79

Because of the availability of these different chromosome types, Ganesh is

able to be used on a wide variety of both discrete and continuous multi-objective

optimisation problems, where the problem is encoded by an appropriate scheme.

3.2 Ganesh: Framework and algorithm

3.2.1 The GA Algorithm

This section provides an overview of the algorithm and framework capabilities,

which are expanded upon where necessary further down in section 3.2.4.

The GA developed in this work was inspired by the NSGA-II algorithm (Deb

et al., 2000) and its predecessors including Fonseca and Fleming’s (1993) MOGA

and that of Goldberg (1989), with some modifications, to: initialisation of popula-

tion and solution, the non-domination sorting method, the construction of the new

generation, the addition of repairable Hard Constraints, the adoption of a plug-

in architecture, and of course the self-adaptive aspect, as well as some practical

considerations given below.

Soft constraints are implemented, following Fonseca and Fleming (1998), as

secondary considerations of Pareto dominance, requiring the constraint definition

to return an increasingly negative number indicating the increasing degree of vi-

olation, and where 0 (or a positive number) indicates no violation. Any solution

violating a constraint is dominated by any that does not, and the degree of viola-

tion is used to establish dominance between the constraint breakers.

Internally the GA is constructed to minimize, requiring objective functions

that maximize to return a negative number, by the principle of duality (Deb,

2001).

A tournament selection method of degree two is used, polynomial mutation

(Deb and Goyal, 1996) is used along with a simulated binary crossover (SBX)

(Deb and Agrawal, 1995) for real parameters, and the crossover strategy used

Chapter 3 - The self-adaptive MOOEA 80

in the problem discussed here is uniform for real-encoded crossover, although a

multi-locus gene-swap crossover is available also. Self-adaptive crossover requires

further consideration and is discussed more fully, below.

This GA provides the novel ability to choose the cardinality of duplicate solu-

tions in each generation, meaning that 0, 1 or many duplicates may be kept, with

the default being many, where a duplicate is defined as all corresponding genes

(by their location) in both chromosomes having the same alleles (values).

Hard constraints may be either of pre- or post-evaluation types, where pre-

evaluation hard constraints are allowed to be repairable, whereas post-evaluation

hard constraints must cause discarding of failing solutions. Repair is effected by

changing the parameters (the genes) until the solution is once again within the

constraint. Since repair occurs before evaluation of the solution (the determining

of the objective function values), repaired solutions are available in the current

generation as normal. Of course hard constraints which rely upon the values of

objective functions as part of their violation detection, may only be of the post-

evaluation type. Soft constraints may be of either type, with the same proviso,

but do not provide a discard option.

Initialisation at both population level and solution level have defaults which

are able to be over-ridden by the problem definition, enabling pre-defined data to

be included, and alternative distribution functions to be used.

The plug-in architecture of the algorithm enables the optimization problem to

be specified separately as a new code module, thus each new optimization problem

adds code, rather than requiring changes to the existing code base, and enables

the optimization problem to be effectively a parameter of the algorithm.

Figure 3.1 shows a high level view of the algorithm as a flow-chart.

Chapter 3 - The self-adaptive MOOEA 81

Figure 3.1: This is a high level view of the Ganesh algorithm expressed as a
flow-chart, in which the production of the next generation population is shown

as a sub-process for convenience.

Chapter 3 - The self-adaptive MOOEA 82

3.2.1.1 Simplified non-dominated sorting

The non-domination sorting is amended from NSGA-II to ensure that each solution

is compared with every other one once in a simple and efficient manner which is

entirely for-loop based, with the number of comparisons being of the same order as

that of the continuously updated method (Deb, 2001), and the method of updating

dominated-by count and dominated-solutions lists are modified accordingly.

In order to establish the order of non-dominated rankings, as shown in the

‘Rank-based sort Merged population’ box of the flow chart in Figure 3.1, it is

necessary to compare the corresponding objective function values of solutions in

the population, in order to determine which solutions dominate which others, using

the definition of dominates given in Table 2.1 (z1 � z2). For objective functions

that are computationally expensive to evaluate, the dominance ranking can be

time consuming and therefore needs to be efficient.

The non-domination sorting used here differs from Deb’s (2001, pp. 36-38)

improved continuously updated method, by using a nested for-loop mechanism as

follows, which takes less code and is therefore correspondingly faster and simpler,

while of the same order of computational complexity.

A population P of N solutions such as the set P = {A,B,C,D,E, F,G} can

be compared thus, where compare means perform the z1 � z2 dominance test (of

Table 2.1):

A : B C D E F G : compare A to all the others

B : C D E F G : compare B to all the others, except A

C : D E F G : compare C to all the others, except A, B . . .

and so on . . .

. . . then for a population p, where m is the number of objective functions for the

given problem , the maximum number of comparisons c to compare every solution

Chapter 3 - The self-adaptive MOOEA 83

in the population with every other is:

c = m ·
(

(N − 1) + (N − 2) + (N − 3) + · · ·+ (N − (N − 1))
)

and where n = N − 1, then c =
m · n · (n+ 1)

2

thus the number of comparisons to be made is of the order O(mN2), and the actual

number of comparisons made will on average be the same as Deb’s continuously

updated method.

For the population P having N solutions in which p & q are individual solutions

within P numbered from 0 to N-1, the c comparisons above is achieved for the

population using loops of the form:

for p in 0 to N-1

for q in (p + 1) to N-1

compare q to p

or more formally:

∀p ∈ {0, · · · , n− 1},∀q ∈ {p+ 1, · · · , n− 1} : (q � p)→ q

The pseudo-code (PSC) 3.1 below, which relates to the box in the flow-chart

of Figure 3.1 entitled Rank-based sort, gives more detail of the above and the

description of the following two paragraphs. The functions referenced in that PSC

are defined in the PSCs that follow it, and note that text preceded by the . symbol

are comments.

In order to incorporate the above, this method differs further from Deb’s, pri-

marily concerning how each solution builds up its list of the solutions it dominates,

and the count of solutions it is dominated by, and these fall simply into place with

an object-oriented design, in which a solution class encapsulates its own data.

Chapter 3 - The self-adaptive MOOEA 84

The new generation is produced by pruning one solution at a time from the

merged parent and child populations and recalculating the distance/crowding met-

ric each time, giving a more accurate estimate of the best solution to remove with

respect to the crowding (and non-dominated ranking) metric (Kukkonen and Deb,

2006). Other algorithmic approaches to the production of the new generation can

be used, in a similar way to how alternative chromosome and population initialisers

may be specified (Section 3.2.4.10).

Pseudo-code 3.1: Ganesh: Fast Non-Dominated Sort
Data: Population: P merge of parent & child Populations
Data: Solution: p,q

Population Function FastNDS(mergedPopulation P)

N ← popSize
for i in 0 to N-1 do

p ← P(i)

for j in (i+1) to N-1 do

q ← P(j)

p.dominanceCompare(q)
if p � q then

q.dominatedByCount : increment
p.dominatesList.add(q)

else if q � p then
p.dominatedByCount : increment
q.dominatesList.add(p)

if p.dominatedByCount = 0 then
Rank1-List.add(p)

return BuildNewPop(Rank1-List,popSize)

Chapter 3 - The self-adaptive MOOEA 85

Pseudo-code 3.2: Ganesh: dominanceCompare

Data: Solution: this
Data: int: result

int Function dominanceCompare(Solution other)
. Return Domination order, where 1: this Solution dominates,

-1: other Solution dominates, 0: both non-dominated

. n.b. assumes MINIMISE

if thisSumViolations < 0 and othersumViolations < 0 then
if thisSumViolations = othersumViolations then

result = 0

else if thisSumViolations < othersumViolations then
result = -1

else
result = 1

else
if thisSumViolations < 0 and othersumViolations = 0 then

result = -1

else if thisSumViolations = 0 and othersumViolations < 0 then
result = 1

else
for each OF do

if thisVal < otherVal then
thisDoms = true

if thisVal > otherVal then
otherDoms = true

if thisDoms and not otherDoms then
result = 1

else if not thisDoms and otherDoms then
result = -1

else
result = 0

return result

Chapter 3 - The self-adaptive MOOEA 86

Pseudo-code 3.3: Ganesh: Build New Population by rank

Data: LinkedList: newPopList, ThisFront, NextFront
Data: Solution: p, q
Data: int Rank = 1

Population Function BuildNewPop(Rank1-List, popSize)

ThisFront ← Rank1-List
while (ThisFront not empty) and (newPopList.size < popSize) do

NextFront = new LinkedList
while ThisFront not empty do

p ← ThisFront.nextSolution
p.rank = Rank
while p.dominatesList not empty do

q ← p.dominatesList.nextSolution . next solution dominated

by p

q.dominatedByCount : decrement
if q.dominatedByCount = 0 then

NextFront.add(q) . for next Rank

increment Rank
if newPopList.size < PopSize then

if numberDuplicates < Integer.MAX VALUE then
pruneDuplicates(ThisFront);

ofCount ← number of OFs

. Array of LinkedList of Solutions, saving Solutions in

sorted order, for each OF, for this Front.

OFOrgsSorted = new List[ofCount]

setCrowdingMetric(ThisFront, newPopList.size(), popSize, ofCount,
OFOrgsSorted)

newPopList.add(ThisFront)

ThisFront = NextFront

. Create the new empty parent population and add to it most fit

solutions first

Create new Population: NewPop

sort(newPopList) . in descending order of solution rank & distance

(using RankDistComp)

for each Solution in sorted newPopList : i do
if new population size < required size then

newPop.add(newPopList.get(i))

return newPop

Chapter 3 - The self-adaptive MOOEA 87

Pseudo-code 3.4: Ganesh: Set Crowding Metric

Data: List of Solutions: ThisFront
Data: Solution: thisSoln,prevSoln,nextSoln

Void Function setCrowdingMetric(ThisFront, popListSize(), popSize, ofCount,
OFOrgsSorted)
. Calculate a crowding/distance metric - (a cuboid of the

surrounding two neighbours in each OF dimension).

for each Solution in ThisFront do
Solution.metric ← 0

for each OF: i do
sort(ThisFront) . into OF order (min,max), for this OF

OFOrgsSorted[i] ← ThisFront . Save the sorted order

. Set boundary points’ metrics to Infinity so they are always

included

ThisFront.Solution.metric[0] ← MAXDIST
ThisFront.Solution.metric[N-1] ← MAXDIST
ofMin = ThisFront.SolutionOFvalue(i)
ofMax = ThisFront.SolutionOFvalue(i)
for each Solution (except 1st and last) in ThisFront : j do

thisSoln ← ThisFront[j]
prevSoln ← ThisFront[j-1]
nextSoln ← ThisFront[j+1]
dist ← thisSoln.metric
dist = dist + (nextSoln.OFValue(i) - prevSoln.OFValue(i)) / (ofMax
- ofMin)

thisSoln.metric ← dist

Chapter 3 - The self-adaptive MOOEA 88

Pseudo-code 3.5: Ganesh: RankDistComp function, to sort by

Data: int result
Data: Solution: s1, s2

int Function RankDistComp(Solution s1, Solution s2)
. Compare solutions by their OFs and crowding metric

. Returns a negative integer, zero, or a positive integer as the

first argument is less than, equal to, or greater than the

second. n.b. assumes Minimising

result ← 0
if s1.rank < s2.rank then

result = +1;

else if s1.rank > s2.rank then
result ← -1

else if s1.rank = s2.rank then
if s1.dist < s2.dist then

result ← -1;

else if s1.dist > s2.dist then
result ← +1;

else
result ← 0;

return result

Chapter 3 - The self-adaptive MOOEA 89

3.2.2 Self-adaptation

Unlike Bäck et al. (2000) (who used an initial random mutation rate), Ganesh

allows mutation and crossover rates to be specified for the initial population, or

to be set to random values in a uniform distribution, or to default to certain

values. The default mutation rate of each solution would be set to 1/n where

n is the number of variables of the objective functions (OFs), and the default

crossover rate would be 0.6, both as probability of occurrence. This GA also

allows alternative initializers to be written and specified per problem, allowing for

different probability distributions, such as the uniform or Gaussian, however this

work uses the uniform distribution. Initial random values stand a good chance of

being poor choices, however, and are not used in this work.

Similarly to Bäck (1992) and Smith and Fogarty (1996) (a steady-state GA),

mutation first occurs to the gene encoding the mutation rate and then the new

mutation rate is applied to the main genome, but unlike the previous studies,

this is based on a generational GA, that is one in which the entire population is

in theory able to be replaced by fitter solutions, and for which the variables, and

operator parameters, are encoded as real numbers in the genes. In this work, extra

self-adaptation is added in the form of recombination (crossover), and the rate is

encoded in the chromosome.

The GA control parameters undergoing self-adaptation are the mutation prob-

ability pM (per gene) and the crossover probability pC (per chromosome), and also

the associated polynomial distribution indices, (Deb and Goyal, 1996) & (Deb and

Agrawal, 1995), for each, ηM and ηC respectively, which are all real values. Each

solution has a chromosome encoding its objective function parameters and its con-

trol parameters. Mutation occurs to all of the parameters including the control

ones and their indices, but mutation occurs first to the control ones at the current

rate of mutation, and then the main ones using the newly mutated values.

A novel operator is defined here, being a self-adaptive uniform blend crossover

(SAUBC) of real-encoded chromosomes. The uniform crossover specifies that each

Chapter 3 - The self-adaptive MOOEA 90

gene has a 50% chance of crossing over if the chromosome is to undergo crossover

at all, and the probability of chromosome crossover occurring is given by pC. When

a real gene is selected for recombination, it is blended with its corresponding allele

at the same location of the other parent chromosome, using the SBX operator

(Deb and Agrawal, 1995). The uniform crossover was chosen in preference to an

n-locus crossover, since it has been shown (De Jong and Spears, 1992) to maintain

performance independently of the distribution of allele values, and because its

disruptive effect is outweighed by its ‘productivity’, which means its ability to

increase diversity in the population.

However, since crossover occurs between chromosomes but each chromosome

has its own pC, the pC to be used is chosen stochastically at 50% probability from

either of the parent chromosomes selected for breeding, and the ηC is taken from

the same chromosome. The ηC value is then used in the crossover of the respective

controls from each chromosome (pC, ηC, pM and ηM) and the main chromosome

genes, with the new control values being written to the recombined chromosomes,

as shown in Figure 3.2. This crossover operator strategy can also be applied with

the real gene components of the mixed chromosome that Ganesh also provides.

The MOOEA of this work then, differs from the works mentioned above since

it uses novel self-adaptation mechanisms in a real-encoded multi-objective gen-

erational GA in which rate and degree parameters are held within each solution

(chromosome). The MOOEA of this work uses its own mutation and crossover

operators to self-adapt its control parameters in the same way that they cause

self-adaptation in the decision vector (the main genes).

The following provides more information about the design aspects of the self-

adaption used by Ganesh. Chromosome is an abstract class from which all other

Chromosome types are derived, with the concrete classes2 BinaryChromosome,

RealChromosome and MixedChromosome at the next level down in the class hi-

erarchy, and the self-adaptive variants are derived from those in turn. Thus self-

adaptation is an option, rather than an enforced behaviour, as the problem class

designer can choose from any of the concrete chromosome classes to use for the

Chapter 3 - The self-adaptive MOOEA 91

Figure 3.2: Flow-chart explaining the novel self-adaptive uniform blend
crossover operator (SAUBC).

decision vector. The existing self-adaptive classes use one variable for each control

aspect, thus there is one crossover rate and one mutation per chromosome and

the self-adaptation is therefore similar to the isotropic type of Evolution Strategy

(Deb, 2001), except that here there is no rule to determine how these control rates

change: they are purely driven by stochastic processes undergoing artificial (in

contrast to natural) selection, whereas the ES has a logarithmic update rule. The

perturbation factors, ηM and ηC, which are the mutation and crossover polyno-

mial distribution indices respectively, of real number genes, are also assigned one

of each per chromosome, and can be thought of as further tuning controls.

2A concrete class can have objects created from it, unlike abstract classes which cannot.

Chapter 3 - The self-adaptive MOOEA 92

3.2.3 Framework and architecture

This section describes how a given optimisation problem is defined within the

Ganesh framework and its architecture, how the novelty of the architecture allows

the Ganesh framework to be independent of a specific optimisation problem that

it would be used to execute, and how optimisation problems are able to be tai-

lored with the various overrideable3 options that Ganesh facilitates and provides.

Ganesh here identifies both the framework and the optimisation algorithm which

it runs.

A little terminology from the object-oriented methods of analysis and software

design (Rumbaugh et al., 1991) is used below, albeit kept to the minimum, and is

briefly explained here: A class is a description of some concept from the subject

domain, is typically a noun, and consists of both data and the subroutines that

work with the data, and is in effect an abstract data type. An object is a particular

identified occurrence of a class. The subroutines are termed methods and represent

behaviours from the subject domain and are typically verbs. In Java, the methods

are termed functions, although they differ from mathematical functions in that

they can have side-effects. For example, Ganesh has a Chromosome class which

represents the decision vector of a solution (using the biological analogy) and has

methods crossover and mutate which change the Chromosome in certain ways, as

explained previously. A given candidate solution in the population of solutions is

represented by an object of type Chromosome.

Here, the class used to code the optimisation problem under consideration, is

termed the problem class and it is this, along with any other helper classes specific

to this problem, that constitute the plugin, which is dynamically loaded by Ganesh

at run-time to execute this optimisation.

Figure 3.3 is a Unified Modeling [sic] Language (UML) (The Object Man-

agement Group, 2014) package diagram, which shows that plugins are dependent

upon the Ganesh package but not vice-versa. This indicates that some classes

3Overrideable in object-oriented analysis and design means using a locally (in a derived class)
defined artefact such as a method, that takes precedence over its parent class definition.

Chapter 3 - The self-adaptive MOOEA 93

used in Ganesh are available to be used by plugins, and indeed it is necessary to

do so, and Figure 3.4 provides more detail. Ganesh provides a point at which to

call the objective functions (OF) defined in the plugin, and provides the necessary

classes, as an API, for the problem to define the OFs in the plugin, along with

other necessary components of the problem definition.

Figure 3.3: UML showing the dependency of Plugins upon Ganesh.

Figure 3.4 is a UML diagram that shows the classes involved in defining and

calling an optimisation problem that has been encoded in a plug-in. Every op-

timisation problem must be defined as a derived class (sub-class) of Experiment,

which is in turn derived from Plugin and which is defined in the Ganesh package,

and it is this that enables optimisation problems to be compiled separately and

independently yet to be dynamically loaded and run by Ganesh. It should be

borne in mind that it is not the intention to specify every class within Ganesh,

whether by UML or other means, but to merely highlight the most salient ones in

order to explain key points, where necessary.

The plugin, in defining an optimisation problem, must as a minimum define

the data type of the decision vector (such as a vector of, say, 12 floating point

(Real) parameters), by choosing a Chromosome of the desired type and a list of

the desired number of Variables, and also define at least one objective function. A

Chapter 3 - The self-adaptive MOOEA 94

multi-objective problem is created by the user defining many OFs, each of which

is accomplished by creating a new nested class, derived from the ObjFunc class,

within the problem class. Ganesh provides a default initialiser for the population

and a default initialiser for each Chromosome type, thus the problem is fully

defined. The problem class may then be compiled into an independent library

file, named GA-Plugins.jar, which may contain as many different optimisation

problems as desired.

In this way, the optimisation problem is created completely separately and

without needing to change any of the source code of Ganesh. In order to execute

a particular optimisation problem, Ganesh is simply called from the command

line with the name of the problem class as a parameter. The independent file

containing the plugin may contain as many different optimisation problems as is

desired, enabling easy testing or switching between problems.

Chapter 3 - The self-adaptive MOOEA 95

Figure 3.4: A UML class diagram showing how plugins are integrated with
Ganesh. The ExpAero class is an example of any optimisation problem to
be used, and implements an airfoil optimisation. All problem classes must be
derived from the Experiment abstract class, and are dependent upon the other

associated classes shown, which are available in the Ganesh library (.jar).

3.2.4 Algorithm characteristics, benefits and novelty

In this section, further details of the framework and algorithm are given, the

benefits thereof and the novelty of the work. It is intended that Ganesh be easy

to understand and use with practical benefits.

While Ganesh may not offer many of the facilities of other frameworks given

in the literature review, it does provide the following very specific benefits which

Chapter 3 - The self-adaptive MOOEA 96

all or most of the others do not do in the same way. Its relative simplicity can be

a benefit in getting started.

3.2.4.1 Synopsis

Here the benefits are listed briefly and where appropriate further details are given

in subsequent sections:

� Self-adaptivity - see 3.2.4.2

� Crossover mechanisms - see 3.2.4.3

� Chromosome types - see 3.2.4.4

� Plug-in experiment code - see 3.2.4.5

� Using external software as (supplier of) objective functions - see 3.2.4.6

� Callable from external software - see 3.2.4.7

� Duplicate solutions control - see 3.2.4.8

� Constraints - see 3.2.4.9

� Chromosome initialisers - see 3.2.4.10

� Population initialisers - see 3.2.4.11

� Operator configuration - see 3.2.4.12

� Problem-specific parameters - see 3.2.4.13

� Resume from previous run - see 3.2.4.14

� Command line run-time parameters - see 3.2.4.15

� User manual - Ganesh also comes with a user manual, in addition to the

automatically produced Java class documentation.

Chapter 3 - The self-adaptive MOOEA 97

3.2.4.2 Self-adaptivity

Detail about the novel self-adaptive features of Ganesh has been given in the

preceding section 3.2.2. The benefit of this is to improve performance in some

cases, as seen in the results of sections 3.5 and 4.5.2.

3.2.4.3 Crossover mechanisms

The GA implements novel crossover mechanisms for self-adaptivity which recom-

bines the control parameters for mutation and crossover rates, as well as each of

their perturbation control parameters in addition to the data (main) parameters.

The benefits of these are associated with the benefits of self-adaptivity which is

shown to improve performance in some cases, as seen in the results of sections 3.5

and 4.5.2.

More detail on this has been given in section 3.2.2.

3.2.4.4 Chromosome types

A novel mixed chromosome is provided that it is able not only to have genes of

different data types, but also of discrete value sets in which a gene can take one

of a set of predefined values, whose definition is given as part of the optimisation

problem definition. Other types available are real-encoded chromosomes, binary,

and integer (as the whole or part of the mixed type). Real genes are of Java’s

Double type, which is a 64-bit floating type (IEEE 754) (Goldberg, 1991). The

integer gene can be of 8, 16, 32 or 64 bits.

The benefit of this is that the optimisation can be easily and simply defined for

problems in which a sub-set of the decision vector must be limited to certain

values, including real values.

Chapter 3 - The self-adaptive MOOEA 98

3.2.4.5 Plug-in experiment code

The architecture of Ganesh enables the complete separation of independent prob-

lem definition code from the Ganesh framework and algorithm code, and detail of

this is given in section 3.2.3. Similarly, different optimisation algorithms can be

specified as plugins too, e.g. Ganesh or Moorand as seen in section 3.4.

This provides the following benefits:

� Minimises the knowledge of Ganesh needed to define new problems

� Enables independent version control of Ganesh and of optimisation problem

code, giving clarity and traceability for repeatability of experiments.

� The optimisation problem is specified at run-time as a parameter to Ganesh,

enabling several problems or different configurations of the same problem to

be worked on without needing to modify Ganesh.

� The optimisation problem code can be distributed to other researchers in-

dependently of Ganesh

� The optimisation problem definition is clearer by its separation from Ganesh.

3.2.4.6 Using external software as (supplier of) objective functions

The plugins for the optimisation problems defined in both Chapters 4 and 5,

use software external (FFD/Xfoil and Plexos, respectively) to Ganesh to act as

surrogates for objective functions. These software are executed as independent

sub-processes of Ganesh, using Ganesh’s multi-threading capability to manage

the effectively parallel I/O which would otherwise cause deadlock.

The benefit of this is the ability to have performed these optimisation problems

at all, and the ability to use other external software if needed.

Chapter 3 - The self-adaptive MOOEA 99

3.2.4.7 Callable from external software

Ganesh is also directly callable from other Java codes and codes in other languages

which can interface to Java, which alongside the ability to define the optimisation

problem at run-time, enables Ganesh to be incorporated into other workflows.

An example of this benefit has been given in section 3.2.4.13 since both capabilities

are involved.

3.2.4.8 Duplicate solutions control

This GA provides the novel ability to choose the cardinality of duplicate solutions

in each generation, meaning that 0, 1 or many duplicates may be kept, with the

default being many. Zero duplicates means one solution having no duplicates, and

so on, where a duplicate is defined as all corresponding genes (by their location)

in both chromosomes having the same alleles (values). The ability to control the

existence of duplicates is achieved here through the use of a linked hash map data

structure in which the map of <key, value>, has the key being the chromosome

and the value being both a count of and list of individuals having the same genes,

up to the permitted number of duplicates. The problem of duplicates may arise as

convergence approaches due to elitism, even in problems having only real-encoded

decision variables.

The benefit of this is to ameliorate premature convergence since each surviv-

ing duplicate candidate solution is effectively preventing a hypothertical better

solution from being present.

3.2.4.9 Constraints

Constraints, either soft or hard can be added to the problem by creating sub-classes

of the appropriate type, such as HardConstraint. A soft constraint is one that can

be relaxed, by allowing it to be exceeded but acquiring a penalty associated with

it proportional to the excess, which is reflected in the fitness of the solution when

Chapter 3 - The self-adaptive MOOEA 100

solutions are ranked. A hard constraint is one which must be adhered to, so

solutions which break it must either be repaired or removed from the population.

Another novelty of this work is that constraints can be designated as either

pre-evaluation or post-evaluation (of the objective functions), enabling Ganesh to

consider just the decision vector (pre-evaluation) or the objective function value

too (or instead) (post-evaluation). This designation is given to enforce proper

consideration of hard constraints, since those tested pre-evaluation that fail, allow

the solution to be repaired, by changing the decision vector until the constraint is

no longer broken, or removed from the population. The way this is performed is

problem-specific and is defined by the problem class, in the way the designer wishes

it to be. Hard constraints tested post-evaluation that fail cannot be repaired and

therefore can only be removed from the population.

An example of repair of a solution’s design vector that fails a constraint check,

is given at the end of section 5.4.

The above are achieved by methods of the Constraint family of classes (pre &

post evaluation types, and soft and hard) defined within the Ganesh package. The

problem class implements its constraint classes as derivations of the Ganesh ones

and overrides the methods that it needs to, which is the checkViolation (manda-

tory) and repair and remove (optional depending on the factors mentioned).

The benefits of this approach is that the problem definition has a clear interface

to either the hard or soft constraint and makes it obvious which is in place. Early

repair of a decision vector helps improve performance since the evaluation of an

unfeasible solution does not take place, and similarly for the case of a rejected

solution.

3.2.4.10 Chromosome Initialisers

Each chromosome type has its own default initialiser, that defines how its genes are

assigned appropriate values when a solution is created, and the default is that each

gene is randomly given a value within its permitted range, assuming a uniform

Chapter 3 - The self-adaptive MOOEA 101

distribution. The Range is a class that the problem class designer uses to specify

the range of each gene (each of which may have different ranges). However, the

user may also use their own initialising function by writing one in the problem

class which overrides the default. The method to achieve this is provided as part

of the Experiment class from which all plugins must be derived. The optimisation

of Chapter 5 uses this ability to create its own chromosome initialiser as it has

two independent sets of genes that need to be initialised in different ways, and in

one set of genes it uses a Gaussian rather than uniform distribution of random

numbers.

The benefit of this ability is the flexibility to choose how an initial popula-

tion can be constructed, and an appropriately distributed initial population can

improve performance.

3.2.4.11 Population Initialisers

The Experiment class comes with a default population initialiser that creates the

specified number of solutions in the population, using the chromosome initialiser

that is active, as detailed in section 3.2.4.10. The problem class may override

the default population initialiser by creating its own one. The optimisation of

Chapter 5 uses this ability to ensure that there is at least one solution in the

initial population that has the datum design.

The benefit of this is as stated in 3.2.4.10, and also that specific decision vectors

can be constructed, such as a datum design, to enable optimisation to take place

from a known starting point.

3.2.4.12 Operator Configuration

Each chromosome type available in Ganesh provides its own default crossover

and mutation operator. For the binary chromosome there is a simple one-locus

crossover, for the real chromosome there is a uniform simulated binary (SBX) and

for the mixed there is a uniform with SBX for the real genes and gene swap with

Chapter 3 - The self-adaptive MOOEA 102

the other gene types. There is also a multi-locus gene swap crossover operator

available for the real chromosome, in which the number of loci is configurable up

to the maximum length of the chromosome. More crossover operators are easily

added by simply creating a new class for them and using the general-purpose cross-

Genes method, which works for 1 or many loci, with the appropriate parameters.

Mutation operators are similarly dealt with.

When a crossover or mutation operator changes a given gene, it is possible that

the resulting allele value will not be within the accepted range (which is defined by

the problem class), and when this occurs, the operator will automatically repair

the gene by assigning the nearest range boundary value.

As in the case of the initialisers, the problem class may then choose whether

or not to override the default operators with an existing one of the correct type

for the chosen chromosome.

The benefit here is one of flexibility and extendability.

3.2.4.13 Problem-specific parameters

Ganesh takes a number of parameters at run-time to control its behaviour (see

Appendix B.1.1), but these are all concerned with the general operation of the

algorithm and apply to any problem that Ganesh might run.

Often, optimisation problems will have behaviours or configuration issues that

the user might wish to parameterise, rather than hard-coding them as part of the

problem class, so the framework makes it possible for the problem class to define

its own initialisation using an optional separate parameter file. The parameter file

to be used is able to be specified as a run-time parameter along with the problem

plugin and the other standard run-time parameters. An associated utility provides

a simple way of reading the parameters from the file, in such a way that certain

basic tests of the expected data against the actual data are carried out (data

type and number of parameters), and errors arising are trapped and reported

Chapter 3 - The self-adaptive MOOEA 103

automatically, thus simplifying the specification of the problem-specific parameter-

reading code. The parameter reader also accommodates nesting of repeated simple

parameters, for additional flexibility.

This is achieved by the Experiment class which provides a default empty ini-

tialise method which plugins may optionally override if required, to read and

initialise themselves with values from the parameter file.

The benefits of this ability can be seen in the following examples:

This ability was used to concurrently run the 20 samples per range of the Airfoil

optimisation, to gather statistics for the analysis of its performance, as detailed in

Chapter 4. Without this ability, concurrent running would not be possible, due to

the interface imposed on Ganesh by the FFD/XFoil codes, which would increase

greatly the actual elapsed time needed to perform these runs, serially.

The optimisations of the power network as described in chapter 5, use this

ability to specify both configuration issues, such as locations of the Plexos model

and H2 database, and to specify limits to be used in the constraints, such as

the total number of DG units permitted. This enables changes to the run-time

configuration of the problem and environment to be made without impacting the

code under configuration management, that defines the problem, thus simplifying

version control by obviating the need to define many versions of the problem that

differ only in minor details.

Ganesh is already being used by a number of other research group students and

collaborators (T.Kipouros - private communication). Its ability to be called from

other software, and its nested repeating parameter facility, are enabling stochas-

tic variation of the length of their optimisation problem’s decision vector, under

repeated invocations.

3.2.4.14 Resume from previous run

Real-world optimisation problems such as those presented in Chapters 4 & 5, tend

to have objective functions that are computationally expensive to evaluate and

Chapter 3 - The self-adaptive MOOEA 104

which are therefore time-consuming. In these cases, an optimisation problem can

take days, weeks or even months to run, which increases the chance that they may

be interrupted by some unexpected external event such as a power cut, risking the

loss of data, progress made and much time.

Ganesh obviates these problems by providing the ability to resume from the

point a previous run was unexpectedly (or even, expectedly) terminated. This

facility also provides a simple method of reusing a population of solutions used

elsewhere (where the population size could also be just one), for example a starting

population of another run used to start a new run too, for comparison. This is

possible in two ways that differ by whether the default text log or optional binary

log was used in the other run.

The text log by default contains, in text form, the decision vector, objective

function values and where applicable, the self-adaptive control parameters, for

each solution in the population, for each entire generation produced and evalu-

ated (with respect to the objective function values and non-dominated sorting).

Since only evaluated generations are held in the text log, a generation currently

under evaluation is lost if interruption occurs. Nevertheless, it may be sufficiently

acceptable to be able to resume from the last complete generation. The text log is

cumulative and contains the entire history of the run to date, and to completion

if it runs fully.

Alternatively, the user may specify, using appropriate parameters (Appendix

B.1.1), to use a binary log which captures the exact state of the generation cur-

rently under evaluation (only), so that should interruption occur, only the data of

the objective function of the solution currently under evaluation is lost, thus the

file very likely contains partially or not evaluated solutions as well as evaluated

ones.

Ganesh enables either the text log or the binary log or both to be used, more-

over it enables Ganesh to retain the last generation only, as a binary log. The

Chapter 3 - The self-adaptive MOOEA 105

latter option enables Ganesh to execute optimisation problems which have ob-

jective functions that are quick to evaluate but require vary large numbers of

generations to be run, which may otherwise create undesirably large text log files.

The resume is performed by running Ganesh again, specifying which logs to

obtain details from, so that the first generation created in the new output log is

the old one read, and new generations are created based on those solutions, as

normal. Thus having resuming from a text log, when considering the data in the

new output, the first generation (numbered from 0) should be ignored as it is a

repetition of the old last one. Similarly, when resuming from a binary log, the

new generation 0 should also be ignored as some of its solutions will have missing

objective function values.

3.2.4.15 Command line run-time parameters

The program implementing the framework and algorithm takes many run-time

parameters from the command line, which specify the problem to be run (from

the plugins) and how the run should be performed, taking such things as popula-

tion size, number of generations and so on as given in the appendices. Run-time

parameters given on the command line take precedence of those coded (if indeed

they are), giving flexibility and control. Being not a GUI means it can be run

concurrently from script files, e.g. when undertaking statistical sample trials. As

mentioned in 3.2.4.7, it is also callable from other software directly, since the

interface allows the same run-time parameters to be passed.

3.2.4.16 Conclusion

The benefit to the author of this dissertation of producing the framework of

Ganesh, rather than using another existing application or framework, should not

be underestimated. Being the producer/owner had the following impacts:

� Intimate knowledge of the whole body of code, enabling flexibility of work.

Chapter 3 - The self-adaptive MOOEA 106

� Freedom to choose how and with what to perform configuration management

(version control).

� Flexibility of design, since it is a characteristic of research that one does not

necessarily know in which precise direction one is heading.

� Minimising concerns of licence terms and conditions of other potential codes.

� Ability to change the architecture as required. In the case of the power

network optimisation (in chapter 5), I could share code between a stand-

alone application and Ganesh. This enabled the deconstruction of the Plexos

internal data model, in turn enabling the ability to share line transmission

characteristics and feedback line capacities into Plexos at run-time via XML,

since the relevant XML nodes of Plexos could be stored in memory. This was

a reasonably complex undertaking, since the Plexos XML was essentially an

alternative representation of an in-memory SQL-type database, and Plexos

was not designed to have feedback of transmission line data.

Chapter 3 - The self-adaptive MOOEA 107

3.3 Benchmark test problems and results

This section sets out some standard benchmarks from the literature (Deb et al.,

2000). These test problems were primarily used to test that Ganesh was func-

tioning correctly, but also to show that Ganesh was performing well. The airfoil

optimisation problem defined in Chapter 4, is the focus of performance testing

since it is a real world problem with complex objective function definitions and

evaluation times of lengthy duration.

3.3.1 Problem definitions

The problems are defined in the following table (Table 3.1), where n is the number

of variables used by the objective functions (OFs) to be optimised. All the OFs

are to be minimised, and the GA is to be run with the same parameter settings

as in the literature, to act as a benchmark, and are as follows: 25,000 function

evaluations, which means for a population size of 100 the number of generations

is to be 250.

Crossover probability = 0.9, Mutation probability = 1/n or 1/l (where n is

as given in the table for real-encoded chromosomes, and l is the number of bits

in the binary chromosome). The real-encoded problems have parameters ηC = 20

and ηM = 20, which are the polynomial probability distribution indices for the

real crossover and mutation operators, respectively. Binary-encoded versions of

the problem use 30-bit variables.

Table 3.1: Benchmark test optimisation problem definitions, showing the num-
ber of variables n and the range of values the variables can take.

Problem n
Variable

Ranges

Objective

Functions

SCH 1 [−103, 103] f1(x) = x2

f2(x) = (x− 2)2

Chapter 3 - The self-adaptive MOOEA 108

FON 3 [−4, 4] f1(x) = 1− exp(−
3∑
i=1

(xi −
1√
3

)2)

f2(x) = 1− exp(−
3∑
i=1

)(xi +
1√
3

)2)

POL 2 [−π, π] f1(x) = [1 + (A1 −B1)
2 + (A2 −B2)

2]

f2(x) = [(x1 + 3)2 + (x2 + 1)2]

A1 = 0.5 sin 1− 2 cos 1 + sin 2− 1.5 cos 2

A2 = 1.5 sin 1− cos 1 + 2 sin 2− 0.5 cos 2

B1 = 0.5 sinx1 − 2 cosx1 + sinx2 − 1.5 cosx2

B2 = 1.5 sinx1 − cosx1 + 2 sinx2 − 0.5 cosx2

KUR 3 [−5, 5] f1(x) =
n−1∑
i=1

(
−10 · exp

(
−0.2

√
(x2i + x2i+1)

))
f2(x) =

n∑
i=1

(
|xi|0.8 + 5 sinx3i

)
ZDT1 30 [0, 1] f1(x) = x1

f2(x) = g(x)[1−
√

x1
g(x)

]

g(x) = 1 +

9 · (
n∑
i=2

xi)

(n− 1)

ZDT2 30 [0, 1] f1(x) = x1

f2(x) = g(x)[1− (
x1
g(x)

)2]

g(x) = 1 +

9 · (
n∑
i=2

xi)

(n− 1)

ZDT3 30 [0, 1] f1(x) = x1

f2(x) = g(x)[1−
√

x1
g(x)

− x1
g(x)

sin(10πx1)]

g(x) = 1 +

9 · (
n∑
i=2

xi)

(n− 1)

ZDT4 10 x1 ∈ [0, 1] f1(x) = x1

xi ∈ [−5, 5] f2(x) = g(x)[1−
√

x1
g(x)

− x1
g(x)

sin(10πx1)]

i = 2, · · · , n g(x) = 1 +

9 · (
n∑
i=2

xi)

(n− 1)

ZDT5 11 xi ∈ [0, 1] f1(x) = 1 + u(x1)

Chapter 3 - The self-adaptive MOOEA 109

f2(x) = g(x)
[
1−

√
x1
g(x)

]
g(x) =

11∑
i=2

v(u(xi))

v(u(xi)) =

2 + u(xi), ifu(xi) < 5;

1, ifu(xi) = 5.

Where this is a binary only problem,

u(xi) is the number of 1s in the xi bit

vector and x1 has 30 bits

ZDT6 10 [0, 1] f1(x) = 1− exp(−4x1) sin6(6πx1)

f2(x) = g(x)

[
1−

(
f1(x)

g(x)

)2]

g(x) = 1 + 9

[(n∑
i=2

xi
)

(n− 1)

]0.25
CONSTR 10 x1 ∈ [0.1, 1.0] f1(x) = x1

x2 ∈ [0, 5] f2(x) =
(1 + x2)

x1

with the following constraints:

g1(x) = x2 + 9x1 ≥ 6

g2(x) = −x2 + 9x1 ≥ 1

3.3.2 Benchmark test results

This section provides the results of the test defined in the previous section (Section

3.3.1), to show how the MOOEA, Ganesh, performs on the set of standard opti-

mization problems from the literature, and in particular those that the NSGA-II

algorithm (Deb et al., 2000) was originally tested with. These act as a benchmark

to show that this GA implementation is performing correctly, in the functional

sense, and well, in the sense of performance, which means convergence.

The following figures, Figure 3.5 to Figure 3.16, show graphs of the solutions

found in the last generation, the 250th, of a sample run of each problem, and all

Chapter 3 - The self-adaptive MOOEA 110

solutions are non-dominated. Unless otherwise stated in a figure caption, the re-

sults are for a real-encoded version of the problem using the prune-and-recalculate

method for the distance metric and hence ranking and selection. The results are

depicted as two-dimensional scatter plots in which each dot represents at least one

non-dominated solution, and in which objective function f1(x) (OF1) is shown on

the x-axis and f2(x) (OF2) on the y-axis, both of which are being minimised.

The test results obtained here were compared (reading values from graphs)

with the results in the literature to establish that the GA is performing correctly

and performs at least as well as the convergence obtained by the benchmark,

although of course, the results will not be exactly the same as the benchmark since

the optimisation process here is a stochastic one (as is the benchmark process).

Figure 3.5: Benchmark test SCH,
Schaffer’s F1 function. Binary en-

coded.

Figure 3.6: Benchmark test FON,
Fonseca & Fleming’s function.

Chapter 3 - The self-adaptive MOOEA 111

Figure 3.7: The benchmark test
POL, Poloni’s discontinuous func-

tion.

Figure 3.8: The benchmark test
KUR, being Kursawe’s discontinu-

ous function.

Figure 3.9: The benchmark test
ZDT1.

Figure 3.10: The benchmark test
ZDT2.

Chapter 3 - The self-adaptive MOOEA 112

Figure 3.11: The benchmark test
ZDT3 discontinuous.

Figure 3.12: The benchmark test
ZDT4.

Figure 3.13: The benchmark test
ZDT5, binary-encoded.

Figure 3.14: The benchmark test
ZDT6.

Chapter 3 - The self-adaptive MOOEA 113

Figure 3.15: The benchmark test
CONSTR, Deb’s problem having

two constraints.

Figure 3.16: The benchmark test
ZDT2, binary-encoded; when com-
pared to the real-encoded result of
Figure 3.10, it is noticeable that

this front is much more sparse.

Chapter 3 - The self-adaptive MOOEA 114

3.4 Comparison with random search

This section adds further test problems to the previous benchmark set, in order

to act as a comparison between the performance of Ganesh and a random search

algorithm, on problems which have some of the characteristics of the optimal power

flow (OPF) problems of Chapter 5 as introduced briefly in section 5.6.

Due to the non-availability of a Plexos version licence (the software used in

Chapter 5 in conjunction with Ganesh, for OPF), it was not possible to run direct

comparisons on those problems.

Firstly, a random search algorithm (MooRand) was designed and implemented

to fit into the Ganesh architecture. This was so that the differences between

Ganesh and the new algorithm would be as little as possible with the exception

of the exact part of the algorithm under test. Elitism and non-dominated sorting

are thus carried out in the same way for both by the same code base, and the

problem definition is likewise also shared. In this way, it enables and facilitates

the attribution of any differences found in the results, to the specific algorithmic

behaviour under test.

Each problem under test is run 20 times by each algorithm (Ganesh and

MooRand) and their results compared. Performance measurement is carried out

in the same way as in Chapter 4, using PISA with the hypervolume indicator

(Zitzler and Thiele, 1999) and the (unary) ε-indicator (Zitzler et al., 2003), as

further described in sections 4.5.1 and 4.5.2.1. The Mann-Whitney two-tailed test

(Hollander et al., 2014) is used to compare the result sets.

The test problems defined here adopt all of the aspects that they can while

being relevant, of the optimisation problem definition in Chapter 5 for Plexos,

specifically in section 5.4, namely the size (72) and data type (integer) of the

design vector, and the number of Real objective functions (4). Similarly, the test

problems were carried out with the same run parameters: the population size (30),

the number of generations (67), and the mutation (0.01389) and crossover (0.9)

rates (used for Ganesh).

Chapter 3 - The self-adaptive MOOEA 115

The significance level for the tests is taken as α = 0.05 and the test is a non-

parametric one, so compares ranks rather than raw data, and the test is for mean

ranks, where H0 is that any difference seen is within normal bounds for randomly

fluctuating values and that therefore the sample groups can be considered to be

from the same population. This means that neither algorithm can be thought

of as ‘better’ than the other. Conversely, if H0 is rejected, this means that, in

that specific context, the relevant algorithm can be thought of as providing better

performance than the other.

3.4.1 Random search algorithm

This section describes the random search algorithm used for these optimisation

tests, which is designated ‘MooRand’ for ease of reference.

This algorithm uses pseudo-random numbers generated from a uniform distri-

bution. Let randomF(n,p) mean generally to find a random floating point number

in the interval [n,p], and let minF loat be the minimum possible difference between

one floating point number and another for the machine running the algorithm. Let

geneLow & geneHigh mean the lowest and highest values that the gene may takes,

respectively.

The expression randomF(n + minfloat, p) thus finds a random number in the

interval (n,p], and randomF(n, p - minfloat) acts similarly for the interval [n,p).

Let randomI(0, g) mean find a random integer i in the interval [0, g] where g

is the number of components of a solution’s decision vector (genes) in the solution.

The probability pG of change of a given gene of the solution thus becomes pG =

i/g.

The random search algorithm is defined by pseudo-code 3.6. A population is a

vector of given size (popSize), of solutions. The function Evaluate means determine

the fitness functions and carry out constraint checks. Merge means combine two

populations into one. Non-Dominated sorting means use the solutions’ fitnesses to

Chapter 3 - The self-adaptive MOOEA 116

rank them in successive fronts. Extract means find the top popSize solutions from

the given population and assign them to the new one. All these are performed in

the same way as for Ganesh.

Pseudo-code 3.6: MooRand: Random search algorithm

begin
Initialise Parent population to set of random solutions
output Parent population

while stopping criteria not met do

Child population ← deep copy of Parent population

for each Solution in Child population do

pG ← randomI(0, g) / g

for each Gene in Solution do

if randomF(0,1) ≤ pG then

if randomF(0,1) ≤ 0.5 then
Gene ← randomF(current value + minF loat, geneHigh)

else
Gene ← randomF(geneLow, current value - minF loat)

Evaluate (Child population)

Mixed population ← Merge(Parent, Child)

Non-Dominated Sorting(Mixed population)

Parent population ← Extract (popSize, Mixed population)

output Parent population

Thus for each solution, between 0 and all of its genes may change, and they

may change by increasing or decreasing from their current value to the appropriate

end of their permitted range, where the current value is not included in the interval.

Chapter 3 - The self-adaptive MOOEA 117

3.4.2 Further optimisation test problems

The DTLZn problems were defined by Deb et al. (2001) to be scalable test prob-

lems. Here in DTLZ1 to DTLZ9, they are scaled to a decision vector of size 72

with 4 objective functions, as described in the introduction section, 3.4.

In general, M is the number of objective functions, the first (M − 1) decision

variables of the decision vector x , (x1, x2, · · · , xM−1) of size n, govern convergence.

The decision variables (xM , xM+1, · · · , xn) govern the diversity of the solutions and

their location. The total number of decision vector variables n = M+k−1, where

k scales the difficulty of the problem. Here, n = 72 = 4 + 69− 1.

fi(x) takes variables in [x1 · · ·xM−1],

g(xM) takes |xM | = k variables in [xM · · ·xn], as k = n+ 1−M.

3.4.2.1 DTLZ1

Here, the Pareto-optimal front is linear and corresponds to xM = 0, and the

objective function values lie on the linear hyper-plane:
∑M

m=1 fm = 0.5 which

is difficult to converge to. The search space contains (11k − 1) local Pareto-

optimal fronts, each of which can attract an MOEA. Where M > 3, all Pareto-

optimal solutions on a 3D plot involving fM and any two other objectives, will

lie on or below the hyper-plane as given above. The problem is formulated as a

minimisation, thus (Equations 3.1 & 3.2):

Min f1(x) = 1
2
x1x2 · · ·xM−1(1 + g(xM)),

Min f2(x) = 1
2
x1x2 · · · (1− xM−1)(1 + g(xM)),

...

Min fM−1(x) = 1
2
x1(1− x2)(1 + g(xM)),

Min fM(x) = 1
2
(1− x1)(1 + g(xM)),

0 ≤ xi ≤ 1, for i = 1, 2, . . . , n.



(3.1)

Chapter 3 - The self-adaptive MOOEA 118

where g(xM) takes |xM| = k variables (and any function having g ≥ 0), and is

defined thus:

g(xM) = 100

[
|xM|+

∑
xi∈xM

(xi − 0.5)2 − cos(20π(xi − 0.5))

]
(3.2)

3.4.2.2 DTLZ2

DTLZ2 is defined to have multiple global optima over a non-convex Pareto front,

having a design vector with components of two types, where one type governs

convergence, and the other governs distribution (of solutions). These act in the

objective space. This problem has a well-defined Pareto front thus is a good choice

for a test problem comparing optimisation algorithms.

The generalised problem is formulated as a minimisation, thus (Equation 3.3):

Min f1(x) = (1 + g(xM)) cos(x1π/2) cos(x2π/2) · · · cos(xM−2π/2) cos(xM−1π/2),

Min f2(x) = (1 + g(xM)) cos(x1π/2) cos(x2π/2) · · · cos(xM−2π/2) sin(xM−1π/2),

Min f3(x) = (1 + g(xM)) cos(x1π/2) cos(x2π/2) · · · sin(xM−2π/2),

...

Min fM−1(x) = (1 + g(xM)) cos(x1π/2) sin(x2π/2),

Min fM(x) = (1 + g(xM)) sin(x1π/2),

0 ≤ xi ≤ 1, for i = 1, 2, . . . , n,

where g(xM) =
∑
xi∈xM

(xi − 0.5)2.


(3.3)

3.4.2.3 DTLZ3

This problem is defined by using the equations for the objective functions of

DTLZ2 (equation 3.3) but replacing g(xM) with that defined for DTLZ1 (equation

3.2).

Chapter 3 - The self-adaptive MOOEA 119

Now there are (3k − 1) local Pareto-optimal fronts which are parallel to the

global Pareto-optimal front (at g∗ = 0) corresponding to xM = (0.5, · · · , 0.5)T .

The next nearest locally optimal front being at g∗ = 1.

3.4.2.4 DTLZ4

In this problem, the equations for the objective functions of DTLZ2 (equation

3.3) are used but with an alternative mapping for the objective function subset of

variables as given in equation 3.4, which raises them to the power of α, which is

used here as α = 100. This use of α causes a denser group of solutions near the

fM − f1 plane, hence a varying density of solutions throughout.

Min f1(x) = (1 + g(xM)) cos(xα1π/2) cos(xα2π/2) · · · cos(xαM−2π/2) cos(xαM−1π/2),

Min f2(x) = (1 + g(xM)) cos(xα1π/2) cos(xα2π/2) · · · cos(xαM−2π/2) sin(xαM−1π/2),

Min f3(x) = (1 + g(xM)) cos(xα1π/2) cos(xα2π/2) · · · sin(xαM−2π/2),

...

Min fM−1(x) = (1 + g(xM)) cos(xα1π/2) sin(xα2π/2),

Min fM(x) = (1 + g(xM)) sin(xα1π/2),

0 ≤ xi ≤ 1, for i = 1, 2, . . . , n,

where g(xM) =
∑
xi∈xM

(xi − 0.5)2.


(3.4)

3.4.2.5 DTLZ5

In this problem, the equations for the objective functions of DTLZ2 (equation 3.3)

are used again, but with an alternative mapping for the objective function subset

of variables as given in equation 3.5. This amended problem tests the ability to

converge to a curve, and it can be noted that the performance could be visualised

Chapter 3 - The self-adaptive MOOEA 120

by a graph plot of fM with any other of the objective functions.

Min f1(x) = (1 + g(xM)) cos(θ1π/2) cos(θ2π/2) · · · cos(θM−2π/2) cos(θM−1π/2),

Min f2(x) = (1 + g(xM)) cos(θ1π/2) cos(θ2π/2) · · · cos(θM−2π/2) sin(θM−1π/2),

Min f3(x) = (1 + g(xM)) cos(θ1π/2) cos(θ2π/2) · · · sin(θM−2π/2),

...

Min fM−1(x) = (1 + g(xM)) cos(θ1π/2) sin(θ2π/2),

Min fM(x) = (1 + g(xM)) sin(θ1π/2),

where g(xM) =
∑
xi∈xM

(xi − 0.5)2,

θi =
π

4(1 + g(r))
(1 + 2g(r)xi), for i = 2, 3, · · · , (M − 1),

0 ≤ xi ≤ 1, for i = 1, 2, . . . , n.


(3.5)

3.4.2.6 DTLZ6

This test problem is DTLZ5 above, made harder by modifying function g(xM) as

in equation 3.6.

g(xM) =
∑
xi∈xM

x0.1i (3.6)

3.4.2.7 DTLZ7

This problem has a disconnected set of size 2M−1 of Pareto-optimal regions, thus

testing whether the algorithm can maintain solutions at or around each disparate

Pareto-optimal front (which correspond to xM = 0). Equation 3.7 specifies the

Chapter 3 - The self-adaptive MOOEA 121

problem.

Min f1(x1) = x1,

Min f2(x2) = x2,

...

Min fM−1(xM−1) = xM−1,

Min fM(x) = (1 + g(xM))h(f1, f2, · · · , fM−1, g),

Where g(xM) = 1 +
9

|xM |
∑
xi∈xM

xi,

h(f1, f2, · · · , fM−1, g) = M −
M−1∑
i=1

[
fi

1 + g
(1 + sin(3πfi))

]
,

0 ≤ xi ≤ 1, for i = 1, 2, . . . , n.



(3.7)

3.4.2.8 DTLZ8

This problem constrains solutions to a (hyper-)surface in which the Pareto-optimal

front is a combination of a hyper-plane and a straight line, where the line is the

intersection of the first M − 1 constraints with f1 = f2 = fM−1 and gM is the

constraint representing the hyper-plane. Equation 3.8 specifies the problem.

Min fj(x) =
1

b n
M
c

bj n
M
c∑

i=b(j−1) n
M
c

xi, for j = 1, 2, · · · ,M,

Subject to gj(x) = fM(x) + 4fj(x)− 1 ≥ 0, for j = 1, 2, · · · , (M − 1),

gM(x) = 2fM(x) +
M−1
min
i,j=1
inot=j

[fi(x) + fj(x)]− 1 ≥ 0,

0 ≤ xi ≤ 1, for i = 1, 2, . . . , n.


(3.8)

Chapter 3 - The self-adaptive MOOEA 122

3.4.2.9 DTLZ9

Similarly to DTLZ8, this problem also employs a constraint surface, with a Pareto-

optimal front that is a curve with f1 = f2 = · · · = fM−1 similar to DTLZ5, where

solutions are less dense towards the Pareto-optimal region. The Pareto-optimal

curve lies occurs at the intersection of all (M − 1) constraints. Equation 3.9

specifies the problem.

Min fj(x) =

bj n
M
c∑

i=b(j−1) n
M
c

x0.1i , for j = 1, 2, · · · ,M,

Subject to gj(x) = f 2
M(x) + 42

j(x)− 1 ≥ 0, for j = 1, 2, · · · , (M − 1),

0 ≤ xi ≤ 1, for i = 1, 2, . . . , n.


(3.9)

3.4.2.10 MOKP 0/5

This is a multi-objective knapsack problem, derived from the MOKP 0/1 problem

defined by Zitzler and Thiele (1999), and tailored to have the same dimensions as

the Plexos problem as described in the introduction section, 3.4.

The original MOKP 0/1 used a binary string decision vector whose variables

took values in the interval [0,1], whereas in this problem, the vector is composed

of integer variables (of 8 bits each) which take values in the interval [0,5].

It is required to pack each of n knapsacks with items giving a certain profit

and having a particular weight, and where each knapsack has a weight capacity

which is not able to be exceeded (Equation 3.10), thus a hard constraint. Each

knapsack is thus an objective function having its own constraint, and n is set to 4.

There are m = 72 items available, whose profit (p) and weight (w) values are set

independently and randomly in the interval [10,100], per knapsack, and where the

capacity of each knapsack (of i = (1...n)) is set to half the total available weight,

ci = 0.5 · (
∑m

j=1wi,j). The objective (Equation 3.11) is to maximise the profit of

Chapter 3 - The self-adaptive MOOEA 123

m items of each of n knapsack, where

Pi,j = profit of item j in knapsack i

Wi,j = weight of item j in knapsack i

ci = capacity of knapsack i

find a vector x = (x1, x2, . . . , xm) ∈ {0, 5}m, such that

∀i ∈ {1, 2, . . . , n} :
m∑
j=1

wi,j · xj ≤ ci (3.10)

and for which f(x) = (f1(x), f2(x), . . . , fn(x)) is maximum, where

fi(x) =
m∑
j=1

Pi,j · xj (3.11)

and where 0 < xj ≤ 5 iff item j is selected.

As in the original MOKP 0/1, a greedy repair method is used since many

possible codings can lead to infeasible solutions. The repair removes items itera-

tively until all constraints are met, removing the items in order of their maximum

profit/weight ratio, the lowest value being removed first. This tends to fill the

sacks as much as possible within the constraint thus maximising the profit. The

maximum profit/weigh ratio qj is given as follows:

qj =
n

max
i=1

{
Pi,j
Wi,j

}

3.4.3 Results

The results below were obtained by the Mann-Whitney statistical test (discussed

in section 3.4) comparing the performance of Ganesh and MooRand as measured

by the epsilon and hypervolume indicators, and are given along with the means

and standard deviations of the indicators. As specified in the introduction section,

3.4, 20 runs of each algorithm were used for each problem.

Chapter 3 - The self-adaptive MOOEA 124

3.4.3.1 DTLZ1

Here, Table 3.2 gives the Mann-Whitney test results, and Table 3.3 gives the

means and standard deviations of the indicators. It can be seen from Table 3.2

that Ganesh performed the better.

Table 3.2: DTLZ1. Mann-Whitney Test p-values for α = 0.05, for 2 indepen-
dent sample groups of 20 runs, for Ganesh (G) and MooRand (M).

Ind M > G G > M Best

eps 0.998775651 0.00122434869 Ganesh
hyp 0.999999881 1.19216374e-007 Ganesh

Table 3.3: Means of ε- and hypervolume indicators for DTLZ1 test, accom-
panying Table 3.2.

DTLZ1 statistics

Epsilon Hypervolume
Algorithm Mean SD Mean SD
Ganesh 0.163808 0.023371 0.040257 0.010879
MooRand 0.186602 0.014125 0.064708 0.006220

3.4.3.2 DTLZ2

Here, Table 3.4 gives the Mann-Whitney test results, and Table 3.5 gives the

means and standard deviations of the indicators. It can be seen from Table 3.4

that Ganesh performed the better.

Table 3.4: DTLZ2. Mann-Whitney Test p-values for α = 0.05, for 2 indepen-
dent sample groups of 20 runs, for Ganesh (G) and MooRand (M).

Ind M > G G > M Best

eps 0.999999968 3.15092411e-008 Ganesh
hyp 0.999999968 3.15092411e-008 Ganesh

Chapter 3 - The self-adaptive MOOEA 125

Table 3.5: Means of ε- and hypervolume indicators for DTLZ2 test, accom-
panying Table 3.4.

DTLZ2 statistics

Epsilon Hypervolume
Algorithm Mean SD Mean SD
Ganesh 0.146438 0.040633 0.019289 0.009570
MooRand 0.399339 0.018624 0.302794 0.026990

3.4.3.3 DTLZ3

Here, Table 3.6 gives the Mann-Whitney test results, and Table 3.7 gives the

means and standard deviations of the indicators. It can be seen from Table 3.6

that Ganesh performed the better.

Table 3.6: DTLZ3. Mann-Whitney Test p-values for α = 0.05, for 2 indepen-
dent sample groups of 20 runs, for Ganesh (G) and MooRand (M).

Ind M > G G > M Best

eps 0.999999789 2.1143139e-007 Ganesh
hyp 0.999999923 7.6997691e-008 Ganesh

Table 3.7: Means of ε- and hypervolume indicators for DTLZ3 test, accom-
panying Table 3.6.

DTLZ3 statistics

Epsilon Hypervolume
Algorithm Mean SD Mean SD
Ganesh 0.219473 0.032111 0.111651 0.035446
MooRand 0.285546 0.017656 0.236112 0.033971

3.4.3.4 DTLZ4

Here, Table 3.8 gives the Mann-Whitney test results, and Table 3.9 gives the

means and standard deviations of the indicators. It can be seen from Table 3.8

that Ganesh performed the better.

Chapter 3 - The self-adaptive MOOEA 126

Table 3.8: DTLZ4. Mann-Whitney Test p-values for α = 0.05, for 2 indepen-
dent sample groups of 20 runs, for Ganesh (G) and MooRand (M).

Ind M > G G > M Best

eps 0.999999968 3.15092411e-008 Ganesh
hyp 0.999994811 5.1885088e-006 Ganesh

Table 3.9: Means of ε- and hypervolume indicators for DTLZ4 test, accom-
panying Table 3.8.

DTLZ4 statistics

Epsilon Hypervolume
Algorithm Mean SD Mean SD
Ganesh 0.174196 0.027986 0.040812 0.061204
MooRand 0.424469 0.032960 0.190972 0.020375

3.4.3.5 DTLZ5

Here, Table 3.10 gives the Mann-Whitney test results, and Table 3.11 gives the

means and standard deviations of the indicators. It can be seen from Table 3.10

that Ganesh performed the better.

Table 3.10: DTLZ5. Mann-Whitney Test p-values for α = 0.05, for 2 inde-
pendent sample groups of 20 runs, for Ganesh (G) and MooRand (M).

Ind M > G G > M Best

eps 0.999999968 3.15092411e-008 Ganesh
hyp 0.999999968 3.15092411e-008 Ganesh

Table 3.11: Means of ε- and hypervolume indicators for DTLZ5 test, accom-
panying Table 3.10.

DTLZ5 statistics

Epsilon Hypervolume
Algorithm Mean SD Mean SD
Ganesh 0.182641 0.029279 0.069079 0.018115
MooRand 0.338402 0.013972 0.248108 0.020745

Chapter 3 - The self-adaptive MOOEA 127

3.4.3.6 DTLZ6

Here, Table 3.12 gives the Mann-Whitney test results, and Table 3.13 gives the

means and standard deviations of the indicators. It can be seen from Table 3.12

that MooRand performed the better.

Table 3.12: DTLZ6. Mann-Whitney Test p-values for α = 0.05, for 2 inde-
pendent sample groups of 20 runs, for Ganesh (G) and MooRand (M).

Ind M > G G > M Best

eps 0.00133859648 0.998661404 MooRand
hyp 3.15092411e-008 0.999999968 MooRand

Table 3.13: Means of ε- and hypervolume indicators for DTLZ6 test, accom-
panying Table 3.12.

DTLZ6 statistics

Epsilon Hypervolume
Algorithm Mean SD Mean SD
Ganesh 0.251443 0.021198 0.280420 0.020621
MooRand 0.231840 0.012692 0.212012 0.018785

3.4.3.7 DTLZ7

Here, Table 3.14 gives the Mann-Whitney test results, and Table 3.15 gives the

means and standard deviations of the indicators. It can be seen from Table 3.14

that Ganesh performed the better.

Table 3.14: DTLZ7. Mann-Whitney Test p-values for α = 0.05, for 2 inde-
pendent sample groups of 20 runs, for Ganesh (G) and MooRand (M).

Ind M > G G > M Best

eps 0.999999943 5.73277303e-008 Ganesh
hyp 0.999999968 3.15092411e-008 Ganesh

Chapter 3 - The self-adaptive MOOEA 128

Table 3.15: Means of ε- and hypervolume indicators for DTLZ7 test, accom-
panying Table 3.14.

DTLZ7 statistics

Epsilon Hypervolume
Algorithm Mean SD Mean SD
Ganesh 0.165262 0.045021 0.117447 0.048186
MooRand 0.362949 0.036670 0.471258 0.053817

3.4.3.8 DTLZ8

Here, Table 3.16 gives the Mann-Whitney test results, and Table 3.17 gives the

means and standard deviations of the indicators. It can be seen from Table 3.16

that Ganesh performed the better.

Table 3.16: DTLZ8. Mann-Whitney Test p-values for α = 0.05, for 2 inde-
pendent sample groups of 20 runs, for Ganesh (G) and MooRand (M).

Ind M > G G > M Best

eps 0.999993349 6.65139211e-006 Ganesh
hyp 0.993083251 0.00691674946 Ganesh

Table 3.17: Means of ε- and hypervolume indicators for DTLZ8 test, accom-
panying Table 3.16.

DTLZ8 statistics

Epsilon Hypervolume
Algorithm Mean SD Mean SD
Ganesh 0.210905 0.043863 0.332330 0.076100
MooRand 0.285523 0.042366 0.392731 0.060583

3.4.3.9 DTLZ9

Here, Table 3.18 gives the Mann-Whitney test results, and Table 3.19 gives the

means and standard deviations of the indicators. It can be seen from Table 3.18

that Ganesh performed the better.

Chapter 3 - The self-adaptive MOOEA 129

Table 3.18: DTLZ9. Mann-Whitney Test p-values for α = 0.05, for 2 inde-
pendent sample groups of 20 runs, for Ganesh (G) and MooRand (M).

Ind M > G G > M Best

eps 0.994911528 0.00508847225 Ganesh
hyp 0.996584872 0.00341512793 Ganesh

Table 3.19: Means of ε- and hypervolume indicators for DTLZ9 test, accom-
panying Table 3.18.

DTLZ9 statistics

Epsilon Hypervolume
Algorithm Mean SD Mean SD
Ganesh 0.474524 0.095193 0.620900 0.170833
MooRand 0.525815 0.031291 0.703415 0.015519

3.4.3.10 MOKP 0/5

Here, Table 3.20 gives the results obtained by the Mann-Whitney statistical test

comparing the performance of Ganesh and MooRand as measured by the epsilon

and hypervolume indicators, and Table 3.21 gives the means and standard devia-

tions of the indicators. As specified in the introduction section, 3.4, 20 runs of each

algorithm were used, and it can be seen from Table 3.20 that Ganesh performed

the better.

Table 3.20: MOKP 0/5. Mann-Whitney test results for 2 independent sample
groups of 20 runs, for Ganesh (G) and MooRand (M), showing p-values for α

= 0.05.

Ind M > G G > M Best

eps 0.991967993 0.00803200657 Ganesh
hyp 0.994911528 0.00508847225 Ganesh

Table 3.21: Means and standard deviations of ε- and hypervolume indicators
for MOKP 0/5 test, accompanying Table 3.20.

MOKP 0/5 statistics

Epsilon Hypervolume
Algorithm Mean SD Mean SD
Ganesh 0.396714 0.091842 0.745523 0.197681
MooRand 0.471243 0.095706 0.879651 0.164171

Chapter 3 - The self-adaptive MOOEA 130

3.4.4 Summary

These tests are intended to show that Ganesh can perform better than random for

problems having some of the same characteristics, as the distributed generation

optimisations of Chapter 5. The specific similarities are problems having the same

dimensions in their decision vectors and number of objective functions.

Since it was not possible to run the MooRand algorithm with Plexos itself, as

a Plexos licence was not available, these test problems were chosen instead as they

leant themselves to being scaled.

It is not proposed that the problems themselves are similar to those of Chapter

5, rather they have been chosen to provide a spread of problem types in order to

show that at least in some cases, Ganesh can perform better than random for

problems of these dimensions, particularly considering the number of elements in

the decision vector compared with the size of the population of candidate solutions

used.

Of the 10 optimisation problems used here, in 9 of them Ganesh was seen to

achieve better performance, by both the hypervolume and εpsilon performance

indicators, than MooRand, despite the relatively small population size compared

with the number of components in the decision vector. Only for the DTLZ6 test

problem was MooRand seen to be better. It should be noted that Ganesh could

be tuned to that problem better, by adjusting its rates of mutation or crossover,

probably by making it more random, though this is not the point of the tests so

it has not been tried.

Ten problems, 20 runs per problem per algorithm, with a population size of

30 and 67 generations, has given 402,000 function evaluations per algorithm.

Chapter 3 - The self-adaptive MOOEA 131

3.5 Experiments in self-adaptation

In this section, the self-adaptation used by Ganesh is compared with Ganesh in

non-self-adaptive mode through the simple expedient of choosing the non-self-

adaptive Real Chromosome to run the latter.

The airfoil optimisation problem of Chapter 4 is used as the basis of comparison

and it is run here similarly to how it is descrubed in that chapter, namely that

each mode (self-adaptive and non-self-adaptive) has 20 runs of each range (0.3,

0.6, 0.8, 1.0), thus giving a total of 80 runs per mode, or 160 runs overall. The

population of solutions is set at 120 and the number of generations is set to 50,

thus giving 6,000 function evaluations (FEs) per run, which gives 480,000 FEs per

mode and 960,000 FEs overall. The crossover rate and mutation rate are set to 0.9

and 0.5 respectively, and the number of duplicate solutions allowed per generation

is 0.

The results obtained from the runs described above are summarised in the

following tables, 3.22, 3.23 & 3.24, in which the table 3.22 gives the results of the

Mann-Whitney two-tailed hypothesis tests, and the other tables give the means

and standard deviations of the respective performance indicators for the given

range of the stated mode. The null hypothesis is that the performance indicators

show no statistical difference other than might be obtained by chance alone, thus

neither mode of operation can be said to be better than the other. A significance

level of α = 0.05 is used with which to compare the p-values obtained.

The Mann-Whitney test results are marked as H0 when the test indicates

that the null hypothesis should not be rejected. If the test shows that the null

hypothesis could be rejected, the result is marked as A or N if the self-adaptive

or non-self-adaptive mode respectively is indicated as better for the given perfor-

mance indicator.

Chapter 3 - The self-adaptive MOOEA 132

Table 3.22: Mann-Whitney test results for 2 independent sample groups of
20 runs, for self-adaptive mode (A) and non-self-adaptive mode (N), showing

p-values for α = 0.05.

Range Ind N > A A > N Best

0.3 eps 0.997119 0.002881 A
0.3 hyp 0.998547 0.001453 A
0.6 eps 0.585725 0.414274 H0
0.6 hyp 0.950660 0.049339 A
0.8 eps 0.995320 0.004680 A
0.8 hyp 0.941794 0.058206 H0
1.0 eps 0.158369 0.841630 H0
1.0 hyp 0.133636 0.866364 H0

Table 3.23: Means and standard deviations of ε- and hypervolume indicators
of Ganesh in self-adaptive mode, accompanying Table 3.22.

Self-adaptive mode

Epsilon Hypervolume
Range Mean SD Mean SD
0.3 0.077564 0.052772 0.045849 0.022552
0.6 0.111192 0.046011 0.101889 0.031940
0.8 0.095531 0.024549 0.115987 0.048946
1.0 0.134706 0.045658 0.164167 0.067991

Table 3.24: Means and standard deviations of ε- and hypervolume indicators
of Ganesh in non-self-adaptive mode, accompanying Table 3.22.

Non-self-adaptive mode

Epsilon Hypervolume
Range Mean SD Mean SD
0.3 0.128665 0.058027 0.064399 0.021486
0.6 0.108141 0.034664 0.118921 0.028030
0.8 0.124487 0.033144 0.149136 0.054489
1.0 0.120090 0.033025 0.139473 0.049614

3.5.1 Summary

Table 3.22 shows that the Mann-Whitney two-tailed tests give results allowing

the null hypothesis (H0) to be rejected for at least one of the ε- and hypervolume

indicators, for 3 out of the 4 ranges under test. Where the null hypothesis is

rejected, the self-adaptive mode (A) of Ganesh is always seen to perform better.

Chapter 3 - The self-adaptive MOOEA 133

Range ±0.3 gives the self-adaptive mode (A) best for both indicators, range

±0.6 has A for the hypervolume indicator, and range ±0.8 has A for the ε-

indicator.

It therefore seems reasonable to conclude that there is a real advantage in the

self-adaptive functionality used by Ganesh.

Chapter 3 - The self-adaptive MOOEA 134

3.6 Methods and materials

As described in the thesis introduction, having performed a literature review

(which was also refined at various points through further investigation) the Ganesh

framework and algorithm were analysed, designed and produced and then bench-

marked as above. Ganesh was then applied to a test case real-world problem, the

airfoil optimisation, and then used on the electrical power optimisation problem,

having built confidence.

The Agile Software Development methodology (Martin, 2002) was used to

analyse, design and develop the software developed in this work. This places

emphasis on producing simple and easily testable codes that can be enhanced

and extended through incremental improvements, in which units testing not only

provides confidence but also drives the development.

The framework, algorithm, and the plugins encoding the optimisation prob-

lems were developed in Java version Java Platform, Standard Edition 7 (Java SE

7) (Oracle, 2014). The software from which Ganesh is built is dependent upon

features which were new to an older version, Java 2 Platform, Standard Edition

5.0 (J2SE 5.0), in particular Enumerations and Generics, therefore Ganesh will

not run on versions of Java older than that. Some additional programs were also

developed in Java to collect and manage data produced by Ganesh, and to pre-

pare the data for processing by further external tools, such as PISA (Bleuler et al.,

2003).

Software Patterns (Gamma et al., 1995) and specifically patterns for Java

(Grand, 1998) & (Grand, 1999) were used both directly and as inspiration during

the design process, and UML (Martin, 2003) was used both as a documentation

method and as a design tool. Software design pattens are recognised general

solutions arising experientially, that have applicability to many specific design

problems and can be thought of as design re-use. Since they are generalised, their

use can lead to higher levels of abstraction than may be necessary, leading to

increased complexity, thus judgement is needed in deciding their applicability.

Chapter 3 - The self-adaptive MOOEA 135

The software sources, and the source of the thesis (which was created using

LATEX 2ε (LaTeX project team, 2014)) were kept under configuration management

using Mercurial (Mercurial community, 2014), a scalable distributed source control

management (SCM) tool.

The R language (R Development Core Team, 2014) was used to post-process

some result data and to produce graph plots.

GNUPlot (Geeknet inc., 2014) was used for some other graph plots.

The above software, tools and Ganesh all run on both Microsoft Windows�,

Unix and Linux platforms. This proved to be crucial for the success of this work,

since the Airfoil optimisation needed to be carried out on a Linux platform, while

the power optimisation using Plexos needed to be carried out on a Windows�

platform.

Chapter 4

A real-world airfoil application

test case

4.1 Introduction to airfoil optimization

This chapter considers the application of the MOOEA of this work, Ganesh, to a

real-world engineering problem, that of airfoil design by multi-objective optimisa-

tion. This work acts as both a test-case and as a comparison with a similar study.

An unexpected outcome of this work was the identification of some improvements

that could be made to a tool commonly used for airfoil design and which had been

used in the study with which this was compared.

The approach is to use a standard airfoil having well understood characteris-

tics, to iteratively modify its geometry and assess the new geometry in terms of

aerodynamic performance, and then allow the set of solutions to evolve over time.

Ganesh creates an initial population of random design vectors, each of which un-

dergoes the above process, and Ganesh uses the aerodynamic performance criteria

to perform its optimisation in the usual manner, thus evolving a set of more highly

performing airfoils over time.

137

Chapter 4 - A real-world airfoil application test case 138

The optimisation performed by Ganesh is then compared with results obtained

by two other high performing multi-objective optimising algorithms, NSGA-II

(Deb et al., 2000) and Multi-Objective Tabu Search (MOTS)(Jaeggi et al., 2008).

The standard airfoil used was the NACA 0012 section (Abott and von Doen-

hoff, 1959), Fig. 4.1, which is a standard symmetric airfoil having a 12% thickness

to chord length ratio, defined originally by the U.S. National Advisory Committee

for Aeronautics, which is now part of the National Aeronautics and Space Admin-

istration (NASA). This airfoil is used in a wide variety of aircraft (Lednicer, 2010),

therefore there is a well established body of knowledge about it that is practical

as well as theoretical.

4.2 Airfoil geometry

Airfoil shape modification is carried out by free-form deformation (FFD) (Seder-

berg and Parry, 1986) using an implementation used by Kipouros et al. (2012).

FFD is a mathematical technique for deforming ‘solid geometric models’ in a

free-form manner, based upon a chosen set of control points from which the de-

formation is governed, thus performing a mapping R2 → R2. Here, the airfoil has

four control points of a surrounding hull, each of which has a vertical and hori-

zontal displacement component, giving rise to eight parameters (being four pairs)

as illustrated in Fig. 4.2, in which a positive value gives a right or up shift and a

negative one a left or down shift, for the relevant axis.

The displacement of one or more control points thus produces a new geometry

via the mapping, that is translated into a vector of Cartesian coordinates that in

turn can be used by Drela’s XFoil tool (Drela, 1989).

The modified airfoil geometry is evaluated by XFoil for aerodynamic efficiency,

calculating coefficients of lift CL and drag CD which are then used in Ganesh as

objective function results. Figure 4.3 illustrates the flow between the component

codes.

Chapter 4 - A real-world airfoil application test case 139

Figure 4.1: The NACA 0012 Airfoil, Selig (2014).

Figure 4.2: An airfoil is a cross-section of a wing, hence inherently two di-
mensional, and is shown here enclosed in its free-form deformation hull with the
four control points, each of which has a horizontal and vertical displacement
component, giving eight deformation parameters that define its shape altering.

Figure 4.3: Schematic diagram showing the interaction of Ganesh, FFD and
XFoil.

Chapter 4 - A real-world airfoil application test case 140

4.3 Modifying XFoil

Previous work with Ganesh and XFoil, (Oliver et al., 2013) following on from

Kipouros et al. (2012), had located extreme minima that are not feasible airfoil

shapes, as under certain conditions XFoil would not converge and would not feed-

back the convergence failure to Ganesh. Under these circumstances, some solutions

would be unfeasible but have high fitness rankings in Ganesh due to erroneously

assigned high performing lift or drag coefficients, hence would still be selected for

by Ganesh, ensuring they remained in final results. Limiting boundaries had been

applied to both lift and drag coefficients in an attempt to minimise this problem by

keeping solutions within a region more likely to be feasible, and this had improved

the performance yet not eliminated the problem entirely. The post-evaluation con-

straint checking that Ganesh provides enables these limiting boundaries of the OF

values to be treated as soft-constraints, thus solutions breaking the limits are pe-

nalised by the degree of infraction. The constraints were as given in the Equations

4.1 to 4.3.

CL ≥ −3 (4.1)

CL ≤ 0 (4.2)

CD ≤ 2 (4.3)

However, even with these limiting boundaries on CL and CD, results obtained

for larger deformations (range ±1.0, as defined at the end of section 4.4), included

solutions that had extreme values in both objectives and which represented de-

sign vectors that were unfeasible, therefore the constraints were redefined to the

following, to further exclude the obviously unfeasible regions:

CL ≥ −2 (4.4)

CL ≤ 0 (4.5)

Chapter 4 - A real-world airfoil application test case 141

CD ≤ 1.5 (4.6)

In order to preclude the necessity of removing unfeasible designs from future

result sets, I further enhanced the XFoil software by ensuring that all error codes

indicating convergence problems, were correctly trapped and passed up, enabling

the proper setting of extremely poor values for the lift and drag coefficients to be

returned to Ganesh. Ganesh can then assign extremely low fitness values for each

objective function of any candidate solution for which convergence in XFoil is a

problem, and thus is able to eliminate these unfeasible designs through its normal

fitness ranking process. The challenges found using XFoil in batch mode originally

were due to the modifications made in converting it to work in batch mode from

interactive mode, and were not due to the original author (Drela, 1989), nor this

author.

4.4 Defining the optimisation

Having modified XFoil, the work here reiterates that of Oliver et al. (2013) without

the problems of unfeasible results, thus enabling proper statistical analysis, and

so the original results are not detailed here as they are effectively superseded by

the better ones obtained with the new XFoil codes.

The airfoil is subject to two hard model constraints, these being enforced

internally within XFoil, and are the thickness of the airfoil section at (a) 25%

and (b) 50% along the airfoil chord, which ensure there is a minimum volume in

which to place strengthening spars towards the leading and trailing edges, thus

discovered optimised designs should in theory be feasible and practicable. See

Figures 4.4, 4.5 and 4.6.

The optimisation definition ensures that each candidate design has the same

angle of attack (α) of α = 15◦, as shown in figure 4.6, so that the objective func-

tion results are comparing equivalent measurements, by choosing FFD parameters

Chapter 4 - A real-world airfoil application test case 142

Figure 4.4: An airfoil showing strengthening spars and vertical stiffeners.

Figure 4.5: A photograph showing a cross-section of an aircraft wing.

Figure 4.6: Diagram showing α the Angle of Attack, lift, drag and resultant
vectors, and the airfoil chord. Aerospaceweb (2012)

which do not alter the position of the leading and trailing edges of the airfoil or

the chord.

The FFD’s eight design parameters are encoded in the GA as real numbers

in the genes of each solution’s chromosome, and the FFD code modifies the air-

foil relative to a given datum design vector defining the geometry, based on the

parameters from the GA design vector. FFD expresses the modified geometry as

Chapter 4 - A real-world airfoil application test case 143

sets of x-y coordinates in a form that XFoil can receive, XFoil then calculates the

coefficients of moment, drag (CD), and lift (CL) of the modified geometry and

returns the latter two results, CD and CL, to the GA. Since the goal of this work

is to optimize the airfoil with respect to drag and lift as a bi-objective problem,

the coefficient of moment (CM) is not used at this time.

The Equations 4.7 & 4.8 define the optimisations to be performed, being max-

imization of the lift coefficient and minimization of the drag co-efficient respec-

tively, normalized by their respective datum values. The datum values, (CL =

1.46444, CD = 0.0305108), are the coefficient values of the unmodified NACA

0012 airfoil section.

F (CL) = − CL
CL, datum

(4.7)

F (CD) =
CD

CD, datum

(4.8)

Ganesh is set to perform 6,000 function evaluations in each run with a popu-

lation size of 120 and being allowed to run for 50 generations, as was performed

by Kipouros et al. (2012). For all cases here, Ganesh is set to allow no duplicates.

The probability of crossover pC is initially set to 0.9 and that of mutation pM

to 0.5 for each member of the initial population, and their respective polynomial

indices ηC to 10 and ηM to 20, as was the case for NSGA-II, but in the succeed-

ing generations these values self-adapt. The probabilities may self-adapt in the

interval [0, 1] while the polynomial indices may self-adapt in the interval [1, 100],

noting that for the latter, larger values cause smaller perturbations in the original

gene values, and vice-versa.

The problem definition also defines the range by which the design vector is

allowed to be modified, and thus the degree by which the geometry of the air-

foil may change. The range applies independently to the horizontal and vertical

Chapter 4 - A real-world airfoil application test case 144

components of each FFD control point, where the positive or negative value spec-

ifies the direction of the change, up or down, or left or right. See Figure 4.2. The

FFD implementation treats each input design vector component as a dimensionless

number specifying the amount of movement in the appropriate direction.

A given solution will therefore have each of its design vector components with

values in the interval [−n,+n] of the range ±n, where 0 means naturally no change

and therefore a vector of {0,0,0,0,0,0,0,0} defines the datum design of the NACA

0012 airfoil. Design vectors of narrower ranges are thus also possible in the wider

ranges.

A given run of the optimisation uses one range, and the corresponding results

of Ganesh are compared with those of MOTS and NSGA-II, for the same range.

The ranges used are ±0.3, ±0.4, ±0.6 and ±1.0, and are chosen as having been

used in other studies (Kipouros et al., 2012), where the lower ranges have been

shown to be tractable, while the higher ones have been shown to be problematic

(and more time consuming). In tables of results, the ± is omitted for reasons of

clarity and space (thus giving the ranges as 0.3 and so on).

4.5 Results

4.5.1 Comparing algorithms

Although 80 runs (20 per range) of the GA had been performed for the original

work (Oliver et al., 2013), automatic removal of unfeasible designs had not been

possible, therefore a statistical analysis of the results would have provided little

value and may have been potentially misleading.

These final results are the consequence of integrating the MOOEA with the

new version of Xfoil, furthermore, the other algorithms, MOTS and NSGA-II, have

also been re-run with the new Xfoil, enabling a thorough statistical analysis and

comparison of them all to be performed, as is presented here. As before, another

Chapter 4 - A real-world airfoil application test case 145

set of 20 runs per range per algorithm is performed, giving a total of 80 runs per

algorithm and therefore 240 runs overall.

Figures 4.7 to 4.12 show scatter plots of non-dominated solutions in the ob-

jective space obtained by Ganesh and the other algorithms, in which OF1 and

OF2 give the normalized values of CL and CD, plotted along the x and y axes

respectively, as previously described. All solutions found are considered feasible

designs and none have been removed, and dominated solutions are not shown.

The values of CL are shown as negative since it is being maximized and the GA

is constructed internally to assume minimization. All results are for generation

50 (numbered as 0 to 49) unless stated otherwise in the figure caption, to provide

a direct comparison with the MOTS and NSGA-II results also obtained. Each

plot shows the obtained results for all 20 runs of the given range, for the given

algorithm, at the last generation.

The number of generations for which the algorithms are permitted to run for

is a limitation set in the scenario as a basis for comparison; Ganesh may well have

(even, probably) not finished converging, thus if it had been permitted to run

longer, even better results would possibly have been obtained. This is likely to be

true of the other algorithms too.

4.5.1.1 Statistical analysis

The PISA package (Bleuler et al., 2003) was used with the results obtained to pro-

duce standard metrics for hypervolume indicator (Zitzler and Thiele, 1998) and

ε-indicator (Zitzler et al., 2003), to understand the performance better through its

statistical analysis and performance package. Table 4.1 gives the results of Kruskal-

Wallis nonparametric one-tailed tests comparing each algorithm’s 20 samples re-

sults, for a given range, against each of the others, in which the null hypothesis,

H 0, is that any variation seen between any two algorithm performances is merely

due to random fluctuation within normal bounds, assuming a significance level of

5% (alpha value α = 0.05).

Chapter 4 - A real-world airfoil application test case 146

The Kruskal-Wallis test (Hollander et al., 2014) is similar to that of Mann-

Whitney, but is used when there are K ≥ 3 sets of random samples from K

respective populations, and it is the nonparametric alternative to one-way analysis

of variance. The test ranks the samples values from 1 to N where N is the sum

of the sample counts from all populations, finds the mean of the ranks by sample

set, and calculates the discrepancies between the mean ranks to give the Kruskal-

Wallis statistic (H). H 0 is therefore that the population mean ranks are actually

equal, thus the associated p-value is the probability that as large a value of H

would be seen when H 0 is true.

When H 0 is not rejected, one algorithm cannot be said to out-perform the

other, conversely when H 0 is rejected, the test suggests that the first algorithm

does outperform the second, for the indicator under consideration. Table 4.1 gives

the test results showing p-values for the Kruskal-Wallis test, thus where a p-value

is less than 0.05, it is reasonable to reject H 0 and say the first algorithm does

out-perform the other. Where the p-value is greater than 0.05, H 0 is not rejected

and the algorithms probably have similar performance.

The tests use the hypervolume indicator (Zitzler and Thiele, 1999),(Zitzler and

Thiele, 1998), which was originally described as “the size of the space covered”,

and the (unary) ε-indicator (Zitzler et al., 2003), for which the means and standard

deviations of the values used in the tests are given in tables 4.3 to 4.5. These were

chosen following the recommendations given by Zitzler et al. (2003) & Fonseca

et al. (2005), since they work both well for comparison, and are inherently related

to Pareto dominance. As no absolute optimum is known for this problem, no

measurement against the true Pareto set is possible, thus indicators of this type

are not useful, nor are indicators which only measure diversity. Other indicators

were of potential interest, such as the R indicators of Hansen and Jaszkiewicz

(1998) which can compare approximation sets, but it was felt that the two chosen

were sufficient by themselves and were readily comprehendible as comparators.

The hypervolume indicator is a measure of how much area or (hyper-)volume,

Chapter 4 - A real-world airfoil application test case 147

depending on the dimensionality of the objective space, is covered by an approx-

imation front, thus it is not only an indicator of convergence but also of breadth

of front. The (unary epsilon) ε-indicator is a measure of the minimum distance of

translation needed to move every solution in the discovered front, so that the front

weakly dominates the most converged front found, thus is an intuitive measure of

Pareto dominance. So for a given range, the most converged front from all 60

samples is chosen, by PISA, as the reference set against which the ε-indicator is

measured.

The Kruskal-Wallis tests show that for these set of results, for both indicators

across all ranges, Ganesh seems to out-perform MOTS in terms of convergence

and has a similar breadth of front, although at the greater ranges, not as dense as

MOTS. As can be seen in the scatter plot for the 1.0 range, MOTS does achieve

several very good non-dominated points. The tests also show that Ganesh out-

performs NSGA-II for hypervolume at 0.3, both indicators at 0.6 and for ε-indicator

at 0.8, but neither at 1.0. NSGA-II on the other hand does not seem to out-perform

Ganesh for any indicator at any range, while it also seems to outperform MOTS

across indicators and ranges.

The means and standard deviations for the indicators given in tables 4.3, 4.4

and 4.5 show that Ganesh tends to have a higher variation in indicator value than

NSGA-II, and this seems to be borne out by the scatter plots, although Ganesh

does seem to get solutions to the front edge of the Pareto plots. NSGA-II seems

to achieve wider fronts at 1.0, while not seeming as well converged, which seems

to be the reason that neither can be said to out-perform the other in all respects

as shown by the Kruskal-Wallis tests.

Figure 4.7 has the results of NSGA-II plotted last, hence this set somewhat

obscures the underlying results of MOTS and Ganesh, so the latter two are shown

together in a separately plot, in Figure 4.8.

Figure 4.12 is a repeat of figure 4.11 but with a much later generation of a

Chapter 4 - A real-world airfoil application test case 148

Table 4.1: Kruskal-Wallis tests results for 3 independent data sets, comparing
20 sample runs per range for each of Ganesh (G), MOTS (M) & NSGA-II (N),

showing p-values for α = 0.05. See also continuation table 4.2.

Range Ind G >M G >N N >M N >G M >G M >N

0.3 eps 2.76E-05 0.618462 9.64E-06 0.381538 0.999972 0.999999
0.3 hyp 8.99E-15 0.002448 5.56E-10 0.997552 1 1
0.6 eps 3.20E-17 0.000742 6.17E-12 0.999258 1 1
0.6 hyp 2.90E-18 0.000087 5.61E-12 0.999913 1 1
0.8 eps 1.44E-12 0.034613 1.70E-09 0.965387 1 1
0.8 hyp 1.24E-12 0.072964 3.43E-10 0.927036 1 1
1.0 eps 7.74E-08 0.263348 8.31E-07 0.736652 1 0.999999
1.0 hyp 4.33E-07 0.476934 5.37E-07 0.523066 1 0.999999

Table 4.2: Continuation of table 4.1, for Ganesh, MOTS, & NSGA-II, giving
the interpretation of their relative performance.

Range Ind Best 2nd Best

0.3 eps Ganesh/Nsga-II Mots
0.3 hyp Ganesh Nsga-II
0.6 eps Ganesh Nsga-II
0.6 hyp Ganesh Nsga-II
0.8 eps Ganesh Nsga-II
0.8 hyp Ganesh/Nsga-II Mots
1.0 eps Ganesh/Nsga-II Mots
1.0 hyp Ganesh/Nsga-II Mots

Table 4.3: Means of the ε- and hypervolume indicators provided by PISA for
Ganesh results.

Ganesh

Epsilon Hypervolume
Range Mean SD Mean SD
0.3 0.075457 0.039082 0.050667 0.023536
0.6 0.080692 0.033401 0.075564 0.032801
0.8 0.111012 0.032667 0.131357 0.044737
1.0 0.146081 0.056356 0.190044 0.101289

Chapter 4 - A real-world airfoil application test case 149

Table 4.4: Means of the ε- and hypervolume indicators provided by PISA for
MOTS results.

MOTS

Epsilon Hypervolume
Range Mean SD Mean SD
0.3 0.155269 0.066874 0.122358 0.03185
0.6 0.317691 0.055242 0.401264 0.037391
0.8 0.251978 0.058163 0.387173 0.085911
1.0 0.234526 0.044423 0.351916 0.094109

Table 4.5: Means of the ε- and hypervolume indicators provided by PISA for
NSGA-II results.

NSGA-II

Epsilon Hypervolume
Range Mean SD Mean SD
0.3 0.069424 0.026199 0.069150 0.015704
0.6 0.102902 0.021668 0.115390 0.029101
0.8 0.128359 0.028219 0.144089 0.042932
1.0 0.154388 0.037153 0.180101 0.046149

Figure 4.7: Results for range ±0.3. showing all samples of Ganesh, MOTS &
NSGA-II.

Chapter 4 - A real-world airfoil application test case 150

Figure 4.8: Results for range ±0.3. showing all samples of Ganesh & MOTS
only.

Figure 4.9: Results for range ±0.6. showing all samples of Ganesh, MOTS &
NSGA-II.

Chapter 4 - A real-world airfoil application test case 151

Figure 4.10: Results for range ±0.8. showing all samples of Ganesh, MOTS
& NSGA-II.

Figure 4.11: Results for range ±1.0. showing all samples of Ganesh, MOTS
& NSGA-II.

Chapter 4 - A real-world airfoil application test case 152

Ganesh run: generation 863, which was the first generation in which all 120 solu-

tions of the population of that generation were non-dominated (after the non-

domination sorting and re-insertion of elite solutions, if any, which may have

replaced solutions from the new child population). Prior to that point, every

preceding generation had at least one dominated solution in it. As one would

expect, this front dominates the others, but it also has quite a dense and wide

front. It is reasonable to suppose that even this late generation is not yet the best

performance that it might achieve, given that it has only just eliminated the last

dominated solution(s).

A selection of the optimised airfoils found are shown in Figure 4.13, which is

the Figure 4.12 re-scaled in order to show the original NACA 0012 airfoil relative

to the optimised ones. The airfoil geometries are shown in relation to the position

of their solution design vector in the Pareto approximation front, while the NACA

0012 datum design is shown as the red dot at the top right, in its correct relative

position.

The compromise airfoil ‘ffd-2867’ from generation 863 is shown in figure 4.14,

which is near the middle of the Pareto front approximation. This represents a

compromise design having good lift and good drag coefficient values, which seems

to result from a less significant boundary layer separation than the datum design.

The graph above the airfoil section shows pressure coefficient distributions for the

airfoil surfaces and boundary conditions. The parallel coordinates plot of 4.21

shows the design parameters for the selected approximate CL of this airfoil (as

explained further below in 4.5.1.3), while the original NACA 012 airfoil is plotted

in figure 4.15 for comparison with that of the ‘ffd-2867’ airfoil, and Table 4.6 gives

the airfoil solution, consisting of the free-form deformation parameters and their

CL and CD objective function values.

In Figures 4.16 & 4.17 the means of the GA control parameters are plotted

since each of the 120 solutions in each generation has its own value for each of these

parameters. It can be seen that as the GA progresses through its generations, both

pM and pC become smaller, hence the disturbance to good solutions is lessened,

Chapter 4 - A real-world airfoil application test case 153

Figure 4.12: Results for range ±1.0. showing Ganesh, MOTS & NSGA-II, and
GaneshG863 which is the first generation of Ganesh having only non-dominated

solutions (in generation 863).

Table 4.6: The design vectors, consisting of the free-form deformation param-
eters (rounded to 5 decimal places), defining the airfoil geometries, and OFs,

for the selected airfoils shown in Figure 4.13.

Airfoil p1 p2 p3 p4 p5 p6 p7 p8 CL CD

ffd-2867 -0.37958 0.08431 -0.09464 1.00000 -0.22016 0.78611 -0.42390 0.43285 -1.54727 0.54033
ffd-2753 -0.34021 0.27989 -0.07222 1.00000 0.25528 -0.51989 -0.40346 -0.18635 -1.13951 0.47252
ffd-2966 -0.33806 0.21757 -0.09718 0.99327 -0.35148 1.00000 -0.41564 0.90794 -1.63570 0.59800

while their respective polynomial distribution indices (ηM & ηC) become larger,

which decreases the perturbation to the section geometry, thus at the start the

GA is better at exploring the search space while towards the end it is better at

converging to good solutions.

4.5.1.2 Control parameter trends

The figures of 4.18 and 4.19 show how the standard deviations of the control

parameters vary across the generations. As can be seen, they start off low, since

the parameters are set to the same value for every solution of the initial population

Chapter 4 - A real-world airfoil application test case 154

Figure 4.13: Results for range ±1.0. showing Ganesh, MOTS & NSGA-II, and
GaneshG863 which is the first generation of Ganesh having only non-dominated

solutions (in generation 863), with airfoils depicted.

Figure 4.14: An Xfoil plot of an optimised airfoil (‘ffd-2867’) found by
Ganesh at range ±1.0. in generation 863, having normalised coefficients
CL = 1.547, CD = 0.540 (the values in the figure itself are not normalised),
showing analysis of aerodynamic performance. The airfoil is shown underneath
the graph of the pressure curve whose width corresponds to points along the air-
foil from leading to trailing edges, and the computed boundary layer separation

is shown.

Chapter 4 - A real-world airfoil application test case 155

Figure 4.15: An Xfoil plot of the unoptimised NACA 012 airfoil, showing
analysis of aerodynamic performance. The airfoil is shown underneath the graph
of the pressure curve whose width corresponds to points along the airfoil from
leading to trailing edges, and the computed boundary layer separation is shown.

at the start of the run, then increase rapidly at the early stages, as random chance

determines whether they mutate or recombine. At about half way through the

rate of change starts to decrease until towards the end of the run it seems the

maximum deviation has been reached and they level out, probably because most

of the solutions now have different values for these parameters as they are real

numbers and the values are spread, yet the spread is also governed by the relevant

η control.

The trends of the controls (pC & pM) themselves do however seem to indicate

that overall the solutions are evolving over time towards an exploitative mode, in

that the probability of mutation or crossover occurring is seen to decrease, and

that also the η controls are increasing which means the degree of perturbation

caused by the operator acting is decreasing too. It should be noted that this

response is not pre-determined or programmed in, it is an emergent behaviour of

the system over time.

Chapter 4 - A real-world airfoil application test case 156

Figure 4.16: Trends of the means of the pM & ηM control parameters against
generation number for all ranges for all samples for Ganesh.

Figure 4.17: Trends of the means of the pC & ηC control parameters against
generation number for all ranges for all samples for Ganesh.

Figure 4.18: Trends of the standard deviations of pM & ηM control parame-
ters against generation number for all ranges for all samples for Ganesh.

Chapter 4 - A real-world airfoil application test case 157

Figure 4.19: Trends of the standard deviations of pC & ηC control parameters
against generation number for all ranges for all samples for Ganesh.

4.5.1.3 Visualising results with parallel coordinates

Here, results are presented as plots in parallel coordinates (‖-coords), the tech-

nique devised by Inselberg (2009) and later used in the field of optimisation by

Fleming et al. (2005), Siirtola and Räihä (2006), Siirtola (2000), and in engineer-

ing design by Kipouros et al. (2008) and Kipouros et al. (2013), in which each

dimension is oriented parallel to the others, thus transforming an n-dimensional

point into a 2-dimensional polygonal line that relates the values in each dimension.

This approach enables highly multi-dimensional data to be plotted uniquely and

without loss of information, and here the entire design space of each solution, 8

variables and 2 objective function results, are plotted together. The plots were

produced using the Parallax tool (Avidan and Avidan, 1999). Such plots have the

advantage over tables of numbers since the inherent human visual pattern recog-

nition ability is leveraged, enabling the relationships in the data to be far more

obvious. Such plots, that summarise large amounts of data as they do, also have

the virtue of brevity.

Thus figure 4.20 is a ‖-coords plot that shows the eight parameters and two

objective functions (CL and CD) of the design vector of all solutions in generation

863 of a run for range ±1.0, as shown in figure 4.12. This shows parameter 6 has

been selected for value 1, the value that seems to achieve the greatest lift, while

the lowest drag has also been selected, showing that the least drag corresponds to

the least lift (as lift here is a negative amount as explained previously). As might

Chapter 4 - A real-world airfoil application test case 158

be expected, the opposite value of parameter 6 is selected for least drag, while

high values of p5 and p3 are also selected, both of which are antagonistic for lift.

Interestingly, p4 seems to have high values for both lift and drag.

Figure 4.21 shows the same data plotted in Figure 4.20 again as a ‖-coords

plot, but with the data of the selected optimal airfoil of 4.14 highlighted as shown

by the selection markers with the data line shown in magenta. The selected airfoil

is of course a compromise between high lift and low drag and is chosen from a

region of the PFapprox front which is more biased towards the higher lift end of

the continuum, as can be seen by the position of the markers in the CL axis.

The mainly parallel lines seen between parameters (p3 & p4) and (p4 & p5)

indicate that those parameters, for certain values, tend to be positively correlated,

while conversely, the lines crossing between the axes of (p5 & p6) and (p8 & CL)

show that these are negatively correlated. That parameters p4 and to a lesser

extent p5, have most of their points passing through a relatively narrow band of

values, indicates that they are important and sensitive.

The inter-dependency between certain components of the decision vector,

shown by the correlation mentioned above, suggests that an alternative crossover

operator could be of benefit, for example a multi-point crossover or perhaps even

better, a selective crossover (Vekaria and Clack, 1998), rather than the uniform one

currently used, since the uniform version is more likely to disrupt the co-variance

(known as ‘epistasis’).

The plot of Figure 4.22 shows the data for all samples of range ±0.3 of Ganesh,

in which the best results for CL are selected by the highest values of parameter

p8 and given in green; the best values for CD are selected by the lowest values

of parameter p8 and given in magenta, and some compromise solutions roughly

mid-way for both CL and CD are selected on the CL axis and given in blue. There

are noticeable regions showing horizontal lines between adjacent axes, between

p4, p5 & p6 for blue, and between p6, p7 & p8 for magenta. This arises because

the solutions have evolved values for these parameters at the maximum extent of

their permitted ranges, in this case ±0.3. This is indicative that the range is too

Chapter 4 - A real-world airfoil application test case 159

Figure 4.20: ‖-coords plot showing Ganesh results for range ±1.0. at gener-
ation 863, which is the first generation having only non-dominated solutions.
The solution with the lowest CD has been selected on the CD axis with its data
shown in green, and the maximum of p6 has been selected with its data shown

in blue.

restrictive and that a wider range may produce solutions that are more converged

towards a global optimum. It can be seen that the blue region, representing some

compromises, has wide ranges of values around mid-way of p8, but also in p5,

p3, p2 and p1, which suggests that although p8 is an important parameter, the

sensitive interaction with those others parameters determines the compromise so-

lutions which are more likely to be of value, hence the inter-dependence of these

parameters is important. It should be borne in mind that all the solutions shown

are of the best rank and are all non-dominated, thus each one represents a reason-

able possible choice for the airfoil, depending on where the decision maker wishes

to trade-off between lift and drag performance, which in turn depends upon the

intended purpose of the aircraft.

4.5.1.4 Visualising combined data sets with parallel coordinates

In order to gain a qualitative understanding of how the three algorithms under

consideration work in practice, from a data perspective and relative to each other,

‖-coords plots were used in a novel fashion to visualise all the data sets together.

Chapter 4 - A real-world airfoil application test case 160

Figure 4.21: ‖-coords plot showing Ganesh results for range ±1.0. at genera-
tion 863, with the optimal airfoil of Fig. 4.14, selected by CL as shown by the

markers.

Figure 4.22: ‖-coords plot showing Ganesh results for range ±0.3, for all 20
samples, in which the best CL solutions are selected for in green, the best CD

solutions are selected for in magenta and some compromise solutions are shown
in blue.

Here, the data sets are treated with an R (R Development Core Team, 2014)

script to gather the data from all samples of all ranges from each algorithm, and

to min-max normalise the 8 parameters and 2 objective function results, which

is also known as feature scaling. The values are normalised into the interval [1,0]

except for the coefficient of lift, which is scaled into [-1,0] to keep it consistent with

the underlying data negative value, and Equation 4.9 gives the normalisation into

Chapter 4 - A real-world airfoil application test case 161

the interval[l, h].

y =
x−min(x)

max(x)−min(x)
· (h− l) + l (4.9)

The R script normalises all the data as a combined set but also maintains them

as separate matrices, and the output data has appended a key for the algorithm

and gives the range for each matrix, enabling the data to be separated when

viewing also.

Using the Parallax tool, the plot axes are then scaled to the same intervals,

thus enabling the data from these disparate sources to be viewed together, and

the following figures in this section all show ‖-coords plots of the normalised and

scaled data.

Figure 4.23 shows the ‖-coords plot for all samples of all ranges of all al-

gorithms, normalised and scaled as set out above. In addition to the 8 airfoil

parameters and the 2 objective function values, the first parallel axis, on the left,

shows a discrete number that is a key for the algorithm, with 0 for Ganesh, 1

for MOTS, and 2 for NSGA-II, while the next parallel axis shows the number for

the range: 0.3, 0.6, 0.8 and 1.0. These axes enable the 20 samples of a range

for an algorithm to be selected for highlighting independently of the others while

retaining the other data as a backdrop for visual comparison.

Similarly, Figure 4.24 shows the same data as Figure 4.23, but here the Ganesh

data for range ±0.3 is highlighted in magenta, by selecting the appropriate values

from the Alg and Rng axes as described above. The magenta region is therefore

effectively a zoomed-out equivalent of the plot shown in Figure 4.22, enabling the

cut-off zones of the limit of the ±0.3 range to be clearly seen as the horizontal

delineation between the parameters as given above.

Continuing in this theme, Figure 4.25 is similar to Figure 4.24, but shows

Ganesh data for range ±1.0, in which it can be seen that now the parameters are

allowed to extend further thus eliminating the horizontal lines, although parame-

ters p2, p4, p6 and p8 all have values at the maximum permitted. Allowing greater

extension in the parameters has enabled the objective functions to converge more,

Chapter 4 - A real-world airfoil application test case 162

Figure 4.23: ‖-coords plot showing normalised and scaled data from all sam-
ples of all ranges of all algorithms. The left-most axis gives the algorithm key
(0:Ganesh, 1: MOTS, 2: NSGA-II) and next to it the range is given (±0.3,

±0.6, ±0.8, ±1.00).

Figure 4.24: ‖-coords plot showing normalised and scaled data from all sam-
ples of all ranges of all algorithms, as in Figure 4.23, with the Ganesh data for

range ±0.3 highlighted in magenta.

thus the axes for CL and CD are now coloured magenta at their best value regions,

and it can be seen that much more of the search space is coloured magenta too.

The Ganesh data for ranges ±0.6 and ±0.8 are naturally in between the ±0.3 and

±1.0 plots and are not particularly instructive to show, as they do not illustrate

any additional features.

It is interesting to note that parameter p3 seen at this scale, has a narrow

band of values even at the ±1.0 range. This parameter specifies the horizontal

Chapter 4 - A real-world airfoil application test case 163

Figure 4.25: ‖-coords plot showing normalised and scaled data from all sam-
ples of all ranges of all algorithms, as in Figure 4.24, but with the Ganesh data

for range ±1.0 highlighted in magenta.

displacement of the control point on the top left of the FFD hull, and so is the

main control of the shape of the upper surface of the leading edge of the airfoil,

which obviously exerts great influence over the aerodynamic performance for both

lift and drag. Similarly, but to not quite such great an extent, parameter p7 has

a narrow band of values too and is the horizontal displacement parameter at the

top right of the FFD hull thus controlling the shape of the upper surface of the

trailing edge.

In Figure 4.26, the data for all ranges of MOTS is highlighted in green and

superimposed on the region highlighted in Figure 4.25, thus MOTS overlays the

Ganesh range ±1.0 data. It is apparent that the MOTS exploration is more

regular than the Ganesh GA strategy, by the appearance of the regular gaps

between MOTS points on parameter axes, and it is noticeable that it has explored

less of the parameters p2 and p6 spaces than Ganesh. Figure 4.27 highlights, in

grey, the parameter 6 space covered by Ganesh but not by MOTS, by selection

on the parameter 6 axis, showing that it is this region that has helped Ganesh

out-perform MOTS in the best coefficient of drag region.

Continuing from Figure 4.27, Figure 4.28, highlights in blue the parameter 6

space covered by NSGA-II but by neither Ganesh nor MOTS, which shows that

Chapter 4 - A real-world airfoil application test case 164

Figure 4.26: ‖-coords plot as in Figure 4.25, but with the MOTS data for all
ranges highlighted in green and superimposed.

Figure 4.27: ‖-coords plot as in Figure 4.26, highlighting the parameter 6
space covered by Ganesh but not by MOTS, in grey.

this region exists inside the grey area defined by Figure 4.27, thus enabling NSGA-

II to perform better than MOTS but not quite as well as Ganesh for the lowest

CD values influenced by this region of p6. Figure 4.29 is a zoom-in plot of Figure

4.28, showing just the detail of the CD axis, in which the effects of the above data

selection are more easily seen, and in which the black area is due to other NSGA-II

data not selected so far.

Figure 4.30 follows up the exploration of the best CD region shown in Figures

4.28 & 4.29, changing the colours of Ganesh and MOTS data to grey and dark

green respectively, leaving NSGA-II in black, to make it easier to see the selection

Chapter 4 - A real-world airfoil application test case 165

Figure 4.28: ‖-coords plot as in Figure 4.27, highlighting in blue the parameter
6 space covered by NSGA-II but not by Ganesh or MOTS.

Figure 4.29: ‖-coords plot zoom in of Figure 4.28 showing the CD axis detail.

Chapter 4 - A real-world airfoil application test case 166

of the best CD values shown in yellow. This makes it clear that all 3 algorithms

cover, in broad terms, the search spaces of each parameter’s values for the selected

good performing region for CD, thus each algorithm could in theory have attained

the best CD found. However, for MOTS, the relevant region of p8 is at the extreme

end of the values found and the points are more sparse here than is the case for

Ganesh or NSGA-II, and this is true for p4 also.

The Figure 4.30 also indicates that for CD at least, it is the combination of

non-extreme parameter values that produce a good result. The search behaviour

of MOTS, put simply, is to use regular step sizes by which to vary a parameter,

and this regularity can be seen. The step size is an important factor in determining

the likelihood of finding a good value of a given parameter, and in the case here,

it seems the step size may have been too large, for some of the duration of the

run, at least. Depending upon the step size chosen, the starting position could

be important too, as it may create a bias to the number of odd or even values

being found. MOTS does adjust its step size during the run, but apparently has

not made the best choices here. Ganesh uses the 64-bit floating point data type

for parameters and objective function values (as does NSGA-II), which coupled

with its stochastic crossover and mutation operators, leads to values of far greater

precision (having more places after the decimal point) and thus greater exploration

potential in this regard, than MOTS. Nevertheless, as seen in Figure 4.11, MOTS

did find some good compromise solutions.

Chapter 4 - A real-world airfoil application test case 167

Figure 4.30: ‖-coords plot for all samples of all ranges of all algorithms, but
with Ganesh data colour shown in grey and MOTS data in dark green to make
it easier to see the best CD values selected and highlighted in yellow, while the

NSGA-II data is black.

4.5.2 Alternative crossover operator

As described above in discussing Figures 4.21 and 4.20, it was thought that possibly

a multi-point crossover operator might out-perform the uniform crossover operator

used for the airfoil optimisation problem.

In order to test this, a new problem class was derived from the existing one,

thus inheriting all the problem component definitions, but which overrides the

crossover operator, instead specifying the self-adaptive multi-point swap crossover

(SAMPSC).

The SAMPSC is a novel operator that is similar to and derived from the self-

adaptive uniform blend crossover (SAUBC) defined in Section 3.2.2 and depicted

in Figure 3.2, however in SAMPSC whole genes are swapped between the parents,

not blended as with the SBX gene operator. In the case defined here, SAMPSC is

used with two randomly chosen chromosome recombination loci generated for each

crossover operation event, since it has been shown (De Jong and Spears, 1992) that

with two loci, a crossover operator has a reasonable balance between productivity

(a measure of its creating diversity in the population) and disruption.

Chapter 4 - A real-world airfoil application test case 168

It is recognised (Deb, 2001) that a real gene non-blending swap has less search

power than a blending one, but also that this can be offset by a higher mutation

rate, thus the self-adaptivity of the operator should manage to overcome this

limitation with the proviso that it has enough time to run.

The same scenario was run again in the same manner as before, with 20 inde-

pendent runs with randomly chosen initial populations, for the same four ranges

for parameter modifications, in order to generate data to compare with the data

of the previous set of Ganesh.

4.5.2.1 Statistical analysis

The results obtained by these new sample Ganesh runs were compared, using

PISA, with the original Ganesh results, thus comparing the effects of the two

different crossover operators, and the PISA comparison results are shown in Table

4.7. In this case, the Mann-Whitney two-tailed test (Hollander et al., 2014) is

used to compare the result sets; this test is similar to that of Kruskal-Wallis, but

is for specifically two sample groups.

Here, as before, the significance level is taken as α = 0.05 and the test is a non-

parametric one, so compares ranks rather than raw data, and the test is for mean

ranks, where H0 is that any difference seen is within normal bounds for randomly

fluctuating values and that therefore the sample groups can be considered to be

from the same population. This means that neither operator can be thought of

as ‘better’ than the other. Conversely, if H0 is rejected, this means that, for this

problem, the relevant operator can be thought of as providing better performance

than the other.

Table 4.7 shows that for all ranges, except that of 1.0, H0 is not rejected,

however, at range 1.0 H0 is rejected and the SAMPSC operator seems to improve

performance for both the ε-indicator and the hypervolume indicator. It is worthy

of note that the range 1.0 is the most difficult to optimise, so it may be that

SAMPSC is helpful in this regard since it is less disruptive of good solutions.

Chapter 4 - A real-world airfoil application test case 169

Tables 4.8 & 4.9 give the means and standard deviations of both indicators for the

new and original results.

It seems that for this problem, SAMPSC would be a good choice since it

behaves no worse than the uniform crossover (SAUBC), yet performs better for

the most difficult range. The analysis by ‖-coords of the original results was

instrumental in encouraging this investigation and thus a major factor in arriving

at this conclusion.

Table 4.7: Mann-Whitney test results for 2 independent sample groups, com-
paring 20 sample runs per range for the new Ganesh (G2) results and the original

Ganesh (G1) results, showing p-values for α = 0.05.

Range Ind G2 > G1 G1 > G2 Best

0.3 eps 0.767475 0.232525 H0
0.3 hyp 0.705799 0.294201 H0
0.6 eps 0.061467 0.938533 H0
0.6 hyp 0.456898 0.543102 H0
0.8 eps 0.941708 0.058292 H0
0.8 hyp 0.705791 0.294209 H0
1.0 eps 0.008566 0.991434 G2
1.0 hyp 0.009911 0.990089 G2

Table 4.8: Means of the ε- and hypervolume indicators provided by PISA for
Ganesh new SAMPSC results.

Ganesh

Epsilon Hypervolume
Range Mean SD Mean SD
0.3 0.926929 0.001036 0.913583 0.000675
0.6 0.086694 0.017940 0.104108 0.027463
0.8 0.099363 0.029108 0.134173 0.056580
1.0 0.177642 0.072984 0.214561 0.107224

Chapter 4 - A real-world airfoil application test case 170

Table 4.9: Means of the ε- and hypervolume indicators provided by PISA for
Ganesh original uniform crossover results.

Ganesh

Epsilon Hypervolume
Range Mean SD Mean SD
0.3 0.927084 0.000854 0.913568 0.000428
0.6 0.078459 0.014635 0.099121 0.031876
0.8 0.114916 0.039931 0.145594 0.071164
1.0 0.134460 0.044184 0.154040 0.063444

Chapter 4 - A real-world airfoil application test case 171

4.6 Airfoil comparison with other work

Having compared the results of airfoil optimisation by Ganesh with optimisations

by the MOTS and NSGA-II algorithms as set out earlier in this chapter, this

section compares the optimisation results of this chapter with other work in which

airfoil optimisations have been performed, where there is a meaningful basis of

comparison.

Results from other work are compared with the Ganesh results shown in Figure

4.32, previously described earlier in this chapter. Here, this figure denormalises

CL & CD (they were originally normalised by dividing by the NACA 0012 datum

values) and makes CL positive. The figure gives CL & CD at an angle of attack

(α) of α = 15◦ as this was used in the original optimisation. Since the values of

CL & CD depend upon α, it is necessary to use Xfoil again on the Ganesh airfoils,

to produce values of CL & CD for them, at the α used by the other works, in order

to make comparison possible.

Table 4.13 provides the FFD parameters of the selected Ganesh airfoils an-

notated in Figure 4.32. The Ganesh optimisation, as stated previously, places

constraints on the minimum airfoil thickness as it is intended to be used as a wing

cross section (see Figures 4.4 & 4.5) thus space is preserved for strengthening

spars. NACA 0012 has been used in a number of aircraft wings as either root or

tip (Lednicer, 2010) and is shown in Figure 4.1.

Ram et al. (2014) performed an optimisation of the NACA 0012 airfoil using

MATLAB to provide an implementation of a genetic algorithm, Xfoil to provide

coefficients of lift (CL), drag (CD), and pressure (CP), and ANSYS Fluent, after the

optimisation, for computational fluid dynamics (CFD) calculations of the airfoil

performance to validate the Xfoil results. Since they used a low airflow velocity

of 20 m/s for their Fluent simulation, it seems they were assuming an application

of a wind turbine or similar, rather than for aircraft wing application, and the

references they cite reinforces this assessment. They modify the airfoil geometry

(though it is not quite clear how) and use Xfoil for analysis, which in their case

Chapter 4 - A real-world airfoil application test case 172

means evaluating lift and drag coefficients at two different angles of attack (α), of

α = 0◦ and α = 3◦.

They used a single objective function to calculate a weighted sum of, CD at

both α = 0◦ and α = 3◦, and the maximum pressure coefficient (CP) at α = 3◦,

in which the first two are given equal weighting and the latter with diminished

weighting. Although their stated aim is to maximise lift and minimise drag, there

seems to be no mechanism through which an effect on CL would be influenced,

thus the process seems to concentrate on changing CD. Their results bear this out.

After the optimisation, their Fluent results gave a slightly improved estimation of

CL and a slightly worse CD of the selected airfoil.

Table 4.10 shows the Ram et al. (2014) airfoil together with a Ganesh airfoil

(ffd-2268) of nearest performance, for α = 3◦. Figure 4.33 shows an Xfoil plot of

the airfoil and its section. It can be seen that the Ram airfoil has slightly worse

lift than the selected Ganesh one, but better drag and thus a better lift/drag ratio.

This is likely to be because Ram’s optimisation is drag oriented, but also possibly

because their airfoil is allowed to be thinner than the Ganesh constraint allows.

Ram used 1,000 iterations of their optimiser, but they do not define the population

size used.

Studies by both Selvan (2015) and Gardner and Selig (2003) use an angle of

attack of α = 5◦ so a number of Ganesh airfoils were reassessed at this angle and

ones of comparable performance are shown with their values for CL & CD in Table

4.11, along with the results from the other works.

Selvan (2015) was a study that set out to compare shape parameterisation

methods as used in the derivation of airfoils in optimisation processes. Airfoil

geometries were created from the reference NACA 0012 by using Latin Hypercube

sampling from a Design of Experiments based on parameters, rather than random

generation. They use their own genetic algorithm as optimiser but it uses results

from a surrogate model as objective functions in an inner iterative loop, and Xfoil

is used to increase accuracy in an outer iterative loop. Their single objective was

to find an airfoil, within the design space they constrain, having a maximised CL

Chapter 4 - A real-world airfoil application test case 173

for the same CD as their NACA 0012 reference, and they use a single objective

function which uses a weighted approach. Their results in Table 4.11 are given by

the shape technique employed, given under ‘Airfoil Id’.

Ganesh airfoils ffd-3301 and ffd-3337 were found to be the closest ones, in

terms of their CL & CD values for the same angle of attack, with ffd-3337 having

higher lift and higher drag compared to Selvan’s results around CL ≈ 0.6, with a

slightly worse CL/CD ratio of 71.897. The Ganesh airfoil ffd-3337 was closest to

the Selvan results around CL ≈ 0.7, again having higher lift and drag but having

a better CL/CD ratio of 82.975. Ganesh has therefore performed quite well in

comparison. It was not clear how their optimisation was specified exactly but

presumably the use of the surrogate model meant they could have many cheaper

function evaluations, compared with Ganesh.

The work of Gardner and Selig (2003) used an airfoil shape generator called

Profoil, and hybrid genetic algorithm with local search to optimise airfoil designs

by generating airfoils using an ‘inverse method from velocity distribution parame-

ters’. The local search method employed a conjugate gradient method they say has

been established to decrease convergence times by a third in airfoil applications.

They also compared this approach with a number of others including a simple GA

(SGA). Xfoil was used to analyse the airfoil performance characteristics as in the

other works.

Their work used the Eppler 168 (E168) airfoil as the datum in their ‘cambered

airfoil design’ optimisation, which set out to try to find a cambered airfoil that

outperformed the state-of-the-art, being a 10% thick cambered airfoil with a max-

imum L/D ratio of 104 with a CL = 0.92 (for a Reynolds number of 300,000). The

optimisation therefore consisted of a fixed CL with minimisation of CD under the

above conditions. The Reynolds number used is equivalent to a speed of around

22mph at sea level.

Ganesh airfoils from the existing result set were examined and relevant ones

chosen (ffd-3705, ffd-3431 & ffd-3649) for comparison in consideration. Figure 4.31

shows the state of the art boundary for airfoil performance at the time their work

Chapter 4 - A real-world airfoil application test case 174

Figure 4.31: State of the art airfoil performance (Gardner and Selig, 2003).

was published, and their result (‘Gardner’) of Table 4.11 shows that they achieved

their aim.

From Table 4.11 it can be seen that the Ganesh airfoil ffd-3705 has a CL just

under their figure of 0.92 and a higher CD achieving an L/D ratio of 98.8, while

ffd-3431 has a CL just over their at 0.9298 with an increased CD but with a slightly

better L/D ratio of 99.98. The Ganesh airfoil ffd-3649 with a CL of 1.02 and CD

of 0.00966 achieves an L/D ratio of 105.8 which compared with the performance

boundary given in Figure 4.31 shows it to be above the high performance line for

that CL.

However, the original Ganesh optimisation used Xfoil working with a Reynolds

number of 2×106, a substantial difference from the 3×105 used in the work being

compared. Therefore the Ganesh airfoils were re-appraised at the lower Reynolds

number, using Xfoil interactively, and the performance obtained rendered the pre-

vious results inappropriate for comparison.

Therefore a trial optimisation was carried out to investigate whether the

Ganesh scenario could be appropriate for comparison at all, with Xfoil set to

the same angle of attack (α = 5◦) and Reynolds number, but still using NACA

0012 as a reference datum. Two inequality constraints were also put in place,

0.915 ≤ CL ≤ 0.92, to approximate the CL used in the comparison work. The

Chapter 4 - A real-world airfoil application test case 175

newly obtained results are shown in Table 4.12, and Xfoil plots for these airfoils

are shown in Figures 4.34 through 4.36.

Although it can now be see that the new trial optimisation produces results

not as good as before, they are at least able to be compared, and represent an

improvement of the lift/drag ratio of the original NACA 0012 airfoil (42.646) under

similar conditions of approximately 60%, for this scenario. The results trend could

be seen to be still improving, albeit slowly, in terms of CD, thus a longer run

would produce better results. More runs with varying starting populations would

of course be necessary for a full appraisal, though it is not expected to see results

approaching the work being compared as they carried out a parameter tuning

exercise and were using the hybrid local search method known to be good for

airfoil optimisations.

Table 4.10: α = 3◦. Selected airfoils from G863 of Ganesh for range ±1.0
with denormalised CL & CD with positive CL, together with other airfoils from

other work. Ram indicates (Ram et al., 2014).

Source Airfoil ID CL CD CL/CD Description

Ram 0.3536 0.00657 53.820 single objective, weighted sum
Ganesh ffd-2268 0.3606 0.00872 41.353 Max CL, Min CD

Table 4.11: α = 5◦. Selected airfoils from G863 of Ganesh for range ±1.0
with denormalised CL & CD with positive CL, together with other airfoils from
other work. Selvan indicates (Selvan, 2015), Gardner indicates (Gardner and

Selig, 2003).

Source Airfoil ID CL CD CL/CD Description

Selvan Class shape 0.7087 0.00860 82.407 Max CL, Fixed CD
Selvan Hicks-Henne 0.7272 0.00860 84.558 Max CL, Fixed CD
Selvan Bezier 0.6352 0.00860 73.860 Max CL, Fixed CD
Selvan Polynomial 0.6263 0.00860 72.441 Max CL, Fixed CD
Gardner E168 0.9200 0.00875 105.143 Fixed CL, Min CD
Ganesh ffd-2268 0.6059 0.00933 64.941 Max CL, Min CD
Ganesh ffd-3301 0.6593 0.00917 71.897 Max CL, Min CD
Ganesh ffd-3337 0.7725 0.00931 82.975 Max CL, Min CD
Ganesh ffd-3705 0.9158 0.00927 98.792 Max CL, Min CD
Ganesh ffd-3431 0.9298 0.00930 99.978 Max CL, Min CD
Ganesh ffd-3649 1.0218 0.00966 105.776 Max CL, Min CD

Chapter 4 - A real-world airfoil application test case 176

Table 4.12: Ganesh airfoil performance at α = 5◦ for Reynolds number 3×105,
showing selected best performing airfoils (most lift, least drag, best L/D ratio).

Other aspects as Table 4.11.

Source Airfoil ID CL CD CL/CD Description

Ganesh ffd-3308 0.9200 0.01350 68.172 Max CL, Min CD
Ganesh ffd-3328 0.9151 0.01346 67.975 Max CL, Min CD
Ganesh ffd-3351 0.9199 0.01349 68.173 Max CL, Min CD

Table 4.13: Referenced airfoils from G863 of Ganesh for range ±1.0 shown
with their FFD parameters defining the airfoil geometries.

Airfoil p1 p2 p3 p4 p5 p6 p7 p8

ffd-2268 -0.39017 0.29187 -0.07249 1.00000 0.16376 -0.28464 -0.42998 -0.10630
ffd-3301 -0.36908 0.33321 -0.07018 0.99695 -0.28794 -0.40392 -0.43133 0.04220
ffd-3337 -0.37769 0.27114 -0.06820 1.00000 -0.23434 0.02339 -0.44459 0.02170
ffd-3705 -0.34317 0.23027 -0.07738 0.99847 -0.33135 0.36669 -0.42917 0.16262
ffd-3431 -0.36329 0.48893 -0.07746 0.98977 -0.26614 0.20491 -0.42883 0.26825
ffd-3649 -0.35254 0.32081 -0.08409 0.99938 -0.33563 0.54770 -0.40672 0.29094
ffd-3308 -0.17340 0.81986 -0.01364 0.65003 -0.50948 0.06608 -0.19046 0.38163
ffd-3328 -0.17339 0.81757 -0.01368 0.64984 -0.52178 0.06608 -0.20723 0.37854
ffd-3351 -0.17339 0.81985 -0.01372 0.65000 -0.51014 0.06608 -0.19059 0.38165

Figure 4.32: Ganesh results for range ±1.0, at α = 15◦, Re = 2 × 106, at
generation 863 with with selected airfoils annotated. Here, CL & CD have been

denormalised with CL returned to the positive, for α = 15◦.

Chapter 4 - A real-world airfoil application test case 177

Figure 4.33: An Xfoil plot of an optimised airfoil (‘ffd-2268’) found by Ganesh
at range ±1.0, in generation 863, having denormalised coefficients of CL =
0.3606, CD = 0.00872, for α = 3◦. The airfoil is shown underneath the graph
of the pressure curve whose width corresponds to points along the airfoil from

leading to trailing edges.

Figure 4.34: An Xfoil plot of airfoil (‘ffd-3308’) found by Ganesh for α = 5◦

and Reynolds number Re = 3× 105. See also Figure 4.33.

Chapter 4 - A real-world airfoil application test case 178

Figure 4.35: An Xfoil plot of airfoil (‘ffd-3328’) found by Ganesh for α = 5◦

and Reynolds number Re = 3× 105. See also Figure 4.33.

Figure 4.36: An Xfoil plot of airfoil (‘ffd-3351’) found by Ganesh for α = 5◦

and Reynolds number Re = 3× 105. See also Figure 4.33.

4.6.1 Comparison summary

The original Ganesh results were produced by an optimisation of Naca 0012 fo-

cused on an angle of attack of 15◦, which is often around the point of maximum

lift for an aircraft wing, and a Reynolds number of 2×106 which is appropriate for

a flight speed of around 152 mph at 2,000 ft. The airfoil geometry was given xed

positions of the leading and trailing edges in order to x the chord length and angle

of attack, and the thickness was constrained at 25% and 50% along the chord in

Chapter 4 - A real-world airfoil application test case 179

order to provide room for strengthening spars. The α and Re used has a tendency,

it seems, to favour increase in lift over decrease in drag, relative to optimisations

working at a fixed lower angle of attack.

The results from Ganesh stand up well in comparison to the first two other

works (Ram et al., 2014) & (Selvan, 2015), being of approximately equal quality

or better in some regard, even though of a more general case. These others had

fixed drag and were attempting to maximise lift in a single optimisation.

The third study (Gardner and Selig, 2003) achieved better results, but this

had a fixed lift and was attempting to minimise drag, starting with a relatively

thin airfoil and using a hybrid GA with a tuned local search. They note that “few

symmetric airfoils are capable of operating eciently at a lift coecient of 0.92 at

the specied Reynolds number”. Ganesh was able to acquire the same lift, starting

from a datum of 0.57, but had to sacrifice some drag performance to get there.

Drag was more slowly improving at the time of termination. The thickness of

the airfoil constraint may be inhibiting performance in this regard, as may the

constraint around the start of the leading and trailing edges, all of which prevent

the airfoil from thinning especially at the trailing edge.

Chapter 4 - A real-world airfoil application test case 180

4.7 Summary

Chapter 4 set out the multi-objective optimisation problem of optimising a stan-

dard airfoil by changing its geometry with free-form deformation, and assessing

the resultant aerodynamic performance of the new airfoil shape. The performance,

in terms of the coefficients of lift and drag of the airfoil, were used as the objective

function values by which the MOOEA would select the candidate airfoils for in-

clusion for breeding in the next generation of the MOOEA, thus evolving ‘better’

solutions over time. The MOOEA used was Ganesh, created as part of this work

as set out in Chapter 3.

The XFoil software tool, comprising mainly Fortran but some C codes, used

here to assess airfoil aerodynamic performance in batch mode (rather than in-

teractively as was its original purpose), was modified to improve its batch mode

notification capability of convergence failing, enabling improvement both in the

quality of airfoil solutions discovered, and in the optimisation performance. Pre-

vious work carried out by this author and by others ((Kipouros et al., 2012),

(Lattarulo et al., 2013)) using untreated XFoil for batch use in a similar way, had

experienced this limitation that caused compromised quality outcomes, therefore

this remedial modification should prove advantageous in future work exploring

other algorithms using XFoil for airfoil optimisation.

Considering the results, it was apparent that as the range increased, the

MOOEA was able to find attainment surfaces that were better approximations

of the Pareto-optimal front, as do the other algorithms, as it is intrinsically en-

abled to explore wider areas of the search space at earlier times. XFoil can take

longer to run with larger variations in range as it may find it harder to converge

successfully and indeed may fail to converge, since the shape of airfoil is relatively

more deformed from the datum design. However, the modifications to XFoil now

trap these convergence failures thoroughly, enabling Ganesh to correctly rate the

desirability of the retention of their solutions.

Chapter 4 - A real-world airfoil application test case 181

The trends of the control parameters are shown in the plots of Figures 4.16

to 4.19 and these show, over time, the probability of genes changing (by both

crossover and mutation) decreasing and the degree by which they change also

decreasing (since the η controls are increasing and there is an inverse relationship).

It should be noted that this response is not pre-determined or programmed in, it

is an emergent behaviour of the system. This response means that the system

moves from a more exploratory behaviour to a more exploitative one, relatively

speaking, although the degree of this response is not large.

Although each new self-adaptive parameter can also be thought of as a factor

increasing the decision search space, the increase is by a relatively small percent;

moreover, the number of generations allowed in these experiments can be thought

of as quite low, and at greater generations, the impact of self-adaptivity would

be expected to be greater. The inclusion of generation 836 of an independent

run, shown in Figure 4.12, shows that Ganesh is able to produce a well-formed

Pareto approximation front for this problem, given enough time, thus providing

evidence that a conclusion of one of the other studies (Kipouros et al., 2012), “it

is very difficult for any Genetic Algorithms type optimisation method to perform

competitively in shape aerodynamic optimisation cases” need not be necessarily

true in all cases.

Specifying that zero duplicates are permitted is beneficial as it prevents the

MOOEA from prematurely converging to just a few solutions having many copies,

as can be the case, and although it is limited to intra-generational checking, as each

preceding generation also has zero duplicates, it seems to perform well, even though

it does not prevent previously rejected solutions from re-appearing in subsequent

generations, as they might do if they had been rejected previously only because

they were too near to another in objective space. Nevertheless, not having to save

every solution ever produced can be a significant memory saving, especially for

long runs having a great many generations, and it can save CPU time too since

the searching for a new solution in the cache of old solutions, is obviated.

Chapter 4 - A real-world airfoil application test case 182

This self-adaptive GA has been shown to work well on a benchmark 2D aerody-

namic design problem, as a real-world engineering example, and to provide better

convergence than MOTS and in some cases NSGA-II while not being worse than

either overall. It does not always provide as good a density of solutions in the

Pareto-optimal front as MOTS, though this can be viewed as a trade-off between

being better at exploring the search space widely but doing less well at exploiting

solutions found locally.

Chapter 5

Multi-objective optimisation of

an electrical power network

5.1 Electrical power networks

This work explores a possible method of addressing the configuration of large-

scale electrical power networks, such as a national grid, using an approach based

on evolutionary computing, which has been used previously in complex systems

research such as emergent computation (Mitchell, 1999) and dynamics of complex

networks (Aguilar-Hidalgo et al., 2012), and also directly in optimal power flow

research (Pandya and Joshi, 2008). Evolutionary algorithms and their applicability

to real-world engineering problems has been discussed in Chapter 2, furthermore

Allen et al. (2010) conclude that consideration of systems exhibiting complexity

entails the construction of synergies between the studies of systems and their

structures, and the ideas of neo-Darwinian evolutionary processes. Having shown

in Chapter 4 that the MOOEA of this work, Ganesh, is able to cope with real-world

engineering multi-objective optimisation problems, this chapter applies Ganesh to

the optimisation of electrical power networks.

Concerns about the environmental impacts of power generation include not

only the issue of global climate change and the effect that emissions, such as CO2,

183

Chapter 5 - Multi-objective optimisation of an electrical power network 184

have upon the climate, but also matters of harmful pollution and the availability

of power for an ever increasing world population coupled with dwindling natural

fossil fuel resources. For these reasons alone, the optimisation of power generation

and the inclusion of renewable energy sources into electrical power grids, is already

important now and this can only increase in the foreseeable future.

The essential problem in the architecture of national grid networks is that of

power flow and optimal power flow (OPF) calculations of alternating current (AC)

power, and these calculations are at the centre of Independent System Operator

(ISO) power markets (Cain et al., 2013) in which AC OPF is solved over a number

of different orders of magnitude of time-scales, from minutes via hours, to annually

and multi-year horizons, where the latter is for planning and investment while the

former are for ensuring demand is met and for spot market pricing. For the ISOs,

the central planning issue is the Unit Commitment Problem (UCP), which stated

simply, is the scheduling of power generators to produce a contracted power output

for a forecast load for an agreed duration, bearing in mind ramp-up and shut-down

times, with the concomitant cost and profit implications.

An ISO, although having a precise definition which is country-specific, never-

theless is more generally understood to be an organisation having the responsibility

for the scheduling of power production and its dissemination at a regional or na-

tional level over large-scale fixed infrastructure. The ISO produces and acquires

load forecasts, receives offers of power from generating companies acting within a

competitive auction market, and produces generation schedules consisting of re-

quired power units and a price, to meet demand within the constraints of the grid

and generators.

The power flow computation (Glover et al., 2012) consists of calculating values

for voltage and angle of phase at the buses in the grid for stable and balanced three-

phase conditions. These results enable the further calculation of real and reactive

power flows in the connected components such as switchgear, transformers and

transmission lines, and also power losses, which are of particular relevance in the

latter.

Chapter 5 - Multi-objective optimisation of an electrical power network 185

Figure 5.1: A schematic diagram of a general large scale grid network (Blume,
2007).

5.2 Distributed generation

Electrical power networks, broadly depicted in Figure 5.1, can be improved both

technically and economically through the inclusion of distributed generation (DG)

which may include renewable energy sources. DG units are lower output gen-

erators that provide incremental capacity at specific geographical locations, thus

enhancing voltage support and improving network reliability while also acting eco-

nomically as a hedge against a high price of centrally produced power, through

locational marginal pricing (LMP). The operation of power grids by ISOs as unbun-

dled auction wholesale spot power markets that support real-time pricing, provides

a further incentive to roll-out DG, which in turn brings about a need to define the

type, number and location of any extra DG units (Gautam and Mithulananthan,

2007).

The DG units considered here are renewable energy sources consisting of solar

photovoltaic (PV) panels, micro wind turbine, and micro gas turbine, all of which

share the incremental characteristic, making them ideal for low-end power gener-

ation that is nevertheless able to be scaled up through either individually more

powerful units, or by array assembly as shown in Figure 5.2.

The work presented here addresses the composition of an AC electrical power

network, based upon the IEEE 30 Bus Test Case, which in turn represents a section

Chapter 5 - Multi-objective optimisation of an electrical power network 186

Figure 5.2: A giant photovoltaic array, Nellis, Nevada USA.

of the American Electric Power System (in the Midwestern US) in December 1961

(Christie, 1993), to which distributed generation is added. Figure 5.3 depicts the

schematic of the original grid section.

The model IEEE 30 Bus grid, as shown in the single line diagram (Figure 5.4),

is configured to have six central fixed large-scale open cycle gas turbine (OCGT)

electrical power stations, and twenty four nodes whose buses enable the input from

each of the three types of variable distributed generators given above. This model

is the basis for the OPF calculations (Saadat, 1999, p. 48).

It can be seen that in the model used, there is a one-to-one relationship between

a node and bus, thus a given bus or node number can be thought of as referring

to the same thing. The term node is used in the context of existing in a network,

while bus is used in its electrical context.

This work, described in part in (Oliver et al., 2014) and Oliver et al. (June

2015) , has the following aims:

1. To determine the composition of the power network in terms of the type,

number and location of the DG units, with the goal of finding the cheapest

configuration (capital cost), of meeting demand for power while keeping over-

and under-production of power as low as possible, and of minimizing the

Chapter 5 - Multi-objective optimisation of an electrical power network 187

Figure 5.3: A section of the American Electric Power System, Midwestern
US, December 1961 (Christie, 1993).

spot price and CO2 emissions, thus determining the best, or at least high-

performing candidate network solutions.

2. To analyse the multi-dimensional results of the evolutionary computation

component in order to reveal relationships between the network’s design

vector elements, by means of most influential nodes and type of technology.

3. To enable the optimisation of the power grid connections, by incorporating

the power capacity of the transmission lines as further variables in each

candidate solution.

4. To explore the possibility of identifying tipping points in the candidate design

solutions through their influence on system behaviour.

Chapter 5 - Multi-objective optimisation of an electrical power network 188

Figure 5.4: The IEEE 30-bus test system in single line diagram style
(Dharamjit, 2012) derived from Figure 5.3, showing the location of DG units by
bus, to which has been added the variable for the number of units of the given
DG type at that bus, shown by the V-number. The symbol of tilde in a circle
indicates a large central generator input, and the down arrow indicates output

from the bus to a load. See also Table 5.1.

Chapter 5 - Multi-objective optimisation of an electrical power network 189

5.3 Integrating with power market simulation

The Plexos tool (Energy Exemplar Pty Ltd (2013)) provides both OPF and fi-

nancial market simulations, in particular providing unit commitment (which gen-

erators should be used, bearing in mind their operating characteristics such as

ramp-up time as well as power output and running costs), economic dispatch

(which generators to use to meet demand from a cost viewpoint), transmission

analyses (losses, congestion), and spot market operation. It also provides estima-

tions of CO2 emissions. The volume of lost load (VoLL) is the threshold price

above which loads prefer to switch off, while the dump energy price is that below

which generators prefer to switch off, and these along with market auctions also

contribute to the ratio of power generated to power consumed. Transmission losses

are also taken into account within Plexos through sequential linear programming.

Plexos is integrated with Ganesh, the self-adaptive multi-objective optimizing

evolutionary algorithm (MOOEA) set out in Chapter 3, thus establishing an op-

timization feedback loop, since Plexos gives optimal unit commitment for a given

set of DG units, while the MOOEA is used to determine the optimal set of genera-

tors for the given demand profile and weather pattern. A MOOEA is used as they

have a history (Haupt and Haupt, 2004, p. 174) of tackling non-linear (Nicolis,

1995) multi-objective and multi-dimensional optimization problems successfully,

and since OPF for AC power is a non-linear problem (Glover et al., 2012, pp.

325-334) while power markets require multi-part non-linear pricing.

Figure 5.5 shows the integration of Plexos with Ganesh, with Plexos inputs

arriving from Ganesh via a third-party interface (provided by colleagues as ac-

knowledged in 6.4), while the output is acquired by Ganesh directly. This figure

is for the DG unit optimisation scenario, while that of 5.6 shows the additional

interface component of Xml through which changes to the line capacities defined

in the model are provided to Plexos.

This work uses historical data of weather (in the form of actual solar PV and

wind power generation), central power generation, and electrical energy demands,

Chapter 5 - Multi-objective optimisation of an electrical power network 190

from Australia of 2010, thus providing a realistic simulation environment for both

power demand and renewable generation. The data was provided by colleagues

in Australia, as acknowledged (in section 6.4). The generator characteristics are

given in Tables C.4 and C.5 of Appendix C.

5.4 Defining the optimisation

The optimisation problem is defined at a high level as a process to find the set of

potential DG units and their locations, in terms of buses, which enable the system

to produce required power in the most efficient way in terms of cost and emissions.

The problem is non-linear (see 5.3 above) and multi-dimensional in both its design

vector and its objective functions.

The DG units are defined as (i) micro-gas turbine (ii) Wind turbine and (iii)

Solar photovoltaic, where a unit of value 0 means the generator is not present at

the location. The scenario allows for up to 5 units of each type to be located at

any of the nodes defined as variable in the network diagram (Figure 5.4), which

means any node except for the nodes 1, 2, 13, 22, 23 and 27, as these are the

large fixed central OCGT power stations. The simulation within Plexos has an

horizon of one calendar year, represented as 365 steps of 1 day increments with a

resolution to 30 minutes, from 01-Jan-2010.

Each transmission line between any two buses has a maximum flow capacity

stated in megawatts (MW). The transmission line capacities are amended in the

Plexos Xml model file which are sent to Plexos for each solution run. The labels

shown as Vn at the given nodes indicate the design variable number that defines

the number of units of the given generator types at that bus, and as can be seen,

each of the 3 variable types can be present potentially.

Each DG type can be present with the number of units of the type in the

interval [0,5]. As there are 24 nodes at which variable DG units can be located,

and 3 types of generator, the design vector of each candidate solution therefore

Chapter 5 - Multi-objective optimisation of an electrical power network 191

consists of 72 variables: v = (x1, x2, . . . , xn), n = 72. This configuration allows a

candidate solution to have from 0 DG units up to a theoretical 360 (being 5 units

of each of 3 DG types at the 24 nodes). Table 5.1 below shows the allocation of

DG units by type to nodes, cross-referenced to its variable number (as shown in

Figure 5.4), with the assumption that a given generator feeds in to one associated

node only.

The candidate solutions chosen by the MOOEA, using the results from Plexos,

are thus selected due to the effect their chosen DG units have on the electrical net-

work due to their operating characteristics and where they feed into the network,

defined in the topology as shown in Figure 5.4.

The MOOEA allows each new experiment to override its default initializer,

which creates an initial population of candidate solutions by generating random1

variable values, u, within their defined ranges, in this case 0 ≤ u ≤ 5. The initial-

izer used instead generates solutions that meet the hard constraint, by selecting

for each solution a random value for the sum of the vector variables, between 0

and the chosen constraint (see below), and using this as the limit for that can-

didate solution. Each variable of that solution is then selected randomly, and is

allocated a random value within its range, until the solution’s own limit is reached.

In this way, solutions in the initial population will vary between 0 DG units and

the chosen constraint.

In subsequent generations, solutions may evolve that break the hard constraint,

due to mutation and recombination operators acting on ‘fit’ parent solutions se-

lected for breeding, and in this case the solutions will be retained in the population

but repaired. Repairing in this context means that a failing solution’s vector of

DG variables is changed until it falls within the constraint, by randomly choosing

one of the variables, decrementing its DG unit count (when it has u ≥ 1), and

then repeating the process until the total falls within the constraint.

1In this thesis, Random should always be taken to mean pseudo-random as generated by al-
gorithm, unless specified explicitly otherwise, likewise a uniform distribution should be assumed.

Chapter 5 - Multi-objective optimisation of an electrical power network 192

There is a fixed population of size 30, allowing 0 duplicate solutions in any sin-

gle generation, with initial crossover and mutation probabilities of 0.9 and 0.01389

(1/(72)) respectively. Each evaluation of a solution is an independent run of

Plexos, which performs its own optimal power flow calculations, thus providing

the data which the MOOEA uses as its objective function values. The MOOEA

is allowed to run for 2,000 function evaluations (67 generations), with each gen-

eration taking approximately 3.5 to 5 hours elapsed time (on a desktop PC with

quad-core and hyper-threading). The population size is a compromise, chosen for

a minimum size which would likely be useful, based on Grefenstette (1986) refer-

enced in Mitchell (1999), and which would not have an over long elapsed time per

generation. Even so, each run takes between 1.5 and 2 weeks to perform.

There are three independent optimisations (and one related) defined in the

following sections, which share the above overall characteristics, but differ in the

first two cases by the definition of their first objective function (of four), and in

the last case by the components of its decision vector. There is a separate results

section, the sub-sections of which give the outcomes for each of the problems.

Chapter 5 - Multi-objective optimisation of an electrical power network 193

Table 5.1: The nodes (buses), their generator types, and associated variable
number in which the quantity of assigned DG units of that generator type is

given.

Gas Wind Solar PV
Node DG Var Node DG Var Node DG Var

n03 g02 V01 n03 g09 V02 n03 g10 V03
n04 g02 V04 n04 g09 V05 n04 g10 V06
n05 g02 V07 n05 g09 V08 n05 g10 V09
n06 g02 V10 n06 g09 V11 n06 g10 V12
n07 g02 V13 n07 g09 V14 n07 g10 V15
n08 g02 V16 n08 g09 V17 n08 g10 V18
n09 g02 V19 n09 g09 V20 n09 g10 V21
n10 g02 V22 n10 g09 V23 n10 g10 V24
n11 g02 V25 n11 g09 V26 n11 g10 V27
n12 g02 V28 n12 g09 V29 n12 g10 V30
n14 g02 V31 n14 g09 V32 n14 g10 V33
n15 g02 V34 n15 g09 V35 n15 g10 V36
n16 g02 V37 n16 g09 V38 n16 g10 V39
n17 g02 V40 n17 g09 V41 n17 g10 V42
n18 g02 V43 n18 g09 V44 n18 g10 V45
n19 g02 V46 n19 g09 V47 n19 g10 V48
n20 g02 V49 n20 g09 V50 n20 g10 V51
n21 g02 V52 n21 g09 V53 n21 g10 V54
n24 g02 V55 n24 g09 V56 n24 g10 V57
n25 g02 V58 n25 g09 V59 n25 g10 V60
n26 g02 V61 n26 g09 V62 n26 g10 V63
n28 g02 V64 n28 g09 V65 n28 g10 V66
n29 g02 V67 n29 g09 V68 n29 g10 V69
n30 g02 V70 n30 g09 V71 n30 g10 V72

5.4.1 Optimising for DG allocation by generation cost

The title of this optimisation, as given by the heading of this section, is derived

from the definition of objective function 1 as given in Equation 5.1.

There are 4 objective functions defined, all of which are to be minimised si-

multaneously and the values for all of which come from Plexos, these being:

minF (genCost) = genCost (5.1)

minF (useDump) = |useDump| (5.2)

Chapter 5 - Multi-objective optimisation of an electrical power network 194

Figure 5.5: The integration of Plexos with the self-adaptive multi-objective
optimisation algorithm. The Plexos interface, a .Net program, is called with

the parameters in the MOOEA variables vector.

minF (spotPrice) = spotPrice (5.3)

minF (CO2) = CO2 (5.4)

in which the values represent respectively:

1. The generation cost (in currency, e.g. $)

2. The USE/DUMP energy (MWh)

3. Spot Price ($/MWh)

4. CO2 emissions (Kg)

Considering the values above, useDump, depending whether it is negative or

positive, is either the un-served amount of energy due to under-production or

the dump energy due to over-production, relative to demand. The spot price is

the mean price achieved in the simulated market auctions over the course of the

simulation in Plexos.

A hard constraint on the total number of DG units deployed, u, is applied in

Equation 5.5, in order to investigate how the system transforms itself. Without

Chapter 5 - Multi-objective optimisation of an electrical power network 195

such a constraint, which can be viewed as a limit to financial resources available

as investment into DG, we would perhaps expect the system to maximize DG de-

ployment since they provide a known benefit and where cost is the only downside,

and this would hide the effects that placement may have when otherwise.

72∑
i=1

ui ≤ 70 (5.5)

The hard constraint is changed in other runs (equations 5.6 and 5.7), to see

what effect a different number of allowed DG units may have:

72∑
i=1

ui ≤ 200 (5.6)

72∑
i=1

ui ≤ 35 (5.7)

There is a fixed population of size 30, allowing 0 duplicate solutions in any sin-

gle generation, with initial crossover and mutation probabilities of 0.9 and 0.01389

(1/72) respectively.

5.4.2 Optimising for DG allocation by sum of DG units

The title of this optimisation, as given by the heading of this section, is derived

from the definition of objective function one as given in Equation 5.8. There are

two optimisations given in this section, the first and a follow-up as given below.

5.4.2.1 Part one: Original line capacity

Here, the original objective of equation 5.1 (genCost) is replaced by the new defini-

tion of equation 5.8, in which the summed total of the DG units assigned (sumU)

is to be minimised. The remaining objectives are the same as previously, and

Chapter 5 - Multi-objective optimisation of an electrical power network 196

the integration with Plexos is extended by the amendment of the model which is

defined in the Xml file, as in Figure 5.6.

minF (sumU) =
72∑
i=1

ui (5.8)

minF (useDump) = |useDump| (5.9)

minF (spotPrice) = spotPrice (5.10)

minF (CO2) = CO2 (5.11)

Figure 5.6: The integration of Plexos with the self-adaptive multi-objective
optimisation algorithm. Here the interface is extended through changes to the

line capacities defined in the model in the Xml file.

The optimisation is performed with the same settings given in the overview of

section 5.4.

A new hard constraint on the total number of DG units deployed, u, is applied

in Equation 5.12. It is the number of DG units (and their placement) that is

particularly of interest in these studies, and having the objective function for the

total DG units is important as it ensures diversity in sumU, enabling plots such as

Figure 5.18 to be possible. The intention of this rather low constraint for this case

is to encourage the optimisation to find the best locations for the extra DG units,

Chapter 5 - Multi-objective optimisation of an electrical power network 197

rather than simply adding more units overall, to better illustrate the potential of

the method.

72∑
i=1

ui ≤ 35 (5.12)

5.4.2.2 Part two: Change line capacity

In a follow-up optimisation, the problem is further modified from the genCost one

above, to test the effect of the change of a line’s maximum flow capacity on the

outcome of a given solutions DG unit assignment.

The line capacity, or ‘Max Flow’, sets the maximum allowable flow on the

line, which is also known as the thermal limit. Power in a line may flow in either

direction (from or to a node’s bus) with a negative value indicating an opposite

flow to the direction specified in the model, since a line has to be designated as

an import or export line.

The maximum flow capacity of just one line is altered in the model (the Xml

file) and the results compared with a previous run in which all aspects are the

same, including the seed for the pseudo-random number generator, except for the

line capacity. In this case, line 11 is chosen, being that between the most highly

connected bus, node 6, and node 9 which has less than half the connections, and

for which the line capacity is a lowish 65 MW. The line’s capacity is doubled to 130

MW, a value used by other transmission lines in the network, in the new network

definition. This scenario is chosen with the intention that it is most likely to show

a difference if there is one to be found.

Again, the optimisation is performed with the same settings given in the

overview of section 5.4.

Chapter 5 - Multi-objective optimisation of an electrical power network 198

5.4.3 Optimising for DG allocation by sum of DG units

and line capacities

The title of this optimisation, as given by the heading of this section, is derived

from the addition of decision vector components to contain line capacities.

Here, the optimisation problem of section 5.4.2 (Optimising for DG allocation

by sum of DG units) is modified to include all lines’ maximum flow capacities as

part of the design solution, hence the network and not just the allocation of DG

units becomes part of the solution to the problem. The objective functions remain

the same as before.

The MOOEA is configured as before, to have a mixed chromosome consisting

of a vector of 72 integers, for the DG genes, one per bus, with the self-adaptive

control parameters encoded as real numbers. In addition, another 41 new genes

are included, for each to contain the line maximum flow capacity (LC), in MW,

of a given transmission line, and all 41 line capacities are thus enabled to evolve

along with the DG unit assignments. The decision vector is thus:

v = ((x1, x2, · · · , x72), (y1, y2, · · · , y41))

In this case, the 41 line capacity (LC) genes were initialised following a Gaus-

sian distribution, using the mean and standard deviation of line capacities in the

original model definition, with limits applied for a minimum of 4 MW and a max-

imum of 300 MW. This is to enable the line capacities to be defined as a realistic

set, yet be arrived at stochastically in order to avoid bias in the initial population.

An additional hard constraint was applied on the total flow capacity, being equal

to the original plus 20%. A Gaussian distribution has in theory no minimum or

maximum value, so the above values are used to cap the distribution at either

end. A value of 4 MW was chosen for the minimum as it is both small but still

usable, given that the DG units are rated at 1 MW each, however the permitted

range of the design parameter (allele) is from 0, so a solution may still be able to

Chapter 5 - Multi-objective optimisation of an electrical power network 199

evolve which has effectively no line (with a capacity of 0 MW) between a given

pair of nodes. An upper value of 300 MW is chosen as it represents a power load

between the ‘typical’ and ‘maximum’ range of a 275 kV line in the UK National

Grid, which is a second level transmission line (400 kV being the first level), and

hence a realistic and reasonable value (National Grid, 2014).

The optimisation is performed with the same settings given in the overview

of section 5.4, except for the mutation rate which is changed to 0.008850 (=

1/(72 + 41)), and with a hard constraint of HC = 35 for the maximum number of

DG units allowed.

Table C.1 of Appendix C gives the limits of the lines defined in the system, as

also depicted in Figure 5.4, where the LineLimits are the thermal limits and the

LowLimits are a level that the line can be de-rated to, set at 25% less than the

thermal limit.

Table C.2 of Appendix C gives the total flow capacity at a given node, which

is simply the sum of the ‘Max Flows’ of all lines connected to it, and ranks the

nodes in descending capacity order. The table also shows the variable number of

the DG unit associated with the given node.

Table C.3 ranks nodes by the number of lines connected, and it is interesting

to note that there is little overlap between this ranking, and the ranking of nodes

by capacity, however the rank 1 node in both ranking schemes is the same, Node

06 which has the highest capacity and the largest number of connections. It is

this reason that makes its DG unit variables, V10, V11 and V12 so influential in

the performance of solutions found. Node 10 on the other hand, is ranked 2nd by

number of connections, but only 6th by capacity. Clearly both factors will play a

role in deciding how useful a given unit of DG is at a given location, since a greater

number of lines will mean a higher probability of output being accepted theoret-

ically, but the available capacity will naturally limit the actual flow, depending

upon the prevailing condition of the system at a given time. Table C.3 gives the

nodes by connection in descending rank order along with the associated DG unit

Chapter 5 - Multi-objective optimisation of an electrical power network 200

variables, for easier comparison with the capacity ranking and for consideration

with ‖-coords plots in the results section.

5.5 Results

Result plots are given as 2D scatter plots and higher dimensional plots using the

parallel coordinates (‖-coords) technique (Inselberg, 2009) as previously described

in the preceding chapter for Figure 4.20.

The ‖-coords technique enables multivariate data to be plotted uniquely and

without loss of information, together in one plot. The results shown in the ‖-coords

plots and related scatter plots contain all the non-dominated solutions of each

generation throughout the history of the run, unless explicitly stated otherwise.

5.5.1 Optimising for DG allocation by generation cost

This section gives the results for the optimisation defined in section 5.4.1.

The ‖-coords plots show the whole design space of each solution, 72 variables,

which are plotted alongside their objective function results, and also with the sum

of the variables, the total number of DG units (sumU), as in Equation 5.5.

The scatter plots of Figure 5.7 show the sumU plotted against the four OFs

as described in Equation 5.1 through Equation 5.4, from which it can be seen that

there is broadly a trade-off between the number of DG units deployed and the

quality of each of the other OF values. An obvious optimal trade-off front has not

yet developed in the course of the optimisation, but the trend is clear, and that is

that increasing the number of DG units deployed improves (decreases) the other

OF values. The ‖-coords plot of Figure 5.8 emphasises this point, in that there is

a narrow region between sumU and genCost in which the lines from sumU cross,

itself an indication of a negative correlation, while the lines from genCost to the

Chapter 5 - Multi-objective optimisation of an electrical power network 201

Figure 5.7: genCost/HC = 70 result. Scatter plots showing sumU on x-axis,
OF values on y-axis. (a) Top left: genCost (b) Top right: useDump (c) Bottom

left: spotPrice (d) Bottom right: CO2.

other OFs to its right are mostly positively correlated. It can be seen however

that not all of the lower genCost points lead to the lower useDump points.

In the ‖-coords plot of Figure 5.8 that complements that of 5.7, there is also

an indication that the system may have a tipping point (bifurcation) dependent

upon the value of sumU at around 34 units, as the selected region shown by the

two arrows has an upper boundary of 34, and the OFs relating to all these lines

seem to be in the top half of the worst performers.

The ‖-coords plots of Figures 5.13 and 5.14 show the best performing solution

found for the genCost objective. The latter figure makes it clear that it is the

wind turbine DG units (indicated by W) that are the primary contributor to

the performance of the best solution for genCost, with variable V32 having the

Chapter 5 - Multi-objective optimisation of an electrical power network 202

Figure 5.8: genCost/HC = 70 result. A ‖-coords plot showing sumU and
OFs only, for clarity; a selected region of higher sumU which corresponds to
lower OF values. The x-axis shows sumU followed by OFs in order: genCost,

useDump, spotPrice, CO2, and the y-axis their values.

most units allocated, and V11 being the most connected in the network (feeding

into node n06). The best performing solution also has the maximum permitted

(HC = 70) number of DG units allocated.

The scatter plots of Figure 5.9 show results with HC = 200. The results are

similar to those for HC = 70 and as can be seen there is an obvious relationship:

the more DG units allocated, the better the OF performance, for all four OFs. The

best performing solutions are shown as selected in Figure 5.10 by the upper and

lower bounding arrows. The minimum number of DG units allocated has increased

well beyond the apparent tipping point seen previously, as HC has been relaxed to

200, so the OF results do not appear to be obviously split into different regions as

before. The number of generations has not been sufficient for the optimisation to

Chapter 5 - Multi-objective optimisation of an electrical power network 203

find the maximum number of DG units allowed by HC, but total DG has grown

by around 50% from the optimisation used with the previous HC constraint.

Figure 5.9: genCost/HC = 200 result, Scatter plots showing sumU on x-axis,
OF values on y-axis. (a) Top left: useDump (b) Top right: genCost (c) Bottom

left: spotPrice (d) Bottom right: CO2.

The scatter plots of Figure 5.11 show results with HC = 35, and Figure

5.12 shows the same data plotted with ‖-coords and showing the selection of

certain solutions. As can be seen, the best performing solutions are those with

the maximum permitted number of DG units assigned, which is to say where

sumU = 35. The magenta solutions are those selected for performing well on

generation cost, while the green set are selected for performing well on useDump.

In Figure 5.12 is can be noted that a low generation cost tends to be associated

with a low CO2 value, while a low useDump value tends to be associated with

a low spotPrice value. This suggests, as might be expected, that the DG units

are being effective for both cost and CO2, but when they cannot be fully utilised

Chapter 5 - Multi-objective optimisation of an electrical power network 204

Figure 5.10: genCost/HC = 200 result. A ‖-coords plot showing sumU and
OFs only, for clarity; a selected region of higher sumU which corresponds to
lower OF values. The x-axis shows sumU followed by OFs in order: genCost,

useDump, spotPrice, CO2, and the y-axis their values.

(due to weather conditions for example), other generation cuts in, which is more

efficient (it can better match demand and is more easily planned for) but more

costly. However, there are highlighted solutions which do well on all OFs with

only a slight increase in useDump, illustrating that good and practical trade-offs

are available.

The scatter plots still show, as expected, the direct relationship between in-

creasing number of DG units and the decreasing (improving) value of the OF

values. However, the scatter plots also show a range of outcomes even when

sumU = 35, since it is also the combination of types of DG unit comprising the

total of 35 which is of importance. Moreover, it is the location of the DG unit

type which is also of importance, in that, say, 3 units of micro gas turbine at

node N03 may well have a different impact than the same combination at node

N28. In particular, the micro wind and solar PV units produce a variable output

Chapter 5 - Multi-objective optimisation of an electrical power network 205

depending upon the weather, so the precise details of the combination of these

units has a corresponding effect.

The same data set, for genCost and HC = 35, is shown in the ‖-coords plot of

Figure 5.15, in which only the variables non-zero for the best performing solutions

are shown, with the same selection as Figure 5.11. The solutions having lowest cost

of generation (shown in magenta lines) are those with the greatest number of micro

wind turbines, although it does also depend upon which node the wind turbines

feed into, as the number of transmission lines connected and their capacities also

partly determine the outcome.

Figure 5.11: genCost/HC = 35 result. Scatter plots showing sumU on x-axis,
OF values on y-axis. (a) Top left: genCost (b) Top right: useDump (c) Bottom
left: spotPrice (d) Bottom right: CO2. Best-performing solutions selected for

genCost (magenta) and best for useDump (green).

Chapter 5 - Multi-objective optimisation of an electrical power network 206

Figure 5.12: genCost/HC = 35 result. A ‖-coords plot showing sumU and
OFs only, for clarity. The x-axis shows sumU followed by OFs in order: gen-
Cost, useDump, spotPrice, CO2, and the y-axis their values. Best-performing

solutions selected for genCost (magenta) and best for useDump (green).

C
h
ap

ter
5

-
M

u
lti-objective

optim
isation

of
an

electrical
pow

er
n

etw
ork

207

Figure 5.13: genCost/HC = 70 result. ‖-coords plot of the entire data set, showing the 72 variables, the derived sumU followed by
the 4 objective functions. The best performing point of genCost is shown selected by the two arrows at the far right bottom, and its

associated variables shown in blue when in colour. See Figure 5.14 for a clearer picture.

C
h
ap

ter
5

-
M

u
lti-objective

optim
isation

of
an

electrical
pow

er
n

etw
ork

208

Figure 5.14: genCost/HC = 70 result. ‖-coords plot of the entire data set, showing the 72 variables, the derived sumU followed by
the 4 objective functions. The best performing point of genCost and its associated variables are shown, with the rest filtered out. The

(W) annotation against a variable indicates that it is a Wind DG unit.

C
h
ap

ter
5

-
M

u
lti-objective

optim
isation

of
an

electrical
pow

er
n

etw
ork

209

Figure 5.15: genCost/HC = 35 result. ‖-coords plot of the genCost data set, showing only those variables non-zero for the selected
best performing solutions, as selected in Figure 5.11.

Chapter 5 - Multi-objective optimisation of an electrical power network 210

5.5.2 Optimising for DG allocation by sum of DG units

This section gives the results for the optimisation defined in section 5.4.2.

Here, the results set of the first optimisation of 5.4.2, with the original line

capacity, is termed R003, and the second set with the higher line capacity is termed

R008.

The plot in Figure 5.16 shows the entire 72-variable set and the objective

functions for the R008 result set with the higher line 11 capacity. This has some

variables as always 0, hence these can be said to be of no relevance to further

optimisation runs, allowing them to be possibly removed in future, in order to

improve optimisation performance.

The results of the objective function minimisations appear in Table 5.2, al-

though sumU (the total number of DG units used) is not listed as this is always

between 0 and 35, given the hard constraint. It can be seen that just changing

the one line capacity from 65 MW to 130 MW improves each OF result.

Table 5.2: New and previous best objective function results, from any solution,
optimising with OF1 = sumU

Run useDump spotPrice CO2

R003 300.73 21.67 1,348,057
R008 260.00 21.22 1,346,496

The plot in Figure 5.16 shows that the decision variable V11 (see Figure 5.4

& Table 5.1), which contains the number of units of Wind DG for node 6, when

having the value 5, is on the many highly performing solutions, including the best

solution of all. The R003 results shown in Figure 5.17 in a similar fashion to Figure

5.16, seem to indicate that the reasons for the improved performance in R008, is

that the number of DG units for node 9 are no longer so important as variables

v19 (node 9, Gas) and v20 (node 9, Wind) are no longer on the optimum path in

R008, while for R003 both are at maximum (5). R008 also has fewer variables at

0, which seems to suggest the network load may be better balanced too.

Chapter 5 - Multi-objective optimisation of an electrical power network 211

The scatter plot of Figure 5.18 shows the variation of the useDump values

against the total number of DG units (sumU), with the most converged points

manually selected, and in Figure 5.19, the subset of those selected points in which

V11 has 5 DG units, are highlighted. Manually selecting points in this way is

not easy due to the shape of the front and the way the tool works, and it can be

seen that a few dominated points have been included when it would be preferable

to exclude them, nevertheless, the high-performing cluster of Figure 5.19 suggests

that there is a tipping point caused by the number of DG units assigned to V11,

which is the variable for micro wind units of node 6, the highest ranked node in

both capacity and connection rankings. When V 11 = 5, the maximum allowed

in this scheme, the solutions appear in the best performing cluster, but when

V 11 ≤ 4, the clusters are not longer apparent.

C
h
ap

ter
5

-
M

u
lti-objective

optim
isation

of
an

electrical
pow

er
n

etw
ork

212

Figure 5.16: sumU,HC = 35 result. ‖-coords plot for R008 showing all 72 variables and 4 OFs, with selection of results in which V11
has 5 units, and in which V10, V38, V53 and V65 are always 0.

C
h
ap

ter
5

-
M

u
lti-objective

optim
isation

of
an

electrical
pow

er
n

etw
ork

213

Figure 5.17: sumU,HC = 35 result. ‖-coords plot for R003 showing all 72 variables and 4 OFs, with selection of results in which V11
has 5 units.

Chapter 5 - Multi-objective optimisation of an electrical power network 214

Figure 5.18: sumU,HC = 35. A scatter plot for R008, showing sumU on
x-axis against useDump on y-axis, with the most converged points selected by

hand using the polygon tool of ParallAX.

C
h
ap

ter
5

-
M

u
lti-objective

optim
isation

of
an

electrical
pow

er
n

etw
ork

215

Figure 5.19: sumU,HC = 35 result. ‖-coords plot for R008; the set of points selected in Figure 5.18 are isolated and shown here, with
those that have V 11 = 5 selected (in magenta), resulting in two apparent clusters, the lower set being the best performing.

Chapter 5 - Multi-objective optimisation of an electrical power network 216

5.5.3 Optimising for DG allocation and line capacities

This section gives the results for the optimisation defined in section 5.4.3.

These results are for the case in which the line capacity of each line in the

system is enabled to evolve along with the DG unit assignment for each node in

the system. The design vector now comprises 72 DG genes and 41 LC genes giving

113 genes in total, and the solution includes the four OF values resultant.

In the ‖-coords plots, the OFs are given in the following order: sumU, use-

Dump, spotPrice, CO2, as the last four axes on the right.

Figure 5.20 is a ‖-coords plot that shows all non-dominated solutions of every

generation in the history of an optimisation run, intended as a first view of the

global picture. The solutions having V 11 = 5 have been selected (in magenta),

remembering that V11 is the variable for micro wind turbines on node 6, the

highest ranking node for both connections and capacity. It can be seen that

some of these solutions are among the best performers for the useDump OF, and

that many other DG variables for the same solutions are 0. Some DG values are

always 0: those of V06, V31, V42. It is also apparent that most LC values are

in approximately the bottom quartile of the plot with only a few peaks above the

mid-point, and that they all have a spread of values.

In order to clarify the global view, Figure 5.21 is a plot of just the last gener-

ation of the run, in which all DG variables valued 0 are hidden, and in which the

best performing solutions of each OF have been selected and then isolated, where

magenta is used for useDump, green for spotPrice and blue for CO2. It is now

apparent that most DG variables are 0, including those of node 6 and even the

second ranking nodes, 10 or 4, of the connection or capacity rankings, only have

one DG variable each and those are below the maximum of 5. This suggests that

the DG units play a less important role than with the datum settings of the line

capacities. Line 37 has converged to one value L37 = 53, which may be premature,

but is nevertheless in the best performing solutions.

Chapter 5 - Multi-objective optimisation of an electrical power network 217

To zoom into detail, Figure 5.22 shows the solutions of the final generation,

with LC variables LC01 to LC41, OFs (sumU, useDump, spotPrice), & sumCap

which is the derived total capacity of all lines of the solution. The backgrounds

of the cells are coloured to give a type of heat map to show the LC deviance from

the datum, in which white shows no difference, green < datum, red > datum and

black = 0, while the OFs are also coloured white. The datum design is shown on

the second row in light green. Figure 5.23, for clarity, shows just the selected best

performing solutions subset, derived from those in Figure 5.22.

Figure 5.24 shows the same best performing solutions, but with their DG

genes, with also previous results for comparison, with the results for this run

termed R006, and previous ones as described in preceding sections, being R003

and R008. Only the DG genes which are non-zero for ≥ 1 solutions in this set are

shown.

An immediate impression from Figure 5.22 is that the reds tend to be on the

right and the greens to the left, which is because in the datum design, the lowest

LCs are on the right and the highest on the left, indicating that the optimisation

has tended to increase the lowest LCs (16 to 32) while decreasing the highest LCs

(65 to 130), with an apparent tipping point at around 32 MW, as it seems less com-

mon that these increase, while it is more common that the 16s increase. Thus the

optimisation seems to be eliminating spare capacity while adding capacity where

it would be beneficial. While a real national grid system would need contingency

capacity, it is not the purpose of the optimisation to model this.

However, this is not always the case, as some LCs of 300 MW have been added

and not decreased. This is probably due to a combination of (i) the Gaussian

distribution being capped at 300 and these extreme values arising naturally out

of the stochastic assignment process; (ii) the optimisation is incomplete - it has

run for 2,010 function evaluations (67 generations) but needs more generations to

converge as far as it is able, to better eliminate inefficiencies.

Considering the CO2 result of R006, it can be seen from the detail figures (5.23

& 5.24), that there is now a much better OF value, by an order of magnitude.

Chapter 5 - Multi-objective optimisation of an electrical power network 218

However, the corresponding spotPrice is an order of magnitude worse than that

of the other result sets, thus clearly a decision-maker has a trade-off to consider,

which may be helped by factoring in carbon taxes and costs of generation.

There are in fact two best solutions for CO2, which have the same results

for all OFs and the same DG unit assignments, the only difference between them

being the LC value of line 22, which is 44 MW for one and 300 MW for the other,

while the original datum value for the line was 16 MW. This means that 44 MW

for line 22 is the maximum value needed for this combination of variables of the

design vector.

It should be noted that the solution of best CO2 with the lowest sumCap

value, 1760 MW, is less than the datum sumCap of 1954 MW, while it also has

fewer than 35 DG units. Thus the system has optimised to, for CO2, a lower than

original total transmission capacity.

Also of interest is the 3rd best CO2 solution, which while having a slightly

higher value of CO2, has a lower value for useDump and an even lower total ca-

pacity, the only difference being the LC6 = 0, between nodes 6 and 2, while the

two best solutions have LC6 = 17 MW. This result can only be due to the lack

of power available from LC6 being compensated for by another OCGT generator,

which is better able to match the demand, but causing the system to be less effi-

cient overall, either due to unit commitment scheduling problems or transmission

losses. It would be interesting to run a series of single runs of Plexos with these

DG and LC settings, varying just LC6 to see if an optimum value lies above or

below LC6 = 17 and by how much2.

Considering the spotPrice result of R006 and figures (5.23 & 5.24), this result

is lowest of all, though beating the next nearest, of R008, by just 0.01, while having

a comparable CO2 value (about 2.6% more than the best R008 result), and having

a useDump value nearly half of that of R003 and R008 results.

2See subsequent section 5.5.3.1

Chapter 5 - Multi-objective optimisation of an electrical power network 219

Although the best solution of R006 for spotPrice has the full 35 DG units

assigned, they are either not present or at low units in all variables of each node

in the 4 highest ranking nodes of either ranking scheme, which suggests that the

precise DG assignment is of less importance than the LC values.

The sumCap of this solution is 30% greater than the datum, having a number

of lines (1,8, 12) at 300 MW. Line 1 is between nodes 1 and 2, both of which have

OCGT generators, and line 12 is between nodes 6 and 10. Node 6 is the highest

ranked node in both rankings, and node 10 is the below node 6 in the connection

rankings. It is possible that the 300 MW capacities have space capacity, but it

does suggest that much higher values than the datum are beneficial. More single

runs of Plexos with these settings, varying one of those lines at a time, would

establish the best values. This solution may be a reasonable compromise, given

moderate CO2, good useDump and best spotPrice.

Considering the useDump result of R006 and figures (5.23 & 5.24), the top

3 solutions found have useDump close to zero, with the best at only 0.03 which

is very efficient indeed, and a CO2 value which is less than the next best solution

(from R008). However, the spotPrice at 212.6 is then an order of magnitude

greater than the best spotPrice of 21.21.

This R006 solution has a sumCap greater than the datum. but only by 0.5%,

and has 34 out of a possible 35 DG units assigned, and again these are not concen-

trated at the highest ranking nodes of either scheme. Although sumCap is more

than the datum, only 18 out of 41 LCs are greater, with one LC being the same

and the rest lower than the datum. With only one, LC8 = 300, with possibly

much spare capacity, it seems that this solution may have evolved to have the

line capacities where they are approaching optimal, but this would need to be

confirmed by further runs varying just LC8.

It is instructive to note that the next best useDump solution of R006, having

a value of just 0.8 (which although an order of magnitude more than the best, is

still very good), has both an extra DG unit in total, giving the full complement

of 35, a larger sumCap, and slightly lower spotPrice and CO2 values. The extra

Chapter 5 - Multi-objective optimisation of an electrical power network 220

DG unit total actually comprises two variables which were 0 now being one (V63,

V65), and one which was 1, now being zero (V3). It is not possible from this

data to tell if this difference of 1 MW in total of DG would be sufficient on its

own to account for the difference in spotPrice and CO2, but the line capacities are

sufficiently different to suspect that LC plays a part.

C
h
ap

ter
5

-
M

u
lti-objective

optim
isation

of
an

electrical
pow

er
n

etw
ork

221

Figure 5.20: ‖-coords plot for LC/sumU,HC = 35 result. Showing the 72 DG unit values and the 41 line capacity values, along with
the 4 OF results, in which the solutions having V 11 = 5 have been selected (in magenta). The last four columns give the OFs: sumU,

useDump, spotPrice.

C
h
ap

ter
5

-
M

u
lti-objective

optim
isation

of
an

electrical
pow

er
n

etw
ork

222

Figure 5.21: ‖-coords plot for LC,sumU,HC = 35 result. DG variables valued 0 are hidden, and the best performing solutions of each
OF have been selected and isolated, where magenta is used for useDump, green for spotPrice and blue for CO2.

C
h
ap

ter
5

-
M

u
lti-objective

optim
isation

of
an

electrical
pow

er
n

etw
ork

223

Figure 5.22: LC,sumU,HC = 35, final generation, showing LC01 to LC41, OFs (sumU, useDump, spotPrice), & sumCap (the total
capacity for all lines). The top row gives the Line number and other column headings, the second row gives the datum value for each
Line capacity, and subsequent rows give the solutions’ LCs. Cells are coloured thus: white for LC = datum; green for LC < datum;

red for LC > datum; black for LC = 0. OFs are white also.

C
h
ap

ter
5

-
M

u
lti-objective

optim
isation

of
an

electrical
pow

er
n

etw
ork

224

Figure 5.23: LC,sumU,HC = 35, best performing solutions of final generation, showing LC01 to LC41, OFs (sumU, useDump,
spotPrice), & sumCap (the total capacity for all lines). The top row gives the Line number and other column headings, the second
row gives the datum value for each Line capacity, and subsequent rows give the solutions’ LCs. Cells are coloured thus: white for

LC = datum; green for LC < datum; red for LC > datum; black for LC = 0. OFs are white also.

Figure 5.24: LC,sumU,HC = 35, best performing solutions, showing non-zero DG genes only, headings giving the Variable number,
together with previous results for comparison. Best OFs in a result set are in light green, the sumCap is as per Figure 5.21, and the

colour in the DG genes is merely to show similar values by Variable column, to make it easier to differentiate.

Chapter 5 - Multi-objective optimisation of an electrical power network 225

5.5.3.1 Supplementary Results

This section gives some results obtained in taking up one or two of the suggestions

above, to do some runs of GA/Plexos having just one solution in the population,

in order to elicit further information about the behaviour of the system. By using

the ability of Ganesh to resume from a previous run’s log file, Ganesh can resume

from an edited log file having just one solution which has its variable vector set as

required, thus running an individual test case. The runs performed here relate to

the best solutions of the last generation as given in Figure 5.23.

The following results relate in particular to the three solutions given for CO2

(the first 3 solutions of Figure 5.23), all of which have the same DG values and

mostly the same LC values, with the exception of line 22 in the 2nd solution, and

line 6 in the third solution, as described in the previous section.

Here, the values for the DG and LC variables of the best solution for CO2 are

used, with line 22 set to 44 MW, and allowing line 6 to vary from a baseline of

17 MW as seen in the best solution, remembering that line 6 is between node 6

(the highest ranked node by capacity and connection) and node 2 (ranked 2 and

4, respectively). The results are shown in Figure 5.25.

Figure 5.25: Similar to Figure 5.23, and using the DG and LC settings of the
first CO2 solution therefrom, varying line 6 and showing the OF results. R006

are the original results, for comparison.

The results in Figure 5.25 show that increasing line 6 from 17 MW to 20 MW

has no effect, while lowering it to 8 MW slightly worsens (increases) the OF result

for CO2 but very slightly improves the spotPrice, and leave useDump unaffected.

Decreasing line 6 further to 1 MW worsens both CO2 and spotPrice by a larger

Chapter 5 - Multi-objective optimisation of an electrical power network 226

margin, but useDump is improved. This shows that the optimum value of line 6

for this design vector, for CO2, lies in the range 8 MW < optimum < 17 MW,

and further single case runs are needed to explore this range. When line 6 is at

8 MW, it suggests that an OCGT central generator (presumably other than that

at node 2) is supplying a little more power (since the DG units are unchanged),

thus increasing CO2. Further runs show that line 6 at 10 MW is the best capacity

for CO2 with these settings, however it is also seen that a trade-off for useDump

exists for line 6 at 1 MW.

It is interesting to note that when line 6 allows 0 MW, the CO2 result is

better than that when line 6 allows 1 MW, although spotPrice is worse and use-

Dump too is slightly worse but still better than the other results. This shows the

complexity of the response of the system, and indicates that to understand the

system response, the power output (and start up time and ramp-up duration) of

each OCGT generator and the power actually transmitted over each line needs

to be known. The scheduling of the OCGT generators may cause thresholds of

efficiency, considering the useDump figures of these results.

Another set of single case runs were performed, this time keeping line 6 fixed

at 17 MW and varying line 22, with the DG units and other LC variables being

the same as the previous cases, and the results are shown in Figure 5.26.

Figure 5.26: Similar to Figure 5.23, and using the DG and LC settings of the
first CO2 solution therefrom, varying line 22 and showing the OF results. R006

are the original results, for comparison.

The results in Figure 5.26 show that increasing line 22 from 44 MW to 66

MW has no effect, and that decreasing it to 22 MW has no effect either. This

indicates that for these settings, line 22 does not need a capacity of more than 22

MW. Decreasing it further to 8 MW slightly worsened the CO2 result and very

Chapter 5 - Multi-objective optimisation of an electrical power network 227

slightly improved the spotPrice. Decreasing it yet further to 4 MW worsened all

OF results. These results are inconclusive; it may be that a value between 22 MW

and 8 MW may be better for CO2, but not necessarily, as it may be that the best

CO2 result for these settings has been reached. It does show that below 8 MW the

value is too low. Further runs are therefore necessary to explore between 9 and 21

MW, starting at 15 MW and from those results see whether to explore up or down

from that value, halving the relative difference each time. Of course, using further

results from Figure 5.25, setting line 6 to 10 MW and re-running these cases may

show different results anyway.

5.6 Comparison with random search

Further work was carried out to compare the performance of Ganesh and a random

search algorithm on problems which have some of the characteristics of the optimal

power flow problems. Due to the non-availability of a Plexos version licence , it

was not possible to run direct comparisons on the optimisations of this chapter.

Section 3.4 provides the detail and results.

5.7 Summary

It has been shown that this method, combining an evolutionary multi-objective

optimisation with an optimal power flow, can indicate not only the number of

DG units, but also their type and their network location, in order to gain high

performance when used with an appropriate OPF tool such as Plexos. Moreover,

using the MOOEA with Plexos and examining the results with a multi-dimensional

visualisation, can be used to assist in the design of network topologies from the

perspective of transmission line maximum power flow capacities, by allowing the

optimisation process to determine the maximum flow capacities along with the

types and locations of DG units.

Chapter 5 - Multi-objective optimisation of an electrical power network 228

It also shows that this method could be used to assist in the determination of

network topology, working within the limitations of geography and socio-economic

factors, from a bus-to-bus connection perspective, through elucidation of at least

best and worst lines for transmission and therefore connectivity. It should be

remembered that these results relate to particular weather patterns for a region

in which this model power grid is imposed, and that the DG unit placement is

realistic in that regard, considering micro-wind turbines and solar pv units.

For this network, considered with the datum line capacities, and the weather

seen in the stated time period, it appears that wind-turbines may be the most

important DG technology to deploy, with the proviso that they work in conjunction

with the other DG types and the inter-dependencies could be further explored.

However, the results obtained when the line capacities are enabled to evolve

along with the DG unit assignment, show that there is much scope to optimise the

grid by deploying transmission lines with the appropriate maximum flow capacity.

There may well be a cut-off point where the power supplied by DG units, by

‘farms’ of wind and solar pv arrays, would be sufficiently high that they would

outweigh the influence of realistic transmission line capacities, but at the levels of

DG used here, LC is very influential.

The key points arising from this work are as follows:

1. The minimisation of the sumU OF, which is the total number of DG units

deployed in the system, causes solutions to evolve a spread of results from

0 up to the maximum imposed by the given hard constraint. DG is shown

to be desirable, since in the runs where HC is 35, 70 or 200, solutions evolve

having sumU at the HC level, despite the minimisation of it.

2. Both the total capacity of a node and its number of connections have been

shown to be important indicators of its contribution to the performance of

the system, as seen by the node rankings in Tables C.2 & C.3.

3. Neither node capacity nor node connection can be said to be more important

than the other, it depends on the network configuration and the conditions

Chapter 5 - Multi-objective optimisation of an electrical power network 229

pertaining to the system at the operating time. In either case, more is better,

but there is a cost trade-off.

4. In the preceding section discussing particular results of R006, some sugges-

tions were made to run specific experiments. These can be performed using

the resume capability of Ganesh, by copying and editing the log file, so that

a resume with one solution is used, with its parameters set as required. Thus

Ganesh can facilitate a single run of Plexos, without needing to manually

configure Plexos via the GUI, which will be useful when needing to run a

series of runs varying one of the 113 parameters at a time.

5. Further experiments could be designed to confirm whether it is the number

of lines connected or total node capacity (as defined in this work as total of

connected lines’ capacities) that is the most influential ranking factor in this

model, or to determine what the tipping points are (if any) in flipping from

one to the other, as could be the case.

6. The Line capacities in the original definition of this model can be improved

by optimisation.

7. It is not the total line capacity, but the targeted line capacity which is the

most important LC factor, from an optimisation viewpoint.

8. Total LC is as important as targeted DG as seen in this work, however it is

expected that this may change with higher DG power input either through

more powerful individual units or arrays of lesser units. Further experiments

could be designed to confirm this.

9. Optimisation by Ganesh or other EA, bearing in mind the above points, can

be expected to produce a reasonable range of trade-off options to assist in

the design of electrical power grids.

10. In further optimisation work, the sumU OF could be replaced by a cost

factor to be minimised, for example when applied to a network of national

proportions, for better optimisation performance and for realistic scenarios.

Chapter 5 - Multi-objective optimisation of an electrical power network 230

The sumU OF showed that there is a trade-off to be made between the

number of DG units and the other OFs, but this could be transformed into

a cost, such as cost of production and deployment of DG units, which could

be added to the cost of power generation (from Plexos), to give an overall

cost function to be minimised. This would give an almost unique OF (unlike

sumU) which would benefit optimisation performance since rank 1 solutions

would appear later in the run, and also be a realistic and more useful metric.

Chapter 6

Conclusions and

recommendations

This chapter considers the work of this thesis as a whole, and sets out the meeting

of research objectives while describing its limitations, offering conclusions, and

positing the possibilities of further work that would be of relevance in following

up the work described in this thesis.

6.1 Contributions

The novel Ganesh algorithm and framework was produced, demonstrated to func-

tion correctly and usefully applied to optimisation of real-world complex engineer-

ing systems, that of the airfoil and an electrical power network.

Self-adaptivity was shown to work, at least in the context of the work per-

formed, with pM,pC,ηM , ηC control parameters defined in the chromosome, even

for the novel recombination (crossover) operators, rather than at the level of the

population.

Features of the framework having real-world usefulness were:

231

Chapter 6 - Conclusions and recommendations 232

� The use of the plugin architecture, to separate problem definitions from the

optimisation algorithm, was shown to work and to enable new problems to

be simply added without the need to change the existing code base.

� The facility enabling a plugin to have its own specific parameter file proved

useful in running concurrent airfoil optimisations.

� The ability to resume from interrupted lengthy optimisation runs, proved

invaluable in running the power network optimisation problems.

The XFoil tool was improved to make it function better in a batch environment,

enabling the airfoil optimisation to be successful.

It was shown that, in this case at least, genetic algorithms can be useful for

airfoil optimisation, as this had been thought (Kipouros et al., 2012) to be not the

case.

The optimisation of electrical power networks was shown to be feasible us-

ing evolutionary algorithms, specifically the Ganesh GA, and that using weather

patterns with appropriate DG units would be of benefit as would their specific

placement. Enabling transmission line capacities to evolve as part of the solu-

tions produced was also shown to be beneficial and therefore has applicability in

real-world network design. It was shown that parallel coordinates may be able

to help identify tipping points in system design and that applying ‖-coords to

multi-dimensional analysis, for both parameters and objective functions, is useful

in understanding optimisation problem dynamics and results.

6.2 Limitations

The research of this thesis does have limitations and these are set out in this

section.

Ganesh uses self-adaptivity, but there are further ways that self-adaptivity

could be utilised and these could be explored by additions to the Ganesh code

Chapter 6 - Conclusions and recommendations 233

base. Currently, Ganesh uses the tournament selection mechanism, at the binary

level (choosing between two candidate solutions); this could be generalised from

the 2-way choice to an n-way choice, in which n is a self-adaptive parameter held at

the chromosome level, with a similar method to the crossover operator of choosing

which chromosome’s value to use, rather than holding it at the population level.

There could also be choices between which operators to use and which selection

mechanism to use, all held similarly at the chromosome level.

A further limitation is the use of un-directed mutation operators; this is dis-

cussed further in the recommendations for further work, below.

In the power optimisation work, there were limitations in the number of gener-

ations of the problems that could be run due to time constraints, licensing issues,

and run interruptions, despite the resume capability. More lengthy runs, mean-

ing more generations, would give GA/Plexos a better chance to converge towards

global optima and possibly lead to more firm hypotheses regarding the analysis of

the system.

Also in the power optimisation work, for the LC optimisation, further ideas

were set out for runs of GA/Plexos, to investigate particular aspects of the grid

behaviour for particular settings revealed by the optimisation runs. It was hoped

to perform at least some of these within the scope of this work, but this proved to

be not possible in the time available.

6.3 Recommendations for further work

6.3.1 Power optimisation

To run some of the optimisation problems for extended periods of time, to over-

come limitations as given above. Using the resume capability of Ganesh, this could

be achieved by extending runs already performed, rather than necessarily starting

again from generation 0.

Chapter 6 - Conclusions and recommendations 234

To undertake the further runs of GA/Plexos described at the end of section

5.5.3 to confirm (or deny) suspected impacts of DG and LC settings and to better

understand how network design could be influenced positively by DG and LC

and the node ranking schemes. The summary section also suggests the design of

experiments to determine whether it is the number of lines connected to a node,

or the node capacity (being the sum of connected lines’ capacities) that is most

important in ranking nodes, which drives the benefits of DG placement.

In scaling up to tackling networks of national dimensions, using the alternative

OF discussed in the power summary section, 5.7, for better performance and

applicability.

6.3.2 Directed mutation

In explaining the mechanisms, and debunking the misconceptions, of natural se-

lection, Gregory (2009) notes that mutation of gene alleles is undirected, which is

to say random, with respect to the advantage or disadvantage that the effect of

the mutation may have upon the individual’s likely reproductive outcome. For

in silico systems that in some way use evolution induced by artificial rather than

natural selection, it ought to be advantageous to make mutation directed, in other

words to make mutation non-random, driven in such ways to produce beneficial

effects, through choosing which genes to mutate and by how much and in which

direction.

By keeping track of solution ancestry, which would also enable full life-cycle

duplication control, it would be possible to calculate covariance of genes to es-

tablish correlation and anti-correlation between them, as shown in the parallel

coordinates visualisation in Chapters 4 and 5 (for example in section 4.5.1.4), and

to in turn relate the direction of gene change to the direction of the objective func-

tion value changes, and thereby arrive at a mutation function driven by a vector

parameter of {gene, ±weight} change pairs, in which each gene in the chromosome

has a co-existing weight parameter driving its possible mutations.

Chapter 6 - Conclusions and recommendations 235

6.3.3 Hybridise with a genetic program to act as a surro-

gate model

Real-world optimisation problems often have the characteristic that their objective

functions are computationally expensive to determine, leading to long-running

execution times. In order to decrease run durations, which may mean that a

non-feasible problem becomes feasible to tackle, the following hybrid algorithm is

suggested, at least in the first instance as something to investigate.

The idea is to use a GP as a surrogate model, and use the surrogate as a

replacement for some GA generations, occasionally refreshing the surrogate with

new data from subsequent GA generations, alternating between GA generations

& the surrogate. Each GA OF would be replaced by a polynomial approximation

from the GP, arrived at through symbolic regression.

The objective of the GP is thus to evolve a solution whose polynomial function

most nearly approximates the mapping of decision vectors to objective function

values for every GA solution existing in a given GA generation. For MOOPs, the

GP would need to evolve n functions, for n OFS of the GA, whose fitnesses are

the minimum differences to the objective function values.

In this way, the GA/GP hybrid could proceed very much faster when the

polynomial approximations are used instead of the GA OFs, where the GA results

act as supervised learning inputs and the GP acts as a surrogate model produced

by supervised learning (Gathercole, 1998).

6.4 Acknowledgements

This work was performed with the help of a grant from the EPSRC (EPSRC,

2014) and as such is required to state that the data and methods used are held on

secure media within the Power and Propulsion Group of the School of Engineering

at Cranfield University (contact Professor Mark Savill).

Chapter 6 - Conclusions and recommendations 236

The author is grateful to the colleagues and collaborators of the optimisa-

tion of electrical power networks work of Chapter 5, Mr Blair Bethwaite and Dr

Ariel Liebman (Monash University), Mr Leighton Brough, Dr Liam Wagner and

Professor David Abramson (University of Queensland), for their provision of the

Australian weather data and their interface to Plexos.

6.5 Concluding remarks

This work resulted in the production of a multi-objective framework and algorithm

that has shown itself to be of true value in tackling real-world complex engineering

systems. It can be built upon to improve it further, by the addition of new com-

ponents either derived from existing classes, such as new self-adaptive crossover

operators, and the addition of other self-adaptive mechanisms such as adaptive n-

way tournament selection. It could have alternative dominance schemes or ranking

schemes added, to help it tackle optimisation problems of four or more dimensions.

It remains a practical and useful optimisation tool.

This research work showed that Genetic Algorithms could in fact be usefully

applied to airfoil optimisation problems, in some circumstances at least. The XFoil

tool was improved in its batch running capability and has been passed back to the

Engineering Design Centre at Cambridge University.

The optimisation of electrical power networks by evolutionary algorithm, using

both distributed generation and line capacity specification, has been shown to be

feasible and useful.

Appendix A

Poster

A poster showing some earlier results prior to the modifications I made to XFoil.

This work explores the use of multi-objective
optimization, evolutionary computing and multi-
dimensional visualization techniques to manage the
increasing complexity of engineering designs.

Initially, a self-adaptive multi-objective optimizing
Genetic Algorithm (GA) was designed and implemented
and applied to optimization of an aerofoil for
minimization of drag and maximization of lift coefficients.
The GA was integrated with a free-form deformation
code for the aerofoil section geometry and XFoil which
evaluates each potential airfoil section solution in terms
of its aerodynamic efficiency (figures 1 & 2). The GA is
compared with two other prominent heuristic MOO
algorithms: Multi-Objective Tabu Search (MOTS) and
NSGA-II.

February 2013

John M. Oliver

Introduction

Conclusions and Future Work

Summary of Results

This self-adaptive GA has been shown to work well on a
multi-dimensional, non-linear and constrained real-world
engineering problem, and to provide better convergence
than NSGA-II and MOTS, although MOTS has a better
density of solutions.

Future work will apply these techniques to an electrical
power distribution network consisting of power generation
plants, that use a variety of resources including
intermittent renewables, and power consumers, to
optimize power flow and investigate network stability over
time in a variety of circumstances.

Approach To Problem
This GA, Ganesh, is similar to NSGA-II but is object-
oriented and implemented in Java. It is modified in the
non-domination sorting method, the calculation of
crowding for the next generation, and has duplicates
controlled in a given generation, where a duplicate
means all corresponding genes in both chromosomes
having the same values. A tournament selection method
of degree two is used, along with polynomial mutation
and simulated binary crossover (SBX). The ability to
control the existence of duplicates is achieved here
through the use of a linked hash map. The probability of
crossover and mutation are self-adapted through co-
evolution along with the optimized genes, as they are
held within the chromosome and themselves undergo
mutation and crossover (figure 3).

Figure 4 shows that the Pareto attainment surface of
Ganesh has converged more than the other algorithms,
and as the range, which determines the magnitude of
geometry deformation, increases, so does convergence
as search space exploration is increased proportionately.
Ganesh, while not having quite as good a density of
solutions as MOTS is not significantly worse, yet without
constraints the GA would find extreme minima that are
not feasible airfoil shapes, as XFoil does not report its
own convergence success.

In figure 5, parallel lines between some parameters, e.g.
p3 & p4, indicate positive correlation, while lines crossing
between p5 & p6 show negative correlation, and this
inter-dependency would be a reason to use a multi-point
crossover, rather than the uniform one currently used
since the uniform one is much more likely to disrupt the
co-variance (‘epistasis’).

Supervisor: Prof. M. Savill, Dr T. Kipouros

Multi-Objective Optimisation Methods Applied to Complex Systems

Figure 5. Parallel coordinates plot showing the design vectors of 8

parameters with corresponding objective function (Cl & Cd) values, in final

generation.

Figure 2. The self-adaptive multi-objective genetic algorithm using FFD/Xfoil.

Figure 1. The NACA0012 aerofoil using eight control points for the geometry

free-form deformation, and these become the Real genes in the chromosome.

Figure 3. This self-adaptive genetic algorithm encodes its own operating

parameters as part of the chromosome.

Figure 4. Left – Range ±0.3 showing Ganesh, NSGA-II and MOTS
 Right – Range ±0.4 showing Ganesh and MOTS.

OF1 (x-axis) gives Cl, OF2 (y-axis) gives Cd.

Figure A.1: Poster for airfoil optimisation

237

Appendix B

Software information

B.1 Ganesh

B.1.1 Ganesh Parameters

This section gives the run-time parameters of Ganesh that may be supplied to

it as part of the execution command, and is obtained by entering the following

command at the system prompt, which is given generically as “prompt> ”:

prompt> java -jar bin\GA.jar -?

Ganesh version: Rel: n.n.n, rev: x, branch: default, node: <node>

Options are as follows:

-? or ?: Show this help

-f <s>: Output filename & path

-j <s>: Class name of experiment plugin (*mandatory*)

-p <n>: Initial Population Size

-g <n>: Maximum number of Generations

-mp <n>: Mutation Probability

-cp <n>: Crossover Probability

-nd <n>: Number of duplicate Organisms allowed (Integer.MAX_VALUE)

239

Appendix B - Software information 240

-s <n>: Seed for random number generator (int, must be > 0)

-nc <n>: Crossover polynomial distribution idx (default in plugin)

-nm <n>: Mutation polynomial distribution idx (default in plugin)

-r1 : Keep going until all solutions are of Rank 1 (give -m)

-m <n>: Maximum number of minutes to run

-e <s>: plugin parameter filename & path

-lr <s>: Resume an old run using this log file: filename & path

-or <s>: Resume from old EvalFile: filename & path

-q : Save EvalFile (partial evaluation logfile) to use with -or

-a2 : Operator order as nsga2: (crossover,mutation)

-b1 : Binary last generation (false)

-b2 : Binary last generation only - no text log (false)

The parameters above take precedence over those that may be defined in the

plugin, given by the -j parameter.

B.2 Utility programs produced

This section provides details of the utilities that were also produced.

B.2.1 GADataCollect

This takes GA results, either singularly or collectively and processes them for

various reasons, including:

1. Formatting GA results for input into the PISA tool-set.

2. Formatting GA results for input into the Parallax tool.

3. Obtaining aggregate information.

The run-time parameters are obtained by entering the following command at

the system prompt, which is given generically as “prompt> ”:

Appendix B - Software information 241

prompt> java -jar bin\GADataCollect.jar -?

GADataCollect: Process Ganesh output - default to aggregate

GADataCollect Usage:

? : Help

-d <path> : The input directory path

-f <regex> : A regex for the files to be read

-o <filepath> : Path and filename of the output file (null)

-g <gen> : Get only generation <gen> (default all)

-r <rn> : Get rank <rn> only (default all)

-i1 : No aggregation - each read file to 1 output file

-p : PISA, many in to 1 out, no aggregation

-v : Get Params as well as Obj Funcs

-hv : Calculate hypervolume result

-s : Get statistics for aggregated data

-so : Get statistics only (for aggregated data)

B.2.2 GAResultPlot

This plots objective functions as 2D scatter plots, either for the solutions of one

generation or for a sub-set (including the entire set) of the generations in the

run. Various options enable selection of the solutions to plot and also enable print

quality resolutions to be chosen for the output images.

The run-time parameters are obtained by entering the following command at

the system prompt, which is given generically as “prompt> ”:

prompt> java -jar bin\GAResultPlot.jar ?

Usage:

? or -? : Show these options

-f <s> : Data file filename (& path)

-p <s> : Filename prefix

-h <n> : Output pic height (pixels, default 600)

Appendix B - Software information 242

-w <n> : Output pic width (pixels, default 600)

-gs <n> : Increase Tick label glyph size in font points

-vf : Do not display chart

-v1 : view specified generations in the same plot

-va : view all generations in the file

-d : The output directory path

-r1 : Only use Rank 1 (non-dom)

-lx <s> : X axis label (default OF1)

-ly <s> : Y axis label (default OF2)

-gdl <n>: Graph domain (x) low end (default auto or 0

-gdh <n>: Graph domain (x) high end (default auto or 1

-grl <n>: Graph range (y) low end (default auto or 0

-grh <n>: Graph range (y) high end (default auto or 1

-s <n> : size of plotted point shapes (pixels, default 4)

-t <s> : Title for plot (default none)

-i <n> : Image resolution in file in dpi (default 300)

-of1n : OF1 negate (e.g. min to max)

-of2n : OF2 negate (e.g. min to max)

-a : Alternative delimited file

-n <n[,n...]>: Generation(s) to report on (default last)

B.2.3 GA-EvalFile

This takes as input the binary output file produced by Ganesh (when the relevant

option was specified) and translates it into an output text file. The run-time

parameters are obtained by entering the following command at the system prompt,

which is given generically as “prompt> ”:

prompt> java -jar bin\GA-EvalFile.jar ?

GAEvalFile options are as follows:

Appendix B - Software information 243

-? or ?: Show this help

-i <s>: Input EvalFile path and name

-o <s>: Output text file path and name default null

-f <s>: Format of EvalFile: C36C1BSILFD (Char,Byte,Short,Int,Long,

Float,Double)

-f specifies the format of the contents of the EvalFile, defined:

<data type of gene><number of instances> - repeated, e.g.

Always C36C1 - for the ID and the Remove flag

followed by the design vector, then the objective functions,

then the optional adaptive controls.

e.g. ExpPlexosC2 plugin needs: C36C1B72I41D4D4

B.2.4 PXmlTest

This acts both as a test of the Xml interface to Plexos, but is also the method

of generating the Sql to create the data definition (tables and columns) and to

populate the tables with data from the Xml model, when a new Plexos model

arises. The run-time parameters are obtained by entering the following command

at the system prompt, which is given generically as “prompt> ”:

prompt> java -cp plugins\lib\pXmlTest.jar;bin\lib\UtilLib.jar

plexosIF.PXmlTest ?

B.2.5 Rastrigin’s function script

This section gives the R language script used to produce the plots of Rastrigin’s

function given in Figures 2.4 & 2.5.

Initialise - clear objects and screen

rm(list=ls())

graphics.off()

Appendix B - Software information 244

rastrigin <- function(x,y) {

Rastrigin 2D function & plot

res <- 10 * 2 + x ^ 2 - 10 * cos(2 * pi * x) +

y ^ 2 - 10 * cos(2 * pi * y)

return(res)

}

vectors of values for x & Y

x <- seq(-5.12, 5.12, length=40)

y <- x

create matrix Z as outer product

Z <- outer(x,y,rastrigin) #2D

d=10 gives perspective amount

persp(x,y,Z,theta=30,phi=35, expand=0.6,

col=’lightgreen’, shade=0.1, ltheta=120,

ticktype="detailed")

contour(x,y,Z,xlab="x",ylab="y")

filled.contour(x,y,Z,xlab="x",ylab="y",nlevels=15)

Appendix C

Tables for power optimisation

This appendix contains supplementary information relating to the work of opti-

misation of power networks, that is set out in Chapter 5.

Table C.1: Line limits of Plexos model

Line
Node

From

Node

To
Property Limits Capacity Units Uid Data id

01. 1-2 1 2 Max Flow LineLimits 130 MW 35148 2455

01. 1-2 1 2 Min Flow LineLimits -130 MW 35149 2458

01. 1-2 1 2 Max Flow LowLimits 97.5 MW 1023105156 2454

01. 1-2 1 2 Min Flow LowLimits -97.5 MW 1023105154 2459

02. 1-3 1 3 Max Flow LineLimits 130 MW 35152 2463

02. 1-3 1 3 Min Flow LineLimits -130 MW 35153 2466

02. 1-3 1 3 Max Flow LowLimits 97.5 MW 1023105157 2462

02. 1-3 1 3 Min Flow LowLimits -97.5 MW 1023105161 2467

03. 2-4 2 4 Max Flow LineLimits 65 MW 35156 2471

03. 2-4 2 4 Min Flow LineLimits -65 MW 35157 2474

03. 2-4 2 4 Max Flow LowLimits 48.75 MW 1023105158 2470

03. 2-4 2 4 Min Flow LowLimits -48.75 MW 1023105159 2475

04. 3-4 3 4 Max Flow LineLimits 130 MW 35160 2479

04. 3-4 3 4 Min Flow LineLimits -130 MW 35161 2482

04. 3-4 3 4 Max Flow LowLimits 97.5 MW 1023105144 2478

245

Appendix C - Tables for power optimisation 246

Line
Node

From

Node

To
Property Limits Capacity Units Uid Data id

04. 3-4 3 4 Min Flow LowLimits -97.5 MW 1023105142 2483

05. 2-5 2 5 Max Flow LineLimits 130 MW 35164 2487

05. 2-5 2 5 Min Flow LineLimits -130 MW 35165 2490

05. 2-5 2 5 Max Flow LowLimits 97.5 MW 1023105145 2486

05. 2-5 2 5 Min Flow LowLimits -97.5 MW 1023105149 2491

06. 2-6 2 6 Max Flow LineLimits 65 MW 35168 2495

06. 2-6 2 6 Min Flow LineLimits -65 MW 35169 2498

06. 2-6 2 6 Max Flow LowLimits 48.75 MW 1023105146 2494

06. 2-6 2 6 Min Flow LowLimits -48.75 MW 1023105147 2499

07. 4-6 4 6 Max Flow LineLimits 90 MW 35172 2503

07. 4-6 4 6 Min Flow LineLimits -90 MW 35173 2506

07. 4-6 4 6 Max Flow LowLimits 67.5 MW 1023105168 2502

07. 4-6 4 6 Min Flow LowLimits -67.5 MW 1023105166 2507

08. 5-7 5 7 Max Flow LineLimits 70 MW 35176 2511

08. 5-7 5 7 Min Flow LineLimits -70 MW 35177 2514

08. 5-7 5 7 Max Flow LowLimits 52.5 MW 1023105172 2510

08. 5-7 5 7 Min Flow LowLimits -52.5 MW 1023105167 2515

09. 6-7 6 7 Max Flow LineLimits 130 MW 35180 2519

09. 6-7 6 7 Min Flow LineLimits -130 MW 35181 2522

09. 6-7 6 7 Max Flow LowLimits 97.5 MW 1023105106 2518

09. 6-7 6 7 Min Flow LowLimits -97.5 MW 1023105107 2523

10. 6-8 6 8 Max Flow LineLimits 32 MW 35184 2527

10. 6-8 6 8 Min Flow LineLimits -32 MW 35185 2530

10. 6-8 6 8 Max Flow LowLimits 24 MW 1023105104 2526

10. 6-8 6 8 Min Flow LowLimits -24 MW 1023105105 2531

11. 6-9 6 9 Max Flow LineLimits 65 MW 35188 2535

11. 6-9 6 9 Min Flow LineLimits -65 MW 35189 2538

11. 6-9 6 9 Max Flow LowLimits 48.75 MW 1023105114 2534

11. 6-9 6 9 Min Flow LowLimits -48.75 MW 1023105109 2539

12. 6-10 6 10 Max Flow LineLimits 32 MW 35192 2543

12. 6-10 6 10 Min Flow LineLimits -32 MW 35193 2546

Appendix C - Tables for power optimisation 247

Line
Node

From

Node

To
Property Limits Capacity Units Uid Data id

12. 6-10 6 10 Max Flow LowLimits 24 MW 1023105094 2542

12. 6-10 6 10 Min Flow LowLimits -24 MW 1023105095 2547

13. 9-11 9 11 Max Flow LineLimits 65 MW 35196 2551

13. 9-11 9 11 Min Flow LineLimits -65 MW 35197 2554

13. 9-11 9 11 Max Flow LowLimits 48.75 MW 1023105092 2550

13. 9-11 9 11 Min Flow LowLimits -48.75 MW 1023105093 2555

14. 9-10 9 10 Max Flow LineLimits 65 MW 35200 2559

14. 9-10 9 10 Min Flow LineLimits -65 MW 35201 2562

14. 9-10 9 10 Max Flow LowLimits 48.75 MW 1023105102 2558

14. 9-10 9 10 Min Flow LowLimits -48.75 MW 1023105097 2563

15. 4-12 4 12 Max Flow LineLimits 65 MW 35204 2567

15. 4-12 4 12 Min Flow LineLimits -65 MW 35205 2570

15. 4-12 4 12 Max Flow LowLimits 48.75 MW 1023105115 2566

15. 4-12 4 12 Min Flow LowLimits -48.75 MW 1023105131 2571

16. 12-13 12 13 Max Flow LineLimits 65 MW 35208 2575

16. 12-13 12 13 Min Flow LineLimits -65 MW 35209 2578

16. 12-13 12 13 Max Flow LowLimits 48.75 MW 1023105128 2574

16. 12-13 12 13 Min Flow LowLimits -48.75 MW 1023105129 2579

17. 12-14 12 14 Max Flow LineLimits 32 MW 35212 2583

17. 12-14 12 14 Min Flow LineLimits -32 MW 35213 2586

17. 12-14 12 14 Max Flow LowLimits 24 MW 1023105138 2582

17. 12-14 12 14 Min Flow LowLimits -24 MW 1023105139 2587

18. 12-15 12 15 Max Flow LineLimits 32 MW 35216 2591

18. 12-15 12 15 Min Flow LineLimits -32 MW 35217 2594

18. 12-15 12 15 Max Flow LowLimits 24 MW 1023105136 2590

18. 12-15 12 15 Min Flow LowLimits -24 MW 1023105119 2595

19. 12-16 12 16 Max Flow LineLimits 32 MW 35220 2599

19. 12-16 12 16 Min Flow LineLimits -32 MW 35221 2602

19. 12-16 12 16 Max Flow LowLimits 24 MW 1023105116 2598

19. 12-16 12 16 Min Flow LowLimits -24 MW 1023105117 2603

20. 14-15 14 15 Max Flow LineLimits 16 MW 35224 2607

Appendix C - Tables for power optimisation 248

Line
Node

From

Node

To
Property Limits Capacity Units Uid Data id

20. 14-15 14 15 Min Flow LineLimits -16 MW 35225 2610

20. 14-15 14 15 Max Flow LowLimits 12 MW 1023105126 2606

20. 14-15 14 15 Min Flow LowLimits -12 MW 1023105127 2611

21. 16-17 16 17 Max Flow LineLimits 16 MW 35228 2615

21. 16-17 16 17 Min Flow LineLimits -16 MW 35229 2618

21. 16-17 16 17 Max Flow LowLimits 12 MW 1023105124 2614

21. 16-17 16 17 Min Flow LowLimits -12 MW 1023105123 2619

22. 15-18 15 18 Max Flow LineLimits 16 MW 35232 2623

22. 15-18 15 18 Min Flow LineLimits -16 MW 35233 2626

22. 15-18 15 18 Max Flow LowLimits 12 MW 1023105122 2622

22. 15-18 15 18 Min Flow LowLimits -12 MW 1023105125 2627

23. 18-19 18 19 Max Flow LineLimits 16 MW 35236 2631

23. 18-19 18 19 Min Flow LineLimits -16 MW 35237 2634

23. 18-19 18 19 Max Flow LowLimits 12 MW 1023105118 2630

23. 18-19 18 19 Min Flow LowLimits -12 MW 1023105121 2635

24. 19-20 19 20 Max Flow LineLimits 32 MW 35240 2639

24. 19-20 19 20 Min Flow LineLimits -32 MW 35241 2642

24. 19-20 19 20 Max Flow LowLimits 24 MW 1023105120 2638

24. 19-20 19 20 Min Flow LowLimits -24 MW 1023105135 2643

25. 10-20 10 20 Max Flow LineLimits 32 MW 35244 2647

25. 10-20 10 20 Min Flow LineLimits -32 MW 35245 2650

25. 10-20 10 20 Max Flow LowLimits 24 MW 1023105134 2646

25. 10-20 10 20 Min Flow LowLimits -24 MW 1023105137 2651

26. 10-17 10 17 Max Flow LineLimits 32 MW 35248 2655

26. 10-17 10 17 Min Flow LineLimits -32 MW 35249 2658

26. 10-17 10 17 Max Flow LowLimits 24 MW 1023105130 2654

26. 10-17 10 17 Min Flow LowLimits -24 MW 1023105133 2659

27. 10-21 10 21 Max Flow LineLimits 32 MW 35252 2663

27. 10-21 10 21 Min Flow LineLimits -32 MW 35253 2666

27. 10-21 10 21 Max Flow LowLimits 24 MW 1023105132 2662

27. 10-21 10 21 Min Flow LowLimits -24 MW 1023105099 2667

Appendix C - Tables for power optimisation 249

Line
Node

From

Node

To
Property Limits Capacity Units Uid Data id

28. 10-22 10 22 Max Flow LineLimits 32 MW 35256 2671

28. 10-22 10 22 Min Flow LineLimits -32 MW 35257 2674

28. 10-22 10 22 Max Flow LowLimits 24 MW 1023105098 2670

28. 10-22 10 22 Min Flow LowLimits -24 MW 1023105101 2675

29. 21-22 21 22 Max Flow LineLimits 32 MW 35260 2679

29. 21-22 21 22 Min Flow LineLimits -32 MW 35261 2682

29. 21-22 21 22 Max Flow LowLimits 24 MW 1023105100 2678

29. 21-22 21 22 Min Flow LowLimits -24 MW 1023105091 2683

30. 15-23 15 23 Max Flow LineLimits 16 MW 35264 2687

30. 15-23 15 23 Min Flow LineLimits -16 MW 35265 2690

30. 15-23 15 23 Max Flow LowLimits 12 MW 1023105096 2686

30. 15-23 15 23 Min Flow LowLimits -12 MW 1023105111 2691

31. 22-24 22 24 Max Flow LineLimits 16 MW 35268 2695

31. 22-24 22 24 Min Flow LineLimits -16 MW 35269 2698

31. 22-24 22 24 Max Flow LowLimits 12 MW 1023105110 2694

31. 22-24 22 24 Min Flow LowLimits -12 MW 1023105113 2699

32. 23-24 23 24 Max Flow LineLimits 16 MW 35272 2703

32. 23-24 23 24 Min Flow LineLimits -16 MW 35273 2706

32. 23-24 23 24 Max Flow LowLimits 12 MW 1023105112 2702

32. 23-24 23 24 Min Flow LowLimits -12 MW 1023105103 2707

33. 24-25 24 25 Max Flow LineLimits 16 MW 35276 2711

33. 24-25 24 25 Min Flow LineLimits -16 MW 35277 2714

33. 24-25 24 25 Max Flow LowLimits 12 MW 1023105108 2710

33. 24-25 24 25 Min Flow LowLimits -12 MW 1023105170 2715

34. 25-26 25 26 Max Flow LineLimits 16 MW 35280 2719

34. 25-26 25 26 Min Flow LineLimits -16 MW 35281 2722

34. 25-26 25 26 Max Flow LowLimits 12 MW 1023105164 2718

34. 25-26 25 26 Min Flow LowLimits -12 MW 1023105169 2723

35. 25-27 25 27 Max Flow LineLimits 16 MW 35284 2727

35. 25-27 25 27 Min Flow LineLimits -16 MW 35285 2730

35. 25-27 25 27 Max Flow LowLimits 12 MW 1023105165 2726

Appendix C - Tables for power optimisation 250

Line
Node

From

Node

To
Property Limits Capacity Units Uid Data id

35. 25-27 25 27 Min Flow LowLimits -12 MW 1023105163 2731

36. 28-27 28 27 Max Flow LineLimits 65 MW 35288 2735

36. 28-27 28 27 Min Flow LineLimits -65 MW 35289 2738

36. 28-27 28 27 Max Flow LowLimits 48.75 MW 1023105171 2734

36. 28-27 28 27 Min Flow LowLimits -48.75 MW 1023105148 2739

37. 27-29 27 29 Max Flow LineLimits 16 MW 35292 2743

37. 27-29 27 29 Min Flow LineLimits -16 MW 35293 2746

37. 27-29 27 29 Max Flow LowLimits 12 MW 1023105150 2742

37. 27-29 27 29 Min Flow LowLimits -12 MW 1023105141 2747

38. 27-30 27 30 Max Flow LineLimits 16 MW 35296 2751

38. 27-30 27 30 Min Flow LineLimits -16 MW 35297 2754

38. 27-30 27 30 Max Flow LowLimits 12 MW 1023105140 2750

38. 27-30 27 30 Min Flow LowLimits -12 MW 1023105143 2755

39. 29-30 29 30 Max Flow LineLimits 16 MW 35300 2759

39. 29-30 29 30 Min Flow LineLimits -16 MW 35301 2762

39. 29-30 29 30 Max Flow LowLimits 12 MW 1023105151 2758

39. 29-30 29 30 Min Flow LowLimits -12 MW 1023105160 2763

40. 8-28 8 28 Max Flow LineLimits 32 MW 35304 2767

40. 8-28 8 28 Min Flow LineLimits -32 MW 35305 2770

40. 8-28 8 28 Max Flow LowLimits 24 MW 1023105162 2766

40. 8-28 8 28 Min Flow LowLimits -24 MW 1023105153 2771

41. 6-28 6 28 Max Flow LineLimits 32 MW 35308 2775

41. 6-28 6 28 Min Flow LineLimits -32 MW 35309 2778

41. 6-28 6 28 Max Flow LowLimits 24 MW 1023105152 2774

41. 6-28 6 28 Min Flow LowLimits -24 MW 1023105155 2779

Appendix C - Tables for power optimisation 251

Table C.2: The nodes and their total capacities determined by summing their
connected line capacities, in descending capacity order. The line capacity is
counted at each node it is attached to, and the LowLimits have been rounded
to the nearest integer. G,W & S are the DG unit types, heading their variables.

Node
LowLimits
Capacity

LineLimits
Capacity

G W S

06 336 446 V10 V11 V12
02 294 390 OCGT
04 264 350 V04 V05 V06
01 196 260 OCGT
03 196 260 V01 V02 V03
12 170 226 V28 V29 V30
10 169 225 V22 V23 V24
05 151 200 V07 V08 V09
07 151 200 V13 V14 V15
09 147 195 V19 V20 V21
28 97 129 V64 V65 V66
27 85 113 OCGT
15 60 80 V34 V35 V36
22 60 80 OCGT
11 49 65 V25 V26 V27
13 49 65 OCGT
08 48 64 V16 V17 V18
20 48 64 V49 V50 V51
21 48 64 V52 V53 V54
14 36 48 V31 V32 V33
16 36 48 V37 V38 V39
17 36 48 V40 V41 V42
19 36 48 V46 V47 V48
24 36 48 V55 V56 V57
25 36 48 V58 V59 V60
18 24 32 V43 V44 V45
23 24 32 OCGT
29 24 32 V67 V68 V69
30 24 32 V70 V71 V72
26 12 16 V61 V62 V63

Appendix C - Tables for power optimisation 252

Table C.3: Node connections, ranked by number of connections per node, in
descending rank order, with DG variables.

Node Lines Rank G W S

06 7 1 V10 V11 V12
10 6 2 V22 V23 V24
12 5 3 V28 V29 V30
02 4 4 OCGT
04 4 4 V4 V5 V6
15 4 4 V34 V35 V36
27 4 4 OCGT
09 3 5 V19 V20 V21
22 3 5 OCGT
24 3 5 V55 V56 V57
25 3 5 V58 V59 V60
28 3 5 V64 V65 V66
01 2 6 OCGT
03 2 6 V1 V2 V3
05 2 6 V7 V8 V9
07 2 6 V13 V14 V15
08 2 6 V16 V17 V18
14 2 6 V31 V32 V33
16 2 6 V37 V38 V39
17 2 6 V40 V41 V42
18 2 6 V43 V44 V45
19 2 6 V46 V47 V48
20 2 6 V49 V50 V51
21 2 6 V52 V53 V54
23 2 6 OCGT
29 2 6 V67 V68 V69
30 2 6 V70 V71 V72
11 1 7 V25 V26 V27
13 1 7 OCGT
26 1 7 V61 V62 V63

A
p
p

en
d
ix

C
-

T
ables

for
pow

er
optim

isation
253

Figure C.1: Node connections, ranked by number of connections per node, in node order.

A
p
p

en
d
ix

C
-

T
ables

for
pow

er
optim

isation
254

Figure C.2: Data model for extracting Plexos line information, showing tables derived from the Plexos XML data model (version
6.205).

A
p
p

en
d
ix

C
-

T
ables

for
pow

er
optim

isation
255

Table C.4: OCGT fixed central generator characteristics.

Units # MW MW GJ/MWh $/MWh $ hrs hrs # MW/min. MW/min. % $/MWh %
Node/Gen Units Max Capacity Min Stable Level Heat Rate VO&M Charge Start Cost Min Up Time Min Down Time Commit Max Ramp Up Max Ramp Down Aux Incr Mark-up Bid-Cost Mark-up

Gen 01 1 80 10 9.16 1.5 500 2 1 1.5 25 8.1 2 20
Gen 02 1 80 16 9.2 1.5 500 2 1 1.5 25 8.1 2 20
Gen 13 1 50 5 10.59 1.5 1000 3 1 1 1.5 25 8.5 2 20
Gen 22 1 30 3 9.7 1.5 1000 3 1 1 1.5 1.5 4.8 2 20
Gen 23 1 30 3 10.32 1.75 500 0.5 0.5 1 10 10 0.5 0
Gen 27 1 55 5 10.32 1.75 400 0.5 1 15 15 0.5 0

Table C.5: Distributed Generation (DG) generator type characteristics

MW GJ/MWh $/MWh MW # # MW $/MWh % % % #
DG type Max Capacity Heat Rate VO&M Charge Rating Must-Run Units Commit Offer Quantity Offer Price Max Capacity Factor Day Min Capacity Factor Day Aux Incr Power to Heat Ratio

G02 gas rec b cg 1 8.75 7.5 1 1 1 65 65 1 1.1
G09 Wind 1 0.5 0 1 1 0
G10 Solar 1 0.5 0 1 0

References

Abott, I. and von Doenhoff, A., 1959. Theory of wing sections: including a sum-

mary of airfoil data. Dover, New York.

Aerospaceweb, 2012. Angle of attack and pitch angle. URL http://www.

aerospaceweb.org/question/aerodynamics/q0165.shtml.

Aguilar-Hidalgo, D., Zurita, A.C., and Lemos, M.F.C., 2012. Complex net-

works evolutionary dynamics using genetic algorithms. International Jour-

nal of Bifurcation and Chaos, 22(07):1250156. URL http://dx.doi.org/

10.1142/S0218127412501568. Doi: 10.1142/S0218127412501568; M3: doi:

10.1142/S0218127412501568; 09.

Allen, P.M., Strathern, M., and Varga, L., 2010. Complexity: The evolution

of identity and diversity. In P. Cilliers and R. Preiser, editors, Complexity,

Difference and Identity, volume 26 of Issues in Business Ethics, pages 41–60.

Springer Netherlands. ISBN 978-90-481-9186-4. doi:10.1007/978-90-481-9187-1

3. URL http://dx.doi.org/10.1007/978-90-481-9187-1_3.

Amin, M., 2003. North America’s electricity infrastructure: are we ready for more

perfect storms? Security & Privacy, IEEE, 1(5):19–25. ID: 1.

Atallah, M. and Blanton, M., 2009. Algorithms and Theory of Computation Hand-

book, Second Edition: General Concepts and Techniques. CRC Press, Boca

Raton, FL. ISBN 9781584888222.

Avidan, T. and Avidan, S., 1999. Parallax - a data mining tool based on parallel

coordinates. Computational Statistics, 14(1):79–89. URL http://dx.doi.org/

10.1007/PL00022707.

257

http://www.aerospaceweb.org/question/aerodynamics/q0165.shtml
http://www.aerospaceweb.org/question/aerodynamics/q0165.shtml
http://dx.doi.org/10.1142/S0218127412501568
http://dx.doi.org/10.1142/S0218127412501568
http://dx.doi.org/10.1007/978-90-481-9187-1_3
http://dx.doi.org/10.1007/PL00022707
http://dx.doi.org/10.1007/PL00022707

References 258

Bäck, T., 1992. Self-adaptation in genetic algorithms. In Proceedings of the First

European Conference on Artificial Life, pages 263–271. MIT Press.

Bäck, T., 1995. Evolutionary Algorithms in Theory and Practice: Evolution Strate-

gies, Evolutionary Programming, Genetic Algorithms. Oxford University Press,

USA. ISBN 9780195356700. URL http://books.google.co.uk/books?id=

EaN7kvl5coYC.

Bäck, T., Eiben, A., and van der Vaart, N., 2000. An empirical study on GAs

”without parameters”. In M. Schoenauer, K. Deb, G. Rudolph, X. Yao, E. Lut-

ton, J. Merelo, and H.P. Schwefel, editors, Parallel Problem Solving from Nature

PPSN VI, volume 1917, pages 315–324. Springer Berlin / Heidelberg.

Bäck, T., Hammel, U., and Schwefel, H.P., 1997. Evolutionary computation:

comments on the history and current state. Evolutionary Computation, IEEE

Transactions on, 1(1):3–17. ID: 1.

Bäck, T. and Schwefel, H.P., 1993. An overview of evolutionary algorithms for

parameter optimization. Evolutionary computation, 1(1):1–23. URL http://

dx.doi.org/10.1162/evco.1993.1.1.1.

Bertsekas, D.P., 1999. Nonlinear Programming. Athena Scientific, Belmont, MA.

Beyer, H.G. and Schwefel, H.P., 2002. Evolution strategies – a comprehensive

introduction. Natural Computing, 1(1):3–52. ISSN 1572-9796. doi:10.1023/A:

1015059928466. URL http://dx.doi.org/10.1023/A:1015059928466.

Bleuler, S., Laumanns, M., Thiele, L., and Zitzler, E., 2003. Pisa - a platform and

programming language independent interface for search algorithms. In Evolu-

tionary Multi-Criterion Optimization (EMO 2003), pages 494–508. Springer.

Bloebaum, C.L. and McGowan, A.M.R., 2010. Design of complex engineered

systems. Journal of Mechanical Design, 132(12):120301–120301.

Blum, C. and Roli, A., 2003. Metaheuristics in combinatorial optimization:

Overview and conceptual comparison. ACM Comput.Surv., 35(3):268–308. URL

http://doi.acm.org/10.1145/937503.937505.

http://books.google.co.uk/books?id=EaN7kvl5coYC
http://books.google.co.uk/books?id=EaN7kvl5coYC
http://dx.doi.org/10.1162/evco.1993.1.1.1
http://dx.doi.org/10.1162/evco.1993.1.1.1
http://dx.doi.org/10.1023/A:1015059928466
http://doi.acm.org/10.1145/937503.937505

References 259

Blume, S.W., 2007. Electric Power System Basics For the Nonelectrical Profes-

sional. Wiley-IEEE Press, New Jersey.

Cain, M.B., O’Neill, R.P., and Castillo, A., 2013. History of optimal power flow

and formulations.

Chechkin, A.V., Metzler, R., Gonchar, V.Y., and Klafter, J., 2008. Introduction to

the theory of lvy flights. Anomalous Transport: Foundations and Applications.

Christie, R., 1993. Power systems test case archive: 30 bus power flow test case.

Coello, C.A.C., 2006. Evolutionary multi-objective optimization: a historical view

of the field. Computational Intelligence Magazine, IEEE, 1(1):28–36. ID: 1.

Coello, C.A.C., Lamont, G.B., and Veldhuizen, D.A.V., 2006. Evolutionary Algo-

rithms for Solving Multi-Objective Problems (Genetic and Evolutionary Compu-

tation). Springer-Verlag New York, Inc, Secaucus, NJ, USA. ISBN 978-0-387-

36797-2.

Cyber Dyne s.r.l, 2016. Kimeme. URL http://www.cyberdyne.it/.

De Jong, K. and Spears, W., 1992. A formal analysis of the role of multi-point

crossover in genetic algorithms. Annals of Mathematics and Artificial Intelli-

gence, 5(1):1–26. ISSN 1012-2443. doi:10.1007/BF01530777.

De Jong, K.A., 1975. An analysis of the behavior of a class of genetic adaptive

systems. Ph.D. thesis, University of Michigan. AAI7609381.

Deb, K., 1999. Evolutionary algorithms for multi-criterion optimization in engi-

neering design. In K. Miettinen, P. Neittaanmäki, M.M. Mäkelä, and J. Périaux,

editors, Evolutionary Algorithms in Engineering and Computer Science: Recent

Advances in Genetic Algorithms, Evolution Strategies, Evolutionary Program-

ming, Genetic Programming and Industrial Applications, pages 135–161. Wiley,

New York.

Deb, K., 2001. Multi-Objective Optimization using Evolutionary Algorithms. John

Wiley, Chichester. ID: 2.

http://www.cyberdyne.it/

References 260

Deb, K., 2012. Optimization for Engineering Design: Algorithms and Exam-

ples. PHI Learning. ISBN 9788120346789. URL http://books.google.co.

uk/books?id=cN_kjtySMhIC.

Deb, K., 2013. Tutorial slides: Multi-objective evolutionary algorithms.

Deb, K. and Agrawal, R.B., 1995. Simulated binary crossover for continuous search

space. Complex Systems, pages 115–148.

Deb, K. and Agrawal, S., 1999. Understanding interactions among genetic algo-

rithm parameters. In in Foundations of Genetic Algorithms 5, pages 265–286.

Morgan Kaufmann.

Deb, K., Agrawal, S., Pratap, A., and Meyarivan, T., 2000. A fast elitist non-

dominated sorting genetic algorithm for multi-objective optimization: NSGA-II.

In M. Schoenauer, K. Deb, G. Rudolph, X. Yao, E. Lutton, J. Merelo, and H.P.

Schwefel, editors, Parallel Problem Solving from Nature PPSN VI, volume 1917,

pages 849–858. Springer Berlin / Heidelberg.

Deb, K. and Goyal, M., 1996. A combined genetic adaptive search (geneas) for

engineering design. Computer Science and Informatics, 26:30–45.

Deb, K., Horn, J., and E., D.G., 1993. Multimodal deceptive functions. Complex

Systems, 7(2):131–153.

Deb, K. and Jain, S., 2002. Running performance metrics for evolutionary multi-

objective optimization. In 4th Asia-Pacific Conference on Simulated Evolution

and Learning(SEAL ’02), pages 13–20. Nanyang Technical University, Singa-

pore.

Deb, K., Mohan, M., and Mishra, S., 2003. A fast multi-objective evolutionary

algorithm for finding well-spread pareto-optimal solutions. Research Report

2003002, Indian Institute Of Technology Kanpur.

http://books.google.co.uk/books?id=cN_kjtySMhIC
http://books.google.co.uk/books?id=cN_kjtySMhIC

References 261

Deb, K., Thiele, L., Laumanns, M., and Zitzler, E., 2001. Scalable test problems

for evolutionary multi-objective optimization. Technical report, Computer Engi-

neering and Networks Laboratory (TIK), Swiss Federal Institute of Technology

(ETH.

Dharamjit, D., 2012. Load flow analysis on ieee 30 bus system. International

Journal of Scientific and Research Publications, 2(11):n/a. ISSN 2250-3153.

URL http://www.ijsrp.org/research-paper-1112/ijsrp-p1153.pdf.

Dorigo, M. and Blum, C., 2005. Ant colony optimization theory: A survey. The-

oretical Computer Science, 344(2-3):243–278.

Dorigo, M., Maniezzo, V., and Colorni, A., 1996. The Ant system: Optimization

by a colony of cooperating agents. Systems, Man, and Cybernetics, Part B:

Cybernetics, IEEE Transactions on, 26(1):29–41. ISSN 1083-4419. doi:10.1109/

3477.484436.

Drela, M., 1989. Xfoil - an analysis and design system for low reynolds number

airfoils. In Low Reynolds Number Aerodynamics Conference, pages 1–12. Notre

Dame, Germany.

Durillo, J.J. and Nebro, A.J., 2015. jmetal. URL http://jmetal.sourceforge.

net/index.html.

Dynardo GmbH, 2016. optiSLang. URL https://www.dynardo.de/en/

software/optislang.html.

Eiben, A., Schut, M., and de Wilde, A., 2006a. Is self-adaptation of selection

pressure and population size possible? a case study. In T. Runarsson, H.G.

Beyer, E. Burke, J. Merelo-Guervs, L. Whitley, and X. Yao, editors, Parallel

Problem Solving from Nature - PPSN IX, volume 4193, pages 900–909. Springer-

Verlag, Berlin, Heidelberg.

Eiben, A.E., Schut, M.C., and Wilde, A.R.D., 2006b. Boosting genetic algorithms

with self-adaptive selection. In In Proceedings of the IEEE Congress on Evolu-

tionary Computation, pages 1584–1589.

http://www.ijsrp.org/research-paper-1112/ijsrp-p1153.pdf
http://jmetal.sourceforge.net/index.html
http://jmetal.sourceforge.net/index.html
https://www.dynardo.de/en/software/optislang.html
https://www.dynardo.de/en/software/optislang.html

References 262

Energy Exemplar Pty Ltd, 2013. Plexos for power systems. URL http://www.

energyexemplar.com.

EPSRC, 2014. Engineering and physical sciences research council. URL http:

//www.epsrc.ac.uk.

ESTECO SpA, 2016. modeFRONTIER. URL http://www.esteco.com/

modefrontier.

Evolving Objects Team - various, 2015. Evolving objects. URL http://eodev.

sourceforge.net/.

Fleming, P. and Purshouse, R., 2002. Evolutionary algorithms in control systems

engineering: a survey. Control Engineering Practice, 10(11):1223 – 1241. ISSN

0967-0661. doi:http://dx.doi.org/10.1016/S0967-0661(02)00081-3. URL http:

//www.sciencedirect.com/science/article/pii/S0967066102000813.

Fleming, P.J. and Purshouse, R.C., 2001. Genetic Algorithms In Control Systems

Engineering. Research Report 789, Sheffield University.

Fleming, P.J., Purshouse, R.C., and Lygoe, R.J., 2005. Many-objective optimiza-

tion: An engineering design perspective. In EMO’05, LNCS 3410, pages 14–32.

Springer-Verlag, Berlin Heidelberg.

Fogel, D., 1994. Applying evolutionary programming to selected control prob-

lems. Computers & Mathematics with Applications, 27(11):89 – 104. ISSN

0898-1221. URL http://www.sciencedirect.com/science/article/pii/

0898122194901007.

Fonseca, C. and Fleming, P., 1997. Multiobjective genetic algorithms. In A. Zalzala

and P. Fleming, editors, Genetic Algorithms in Engineering Systems, pages 63–

78. Institution of Engineering and Technology. URL http://digital-library.

theiet.org/content/books/ce/pbce055e.

Fonseca, C., Knowles, J., Thiele, L., and Zitzler, E., 2005. A tutorial on the

performance assessment of stochastic multiobjective optimizers, an invited talk

presented by j. knowles at emo 2005, guanajuato, mexico, 2005.

http://www.energyexemplar.com
http://www.energyexemplar.com
http://www.epsrc.ac.uk
http://www.epsrc.ac.uk
http://www.esteco.com/modefrontier
http://www.esteco.com/modefrontier
http://eodev.sourceforge.net/
http://eodev.sourceforge.net/
http://www.sciencedirect.com/science/article/pii/S0967066102000813
http://www.sciencedirect.com/science/article/pii/S0967066102000813
http://www.sciencedirect.com/science/article/pii/0898122194901007
http://www.sciencedirect.com/science/article/pii/0898122194901007
http://digital-library.theiet.org/content/books/ce/pbce055e
http://digital-library.theiet.org/content/books/ce/pbce055e

References 263

Fonseca, C.M. and Fleming, P.J., 1993. Genetic algorithms for multiobjective

optimization: Formulation, discussion and generalization. In S. Forrest, editor,

ICGA, pages 416–423. Morgan Kaufmann. ISBN 1-55860-299-2. URL http:

//dblp.uni-trier.de/db/conf/icga/icga1993.html#FonsecaF93. Conf/ic-

ga/1993; 2002-09-04.

Fonseca, C.M. and Fleming, P.J., 1995a. Multiobjective genetic algorithms made

easy: selection sharing and mating restriction. In Genetic Algorithms in Engi-

neering Systems: Innovations and Applications, 1995. GALESIA. First Inter-

national Conference on (Conf. Publ. No. 414), pages 45–52.

Fonseca, C.M. and Fleming, P.J., 1995b. An overview of evolutionary algorithms in

multiobjective optimization. Evolutionary computation, 3(1):1–16. URL http:

//dx.doi.org/10.1162/evco.1995.3.1.1. Doi: 10.1162/evco.1995.3.1.1; M3:

doi: 10.1162/evco.1995.3.1.1; 04.

Fonseca, C.M. and Fleming, P.J., 1996. On the performance assessment and

comparison of stochastic multiobjective optimizers. In H.M. Voigt, W. Ebel-

ing, I. Rechenberg, and H.P. Schwefel, editors, Parallel Problem Solving from

Nature — PPSN IV: International Conference on Evolutionary Computa-

tion — The 4th International Conference on Parallel Problem Solving from

Nature Berlin, Germany, September 22–26, 1996 Proceedings, pages 584–

593. Springer Berlin Heidelberg, Berlin, Heidelberg. ISBN 978-3-540-70668-

7. doi:10.1007/3-540-61723-X 1022. URL http://dx.doi.org/10.1007/

3-540-61723-X_1022.

Fonseca, C.M. and Fleming, P.J., 1998. Multiobjective optimization and multiple

constraint handling with evolutionary algorithms - part i : A unified formu-

lation. Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE

Transactions on, 28(1):26.

Forrester, A., Sobester, A., and Keane, A., 2008. Engineering design via surro-

gate modelling: a practical guide. Wiley. URL http://eprints.soton.ac.uk/

64699/.

http://dblp.uni-trier.de/db/conf/icga/icga1993.html#FonsecaF93
http://dblp.uni-trier.de/db/conf/icga/icga1993.html#FonsecaF93
http://dx.doi.org/10.1162/evco.1995.3.1.1
http://dx.doi.org/10.1162/evco.1995.3.1.1
http://dx.doi.org/10.1007/3-540-61723-X_1022
http://dx.doi.org/10.1007/3-540-61723-X_1022
http://eprints.soton.ac.uk/64699/
http://eprints.soton.ac.uk/64699/

References 264

Free Software Foundation, Inc, 2016. What is free software? URL https://www.

fsf.org/about/what-is-free-software/.

Fukunaga, A.S., 1998. Restart scheduling for genetic algorithms. In A.E. Eiben,

T. Bäck, M. Schoenauer, and H.P. Schwefel, editors, Parallel Problem Solving

from Nature — PPSN V: 5th International Conference Amsterdam, The Nether-

lands September 27–30, 1998 Proceedings, pages 357–366. Springer Berlin Hei-

delberg, Berlin, Heidelberg. ISBN 978-3-540-49672-4. doi:10.1007/BFb0056878.

URL http://dx.doi.org/10.1007/BFb0056878.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J., 1995. Design Patterns: Ele-

ments of Reusable Object-oriented Software. Addison-Wesley Longman, Boston,

MA, USA. ISBN 0-201-63361-2.

Gardner, B. and Selig, M., 2003. Airfoil Design Using a Genetic Algorithm and

an Inverse Method. In 41st Aerospace Sciences Meeting and Exhibit, Aerospace

Sciences Meetings. American Institute of Aeronautics and Astronautics. doi:

doi:10.2514/6.2003-43. URL http://dx.doi.org/10.2514/6.2003-43.

Garey, M.R. and Johnson, D.S., 1979. Computers and Intractability: A Guide to

the Theory of NP-Completeness. W.H.Freeman, New York.

Gathercole, C., 1998. An Investigation of Supervised Learning in Genetic Pro-

gramming. Ph.D. thesis, University of Edinburgh.

Gautam, D. and Mithulananthan, N., 2007. Optimal DG placement in deregulated

electricity market. Electric Power Systems Research, 77(12):1627–1636.

Geeknet inc., 2014. gnuplot. URL http://www.gnuplot.info/.

Gen, M. and Cheng, R., 2000. Genetic Algorithms & Engineering Optimization.

Wiley, New York.

Glover, F., 1986. Future paths for integer programming and links to artificial

intelligence. Computers & Operations Research, 13(5):533–549. ISSN 0305-

0548. doi:http://dx.doi.org/10.1016/0305-0548(86)90048-1. URL http://www.

sciencedirect.com/science/article/pii/0305054886900481.

https://www.fsf.org/about/what-is-free-software/
https://www.fsf.org/about/what-is-free-software/
http://dx.doi.org/10.1007/BFb0056878
http://dx.doi.org/10.2514/6.2003-43
http://www.gnuplot.info/
http://www.sciencedirect.com/science/article/pii/0305054886900481
http://www.sciencedirect.com/science/article/pii/0305054886900481

References 265

Glover, J.D., Sarma, M.S., and Overbye, T.J., 2012. Power System Analysis and

Design. Cengage Learning, Stamford, 5th edition.

Goldberg, D., 1991. What every computer scientist should know about floating-

point arithmetic. ACM Comput. Surv., 23(1):5–48. ISSN 0360-0300. doi:10.

1145/103162.103163. URL http://doi.acm.org/10.1145/103162.103163.

Goldberg, D.E., 1989. Genetic Algorithms in Search, Optimization & Machine

Learning. Addison-Wesley, Reading, MA.

Goldberg, D.E. and Deb, K., 1991. A comparative analysis of selection schemes

used in genetic algorithms. In G.J. E.Rawlins, editor, Foundations of Genetic

Algorithms, volume 1, pages 69–93. Morgan Kaufmann.

Goldberg, D.E., Korb, B., and Deb, K., 1989. Messy genetic algorithms motiva-

tion, analysis, and first results. Complex Systems, 3:493–530.

Grand, M., 1998. Patterns in Java Volume 1. Wiley, New York.

Grand, M., 1999. Patterns in Java Volume 2. Wiley, New York.

Grefenstette, J. and Baker, J.E., 1989. How genetic algorithms work: A critical

look at implicit parallelism. In J.D. Schaffer, editor, Proc. of the Third Int. Conf.

on Genetic Algorithms, pages 20–27. Morgan Kaufmann, San Mateo, CA.

Grefenstette, J.J., 1986. Optimization of control parameters for genetic algorithms.

Systems, Man and Cybernetics, IEEE Transactions on, 16(1):122–128.

Gregory, T.R., 2009. Understanding natural selection: Essential concepts and

common misconceptions. Evolution: Education and Outreach, 2(2):156–175.

URL http://dx.doi.org/10.1007/s12052-009-0128-1.

Hadka, D., 2016. Moea framework. URL http://moeaframework.org/.

Hansen, M.P. and Jaszkiewicz, A., 1998. Evaluating the quality of approxima-

tions to the non-dominated set. IMM, Department of Mathematical Modelling,

Technical Universityof Denmark.

http://doi.acm.org/10.1145/103162.103163
http://dx.doi.org/10.1007/s12052-009-0128-1
http://moeaframework.org/

References 266

Haupt, R. and Haupt, S.E., 2004. Practical Genetic Algorithms. Wiley, New

Jersey, 2nd edition. ISBN 9780471671749.

Ho, C.W., Lee, K.H., and Leung, K.S., 1999. A genetic algorithm based on mu-

tation and crossover with adaptive probabilities. In Evolutionary Computation,

1999. CEC 99. Proceedings of the 1999 Congress on, volume 1, page 775 Vol. 1.

Holland, J.H., 1992. Adaptation in Natural and Artificial Systems: An Introduc-

tory Analysis with Applications to Biology, Control and Artificial Intelligence.

MIT Press, Massachusetts, 2nd edition.

Hollander, M., Wolfe, D.A., and Chicken, E., 2014. Nonparametric Statistical

Methods, 3rd Ed. Wiley, Hoboken, New Jersey, 3 edition. ISBN 978-0-470-

38737-5.

Hughes, E.J., 2005. Evolutionary many-objective optimisation: many once or one

many? In 2005 IEEE Congress on Evolutionary Computation, volume 1, pages

222–227 Vol.1. ISSN 1089-778X. doi:10.1109/CEC.2005.1554688.

Inselberg, A., 2009. Parallel Coordinates: Visual Multidimensional Geometry and

Its Applications. Springer. ISBN 9780387215075. URL http://books.google.

com/books?id=Aj-xzznPcqgC.

Ishibuchi, H., Tsukamoto, N., and Nojima, Y., 2008. Evolutionary many-objective

optimization: A short review. In Evolutionary Computation, 2008. CEC 2008.

(IEEE World Congress on Computational Intelligence). IEEE Congress on,

pages 2419–2426.

Jacob, Christoph, R., 2016. How open is commercial scientific software? The

Journal of Physical Chemistry Letters, 7(2):351–353. doi:10.1021/acs.jpclett.

5b02609. URL http://dx.doi.org/10.1021/acs.jpclett.5b02609.

Jaeggi, D.M., Parks, G.T., Kipouros, T., and Clarkson, P.J., 2008. The devel-

opment of a multi-objective tabu search algorithm for continuous optimisation

problems. European Journal of Operational Research, 185(3):1192–1212. ID: 3.

http://books.google.com/books?id=Aj-xzznPcqgC
http://books.google.com/books?id=Aj-xzznPcqgC
http://dx.doi.org/10.1021/acs.jpclett.5b02609

References 267

Jones, D.F., Mirrazavi, S.K., and Tamiz, M., 2002. Multi-objective meta-

heuristics: An overview of the current state-of-the-art. European Journal of

Operational Research, 137(1):1–9.

Kennedy, J. and Eberhart, R., 1995. Particle swarm optimization. In Neural

Networks, 1995. Proceedings., IEEE International Conference on, volume 4,

pages 1942–1948 vol.4.

Khare, V., Yao, X., and Deb, K., 2003. Performance scaling of multi-objective

evolutionary algorithms. In C.M. Fonseca, P.J. Fleming, E. Zitzler, L. Thiele,

and K. Deb, editors, Evolutionary Multi-Criterion Optimization: Second Inter-

national Conference, EMO 2003, Faro, Portugal, April 8–11, 2003. Proceedings,

pages 376–390. Springer Berlin Heidelberg, Berlin, Heidelberg. ISBN 978-3-540-

36970-7. doi:10.1007/3-540-36970-8 27. URL http://dx.doi.org/10.1007/

3-540-36970-8_27.

Kipouros, T., Inselberg, A., Parks, G., and Savill, A.M., 2013. Parallel coordinates

in computational engineering design - AIAA 2013-1750. In 54th AIAA/AS-

ME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Con-

ference, Structures, Structural Dynamics, and Materials and Co-located Con-

ferences. American Institute of Aeronautics and Astronautics, Boston, Mas-

sachusetts. URL http://dx.doi.org/10.2514/6.2013-1750. 11; M1: 0;

doi:10.2514/6.2013-1750; M3: doi:10.2514/6.2013-1750.

Kipouros, T., Mleczko, M., and Savill, M., 2008. Use of parallel coordinates for

post-analyses of multi-objective aerodynamic design optimisation in turboma-

chinery. AIAA-2008-2138. In 4th AIAA Multi-Disciplinary Design Optimiza-

tion Specialist Conference, Structures, Structural Dynamics, and Materials and

Co-located Conferences. American Institute of Aeronautics and Astronautics,

Schaumburg, Illinois. URL http://dx.doi.org/10.2514/6.2008-2138. 29;

M1: 0; doi:10.2514/6.2008-2138; M3: doi:10.2514/6.2008-2138.

Kipouros, T., Peachey, T., Abramson, D., and Savill, M., 2012. Enhancing and

developing the practical optimisation capabilities and intelligence of automatic

http://dx.doi.org/10.1007/3-540-36970-8_27
http://dx.doi.org/10.1007/3-540-36970-8_27
http://dx.doi.org/10.2514/6.2013-1750
http://dx.doi.org/10.2514/6.2008-2138

References 268

design software AIAA 2012-1677. In 8th AIAA Multidisciplinary Design Opti-

mization Specialist Conference (MDO). American Institute of Aeronautics and

Astronautics.

Kirkpatrick, S., Gelatt, C.D., and Vecchi, M.P., 1983. Optimization by simulated

annealing. SCIENCE, 220(4598):671–680.

Knowles, J. and Corne, D., 2007. Quantifying the effects of objective space dimen-

sion in evolutionary multiobjective optimization. In Proceedings of the 4th In-

ternational Conference on Evolutionary Multi-criterion Optimization, EMO’07,

pages 757–771. Springer-Verlag, Berlin, Heidelberg. ISBN 978-3-540-70927-5.

URL http://dl.acm.org/citation.cfm?id=1762545.1762609.

Knowles, J.D. and Corne, D.W., 2000. Approximating the nondominated front

using the pareto archived evolution strategy. Evol. Comput., 8(2):149–172. ISSN

1063-6560. doi:10.1162/106365600568167.

Koza, J.R., 1998. Genetic programming: on the programming of computers by

means of natural selection. MIT Press, Cambridge, Massachusetts, 6th edition.

Kukkonen, S. and Deb, K., 2006. Improved pruning of non-dominated solutions

based on crowding distance for bi-objective optimization problems. In Evolu-

tionary Computation, 2006. CEC 2006. IEEE Congress on, pages 1179–1186.

ID: 1.

LaTeX project team, 2014. LaTeX - a document preparation system. URL http:

//latex-project.org/.

Lattarulo, V., Kipouros, T., and Parks, G., 2013. Application of the multi-

objective alliance algorithm to a benchmark aerodynamic optimization problem.

In Evolutionary Computation (CEC), 2013 IEEE Congress on, pages 3182–3189.

doi:10.1109/CEC.2013.6557959.

Laumanns, M., Rudolph, G., and Schwefel, H., 2001. Approximating the Pareto

Set: Concepts, Diversity Issues, and Performance Assessment. Research Report

CI-72/99, University of Dortmund, Collaborative Research Center 531.

http://dl.acm.org/citation.cfm?id=1762545.1762609
http://latex-project.org/
http://latex-project.org/

References 269

Lednicer, D., 2010. The incomplete guide to airfoil usage. URL http://

aerospace.illinois.edu/m-selig/ads/aircraft.html.

Li, M., Cai, Z., and Sun, G., 2004. An adaptive genetic algorithm with diversity-

guided mutation and its global convergence property. Journal of Central South

University of Technology, 11(3):323–327. URL http://dx.doi.org/10.1007/

s11771-004-0066-6.

Lukasiewycz, M., Glass, M., Reimann, F., and Helwig, S., 2016. Opt4J. URL

http://opt4j.sourceforge.net/.

Martin, R.C., 2002. Agile Software Development, Principles, Patterns, and Prac-

tices. Prentice Hall PTR, Upper Saddle River NJ.

Martin, R.C., 2003. UML for Java Programmers. Prentice Hall PTR, Upper

Saddle River NJ.

Mercurial community, 2014. Mercurial source control management. URL http:

//mercurial.selenic.com/.

Michalewicz, Z., Deb, K., Schmidt, M., and Stidsen, T., 1999. Evolutionary al-

gorithms for engineering applications. In K. Miettinen, P. Neittaanmäki, M.M.

Mäkelä, and J. Périaux, editors, Evolutionary Algorithms in Engineering and

Computer Science: Recent Advances in Genetic Algorithms, Evolution Strate-

gies, Evolutionary Programming, Genetic Programming and Industrial Applica-

tions, pages 135–161. Wiley, New York.

Mitchell, M., 1999. An Introduction to Genetic Algorithms. MIT Press, London,

England.

Mühlenbein, H., 1991. Evolution in time and space - the parallel genetic algorithm.

In Foundations Of Genetic Algorithms, pages 316–337. Morgan Kaufmann.

Mühlenbein, H., Schomisch, M., and Born, J., 1991. The parallel genetic algo-

rithm as function optimizer. Parallel Computing, 17(6 - 7):619 – 632. ISSN

0167-8191. doi:http://dx.doi.org/10.1016/S0167-8191(05)80052-3. URL http:

//www.sciencedirect.com/science/article/pii/S0167819105800523.

http://aerospace.illinois.edu/m-selig/ads/aircraft.html
http://aerospace.illinois.edu/m-selig/ads/aircraft.html
http://dx.doi.org/10.1007/s11771-004-0066-6
http://dx.doi.org/10.1007/s11771-004-0066-6
http://opt4j.sourceforge.net/
http://mercurial.selenic.com/
http://mercurial.selenic.com/
http://www.sciencedirect.com/science/article/pii/S0167819105800523
http://www.sciencedirect.com/science/article/pii/S0167819105800523

References 270

National Grid, 2014. Fields from specific power lines: 275 kV. URL http://www.

emfs.info/sources/overhead/specific/275-kv/.

Nicolis, G., 1995. Introduction to Nonlinear Science. Cambridge University Press,

Cambridge UK.

Noesis Solutions, 2016. Optimus. URL http://www.noesissolutions.com/

our-products/optimus.

Oliver, J.M., Kipouros, T., and Savill, A.M., 2013. A self-adaptive genetic

algorithm applied to multi-objective optimization of an airfoil. In M. Em-

merich, A. Deutz, O. Schuetze, T. Bäck, E. Tantar, A.A. Tantar, P. del Moral,

P. Legrand, P. Bouvry, and C.A. Coello, editors, EVOLVE - A Bridge be-

tween Probability, Set Oriented Numerics, and Evolutionary Computation IV,

volume 227 of Advances in Intelligent Systems and Computing, pages 261–

276. Springer International Publishing, Cham. ISBN 978-3-319-01127-1. URL

http://dx.doi.org/10.1007/978-3-319-01128-8_17.

Oliver, J.M., Kipouros, T., and Savill, A.M., 2014. Electrical power grid net-

work optimisation by evolutionary computing. Procedia Computer Science,

29(0):1948 – 1958. ISSN 1877-0509. doi:http://dx.doi.org/10.1016/j.procs.

2014.05.179. URL http://www.sciencedirect.com/science/article/pii/

S1877050914003561. 2014 International Conference on Computational Science.

Oliver, J.M., Kipouros, T., and Savill, A.M., expected 2016. Multi-objective

optimization by self-adaptive evolutionary algorithm. In M. Emmerich and

A. Deutz, editors, EVOLVE - A Bridge between Probability, Set Oriented Nu-

merics, and Evolutionary Computation 5, Series: Studies in Computational In-

telligence. Springer International Publishing, Switzerland.

Oliver, J.M., Kipouros, T., and Savill, A.M., June 2015. An evolu-

tionary computing-based approach to electrical power network configura-

tion. Emergence: Complexity and Organization, 17.2. URL http://

http://www.emfs.info/sources/overhead/specific/275-kv/
http://www.emfs.info/sources/overhead/specific/275-kv/
http://www.noesissolutions.com/our-products/optimus
http://www.noesissolutions.com/our-products/optimus
http://dx.doi.org/10.1007/978-3-319-01128-8_17
http://www.sciencedirect.com/science/article/pii/S1877050914003561
http://www.sciencedirect.com/science/article/pii/S1877050914003561
http://emergentpublications.com/ECO/about_eco.aspx
http://emergentpublications.com/ECO/about_eco.aspx

References 271

emergentpublications.com/ECO/about_eco.aspx. ECCS’13 European Con-

ference on Complex Systems; Satellite Workshop: Integrated Utility Services

IUS’13.

OptiY GmbH, 2016. OptiY. URL http://www.optiy.eu/.

Oracle, 2014. Java platform standard edition 7 documentation. URL http://

docs.oracle.com/javase/7/docs/.

Pandya, K.S. and Joshi, S.K., 2008. A survey of optimal power flow methods.

Journal of Theoretical and Applied Information Technology, 4(5):450–458.

Pearl, J., 1984. Heuristics: Intelligent Search Strategies for Computer Problem

Solving. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

ISBN 0-201-05594-5.

Polya, G., 2004. How to solve it - a new aspect of mathematical method. Princeton

University Press, Princeton, expanded princeton science library edition edition.

Purshouse, R.C. and Fleming, P.J., 2007. On the evolutionary optimization of

many conflicting objectives. Trans. Evol. Comp, 11(6):770–784. ISSN 1089-

778X. doi:10.1109/TEVC.2007.910138. URL http://dx.doi.org/10.1109/

TEVC.2007.910138.

R Development Core Team, 2014. The r project for statistical computing. URL

http://www.r-project.org/index.html.

Ram, R., Cooper, Y.N., Bhatia, V., Karthikeyan, R., and Periasamy, C.,

2014. Design optimization and analysis of NACA 0012 airfoil using compu-

tational fluid dynamics and genetic algorithm. Applied Mechanics and Ma-

terials, 664:111 – 116. doi:10.4028/www.scientific.net/AMM.664.111. URL

http://www.scientific.net/AMM.664.111.

Rangavajhala, S., Mullur, A., and Messac, A., 2007. The challenge of equal-

ity constraints in robust design optimization: examination and new approach.

http://emergentpublications.com/ECO/about_eco.aspx
http://emergentpublications.com/ECO/about_eco.aspx
http://www.optiy.eu/
http://docs.oracle.com/javase/7/docs/
http://docs.oracle.com/javase/7/docs/
http://dx.doi.org/10.1109/TEVC.2007.910138
http://dx.doi.org/10.1109/TEVC.2007.910138
http://www.r-project.org/index.html
http://www.scientific.net/AMM.664.111

References 272

Structural and Multidisciplinary Optimization, 34(5):381–401. ISSN 1615-

147X. doi:10.1007/s00158-007-0104-8. URL http://dx.doi.org/10.1007/

s00158-007-0104-8.

Rao, S.S., 1996. Engineering Optimization Theory And Practice. Wiley, New York,

4th edition.

Rosenberg, R.S., 1967. Simulation of genetic populations with biochemical proper-

ties. Ph.D. thesis, University of Michigan.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Lorensen, W., 1991.

Object-oriented Modeling and Design. Prentice-Hall, Inc., Upper Saddle River,

NJ, USA. ISBN 0-13-629841-9.

Rylatt, M., Gammon, R., Boait, P.J., Varga, L., Allen, P., Savill, M., Snape,

R., Lemon, M., Ardestani, B., Pakka, V., Fletcher, G., Smith, S., Fan, D.,

and Strathern, M., 2013. Cascade: An agent based framework for modeling the

dynamics of smart electricity systems. Emergence: Complexity and Organization

(Special Issue: Complexity and the Smart Electricity Grid), 15(2):1–13.

Saadat, H., 1999. Power System Analysis. McGraw-Hill, New York.

Sareni, B., Regnier, J., and Roboam, X., 2004. Recombination and self-adaptation

in multi-objective genetic algorithms. In P. Liardet, P. Collet, C. Fonlupt,

E. Lutton, and M. Schoenauer, editors, Artificial Evolution, volume 2936, pages

115–126. Springer Berlin Heidelberg.

Saxena, D.K. and Deb, K., 2007. Non-linear dimensionality reduction procedures

for certain large-dimensional multi-objective optimization problems: Employing

correntropy and a novel maximum variance unfolding. In S. Obayashi, K. Deb,

C. Poloni, T. Hiroyasu, and T. Murata, editors, Evolutionary Multi-Criterion

Optimization: 4th International Conference, EMO 2007, Matsushima, Japan,

March 5-8, 2007. Proceedings, pages 772–787. Springer Berlin Heidelberg,

Berlin, Heidelberg. ISBN 978-3-540-70928-2. doi:10.1007/978-3-540-70928-2 58.

URL http://dx.doi.org/10.1007/978-3-540-70928-2_58.

http://dx.doi.org/10.1007/s00158-007-0104-8
http://dx.doi.org/10.1007/s00158-007-0104-8
http://dx.doi.org/10.1007/978-3-540-70928-2_58

References 273

Schaefer, G. and Nolle, L., 2006. Generic black box optimisation algorithms for

colour quantisation. In A. Tiwari, R. Roy, J. Knowles, E. Avineri, and K. Dahal,

editors, Applications of Soft Computing, volume 36 of Advances in Intelligent

and Soft Computing, pages 15–21. Springer Berlin Heidelberg. ISBN 978-3-

540-29123-7. doi:10.1007/978-3-540-36266-1 2. URL http://dx.doi.org/10.

1007/978-3-540-36266-1_2.

Schaffer, J.D., 1984. Some experiments in machine learning using vector evaluated

genetic algorithms.

Schwefel, H.P., 1997. Advantages (and disadvantages) of evolutionary computation

over other approaches. In T. Bäck, D.B. Fogel, and Z. Michalewicz, editors,

Handbook of Evolutionary Computation, pages A1.3:1–A1.3:2. IOP Publishing,

Bristol, UK, 1st edition. ISBN 0750303921.

Sederberg, T.W. and Parry, S.R., 1986. Free-form deformation of solid geometric

models. SIGGRAPH Comput.Graph., 20(4):151–160.

Selig, M., 2014. Naca 0012 airfoils. URL http://aerospace.illinois.edu/

m-selig/ads/afplots/n0012.gif.

Selvan, K.M., 2015. On The Effect Of Shape Parameterization On Aerofoil Shape

Optimization. International Journal of Research in Engineering & Technology,

4:123 – 133. doi:DOI:10.15623/ijret.2015.0402016.

Siirtola, H., 2000. Direct manipulation of parallel coordinates. In Proceedings

of IEEE International Conference on Information Visualization, 2000., pages

373–378. ISBN 1093-9547. ID: 1.

Siirtola, H. and Räihä, K.J., 2006. Interacting with parallel coordinates. Inter-

acting with Computers, 18(6):1278–1309. URL http://iwc.oxfordjournals.

org/content/18/6/1278.full.pdf+html.

Smith, J. and Fogarty, T., 1996. Self adaptation of mutation rates in a steady state

genetic algorithm. In Proceedings of the 1996 IEEE Conference on Evolutionary

Computation, pages 318–323. ieee.

http://dx.doi.org/10.1007/978-3-540-36266-1_2
http://dx.doi.org/10.1007/978-3-540-36266-1_2
http://aerospace.illinois.edu/m-selig/ads/afplots/n0012.gif
http://aerospace.illinois.edu/m-selig/ads/afplots/n0012.gif
http://iwc.oxfordjournals.org/content/18/6/1278.full.pdf+html
http://iwc.oxfordjournals.org/content/18/6/1278.full.pdf+html

References 274

Sörensen, K., 2013. Metaheuristics - the metaphor exposed. International

Transactions in Operational Research, pages n/a–n/a. ISSN 1475-3995. doi:

10.1111/itor.12001. URL http://dx.doi.org/10.1111/itor.12001.

Sörensen, K. and Glover, F., 2013. Metaheuristics, 3rd ed. In S.I. Gass and M.C.

Fu, editors, Encyclopedia of operations research, pages 960–970. Springer, 3rd

edition.

Storn, R. and Price, K., 1997. Differential evolution - a simple and efficient heuris-

tic for global optimization over continuous spaces. Journal of Global Optimiza-

tion, 11(4):341–359.

Tan, K.C., Chiam, S.C., Mamun, A.A., and Goh, C.K., 2009. Balancing explo-

ration and exploitation with adaptive variation for evolutionary multi-objective

optimization. European Journal of Operational Research, 197(2):701–713.

Tan, K.C., Goh, C.K., Yang, Y.J., and Lee, T.H., 2006. Evolving better popula-

tion distribution and exploration in evolutionary multi-objective optimization.

European Journal of Operational Research, 171(2):463–495.

The MathWorks, Inc., 2016a. MATLAB. URL https://uk.mathworks.com/

products/matlab/.

The MathWorks, Inc., 2016b. Optimization Toolbox. URL https://uk.

mathworks.com/products/optimization/.

The Object Management Group, 2014. Unified modeling language. URL http:

//www.uml.org/.

Tusar, T. and Filipic, B., 2007. Differential evolution versus genetic algorithms in

multiobjective optimization. In Proceedings of the 4th international conference

on Evolutionary multi-criterion optimization, EMO’07, pages 257–271. Springer-

Verlag, Berlin, Heidelberg.

Vekaria, K. and Clack, C., 1998. Selective Crossover in Genetic Algorithms: An

Empirical Study. In Proceedings of 5th Conference on Parallel Problem Solving

from Nature, volume LNCS 1498, pages 438–447. Springer Verlag.

http://dx.doi.org/10.1111/itor.12001
https://uk.mathworks.com/products/matlab/
https://uk.mathworks.com/products/matlab/
https://uk.mathworks.com/products/optimization/
https://uk.mathworks.com/products/optimization/
http://www.uml.org/
http://www.uml.org/

References 275

Veldhuizen, D. and Lamont, G., 2000. Multiobjective evolutionary algorithms:

Analyzing the state-of-the-art. Evolutionary Computation, 8(2):125–147. ISSN

1063-6560. doi:10.1162/106365600568158.

Wolpert, D.H., 2012. What the no free lunch theorems really mean; how to

improve search algorithms. Sante Fe Institute working paper. URL http:

//www.santafe.edu/media/workingpapers/12-10-017.pdf.

Wolpert, D.H. and Macready, W.G., 1997. No free lunch theorems for optimiza-

tion. IEEE Transactions On Evolutionary Computation, 1(1):67–82.

Zalzala, A.M.S. and Fleming, P.J., 1997. Genetic Algorithms in Engineering Sys-

tems. Institution of Electrical Engineers, Stevenage.

Zell, A. et al., 2016. EvA2. URL http://www.ra.cs.uni-tuebingen.de/

software/JavaEvA/introduction.html.

Zhang, J. and Sanderson, A.C., 2007. Jade: Self-adaptive differential evolution

with fast and reliable convergence performance. In Evolutionary Computation,

2007. CEC 2007. IEEE Congress on, pages 2251–2258. ID: 1.

Zhang, J. and Sanderson, A.C., 2008. Self-adaptive multi-objective differential

evolution with direction information provided by archived inferior solutions. In

Evolutionary Computation, 2008. CEC 2008. (IEEE World Congress on Com-

putational Intelligence). IEEE Congress on, pages 2801–2810. ID: 1.

Zitzler, E., Deb, K., and Thiele, L., 2000. Comparison of multiobjective evolu-

tionary algorithms: Empirical results. Evolutionary computation, 8:173–195.

Zitzler, E., Laumanns, M., Thiele, L., Fonseca, C.M., and da Fonseca, V.G., 2002.

Why quality assessment of multiobjective optimizers is difficult. In GECCO

2002: Proceedings of the Genetic and Evolutionary Computation Conference,

New York, USA, 9-13 July 2002, pages 666–674.

Zitzler, E. and Thiele, L., 1998. Multiobjective optimization using evolutionary

algorithms - a comparative case study. In Parallel Problem Solving From Nature

- PPSN V, pages 292–301. Springer.

http://www.santafe.edu/media/workingpapers/12-10-017.pdf
http://www.santafe.edu/media/workingpapers/12-10-017.pdf
http://www.ra.cs.uni-tuebingen.de/software/JavaEvA/introduction.html
http://www.ra.cs.uni-tuebingen.de/software/JavaEvA/introduction.html

References 276

Zitzler, E. and Thiele, L., 1999. Multiobjective evolutionary algorithms: a compar-

ative case study and the strength pareto approach. Evolutionary Computation,

IEEE Transactions on, 3(4):257–271. ID: 1.

Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., and da Fonseca, V.G., 2003.

Performance assessment of multiobjective optimizers: An analysis and review.

IEEE Transactions on Evolutionary Computation, 7(2):117–132.

	Declaration of Authorship
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Glossary
	Physical Constants
	Symbols
	1 Introduction
	1.1 Thesis organisation
	1.2 Background and motivation
	1.3 Thesis aims and objectives
	1.4 Publications
	1.5 Software Produced

	2 Heuristic multi-objective optimisation algorithms
	2.1 Introduction
	2.2 Features of real-world optimisation
	2.3 Optimisation
	2.3.1 Optimisation overview
	2.3.2 Multi-objective optimisation

	2.4 Performance of optimisation algorithms
	2.5 Heuristics and meta-heuristics
	2.5.1 Heuristics
	2.5.2 Meta-heuristics

	2.6 Evolutionary algorithms
	2.6.1 Algorithm adjuncts and concerns
	2.6.2 Self-adaptation

	2.7 Optimisation frameworks
	2.7.1 Synopsis
	2.7.2 Non-commercial frameworks
	2.7.3 Commercial frameworks

	3 The self-adaptive MOOEA
	3.1 Introduction
	3.2 Ganesh: Framework and algorithm
	3.2.1 The GA Algorithm
	3.2.1.1 Simplified non-dominated sorting

	3.2.2 Self-adaptation
	3.2.3 Framework and architecture
	3.2.4 Algorithm characteristics, benefits and novelty
	3.2.4.1 Synopsis
	3.2.4.2 Self-adaptivity
	3.2.4.3 Crossover mechanisms
	3.2.4.4 Chromosome types
	3.2.4.5 Plug-in experiment code
	3.2.4.6 Using external software as (supplier of) objective functions
	3.2.4.7 Callable from external software
	3.2.4.8 Duplicate solutions control
	3.2.4.9 Constraints
	3.2.4.10 Chromosome Initialisers
	3.2.4.11 Population Initialisers
	3.2.4.12 Operator Configuration
	3.2.4.13 Problem-specific parameters
	3.2.4.14 Resume from previous run
	3.2.4.15 Command line run-time parameters
	3.2.4.16 Conclusion

	3.3 Benchmark test problems and results
	3.3.1 Problem definitions
	3.3.2 Benchmark test results

	3.4 Comparison with random search
	3.4.1 Random search algorithm
	3.4.2 Further optimisation test problems
	3.4.2.1 DTLZ1
	3.4.2.2 DTLZ2
	3.4.2.3 DTLZ3
	3.4.2.4 DTLZ4
	3.4.2.5 DTLZ5
	3.4.2.6 DTLZ6
	3.4.2.7 DTLZ7
	3.4.2.8 DTLZ8
	3.4.2.9 DTLZ9
	3.4.2.10 MOKP 0/5

	3.4.3 Results
	3.4.3.1 DTLZ1
	3.4.3.2 DTLZ2
	3.4.3.3 DTLZ3
	3.4.3.4 DTLZ4
	3.4.3.5 DTLZ5
	3.4.3.6 DTLZ6
	3.4.3.7 DTLZ7
	3.4.3.8 DTLZ8
	3.4.3.9 DTLZ9
	3.4.3.10 MOKP 0/5

	3.4.4 Summary

	3.5 Experiments in self-adaptation
	3.5.1 Summary

	3.6 Methods and materials

	4 A real-world airfoil application test case
	4.1 Introduction to airfoil optimization
	4.2 Airfoil geometry
	4.3 Modifying XFoil
	4.4 Defining the optimisation
	4.5 Results
	4.5.1 Comparing algorithms
	4.5.1.1 Statistical analysis
	4.5.1.2 Control parameter trends
	4.5.1.3 Visualising results with parallel coordinates
	4.5.1.4 Visualising combined data sets with parallel coordinates

	4.5.2 Alternative crossover operator
	4.5.2.1 Statistical analysis

	4.6 Airfoil comparison with other work
	4.6.1 Comparison summary

	4.7 Summary

	5 Multi-objective optimisation of an electrical power network
	5.1 Electrical power networks
	5.2 Distributed generation
	5.3 Integrating with power market simulation
	5.4 Defining the optimisation
	5.4.1 Optimising for DG allocation by generation cost
	5.4.2 Optimising for DG allocation by sum of DG units
	5.4.2.1 Part one: Original line capacity
	5.4.2.2 Part two: Change line capacity

	5.4.3 Optimising for DG allocation by sum of DG units and line capacities

	5.5 Results
	5.5.1 Optimising for DG allocation by generation cost
	5.5.2 Optimising for DG allocation by sum of DG units
	5.5.3 Optimising for DG allocation and line capacities
	5.5.3.1 Supplementary Results

	5.6 Comparison with random search
	5.7 Summary

	6 Conclusions and recommendations
	6.1 Contributions
	6.2 Limitations
	6.3 Recommendations for further work
	6.3.1 Power optimisation
	6.3.2 Directed mutation
	6.3.3 Hybridise with a genetic program to act as a surrogate model

	6.4 Acknowledgements
	6.5 Concluding remarks

	A Poster
	B Software information
	B.1 Ganesh
	B.1.1 Ganesh Parameters

	B.2 Utility programs produced
	B.2.1 GADataCollect
	B.2.2 GAResultPlot
	B.2.3 GA-EvalFile
	B.2.4 PXmlTest
	B.2.5 Rastrigin's function script

	C Tables for power optimisation
	References

