
University of Massachusetts Boston
ScholarWorks at UMass Boston

Graduate Doctoral Dissertations Doctoral Dissertations and Masters Theses

5-31-2017

Evolutionary Game Theoretic Multi-Objective
Optimization Algorithms and Their Applications
Yi Ren Cheng
University of Massachusetts Boston

Follow this and additional works at: https://scholarworks.umb.edu/doctoral_dissertations

Part of the Computer Sciences Commons

This Open Access Dissertation is brought to you for free and open access by the Doctoral Dissertations and Masters Theses at ScholarWorks at UMass
Boston. It has been accepted for inclusion in Graduate Doctoral Dissertations by an authorized administrator of ScholarWorks at UMass Boston. For
more information, please contact library.uasc@umb.edu.

Recommended Citation
Ren Cheng, Yi, "Evolutionary Game Theoretic Multi-Objective Optimization Algorithms and Their Applications" (2017). Graduate
Doctoral Dissertations. 340.
https://scholarworks.umb.edu/doctoral_dissertations/340

https://scholarworks.umb.edu?utm_source=scholarworks.umb.edu%2Fdoctoral_dissertations%2F340&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umb.edu/doctoral_dissertations?utm_source=scholarworks.umb.edu%2Fdoctoral_dissertations%2F340&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umb.edu/diss_theses?utm_source=scholarworks.umb.edu%2Fdoctoral_dissertations%2F340&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umb.edu/doctoral_dissertations?utm_source=scholarworks.umb.edu%2Fdoctoral_dissertations%2F340&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.umb.edu%2Fdoctoral_dissertations%2F340&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umb.edu/doctoral_dissertations/340?utm_source=scholarworks.umb.edu%2Fdoctoral_dissertations%2F340&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library.uasc@umb.edu

EVOLUTIONARY GAME THEORETIC MULTI-OBJECTIVE OPTIMIZATION
ALGORITHMS AND THEIR APPLICATIONS

A Dissertation Presented

by

YI REN CHENG

Submitted to the Office of Graduate Studies,
University of Massachusetts Boston,

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

May 2017

Computer Science Program

© 2017 by Yi Ren Cheng
All rights reserved

EVOLUTIONARY GAME THEORETIC MULTI-OBJECTIVE OPTIMIZATION

ALGORITHMS AND THEIR APPLICATIONS

A Dissertation Presented

by

YI REN CHENG

Approved as to style and content by:

Junichi Suzuki, Associate Professor
Chairperson of Committee

Dan A. Simovici, Professor
Member

Ding Wei, Associate Professor
Member

Alfred G. Noel, Professor
Member

Dan A. Simovici, Program Director
Computer Science Program

Peter Fejer, Chairperson
Computer Science Department

ABSTRACT

EVOLUTIONARY GAME THEORETIC MULTI-OBJECTIVE OPTIMIZATION

ALGORITHMS AND THEIR APPLICATIONS

May 2017

Yi Ren Cheng,
B.A., University of Ramon Llull, Spain
M.E., University of Ramon Llull, Spain

M.S., University of Massachusetts Boston
Ph.D., University of Massachusetts Boston

Directed by Associate Professor Junichi Suzuki

Multi-objective optimization problems require more than one objective functions to be

optimized simultaneously. They are widely applied in many science fields, including engi-

neering, economics and logistics where optimal decisions need to be taken in the presence

of trade-offs between two or more conflicting objectives. Most of the real world multi-

objective optimization problems are NP-Hard problems. It may be too computationally

costly to find an exact solution but sometimes a near optimal solution is sufficient. In

these cases Multi-Objective Evolutionary Algorithms (MOEAs) provide good approximate

solutions to problems that cannot be solved easily using other techniques. However Evo-

lutionary Algorithm is not stable due to its random nature, it may produces very different

results every time it runs. This dissertation proposes an Evolutionary Game Theory (EGT)

framework based algorithm (EGTMOA) that provides optimality and stability at the same

time. EGTMOA combines the notion of stability from EGT and optimality from MOEA

iv

to form a novel and promising algorithm to solve multi-objective optimization problems.

This dissertation studies three different multi-objective optimization applications, Cloud

Virtual Machine Placement, Body Sensor Networks, and Multi-Hub Molecular Commu-

nication along with their proposed EGTMOA framework based algorithms. Experiment

results show that EGTMOAs outperform many well known multi-objective evolutionary

algorithms in stability, performance and runtime.

v

ACKNOWLEDGEMENTS

It is a long journey to complete this dissertation. I can not accomplish it without all your
helps. Here, I would like to deliver my most sincerely gratitude to the following.
My advisor Prof. Junichi Suzuki, for the continuous support of my Ph.D study and related
research, for his patience, motivation, guidance and immense knowledge.
Dr. Dan Simovici, Dr. Wei Ding, and Dr. Alfred Noel for their insightful comments and
encouragement. And thank you for being part of my thesis committee.
Computer Science Department faculty, for their tutoring with excellent courses and for
providing useful academic resources. Computer Science staff, for their great help in my
academic administration and guidance.
My friends Thamer Altuwaiyan, Nada Attar, Dung Phan, Ting Zhang, Quynh Vo, Tong
Wang, Kaixun Hua for their accompany, friendship and support through all my academic
years in UMASS Boston.
A big thanks to my parents (Jianwei Ren and Xinguang Cheng) and my parents in law
(Guanghui Xiao and Hong Wang), for their giving love without any returns and for their
constantly support and guidance in my entire life.
My daughter Jana Ren, for well behaved and being a good kid supporting her father during
all these time.
In the end I would like to specially thanks my wife Wen Xiao Ren, for being an excellent
life partner, a responsible and patient mother, a lovely and brilliant wife. Your love is the
fuel that allows me to do the impossible.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . vi

LIST OF TABLES . ix

LIST OF FIGURES . xii

CHAPTER Page

1. INTRODUCTION . 1

1.1. Related works . 2

1.2. Contributions . 7

1.3. Workflow . 8

2. BACKGROUND . 10

2.1. Multi-Objective Optimization 10

2.2. Multi-Objective Evolutionary Algorithms 13

2.3. Game Theory . 16

2.4. Evolutionary Game Theory 18

3. Evolutionary Game Theoretic Multi-Objective Algorithms (EGT-
MOA) . 23

3.1. Baseline Algorithm . 24

3.2. Quality Indicators . 25

3.3. Constraints handling . 28

3.4. Mutation . 29

3.5. Termination . 30

3.6. Stability Analysis . 31

4. Virtual Machine Deployment on Cloud Data Center 36

4.1. Introduction . 36

4.2. State of the art . 37

vii

4.3. Problem Statement . 38

4.4. Cielo . 43

4.5. AGEGT . 53

4.6. Cielo-LP . 69

5. Body Sensor Network . 101

5.1. Introduction . 101

5.2. State of the art . 102

5.3. Problem Formulation . 103

5.4. BitC . 110

5.5. Experiment . 115

5.6. Conclusion . 121

6. Molecular Communication . 133

6.1. Introduction . 133

6.2. Problem Formulation . 135

6.3. EMMCO . 140

6.4. Experiment . 142

6.5. Conclusion . 144

7. Conclusion . 149

8. Future Directions . 150

8.1. Noise Handling . 150

8.2. Speeding Up . 150

8.3. Fairness . 151

8.4. Cloud simulator extension 151

REFERENCE LIST . 152

viii

LIST OF TABLES

Table Page

1. Message Arrival Rate and Message Processing Time 81

2. Cielo Simulation Settings . 81

3. P-states in Intel Core2 Quad Q6700 82

4. Cielo Execution Time Comparison 82

5. Performance of Cielo, FFA and BFA 83

6. Message Arrival Rate and Message Processing Time 86

7. P-states in Intel Core2 Quad Q6700 87

8. Parameter Settings for AGEGT 87

9. Constraint Combinations . 87

10. Impacts of Distribution Index Values on Hypervolume (HV) Per-
formance in AGEGT . 88

11. Convergence Speed of AGEGT, EGT-GLS, EGT and NSGA-II . . 88

12. Comparison of AGEGT and NSGA-II with Distance Metrics . . . 88

13. Comparison of AGEGT, NSGA-II, FFA and BFA in Objective Values 89

14. Stability of Objective Values in AGEGT and NSGA-II 90

15. Message Arrival Rate and Message Processing Time 92

16. P-states in Intel Core2 Quad Q6700 92

17. Parameter Settings for Cielo-LP 92

ix

18. Constraint Combinations . 93

19. Impacts of Distribution Index Values on Hypervolume (HV) Per-
formance in Cielo-LP . 93

20. Impacts of LP Rates on the Execution Time Performance 93

21. Performance Improvement of Cielo-LPs against Cielo-BASE . . . 98

22. Comparison of Objective Values and Execution Time between Cielo−
LPWS and Linear Programming 98

23. Comparison of Convergence Speed between Cielo-BASE and Cielo−
LPWS . 98

24. Comparison of Objective Values among Cielo−LPWS, NSGA-II,
FFA and BFA . 99

25. Stability of Objective Values in Cielo−LPWS and NSGA-II 100

26. Body Sensor Networks Simulation Settings 126

27. Energy Harvesting Configurations 127

28. Constraint Combinations . 127

29. Impacts of Distribution Index Values on Hypervolume (HV) 128

30. Comparison of BitC’s Variants in Hypervolume 128

31. Comparison of BitC-HV and NSGA-II 128

32. Stability of Objective Values in BitC-HV and NSGA-II 129

33. Objective Values of BitC-HV under Different Constraint Combi-
nations . 129

34. Comparison of BitC-HV and NSGA-II in BSN Lifetime and Data
Yield with Energy Harvesting (EH) Enabled and Disabled 132

x

35. Notation table . 132

36. Molecular Communication Simulation Settings 147

37. Performance comparison of EMMCO and Random Search 148

xi

LIST OF FIGURES

Figure Page

1. A multi-objective optimization problem: buying a used car 1

2. Example of a Pareto curve and Pareto front of two objective functions 3

3. Geometrical representation of the weight-sum approach in the non-
convex Pareto curve case . 4

4. Geometrical representation of the ε-constraints approach in the
non-convex Pareto curve case . 5

5. An example of multi-objective optimization problem with two con-
flicting objectives . 11

6. Search spaces in multi-objective optimization problems 12

7. Three Pareto solutions for data center problem 13

8. A concise work flow of Evolutionary Algorithm 14

9. EA is highly unstable, it may produces very different results in
each run. 15

10. Prisoner’s Dilemma . 17

11. Evolution process in Evolutionary Game Theory 22

12. Dividing the entire whole multi-objective problem into M sub prob-
lems. 24

13. Evolution workflow of a population in Baseline EGTMOA algo-
rithm. 25

14. Quality comparison with two objectives using Pareto Dominance. . 27

15. Quality comparison with two objectives using Hypervolume. . . . 28

xii

16. An example of polynomial mutation with 6 decision variables. . . . 29

17. Three-Tiered Application Architecture 39

18. Example of Cielo Deployment Strategies 46

19. Cielo Pareto Dominance . 52

20. Cielo Hypervolume . 53

21. Cielo Hypervolume & Pareto Dominance 54

22. Cielo Hypervolume Comparison 55

23. AGEGT Example Deployment Strategies 57

24. Objective Values of AGEGT under Two Constraint Combinations . 64

25. Objective Values of EGT-GLS under Two Constraint Combinations 65

26. Objective Values of EGT under Two Constraint Combinations . . . 66

27. Comparison of AGEGT, EGT-GLS and EGT in Hypervolume (HV) 67

28. Trajectory of AGEGT’s Solution through Generations 68

29. Cielo-LP Example Deployment Strategies 71

30. Cielo-BASE’s Objective Values with and without Constraints (CM
and C∞ . 94

31. Cielo− LPWS’s Objective Values w/ & w/o Constraints (CM and
C∞). LP rate: 0.5% . 95

32. Cielo− LPWS’s Objective Values w/ & w/o Constraints (CM and
C∞). LP rate: 5% . 96

33. Cielo− LPWS’s Objective Values w/ & w/o Constraints (CM and
C∞). LP rate: 10% . 97

xiii

34. Trajectory of Cielo-LP’s Solution through Generations 100

35. A Push-Pull Hybrid Communication in BitC 105

36. Virtual sensor communication diagram 106

37. Local Search Comparison . 118

38. Three-dimensional Objective Spaces 119

39. 20 BSNs and 100 BSNs performance comparison 131

40. Diffusive communication . 136

41. Directional communication . 136

42. Stop-and-Wait Automatic Repeat Request communication protocol 137

43. Illustration of a multi-hub intra-body molecular communication . . 139

44. Objective Values of EMMCO with distance between transmitter
and receiver 30µm . 144

45. Objective Values of EMMCO with distance between transmitter
and receiver 50µm . 144

46. Objective Values of EMMCO with distance between transmitter
and receiver 90µm . 145

xiv

CHAPTER 1

INTRODUCTION

Many real world problems are often require to satisfy multiple criterion at the same time.

Those problems are called multi-objective optimization problems where more than one

objective are presented and need to be optimized simultaneously. We could find those kind

of problems everywhere in the world, and anytime around our ordinary life. For instance

buying a used car we may consider minimizing the cost and mileage while maximizing the

MPH (mileage per hour), or designing an aircraft that need to satisfy hundreds of criteria

(speed, capacity, energy consumption, acquisition cost, assembly hours, etc...).

Figure 1: A multi-objective optimization problem: buying a used car

1

Multi-objective optimization problems often deal with multiple conflicting objectives

and may subject to many constraints. In the case of buying a used car Fig. 1, we could

have several constraints such as our budget, acceptable mileage, manufacture years, car

brand and model, so on. Due to its computational complexity and the huge solution space

presented, it has always been a challenge solving multi-objective optimization problems.

In fact, most of real-life multi-objective optimization problems are often of exponential

size, a straightforward reduction from the knapsack problem shows that they are NP-hard

to compute. Thus, it is computationally too costly to find an exact optimal solution if one

exists. And most of the time in real applications it is quite hard for the decision maker to

have all the information to correctly and completely formulate them. Therefore, in such sit-

uations finding a near optimal solution is a practical approach that fits into multi-objective

optimization problems.

The set of all feasible solutions is called Pareto curve or surface Fig. 2 which represents

the solution space of the multi-objective optimization problem. Due to conflicting objec-

tives and constraints multi-objective optimization problems lead to not a single optimal

solution, but a set of non-dominated solutions which is called Pareto front Fig. 2. More

details about Pareto optimal solutions will be given in section 2.1.

Numerous researches have been studied with many different methods proposed to solve

multi objective optimization problems. In the next section we are going to review a little

what historically have done and what the current state of the art is in question.

1.1 Related works

Many techniques to solve multi-objective optimization problems were proposed in the past.

In the following we will start revising some of the most relevant techniques described in

[Car08].

2

Figure 2: Example of a Pareto curve and Pareto front of two objective functions

• The Weighted-sum method

The basic idea is to combine multiple objectives into one single-objective scalar

function in order to solve a multi-objective problem. This approach is also know as

weighted-sum or scalarization method. The goal is to minimize a positively weighted

sum of the objectives.

min
n

∑
i=1

γi · fi(x)

n

∑
i=1

γi = 1

γi > 0, i = 1, ...,n

x ∈ S

After combining multiple objectives into one single objective we have a new opti-

mization problem with an unique objective function. Two main drawbacks are pre-

sented in this approach. The first one is the possibly huge computation time involved

3

by considering different weight values. And when the Pareto curve is non-convex

Fig. 3 there is a set of points that cannot be reached for any combination of the

weight vector.

Figure 3: Geometrical representation of the weight-sum approach in the non-convex Pareto

curve case

• ε-constraints Method

The decision maker chooses one objective out of n to be minimized, and the remain-

ing objectives are constrained to be less than or equal to given target values.

min f j(x)

fi(x)≤ εi,∀i ∈ {1, ...,n}\{ j}

x ∈ S

One advantage of the ε-constraints method is that it is able to achieve efficient points

in a non-convex Pareto curve. In Fig. 4, when f2(x) = ε2, f1(x) is an efficient point

of the non-convex Pareto curve.

4

Figure 4: Geometrical representation of the ε-constraints approach in the non-convex

Pareto curve case

The drawback of this method is that the decision maker has to choose appropriate

upper bounds εi values for the constraints. Moreover, the method is not efficient if

the number of objective functions is greater than two.

• Multi-level Programming

Multi-level programming aims to find one optimal point in the entire Pareto surface.

Multi-level programming optimizes the n objectives in a predefined order. It firstly

minimizes the first objective function, and then it searches for minimizing the sec-

ond most important objective, and so on until all the objective function have been

optimized.

It works if the order among objectives is meaningful and user is not interested in the

continuous trade off among the functions. The main drawback is that the less impor-

tant objective functions tend to have no influence on the overall optimal solution.

• Goal Programming

5

Goal Programming attempts to find specific meta values of these objectives. In fact,

it does not solve directly a multiple objectives optimization problem, it tries to find a

solution that accomplishes a specific goal. An example is shown below.

f1(x)≥ v1

f2(x) = v2

f3(x)≤ v3

x ∈ S

• Evolutionary Algorithm

Most recent studies focus on evolutionary algorithms (EA) which shown to be a

promising method solving multi-objective optimization problems with conflicting

objectives by approximating the Pareto solution set. EA is inspired by biological

evolution, it uses biologic mechanisms such as reproduction, mutation, crossover,

and selection. More details will be given later in section 2.2.

The main advantage is that EAs are metaheuristic algorithms, they do not make any

assumption about the underlying fitness landscape. Therefore EA often perform well

approximating solutions to all types of problems in many diverse fields as engineer-

ing, biology, economics, marketing, social sciences, so on.

Some of the most well known EAs are

– Genetic Algorithm: Probably this is the most popular type of EA. GAs are

commonly used to generate high quality solution set by relying on biological

inspired operators such as mutation, crossover and selection. Non-dominated

Sorting Genetic Algorithm - II known as NSGA-II and Strength Pareto Evolu-

6

tionary Algorithm 2 also known as SPEA-2 are well known variants of GA that

have become as GA standard approaches.

– Differential Evolution: DE optimizes a problem by maintaining a population of

candidate solutions and to create new candidate solutions by combining existing

ones using a differential equation. And then keeping the solution with the best

fitness value on the optimization problem at hand.

The main drawback of EA is that it relies heavily on stochastic mechanism, due to

its random nature EA is highly unstable in general. Unstable here means under the

same problem setting EA could give a very different performance result for each run.

1.2 Contributions

The main goal of this dissertation is to propose a novel algorithm Evolutionary Game Theo-

retic Multi-Objective Algorithms (EGTMOA) Chapter 3 that aims to solve multi-objective

optimization problems considering stability, optimality and running time. EGTMOA is an

Evolutionary Game Theory framework based Evolutionary Algorithm. It combines the sta-

bility property from EGT and the optimality notion from EA together to form a new type

of metaheuristic algorithm that guarantees to deliver a stable and high quality solution in a

reasonable running time. Main contributions are listed as follow.

1. Evolutionary Game Theoretic Multi-Objective Algorithms (EGTMOA): a new meta-

heuristic algorithm framework EGTMOA is proposed to solve multi-objective opti-

mization problems in a stable, optimal and fast manner.

2. Cloud Virtual Machine Deployment: Formulation of a new multi-objective optimiza-

tion problem with four objectives and four constraints that is designed to describe the

resource allocation problem in a Cloud Data Center.

7

3. Cielo, AGEGT, and Cielo-LP: Description of three EGTMOA framework based al-

gorithms that are aimed to solve the formulated Cloud Virtual Machine Deployment

multi-objective optimization problem. Their evaluation are performed and studied

through different experiments.

4. Body Sensor Network: Creating a new multi-objective optimization problem that

attempting to formulate a constrained data transmitting scheduling problem for in-

body sensor networks environment

5. BitC: Another EGTMOA framework based algorithm that is designed to solve the

Body Sensor Network problem. Evaluation of EGTMOA is performed and studied

through different experiments.

6. Molecular Communication: It simulates an in-body Multi-Hub Molecular Commu-

nication environment, and formulates a new non-constrained two objective optimiza-

tion problem to improve its communication performance and efficiency

7. EMMCO: A variant of EGTMOA algorithm that is proposed to solve the Multi-

Hub Molecular Communication problem. Evaluation of EMMCO is performed and

studied through different experiments.

1.3 Workflow

The rest of dissertation is organized as follow: Chapter 2 provides an overview of related

concepts that lays foundation for this dissertation. Chapter 3 gives in detail all the compo-

nents of the proposed approach EGTMOA. In Chapter 4, 5 and 6 I describe three different

multi-objective optimization applications, Cloud Virtual Machine Deployment, Body Sen-

sor Network, and Multi-Hub Molecular Communication with their respective proposed

EGTMOA framework based algorithms and experiment evaluations. Chapter 7 concludes

8

the main contributions of this dissertation, and Chapter 8 discusses potential future research

directions originated from this thesis.

9

CHAPTER 2

BACKGROUND

2.1 Multi-Objective Optimization

Many classical optimization problem consists of optimizing a single objective, for instance

finding the shortest path from an origin to a destination in a network is one of the most

classical optimization problems in transportation and logistic. However most of real-life

problems in nature have several and possibly conflicting objectives to be satisfied simul-

taneously. Fig. 5 shows an example of a multi-objective optimization problem with two

conflicting objectives, where we try to find an optimal solution that minimizing the cost of

a data center while reducing its data transmission latency. Here in this example the cost

could be money that is spent on Internet connection, data center power consumption, hard-

ware equipments, so on. And it is not hard to conclude that more money we spent better

equipments and connectivity we have, thus as consequence faster the data transmission is

and less latency we could have. Since our objective is to minimize the cost and latency, it is

clear that these two objectives are conflicting with each other. The utopia point represents

the best ideal solution to the formulated problem that usually is not possible to be reached.

In this case it is (0,0) which means it costs 0$ to have a latency of 0ms, and of course this

is not possible.

10

Figure 5: An example of multi-objective optimization problem with two conflicting objec-

tives

In mathematical terms, a multi-objective optimization problem can be formulated as

follow.

min(f1(x), f2(x), ..., fk(x))

s.t. x ∈ X

Where x∈Rn is a vector of n decision variables which represent the values to be chosen

in the optimization problem. X⊆ Rn denotes the feasible set that is implicitly determined

by a set of equality and inequality constraints. f : Rn → Rk is a vector of k objective

functions that map n decision variables to k objective values Fig. 6. In multi-objective op-

timization, the sets Rn and Rk are known as decision variable space and objective function

space respectively.

The ultimate goal in a multi-objective optimization problem is to find an optimal so-

lution that satisfy simultaneously all the objectives, however multi-objective optimization

problems often do not exist a single solution that optimizes each objective at the same time

11

Figure 6: Search spaces in multi-objective optimization problems

because of conflicting objectives. In this case, there exists a number of Pareto optimal

solutions.

2.1.1 Pareto Optimal Solutions

The set of all feasible solutions is called Pareto curve or surface Fig. 2 which represents

the solution space of the multi-objective optimization problem. A solution is called Pareto

optimal, if none of the objective functions can be improved in value without degrading

some of the other objective values. And the set of Pareto optimal solutions forms Pareto

front, where all solution are non-dominated with each other.

Considering the data center example in Fig. 5 let’s give three solutions with respective

objective values {S1 = (30ms,420K$),S2 = (15ms,380K$),S3 = (10ms,400K$)} Fig. 7.

It is clear that S2 outperforms S1 in both objectives latency and cost. However S2 is better

than S3 in cost objective value, but worst in latency. Therefore S2 and S3 are non-dominated

with each other, and they both belong to the Pareto front set.

12

Figure 7: Three Pareto solutions for data center problem

2.2 Multi-Objective Evolutionary Algorithms

Many real world multi-objective optimization problem are NP-Hard Problems. It is not

feasible to use brute force search for solving those problems due to the huge amount of

computation involved. It is too computationally costly to find an exact solution but some-

times a near optimal solution is sufficient. In these cases MOEAs provide good approxi-

mate solutions to problems that cannot be solved easily using other techniques. EA uses

biological evolution inspired mechanisms, such as mutation, crossover, and selection. Fig.

8 shows a concise work flow of Evolutionary Algorithm where Xn is the vector of decision

variables and Ym is the vector of objectives.

MOEAs are stochastic search and optimization methods that lead a population of can-

didate solutions toward the Pareto front through evolutionary mechanism and biological

operators. Algorithm 2.2.1 shows steps that a traditional EA follows. Candidate solutions

also called individuals in EA term are set of different decision variable vectors that are

randomly generated initially (Line 2). EAs uses mutation and crossover operators to gen-

13

Figure 8: A concise work flow of Evolutionary Algorithm

erate new offspring solutions from the original population (Line 5). Later these solutions

are evaluated by fitness functions which are objective functions defined by the optimization

problem (Line 6). And based on the quality or fitness values of solutions EAs uses selection

operator to chose the best non-dominated solution set to form a new population (Line 7).

This whole process iterates many times or generations until it satisfies the termination con-

dition.

MOEAs presents many advantages over traditional multi-objective approaches:

• MOEAs attempts to search the whole Pareto front instead of one single Pareto opti-

mal solution in each run.

• MOEAs do not require any domain knowledge about the problem to be solved

• MOEAs do not make any assumption about the Pareto curve.

MOEAs do not guarantee to find the true Pareto optimal set, but instead aim to generate

a good approximation of such set in a reasonable computational time. The main drawback

of EA is the lack of stability. Due to its stochastic mechanism, EA is not stable. Stability

14

Algorithm 2.2.1: Evolutionary Algorithm Pseudo-code
1: t← 0;

2: InitPopulation[P(t)]; (Initializes the population)

3: EvalPopulation[P(t)]; (Evaluates the population)

4: while not termination do

5: P′(t)←Variation[P(t)] (Creation of new individuals)

6: EvalPopulation[P′(t)]; (Evaluates the new individuals)

7: P(t +1)← ApplyGeneticOperators[P′(t)]; (Creation of next generation population)

8: t← t +1;

9: end while

here means, despite of initial condition, the algorithm always could reach to the same

or similar solution in the end if ones exists. Under the same problem setting, EA may

produces very different results every time Fig. 9. Therefore researchers usually take the

average result across different runs to evaluate MOEAs performance, which is not reliable

since we could never guarantee its performance every time we run it.

Figure 9: EA is highly unstable, it may produces very different results in each run.

15

In order to overcome EAs stability issue, we will borrow the stability property from

Evolutionary Game Theory which is described in the next section 2.3.

2.3 Game Theory

Game Theory is a study of strategic decision making of conflict and cooperation among

intelligent rational decision makers. It is an interactive decision theory which means in a

game, given a set of strategies, each player strives to find a strategy that optimizes its own

payoff depending on the others strategy decisions. Game theory seeks such strategies for

all players as a solution, called Nash equilibrium (NE), where no players can gain extra

payoff by unilaterally changing his strategy.

2.3.1 Nash equilibrium

Nash equilibrium is a solution concept in which no player has anything to gain by changing

only their own strategy. In a two player game, it is a strategy pair. Let E(S,T) represent

the payoff for playing strategy S against strategy T . The strategy pair (S,S) is a Nash

equilibrium in a two player game if and only if this is true for both players and for all

T 6= S.

E(S,S)≥ E(T,S)

To illustrate the concept of Game Theory and Nash Equilibrium, let’s take a look at

the classical well known Prisoner’s Dilemma Fig. 10. In this game there are two players,

prisoner A and B. Each of them has two strategy to chose confess or remain silent. The

point is depending on each prisoner’s choice they would have different sentences.

1. If A and B both remain silent, then both of them will only serve 1 year in prison.

16

2. If A confess but B remains silent, then A will be set free and B will serve 20 years in

prison (and vice versa).

3. If A and B both confess, then each of them serves 5 years in prison

Figure 10: Prisoner’s Dilemma

In the case 1, prisoner A or B would go free if they switch their own strategy while

another one remains the same. In the case 2, prisoner A or B would serve 15 less years if

they switch their own strategy while another one remains the same. Therefore by definition

both case 1 and 2 are not Nash equilibrium solution. The only Nash equilibrium in this

game is the case 3, where none of prisoners could gain extra payoff by switching their own

strategy.

17

2.4 Evolutionary Game Theory

Evolutionary Game Theory is an application of Game Theory to biological contexts for

analyzing population dynamics and stability in biological systems. In EGT, each player

maintains a population which is formed by a set of strategies and games are played repeat-

edly by strategies randomly drawn from the population. In general, EGT considers two

major components, Evolutionarily stable strategies (ESS), and Replicator Dynamics (RD).

2.4.1 Evolutionary Stable Strategy

An Evolutionary Stable Strategy (ESS) is anequilibrium refinementof theNash equilibrium.

It is a Nash equilibrium that is evolutionarilystable: once it appearsin a population,natural

selectionalone is sufficient to prevent alternative (mutant) strategies from invading success-

fully. ESS specifies two conditions for a strategy S to be an ESS, for all T 6= S, either

E(S,S)> E(T,S) or

E(S,S) = E(T,S) and E(S,T)> E(T,T)

The first condition is called a strict Nash equilibrium. The second condition means that

although strategy T is neutral with respect to the payoff against strategy S, the population

of players who continue to play strategy S has an advantage when playing against T .

Suppose all players in the initial population are programmed to play a certain (incum-

bent) strategy k. Then, let a small population share of players, x ∈ (0,1), mutate and play

a different (mutant) strategy `. When a player is drawn for a game, the probabilities that

its opponent plays k and ` are 1− x and x, respectively. Thus, the expected payoffs for the

player to play k and ` are denoted as U(k,x`+(1− x)k) and U(`,x`+(1− x)k), respec-

tively.

18

Definition 1 A strategy k is said to be evolutionarily stable if, for every strategy ` 6= k, a

certain x̄ ∈ (0,1) exists, such that the inequality

U(k, x`+(1− x)k)>U(`, x`+(1− x)k) (2.1)

holds for all x ∈ (0, x̄).

If the payoff function is linear, Equation 2.1 derives:

(1− x)U(k,k)+ xU(k, `)> (1− x)U(`,k)+ xU(`,`) (2.2)

If x is close to zero, Equation 2.2 derives either

U(k,k)>U(`,k) or U(k,k) =U(`,k) and U(k, `)>U(`,`) (2.3)

This indicates that a player associated with the strategy k gains a higher payoff than the

ones associated with the other strategies. Therefore, no players can benefit by changing

their strategies from k to the others. This means that an ESS is a solution on a Nash equi-

librium. An ESS is a strategy that cannot be invaded by any alternative (mutant) strategies

that have lower population shares.

2.4.2 Replicator Dynamics

The replicator dynamics is a model of evolution that describes how population shares as-

sociated with different strategies grows over time [TJ78]. Replicator dynamics assumes

infinite population size, continuous infinite time, and complete mixing. Complete mixing

means pairwise strategies are completely random chosen from the population.

19

Let λk(t)≥ 0 be the number of players who play the strategy k ∈ K, where K is the set

of available strategies. The total population of players is given by λ (t) = ∑
|K|
k=1λk(t). Let

xk(t) = λk(t)/λ (t) be the population share of players who play k at time t. The population

state is defined by X(t) = [x1(t), · · · ,xk(t), · · · ,xK(t)]. Given X , the expected payoff of

playing k is denoted by U(k,X). The population’s average payoff, which is same as the

payoff of a player drawn randomly from the population, is denoted by U(X ,X) = ∑
|K|
k=1xk ·

U(k,X).

In the replicator dynamics, the dynamics of the population share xk is described as

follows. ẋk is the time derivative of xk.

ẋk = xk · [U(k,X)−U(X ,X)] (2.4)

This equation states that players increase (or decrease) their population shares when

their payoffs are higher (or lower) than the population’s average payoff.

Theorem 2.4.1 If a strategy k is strictly dominated, then xk(t)t→∞→ 0.

A strategy is said to be strictly dominant if its payoff is strictly higher than any oppo-

nents. As its population share grows, it dominates the population over time. Conversely, a

strategy is said to be strictly dominated if its payoff is lower than that of a strictly dominant

strategy. Thus, strictly dominated strategies disappear in the population over time.

There is a close connection between Nash equilibria and the steady states in the repli-

cator dynamics, in which the population shares do not change over time. Since no players

change their strategies on Nash equilibria, every Nash equilibrium is a steady state in the

replicator dynamics. As described in Section 2.4.2, an ESS is a solution on a Nash equi-

20

librium. Thus, an ESS is a solution at a steady state in the replicator dynamics. In other

words, an ESS is the strictly dominant strategy in the population on a steady state.

In a conventional game, the objective of a player is to choose a strategy that maximizes

its payoff. In contrast, evolutionary games are played repeatedly by all players until a

steady point where each player finds their strictly dominant strategy. The strictly dominant

strategy in the population is an ESS which is a solution on a Nash Equilibrium that is

evolutionarily stable. The Evolutionary game model is illustrated in Fig. 11 and described

as follow.

1. The evolution model deals with a Population (G) at generation n. Competition hap-

pens among strategies within the population and it is represented by the Game.

2. N/2 Games are performed in each generation. Each Game tests the strategies in

pairwise under the rules of the game. These rules produce different objective payoffs.

3. Based on the payoff the winner replaces the loser in each game.

4. This overall process then produces a new Population (G+1). And the new population

then takes the place of the previous one and the cycle begins again (and never stops).

5. It is aniterative process, over time only one strictly dominant strategy will stands in

the population, which cannot be invaded by any new mutant strategies. And it is by

definition an Evolutionary Stable Strategy (ESS).

21

Figure 11: Evolution process in Evolutionary Game Theory

22

CHAPTER 3

EVOLUTIONARY GAME THEORETIC MULTI-OBJECTIVE ALGORITHMS

(EGTMOA)

Evolutionary Game Theoretic Multi-Objective Algorithms is an Evolutionary Multi-Objective

Algorithm designed to follow Evolutionary Game Theory scheme with the goal to seek for

a global optimal evolutionarily stable solution. EGTMOA combines the stability property

from Evolutionary Game Theory and optimality notion from Evolutionary Algorithms to-

gether to form a new metaheuristic multi-objective algorithm that seeks for a set of strict

dominant strategies as a global optimal and stable solution through evolution mechanism

in a reasonable running time. It has follow properties.

• Optimality: Seeking for a set of strict dominant strategies as a global optimal solu-

tion.

• Stability: Providing a stable solution by minimizing oscillations in decision mak-

ings.

• Metaheuristic: Just like MOEAs, EGTMOA does not make any assumption about

the solution space, and it does not require any domain knowledge about the problem

to be solved.

EGTMOA does not guarantee to find a true optimal solution, but instead it provides a

high quality stable approximation solution to multi-objective problems at the end.

23

3.1 Baseline Algorithm

EGTMOA is an evolutionary algorithm in which the payoff of a strategy is evaluated based

on their interactions with other strategies. EGTMOA divides the entire multi-objective

problem into M sub problems Fig. 12. Each sub problem is handled by an agent or player

that maintains a population of N strategies. And each player seeks a strictly dominant

strategy that maximize its payoff interacting with other players through generations.

Figure 12: Dividing the entire whole multi-objective problem into M sub problems.

A baseline EGTMOA algorithm is described in Algorithm 3.1.1 and the evolution of a

population is illustrated in Fig. 13. EGTMOA has following main steps.

1. Initially random generate N strategies (decision variables) for each population (Line 2).

2. Random shuffle the order of populations to compute (Line 6).

3. For each population perform N/2 pairwise game evaluation (Line 6-16). A game is

carried out based on the superior-inferior relationship between given two strategies

and their feasibility (performGame() in Algorithm 3.1.2).

4. Winner duplicates itself, loser is deleted from the population (Line 10,14,15).

5. The duplicated winner has a probability to be mutated (Line 11-13).

6. Check the termination. If it satisfies then go to Step 8, otherwise back to Step 2 (next

generation).

24

7. Take the feasible strategy with the greatest population share as dominant strategy di

(Line 18-22).

8. Return the dominant strategy di of each population as a global solution for the for-

mulated Multi-Objective Optimization Problem (Line 26).

Figure 13: Evolution workflow of a population in Baseline EGTMOA algorithm.

3.2 Quality Indicators

From each population we randomly chose N/2 pairwise strategies to play the game Algo-

rithm 3.1.2. In each game a winner and a loser will be determined based on their solution

quality. Thus, a game is performed by comparing the fitness values of the chosen pair

strategies. These fitness values are computed through objective functions that are defined

by multi-objective problems formulation. Since we are dealing with two or more objectives

we need a mechanism that helps us to determine the winner and loser in a multi-objective

25

point of view. And this mechanism is handled by quality indicator, for the baseline EGT-

MOA algorithm we use the Pareto Dominance (PD) notion as our primary quality indicator

[SD95]..

3.2.1 Pareto Dominance

Pareto Dominance guarantees the optimality of one strategy over another. It is often called

strict dominance quality indicator, because a strategy must have equal or better fitness value

in all the objectives in order to become the winner. A strategy s1 is said to dominate another

strategy s2 if both of the following conditions hold:

• s1’s objective values are superior than, or equal to, s2’s in all objectives.

• s1’s objective values are superior than s2’s in at least one objectives.

The dominating strategy wins a game over the dominated one. If two strategies are

non-dominated with each other, the winner is randomly selected. To illustrate better the

concept of Pareto Dominance, let’s take a look at Fig. 14. Considering a two objective

minimization problem we try to find the best solution among s1,s2 and s3 using Pareto

Dominance notion. From the Fig. 14 we can easily conclude that s2 performs better than

s3 in one objective and worse in another one. Therefore s2 and s3 are non-dominated with

each other. And it is clear that s1 performs better in all two objectives than other two

solutions. So we say s1 dominates both s2 and s3. Thus, s1 is the winner after playing

game against s2 and s3.

3.2.2 Hypervolume

If the number of conflicting objectives is more than 2, then most of the time strategies are

non-dominated with each other which make the population hard to evolve toward an ESS.

26

Figure 14: Quality comparison with two objectives using Pareto Dominance.

In this case we employ a Hypervolume metric [ZT98] based quality indicator. It measures

the volume that a given strategy (s) dominates in the objective space:

HV (s) = Λ

(⋃
{x′|s� x′ � xr}

)
(3.1)

Λ denotes the Lebesgue measure. xr is the reference point placed in the objective space.

i.e. in Fig. 15 we have three solution points in the objective space P1,P2 and P3. R represents

the reference point, it usually takes the maximum value that each objective function could

reach. Now we compute each solution’s Hypervolume value as the rectangle area that is

formed by each of the solution point with the reference point. A higher Hypervolume value

means that a solution is more optimal. Thus, P2 is the winner after playing game against

P2 and P3. It should be noted that before we compute the Hypervolume value, we have to

normalized all the objectives into interval [0,1].

27

Figure 15: Quality comparison with two objectives using Hypervolume.

3.3 Constraints handling

Multi-objective optimization problems often present many constraints which make the

problem more realistic, but harder to be solved. Those constraints are defined by a set

of equality and inequality functions. EGTMOAs take constraints into account every time a

game is performed Algorithm 3.1.2.

If a feasible strategy and an infeasible strategy participate in a game, the feasible one

always wins the game. If both strategies are feasible, they are compared using a quality

indicator.

If both strategies are infeasible in a game, then they are compared based on their con-

straint violation. Constraint violation is computed as the difference between the constraint

value and its cap limit value. An infeasible strategy s1 wins a game over another infeasible

strategy s2 if both of the following conditions hold:

28

• s1’s constraint violation is lower than, or equal to, s2’s in all constraints.

• s1’s constraint violation is lower than s2’s in at least one constraints.

3.4 Mutation

After each game the winner duplicates itself and loser is deleted from the population. Due

to this dominance notion EGTMOA some time may converges very fast into a local optimal

point. In order to prevent the mentioned problem, we need to keep a certain diversity in the

population that helps us to move toward a global optimal solution. In this case mutation

does the job, it helps us to jump out from a local optimal point. Mutation is a biological

operator that is applied with a certain probability to the winner of each game shown in

Algorithm 3.1.1 (Line 11-13). Te baseline EGTMOA algorithm uses Polynomial Mutation

which is described in the next Section 3.4.1.

3.4.1 Polynomial Mutation

Figure 16: An example of polynomial mutation with 6 decision variables.

In polynomial mutation each decision variable has a probability of 1/v to be mutated,

where v is the total number of decision variables. The mutated value is randomly generated

29

within the same range as the original decision variable value. i.e. in Fig. 16 v = 6, so each

decision variable mutates with a probability of 1/6.

3.5 Termination

EGTMOA performs iterative evolution process through generations seeking for the set of

strictly dominant strategy as a global optimal solution. In theory the evolution process

assumes infinite population size, and continuous infinite time. However in practice this is

not feasible, we have to stop the algorithm in some point. Therefore we need to define a

termination criteria that tells us when we should stop running our EGTMOA and to get

the final solution result. EGTMOA provides two different approaches for defining the

termination condition.

• Static termination: Chose a fixed maximum number of generations G based on

experiments and empirical results.

• Dynamic termination: EGTMOA ends if the dominant strategy does not improve

more than X% of performance within Y number of generations. Or the dominant

strategy has a population share greater than Z%. It should be noted that the value of

X ,Y and Z come from experiments and empirical results.

Thanks to EGTMOA’s stability property, its convergence curve, speed and performance

are stable as well across different runs which makes the choice of proper X ,Y,Z and G

values more reliable. In the next Section 3.6 we are going to see a stability analysis of the

proposed algorithm EGTMOA.

30

3.6 Stability Analysis

This section analyzes EGTMOA’s stability (i.e., reachability to at least one of Nash equi-

libria) by proving the state of each population converges to an evolutionarily stable equil-

librium. The proof consists of three steps: (1) designing a set of differential equations that

describe the dynamics of the population state (or strategy distribution), (2) proving an strat-

egy selection process has equilibria and (3) proving the the equilibria are asymptotically

stable (or evolutionarily stable) . The proof uses the following terms and variables.

• S denotes the set of available strategies. S∗ denotes a set of strategies that appear in

the population.

• X(t) = {x1(t),x2(t), · · · ,x|S∗|(t)} denotes a population state at time t where xs(t) is

the population share of a strategy s ∈ S. ∑ s∈S∗(xs) = 1.

• Fs is the fitness of a strategy s. It is a relative value determined in a game against an

opponent based on the dominance relationship between them. The winner of a game

earns a higher fitness than the loser.

• ps
k = xk ·φ(Fs−Fk) denotes the probability that a strategy s is replicated by winning

a game against another strategy k. φ(Fs−Fk) is the probability that the fitness of s is

higher than that of k.

The dynamics of the population share of s is described as follows.

ẋs = ∑
k∈S∗,k 6=s

{xs ps
k− xk pk

s}= xs ∑
k∈S∗,k 6=s

xk{φ(Fs−Fk)−φ(Fk−Fs)} (3.2)

Note that if s is strictly dominated, xs(t)t→∞→ 0.

Theorem 3.6.1 The state of a population converges to an equilibrium.

31

Proof It is true that different strategies have different fitness values. In other words,

only one strategy has the highest fitness among others. Given Theorem 2.4.1, assuming

that F1 > F2 > · · · > F|S∗|, the population state converges to an equilibrium: X(t)t→∞ =

{x1(t),x2(t), · · · ,x|S∗|(t)}t→∞ = {1,0, · · · ,0}.

Theorem 3.6.2 The equilibrium found in Theorem 3.6.1 is asymptotically stable.

Proof At the equilibrium X = {1,0, · · · ,0}, a set of differential equations can be downsized

by substituting x1 = 1− x2−·· ·− x|S∗|

żs = zs[cs1(1− zs)+
|s∗|

∑
k=2,k 6=s

zk · csk], s,k = 2, ..., |S∗| (3.3)

where csk ≡ φ(Fs−Fk)−φ(Fk−Fs)) and Z(t) = {z2(t),z3(t), · · · ,z|S∗|(t)} denotes the cor-

responding downsized population state. Given Theorem 2.4.1, Zt→∞ = Zeq = {0,0, · · · ,0}

of (|S∗|−1)-dimension.

If all Eigenvalues of Jaccobian matrix of Z(t) has negative real parts, Zeq is asymptoti-

cally stable. The Jaccobian matrix J’s elements are

Jsk =

[
∂ żs

∂ zk

]
|Z=Zeq

=

∂ zs[cs1(1− zs)+∑
|S∗|
k=2,k 6=s zk · csk]

∂ zk


|Z=Zeq

(3.4)

for s,k = 2, ..., |S∗|

Therefore, J is given as follows, where c21,c31, · · · ,c|S∗|1 are J’s Eigenvalues.

32

J =


c21 0 · · · 0

0 c31 · · · 0
...

...

0 0 · · · c|S∗|1

 (3.5)

cs1 =−φ(F1−Fs)< 0 for all s; therefore, Zeq = {0,0, · · · ,0} is asymptotically stable.

33

Algorithm 3.1.1: Evolutionary Game Theoretic Multi-Objective Algorithm
1: g = 0

2: Randomly generate the initial N populations: P = {P1,P2, ...,PN}

3: while not termination do

4: for each population Pi randomly selected from P do

5: P ′
i ← /0

6: for j = 1 to |Pi|/2 do

7: s1← randomlySelect(Pi)

8: s2← randomlySelect(Pi)

9: winner← performGame(s1, s2)

10: replica← replicate(winner)

11: if random() ≤ Pm then

12: replica← mutate(winner)

13: end if

14: Pi \{s1,s2}

15: P ′
i ∪{winner,replica}

16: end for

17: Pi←P ′
i

18: di← argmaxs∈Pixs

19: while di is infeasible do

20: Pi \{di}

21: di← argmaxs∈Pixs

22: end while

23: end for

24: g = g+1

25: end while

26: return d = {d1,d2, ...,dN}

34

Algorithm 3.1.2: Game between Strategies - performGame()
Require: s1 and s2: Strategies to play a game

Ensure: Winner of the game

1: if s1 and s2 are feasible then

2: if s1 � s2 then

3: return s1

4: end if

5: if s2 � s1 then

6: return s2

7: end if

8: return randomlySelect({s1,s2})

9: end if

10: if s1 is feasible and s2 is infeasible then

11: return s1

12: end if

13: if s2 is feasible and s1 is infeasible then

14: return s2

15: end if

16: if s1 and s2 are infeasible then

17: return argmins∈{s1,s2}c
v
s

18: end if

35

CHAPTER 4

VIRTUAL MACHINE DEPLOYMENT ON CLOUD DATA CENTER

4.1 Introduction

It is a challenging issue for cloud operators to place applications so that the applications

can satisfy given constraints in performance (e.g. response time) while maintaining their re-

source utilization (CPU and network bandwidth utilization) and power consumption. The

operators are required to dynamically place applications by adjusting their locations and

resource allocation according to various operational conditions such as workload and re-

source availability. In order to address this challenge, this Chapter investigates three dif-

ferent application placement schedulers, Cielo, AGEGT, and Cielo-LP which exhibit the

following properties:

• Self-optimization: allows applications to autonomously seek their optimal place-

ment configurations (i.e., locations and resource allocation) according to operational

conditions (e.g., workload and resource availability), as adaptation decisions, under

given optimization objectives and constraints.

• Self-stabilization: allows applications to autonomously seek stable adaptation de-

cisions by minimizing oscillations (or non-deterministic inconsistencies) in decision

making.

36

Cielo, AGEGT, and Cielo-LP are EGTMOA framework based algorithms that approach

the self-optimization and self-stabilization properties with Evolutionary Algorithm (EA)

and Evolutionary Game Theory (EGT), respectively. In general, EGTMOAs are robust

problem-independent search methods that seek optimal solutions (adaptation decisions)

with reasonable computational costs by maintaining a small ratio of search coverage to the

entire search space [Eib02, Deb01]. EGTMOAs employ EGT as a means to mathematically

formulate adaptive decision making and theoretically guarantee that each decision making

process converges to an evolutionarily (or asymptotically) stable equilibrium where a spe-

cific (stable) adaptation decision is deterministically made under a particular set of opera-

tional conditions. EGTMOAs allow applications to seek the solutions to optimally adapt

their locations and resource allocation and operate at equilibria by making evolutionarily

stable decisions for application placement.

4.2 State of the art

Numerous research efforts have been made to study heuristic algorithms for application

placement problems in clouds (e.g., [LQL13, MLL12, GP13, CSV12, LWY09, KBK13,

CJH10, WKL10]). Most of them assume a single-tier application architecture and consid-

ers a single optimization objective. For example, in [LWY09, KBK13, CJH10, WKL10],

only power consumption is considered as the objective. In contrast, I assume a multi-tier

application architecture (i.e., three tiers in an application) and considers multiple objec-

tives. It is designed to seek a trade-off solution among conflicting objectives.

Game theoretic algorithms have been used for a few aspects of cloud computing; for

example, application placement [KA09b, WVZ09, DDL07], task allocation [SZL08] and

data replication [KA09a]. In [KA09b, WVZ09, DDL07], greedy algorithms seek equilibria

37

in application placement problems. This means they do not attain the stability property to

reach equilibria as EGTMOAs do.

Several genetic algorithms (e.g., [WSY12, TEC08]) and other stochastic optimization

algorithms (e.g., [GGQ13, CWJ13]) have been studied to solve application placement prob-

lems in clouds. They seek the optimal placement solutions; however, they do not consider

stability. In contrast, EGTMOAs aid applications to seek evolutionarily stable solutions

and stay at equilibria.

This study is novel in that EGTMOAs integrate optimization and stabilization processes

to seek optimal and stable solutions. Optimization and stabilization have been studied

largely in isolation, but few attempts have been made so far to integrate and facilitate them

simultaneously, except in a very limited number of work (e.g., [KL03]).

Evolutionary algorithms and other stochastic search algorithms often focus on opti-

mization and fail to seek stable solutions [MF04, Kun99, MW96]. As a result, they can

inconsistently yield different sets of solutions in different runs/trials with the same prob-

lem settings, especially when a given problem’s search space is large [TD08, YKK08,

LZW08, LP07]. Conversely, EGTMOAs are often dedicated to seek stable solutions (i.e.,

equilibria), which are not necessarily optimal [Wei96, Now06, NRT07].

4.3 Problem Statement

This section formulates an application placement problem to place N applications on M

hosts available in a cloud data center. Each application is designed with a set of server

software, following a three-tier application architecture [UPS05, SH06] (Fig. 17).

Using a certain hypervisor such as Xen [BDF03], each server is assumed to run on a

virtual machine (VM) atop a host. A host can operate multiple VMs. They share resources

38

available on their local host. Each host is assumed to be equipped with a multi-core CPU

that supports DVFS in each core.

Each message is sequentially processed from a Web server to a database server through

an application server. A reply message is generated by the database server and forwarded

in the reverse order toward a user. (Fig. 17). It is assumed that different applications utilize

different sets of servers. (Servers are not shared by different applications.) And each host

runs multi cores processor to allocate different applications.

Figure 17: Three-Tiered Application Architecture

The goal of this problem is to find evolutionarily stable strategies that deploy N applica-

tions (i.e., N×3 VMs) on M hosts so that the applications adapt their locations and resource

allocation to given workload and resource availability with respect to the four objectives

described below. Every objective is computed on an application by application basis and is

to be minimized.

• CPU allocation (fC): A certain CPU time share (in percentage) is allocated to each

VM. (The CPU share of 100% means that a CPU core is fully allocated to a VM.) It

represents the upper limit for the VM’s CPU utilization. This objective is computed

as the sum of CPU shares allocated to three VMs of an application.

fC =
3

∑
t=1

ct (4.1)

ct denotes the CPU time share allocated to the t-th tier server in an application.

39

• Bandwidth allocation (fB): A certain amount of bandwidth (in bits/second) is allo-

cated to each VM. It represents the upper limit for the VM’s bandwidth consumption.

This objective is computed as the sum of bandwidth allocated to three VMs of an ap-

plication.

fB =
3

∑
t=1

bt (4.2)

bt denotes the amount of bandwidth allocated to the t-th tier server in an application.

• Response time (fRT): This objective indicates the time required for a message to

travel from a web server to a database server:

fRT = T p +T w +T c (4.3)

T p denotes the total time for an application to process an incoming message from

a user at three servers. T w is the waiting time for a message to be processed at

servers. T c denotes the total communication delay to transmit a message between

servers. T p, T w and T c are estimated with the M/M/M queuing model, in which

message arrivals follow a Poisson process and a server’s message processing time is

exponentially distributed.

T p is computed as follows where T p
t denotes the time required for the t-th tier server

to process a message.

T p =
3

∑
t=1

T p
t (4.4)

T w is computed as follows.

40

T w =
1
λ

3

∑
t=1

ρ0
aO

t
O!

ρt

(1−ρt)2 (4.5)

where at = λt
T p

t

ct ·qt/qmax
, ρt =

at

O
, ρ0 =

(
O−1

∑
n=0

ρn
t

n!
+

ρO
t

O!
1

1−ρt/O

)−1

λ denotes the message arrival rate for an application (i.e., the number of messages

the application receives from users in the unit time). Note that λ = 1
3 ∑

3
t=1 λt where

λt is the message arrival rate for the t-th tier server in the application. Currently,

λ = λ1 = λ2 = λ3. ρt denotes the utilization of a CPU core that the t-th tier server

resides on. qmax is is the maximum CPU frequency. qt is the frequency of a CPU

core that the t-th tier server resides on. O is the total number of cores that a CPU

contains.

T c is computed as follows.

T c =
2

∑
t=1

T c
t→t+1 ≈

3

∑
t ′=2

B ·λt+1

bt
(4.6)

B is the size of a message (in bits). T c
t→t+1 denotes the communication delay to trans-

mit a message from the t-th to (t + 1)-th server. bt denotes the bandwidth allocated

to the t-th tier server (bits/second).

• Power Consumption (fPC): This objective indicates the total power consumption

(in Watts) by the CPU cores that operate three VMs in an application.

fPC =
3

∑
t=1

(
Pqt

idle +(Pqt
max−Pqt

idle) · ct ·
qt

qmax

)
(4.7)

41

Pqt
idle and Pqt

max denote the power consumption of a CPU core that the t-th tier server

resides on when its CPU utilization is 0% and 100% at the frequency of qt , respec-

tively.

Four constraints are considered.

• CPU core capacity constraint (CC): The upper limit of the total share allocation

on each CPU core. ci,o ≤ CC for all O cores on all M hosts where ci,o is the total

share allocation on the o-th core of the i-th host. The violation of this constraint is

computed as:

gC =
M

∑
i=1

O

∑
o=1

(
IC
i,o · (ci,o−CC)

)
(4.8)

IC
i,o = 1 if oi >CC. Otherwise, IC

i,o = 0.

• Bandwidth capacity constraint (CB): The upper limit of bandwidth consumption

allocated to each host. bi ≤CB for all M hosts where bi is the total amount of band-

width allocated to the i-th host. The violation of this constraint is computed as:

gB =
M

∑
i=1

(
IB
i · (bi−CB)

)
(4.9)

IB
i = 1 if bi >CB. Otherwise, IB

i = 0.

• Response time constraint (CRT): The upper limit of response time for each appli-

cation. f i
RT ≤ CRT for all applications where f i

RT is the response time of the i-th

application. The violation of this constraint is computed as:

gRT =
N

∑
i=1

(
IRT
i · (f i

RT −CRT)
)

(4.10)

IRT
i = 1 if f i

RT >CRT . Otherwise, IRT
i = 0.

42

• Power consumption constraint (CPC): The upper limit of power consumption for

each application. f i
PC ≤ CPC for all N applications where f i

PC is the power con-

sumption of the i-th application. The violation of power consumption constraint is

computed as:

gPC =
N

∑
i=1

(
IPC
i · (f i

PC−CPC)
)

(4.11)

IPC
i = 1 if f i

PC >CPC. Otherwise, IPC
i = 0.

In this Chapter three different variants of EGTMOA based framework are studied,

Cielo, AGEGT, and Cielo-LP. Each of them occupies a Section in this Chapter, and it

is organized starting with a brief introduction, following by the algorithm description and

it ends with experiment results and conclusions.

4.4 Cielo

This section studies a EGTMOA framework for application placement in clouds that sup-

port a power capping mechanism (e.g., Intel’s Runtime Average Power Limit–RAPL) for

CPUs. Given the notion of power capping, power can be treated as a schedulable resource

in addition to traditional resources such as CPU time share and bandwidth share. The pro-

posed algorithm is called Cielo (Sky in Spanish), aids cloud operators to schedule resources

(e.g., power, CPU and bandwidth) to applications and place applications onto particular

CPU cores in an adaptive and stable manner according to the operational conditions in a

cloud, such as workload and resource availability. This study evaluates Cielo through a

theoretical analysis and simulations. It is theoretically guaranteed that Cielo allows each

application to perform an evolutionarily stable deployment strategy, which is an equilib-

rium solution under given operational conditions. Simulation results demonstrate that Cielo

43

allows applications to successfully leverage the notion of power capping to balance their

response time performance, resource utilization and power consumption.

4.4.1 Introduction

Dynamic Voltage and Frequency Scaling (DVFS) is a major method of choice for inves-

tigating the trade-off between power consumption and performance in cloud applications.

Power capping is an emerging alternative to DVFS [RAS]. Instead of managing the CPU’s

frequency directly, the user simply specifies a time window and a power consumption

bound. The CPU guarantees that its average power consumption will not exceed the speci-

fied could over each window. Both the window size and bound can be modified at runtime.

This mechanism treats power as a schedulable resource and allows cloud operators to con-

trol the exact amount of power that each CPU consumes.

Given the current availability of power capping mechanisms from major CPU manu-

facturers, such as Intel’s Runtime Average Power Limit (RAPL), Cielo focuses on an ap-

plication placement problem for cloud operators to schedule resources (e.g., power, CPU

and bandwidth) to applications and place applications onto particular CPU cores according

to the operational conditions in a cloud, such as workload and resource availability.

Cielo is a variant of EGTMOA framework for adaptive and stable application place-

ment in clouds that support a power capping mechanism for CPUs. This section describes

its design and evaluates its optimality and stability. In Cielo, each application maintains

a set (or a population) of deployment strategies, each of which indicates the location of

and resource allocation for that application. Cielo theoretically guarantees that, through a

series of evolutionary games between deployment strategies, the population state (i.e., the

distribution of strategies) converges to an evolutionarily stable equilibrium, which is al-

ways converged to regardless of the initial state. (A dominant strategy in the evolutionarily

44

stable population state is called an evolutionarily stable strategy.) In this state, no other

strategies except an evolutionarily stable strategy can dominate the population. Given this

theoretical property, Cielo aids each application to operate at equilibria by using an evolu-

tionarily stable strategy for application deployment in a deterministic (i.e., stable) manner.

Simulation results verify this theoretical analysis. Applications seek equilibria to per-

form evolutionarily stable deployment strategies and adapt their locations and resource

allocations to given operational conditions. Cielo allows applications to successfully lever-

age the notion of power capping and balance their response time performance, resource

utilization and power consumption. In comparison to existing heuristics, Cielo outper-

forms two well-known heuristics algorithm first-fit and best-fit algorithms (FFA and BFA),

which have been widely used for adaptive cloud application deployment [LQL13, MLL12,

GP13, CSV12].

4.4.2 Algorithm

Cielo maintains N populations, {P1,P2, ...,PN}, for N applications and performs games

among strategies in each population. A strategy s is defined to indicate the locations of and

resource allocation for three VMs in an application:

s(ai) =
⋃

t∈1,2,3

(hi,t ,ci,t ,ui,t ,bi,t , pi,t), 1 < i < N (4.12)

ai denotes the i-th application. hi,t is the ID of a host that operates ai’s t-th tier VM. ci,t

is the ID of the core inside the host hi,t . ui,t and bi,t are the CPU and bandwidth allocation

for ai’s t-th tier VM. pi,t denotes the power cap of host hi,t core ci,t where allocates t-th

45

Figure 18: Example of Cielo Deployment Strategies

tier VM. This power cap is translated later to CPU p-state based on the table 3. Each core

operates at the highest p-state required by its allocated VMs.

Fig. 18 shows two example strategies for two applications (a1 and a2) (N = 2 and M =

2). a1’s strategy (s(a1)) places the first-tier VM on host 1 core 3(h1,1 = 1, c1,1 = 3), which

caps power to 90 Watts p1,1 = 90and consumes 30% CPU share and 80 Kbps bandwidth for

the VM (c1,1 = 30 and b1,1 = 80). The second-tier VM is placed on host 1 core 3(h1,2 = 1,

c1,2 = 3), which caps power to 100 Watts (p1,2 = 100) and consumes 30% CPU share and

85 Kbps bandwidth for the VM (c1,2 = 30 and b1,2 = 85). The third-tier VM is placed on

host 2 core 3 (h1,3 = 2, c1,3 = 3), which caps power to 83 Watts p1,3 = 83 and consumes

45% CPU share and 120 Kbps bandwidth for the VM (c1,3 = 45 and b1,3 = 120). Given

s(a1), a1’s objective values for CPU allocation and bandwidth allocation are 105% (30 +

30 + 45) and 285 kbps (80 + 85 + 120).

Algorithm 4.4.1 shows how Cielo seeks an evolutionarily stable strategy for each appli-

cation through evolutionary games. In the 0-th generation, strategies are randomly gener-

46

ated for each population (Line 2). In each generation (g), a series of games are carried out

on every population (Lines 4 to 24). A single game randomly chooses a pair of strategies

(s1 and s2) and distinguishes them to the winner and the loser with respect to the objectives

described in Section 4.3 (Lines 7 to 9). The loser disappears in the population. The winner

is replicated to increase its population share and mutated with a certain rate Pm (Lines 10

to 15). Mutation randomly chooses one of three VMs in the winner and alters its hi,t , ci,t

and bi,t values at random (Line 12).

Once all strategies have played games in the population, Cielo identifies a feasible

strategy whose population share (xs) is the highest and determines it as a dominant strategy

(di) (Lines 18 to 22). A strategy is said to be feasible if it never violate the CPU and

bandwidth capacity constraints (cv = 0 in Eq. 4.8 and bv = 0 in Eq. 4.9). It is said to be

infeasible if cv > 0 or bv > 0. Cielo deploys three VMs for an application in question based

on the dominant strategy.

A game is carried out based on the superior-inferior relationship between given two

strategies and their feasibility (performGame() in Algorithm 4.4.1). If a feasible strategy

and an infeasible strategy participate in a game, the feasible one always wins over its op-

ponent. If both strategies are feasible, they are compared with one of the following three

schemes to select the winner.

• Pareto dominance (PD): This scheme is based on the notion of dominance citesrini-

vas95multiobjective, in which a strategy s1 is said to dominate another strategy s2

(denoted by s1 � s2) if both of the following conditions hold:

– s1’s objective values are superior than, or equal to, s2’s in all objectives.

– s1’s objective values are superior than s2’s in at least one objectives.

47

The dominating strategy wins a game over the dominated one. If two strategies are

non-dominated with each other, the winner is randomly selected.

• Hypervolume (HV): This scheme is based on the hypervolume metric [ZT98]. It

measures the volume that a given strategy (s) dominates in the objective space:

HV (s) = Λ

(⋃
{x′|s� x′ � xr}

)
(4.13)

Λ denotes the Lebesgue measure. xr is the reference point placed in the objective

space. A higher hypervolume means that a strategy is more optimal. Given two

strategies, the one with a higher hypervolume value wins a game. If both have the

same hypervolume value, the winner is randomly selected.

• Hybrid of Pareto comparison and hypervolume (PD-HV): This scheme is a com-

bination of the above two schemes. First, it performs the Pareto dominance (PD)

comparison for given two strategies. If they are non-dominated, the hypervolume

(HV) comparison is used to select the winner. If they still tie with the hypervolume

metric, the winner is randomly selected.

If both strategies are infeasible in a game, they are compared based on their constraint

violation. A strategy s1 wins a game over another strategy s2 if both of the following

conditions hold:

• s1’s constraint violation is lower than, or equal to, s2’s in all constraints.

• s1’s constraint violation is lower than s2’s in at least one constraints.

48

4.4.3 Experiment

This section evaluates Cielo through simulations and discusses how Cielo allows applica-

tions to adjust their performance through evolutionary games.

4.4.3.1 Experiment Setting

It uses a simulated cloud data center that consists of 100 hosts in a 10× 10 grid topology

(M = 100). The grid topology is chosen based on recent findings on efficient topology

configurations in clouds [GWT08, GLL09]. It also assumes five types of applications.

Table 1 shows the message arrival rate (the number of incoming messages per second) and

message processing time (second) for each of the five application types. This configuration

follows Zipf’s law. The experiment simulates 40 application instances for each type (200

application instances in total; N = 200).

In this experiment we assume each host is equipped with an Intel Core2 Quad Q6700

CPU, which has five frequency and voltage operating points (P-states). Table 3 shows the

power consumption at each P-state under the 0% and 100% CPU utilization [GMC13].

This setting is used in Eq. 4.7 to compute power consumption objective values.

In Cielo, the number of strategies is 100 in each population. Polynomial mutation (Pm

in Algorithm 4.4.1) with distribution index 45. The maximum number of generations (Gmax

in Algorithm 4.4.1) is set to 500. Every simulation result is the average with 20 independent

simulation runs.

4.4.3.2 Experiment Results

Figs. 19 to 21 illustrate how Cielo three variants evolve deployment strategies through

generations and improve their objective values.

49

Figs. 19(a), 20(a) and 21(a) show that CPU allocation decreases through generations.

Cielo HV reaches 8.04% of average in the last generation, which is the best performance

among all three Cielo variants.

Figs. 19(b), 20(b) and 21(b) show that BW allocation improves over generations. Cielo

HV reaches 200.95 bps of average in the last generation, which is the best performance

among all three Cielo variants.

Figs. 19(c), 20(c) and 21(c) show that Cielo successfully saves energy consumption

through generations. Cielo HV reaches 334.89 Watts of average in the last generation,

which is the best performance among all three Cielo variants.

In Figs. 19(d), 20(d) and 21(d) response time maintains almost stable through genera-

tions, because response time conflicts with all other objectives and Cielo trends to balance

the trade-off among all the objectives. Cielo HV also reaches the best performance among

all three Cielo variants with 26.11 ms of average in the last generation.

Table 5 compares Cielo three variants with two well-known heuristics algorithms, FFA

(first-fit algorithm) and BFA (best-fit algorithm), which have been widely used for VM

placement in clouds [LQL13, MLL12, GP13, CSV12]. The table shows the minimum,

average and maximum objective values in the last generation. In all objectives, Cielo HV

outperforms Cielo PD and Cielo HV-PD. The largest difference is in the minimum band-

width allocation with DVFS disabled (40%), and the smallest difference is in the maximum

response time with DVFS enabled (16.60%). FFA yields the lowest power consumption be-

cause it is designed to deploy VMs on the minimum number of hosts, however it sacrifices

the other objectives. Theoretically BFA should performs the best in CPU allocation be-

cause it is designed to deploy VMs on the hosts that maintain higher resource availability.

However Cielo HV is able to find the dominant strategy which distributes CPU allocation

among hosts even better than BFA. Cielo maintains balanced objective values in between

50

FFA and BFA while Cielo yields the best performance in response time, CPU allocation

and bandwidth allocation.

Table 4 shows the time required for Cielo three variants to execute given numbers of

generations. Simulations were carried out with a Java VM 1.7 on a Windows 8.1 PC with a

3.6 GHz AMD A6-5400K APU and 6 GB memory space. For running a single simulation

(i.e., 500 generations), Cielo HV runs 6 min 15 sec which is the fastest among all Cielo

variant.

Fig. 22 illustrates how Cielo three variants evolve their hypervolume value through

generations. Hypervolume value is the average computed using each application’s dom-

inant strategy in each generation. The results confirms again Cielo HV outperforms its

hypervolume performance among other Cielo variants.

From simulation results, Cielo HV outperforms over other two Cielo variants in all ob-

jectives performance value and execution time. Cielo PD and Cielo HV-PD use the notion

of pareto dominance, which requires to make multi comparison among all objectives. Cielo

HV instead uses just one comparison to decide the winner. Pareto dominance asks for the

strictly dominant strategy, one strategy should outperforms in all objectives and survives

through generations in order to become the dominant strategy. However in most of the

cases strategies are tie using pareto dominance because objectives are conflicting with each

other.

4.4.4 Conclusion

This section describes and evaluates Cielo, a multiobjective evolutionary game theoretic

framework for adaptive and stable application placement in clouds that support a power

capping mechanism for CPUs. It aids cloud operators to schedule resources to applications

and place applications onto particular CPU cores according to the operational conditions

51

(a) CPU allocation (b) Bandwidth allocation

(c) Energy consumption (d) Response time

Figure 19: Cielo Pareto Dominance

in a cloud. It is theoretically guaranteed that Cielo allows each application to perform an

evolutionarily stable deployment strategy, which is an equilibrium solution under given op-

erational conditions. Simulation results verify that Cielo performs application deployment

in an adaptive and stable manner. Cielo outperforms existing well-known heuristics: FFA

an BFA.

52

(a) CPU allocation (b) Bandwidth allocation

(c) Energy consumption (d) Response time

Figure 20: Cielo Hypervolume

4.5 AGEGT

This section investigates a multiobjective evolutionary game theoretic framework for adap-

tive and stable application deployment in clouds that support dynamic voltage and fre-

quency scaling (DVFS) for CPUs. The proposed algorithm, called AGEGT, aids cloud

operators to adapt the resource allocation to applications and their locations according to

the operational conditions in a cloud (e.g., workload and resource availability) with respect

53

(a) CPU allocation (b) Bandwidth allocation

(c) Energy consumption (d) Response time

Figure 21: Cielo Hypervolume & Pareto Dominance

to multiple conflicting objectives such as response time, resource utilization and power

consumption. In AGEGT, evolutionary multiobjective games are performed on applica-

tion deployment strategies (i.e., solution candidates) with an aid of guided local search.

AGEGT theoretically guarantees that each application performs an evolutionarily stable

deployment strategy, which is an equilibrium solution under given operational conditions.

Simulation results verify this theoretical analysis; applications seek equilibria to perform

adaptive and evolutionarily stable deployment strategies. AGEGT allows applications to

54

Figure 22: Cielo Hypervolume Comparison

successfully leverage DVFS to balance their response time, resource utilization and power

consumption. AGEGT gains performance improvement via guided local search and out-

performs existing heuristics such as first-fit and best-fit algorithms (FFA and BFA) as well

as NSGA-II.

4.5.1 Introduction

AGEGT is an evolutionary game theoretic framework for adaptive and stable applica-

tion deployment in clouds that support dynamic voltage and frequency scaling (DVFS)

for CPUs. This section describes its design and evaluates its optimality and stability. In

AGEGT, each application maintains a set (or a population) of deployment strategies, each

of which indicates the location of and resource allocation for that application. AGEGT re-

peatedly performs evolutionary multiobjective games on deployment strategies and evolves

them over generations with respect to conflicting objectives. In each generation, AGEGT

55

runs active-guided mutation, which alters deployment strategies based on the guided lo-

cal search (GLS) algorithm [VT99]. It records inferior deployment strategies as penalties

through generations and uses the penalties to help strategies escape from local optima and

gain performance improvement.

AGEGT theoretically guarantees that, through a series of evolutionary games between

deployment strategies, the population state (i.e., the distribution of strategies) converges to

an evolutionarily stable equilibrium, which is always converged to regardless of the initial

state. (A dominant strategy in the evolutionarily stable population state is called an evo-

lutionarily stable strategy.) In this state, no other strategies except an evolutionarily stable

strategy can dominate the population. Given this theoretical property, AGEGT aids each

application to operate at equilibria by using an evolutionarily stable strategy for application

deployment in a deterministic (i.e., stable) manner.

Simulation results verify this theoretical analysis; applications seek equilibria to per-

form evolutionarily stable deployment strategies and adapt their locations and resource

allocations to given operational conditions. AGEGT allows applications to successfully

leverage DVFS to balance their response time performance, resource utilization and power

consumption. AGEGT’s performance is evaluated in comparison to existing heuristic algo-

rithms. Simulation results demonstrate that AGEGT yields a 30.3x speedup against a well-

known multiobjective evolutionary optimization algorithm, NSGA-II [DAP00], in conver-

gence speed and maintains 98% higher stability (lower oscillations) in performance across

different simulation runs. Moreover, AGEGT outperforms two well-known heuristics, first-

fit and best-fit algorithms (FFA and BFA), which have been widely used for adaptive cloud

application deployment [LQL13, MLL12, GP13, CSV12].

56

4.5.2 Algorithm

AGEGT maintains N populations, {P1,P2, ...,PN}, for N applications and performs

games among strategies in each population. A strategy s consists of five parameters to

indicate the locations of and the resource allocation for three VMs in a particular applica-

tion:

s(ai) =
⋃

t∈1,2,3

(
hi,t , ui,t , ci,t , bi,t , qi,t

)
, 1 < i < N (4.14)

ai denotes the i-th application. hi,t is the ID of a host that ai’s t-th tier VM is placed

to. ui,t is the ID of a CPU core that ai’s t-th tier VM resides on in the host hi,t . ci,t and bi,t

are the CPU and bandwidth allocation for ai’s t-th tier VM. qi,t denotes the frequency of a

CPU core that ai’s t-th tier VM resides on.

Figure 23: AGEGT Example Deployment Strategies

Fig. 23 shows two example strategies for two applications (a1 and a2) (N = 2). Four

cores are available in each of two hosts (M = 2 and O = 4). a1’s strategy, s(a1), places the

first-tier VM on the third core in the first host (h1,1 = 1 and u1,1 = 3). The 30% time share

57

of the CPU core and 80 Kbps bandwidth are allocated to the VM (c1,1 = 30 and b1,1 = 80).

The VM requires the frequency of 1 GHz for the CPU core (q1,1 = 1k). The second-tier

VM of a1 is placed on the third core in the first host (h1,2 = 1, u1,2 = 3). 30% of the CPU

core time and 85 Kbps bandwidth are allocated to the VM (c1,2 = 30 and b1,2 = 85). The

VM requires the frequency of 2 GHz for the CPU core (q1,2 = 2k). The third-tier VM of a1

requires the frequency of 2 GHz (q1,3 = 2k) on the third core of the second host (h1,3 = 2,

u1,3 = 3). 45% of the CPU core time and 120 Kbps bandwidth are allocated to the VM

(c1,3 = 45 and b1,3 = 120). If multiple VMs are placed on a CPU core, the core operates

at the highest required frequency. For example, on the third core of the first host, two VMs

requires 1 GHz and 2 GHz. Thus, the core operates at 2 GHz. Note that the left and right

columns of each CPU core denote the CPU share and bandwidth allocation for the VMs

placed on that CPU core.

Given s(a1), a1’s objective values for CPU and bandwidth allocation are 105% (30

+ 30 + 45) and 285 kbps (80 + 85 + 120). Assuming the CPU core capacity constraint

CC = 100% (Equation 4.8), it is satisfied on every core (gC = 0). For example, on the third

core of the first host, the total share allocation c1,3 is 60% (30% + 30%).

Algorithm 4.5.1 shows how AGEGT seeks an evolutionarily stable strategy for each

application through evolutionary games. In the 0-th generation, strategies are randomly

generated for each of N populations {P1,P2, ...,PN} (Line 2). Those strategies may or

may not be feasible. Note that a strategy is said to be feasible if it violates none of four

constraints described in Section 4.3. A strategy is said to be infeasible if it violates at least

one constraint.

In each generation (g), a series of games are carried out on every population (Lines 4

to 28). A single game randomly chooses a pair of strategies (s1 and s2) and distinguishes

them to the winner and the loser with respect to the objectives described in Section 4.3

58

(Lines 7 to 9). A game is carried out based on the superior-inferior relationship between

the two strategies and their feasibility (c.f. performGame() in Algorithm 4.5.1). If a feasible

strategy and an infeasible strategy participate in a game, the feasible one always wins over

its opponent. If both strategies are feasible, they are compared with the Hypervolume (HV)

metric [ZT98]. It measures the volume that a given strategy s dominates in the objective

space:

HV (s) = Λ

(⋃
{x′|s� x′ � xr}

)
(4.15)

Λ denotes the Lebesgue measure. xr is the reference point placed in the objective space.

The notion of Pareto dominance (�) is defined as follows. A strategy s1 is said to dominate

another strategy s2 (s1 � s2) if both of the following conditions hold:

• s1’s objective values are superior than, or equal to, s2’s in all objectives.

• s1’s objective values are superior than s2’s in at least one objectives.

A higher hypervolume means that a strategy is more optimal. Given two strategies, the

one with a higher hypervolume value wins a game. If both have the same hypervolume

value, the winner is randomly selected.

If both strategies are infeasible in a game, they are compared based on their constraint

violation. An infeasible strategy s1 wins a game over another infeasible strategy s2 if both

of the following conditions hold:

• s1’s constraint violation is lower than, or equal to, s2’s in all constraints.

• s1’s constraint violation is lower than s2’s in at least one constraints.

59

Once a game determines the winner and the loser, the winner replicates itself (Line 10).

The replica is altered through active-guided mutation, which mutates a strategy with guided

local search (GLS) [VT99] (Lines 11 to 16).

4.5.2.1 Active Guided Approach

From three VMs in an application that a given strategy represents (ai,t ∈ ai), Active Guided

scheme first identifies the VM that yields the worst performance with modified objective

functions (Line 11) and then mutates a parameter(s) for the VM (Lines 12 to 16). Eq. 4.16

is used to evaluate the t-th VM of an application that a strategy s is represents.

~ut(s) =
~f ′t (s)

1+ϕk
(4.16)

~f ′t (s) = { f
′
t,C(s), f

′
t,B(s), f

′
t,RT (s), f

′
t,PC(s)} is a vector of modified objective functions.

For example, f
′
t,C(s) is computed based on the CPU allocation for the t-th VM of an appli-

cation that a strategy s represents. Modified objective functions are defined as follows.

~f ′t (s) = ~ft(s)+η ∑
U
k=1ϕkIk,t(s) (4.17)

Each function ft(s) is computed on a VM by VM basis by customizing the original ob-

jective function (Eq. 4.1, 4.2, 4.3 or 4.7). For example, ft,C(s) indicates the CPU allocation

for the t-th VM of an application that s represents. U denotes the total number of CPU

cores in a cloud: U = M ∗O. ϕk is the penalty for the k-th CPU core. It is initialized as 0

in the first generation and incremented when the worst VM resides on the k-th CPU core.

Ik(s) is a boolean variable that contains 1 if the k-th CPU core is assigned to the t-th VM

of an application that s represents and otherwise 0. η is a constant, which is called penalty

rate.

60

Active-guided mutation evaluates the performance of each VM of an application that

a strategy s represents, as ~ut(s) in Eq. 4.16, and determines the worst VM by comparing

~ut(s), 1≤ t ≤ 3, with the hypervolume metric (Eq. 4.15).

The worst VM is chosen in Line 11. In Eq. 4.16, k in Pk indicates the CPU core that

the t-th VM resides on, and ϕk denotes the total amount of penalty that the CPU core has

accumulated in the past generations.

Active-guided mutation also uses~ut(s) in Eq. 4.16 as the utility of penalizing each VM.

Once it determines the worst VM in Line 11, it increments the penalty for the CPU core that

the VM resides on (ϕk in Eq. 4.16). In Lines 12 to 16, it randomly chooses a parameter (or

parameters) of the worst VM identified in Line 11 with a certain mutation rate Pm and alters

its/their value(s) at random based on polynomial mutation [DPA02]. (mutate() in Line 14

implements polynomial mutation.) Key ideas behind active-guided mutation are to (1) identify the

worst-performing VM in each application and alter its deployment strategy to potentially improve

its performance and (2) record inferior VM deployment strategies as penalties through generations

and use the penalties to help strategies escape from local optima and improve their performance.

Mutation is followed by a game performed between the loser and the mutated winner (Line 17).

This is intended to select the top two of three strategies (the winner, loser and mutated winner). The

worst of the three strategies disappears in the population.

Once all strategies play games in the population, AGEGT identifies a feasible strategy whose

population share (xs) is the highest and determines it as a dominant strategy (di) (Lines 22 to 26).

AGEGT uses the dominant strategy to adjust the parameters for three VMs of an application in

question (Line 27).

4.5.3 Experiment

This section evaluates AGEGT’s performance, particularly in its optimality and stability, through

simulations.

61

4.5.3.1 Experiment Setting

Experiment simulates a cloud data center that consists of 100 hosts in a 10×10 grid topology. The

grid topology is chosen based on recent findings on efficient topology configurations in clouds [GWT08,

GLL09]. It also assumes five different types of applications. Table 6 shows the message arrival rate

(i.e., the number of incoming messages per second) and message processing time (in second) for

each of the five application types. This configuration follows Zipf’s law [Per96, THL03]. This

experiment simulates 40 application instances for each type (200 application instances in total).

Each host is simulated to operate an Intel Core2 Quad Q6700 CPU, which is a quad-core CPU

that has five frequency and voltage operating points (P-states). Table 7 shows the power consump-

tion at each P-state under the 0% and 100% CPU utilization [GMC13]. This setting is used in

Equation 4.7 to compute power consumption objective values.

Table 8 shows the parameter settings for AGEGT. Mutation rate is set to 1/v where v is the

number of parameters in a strategy. (v = 5 as shown in Eq. 4.14). Every simulation result is the

average with 20 independent simulation runs.

Comparative performance study is carried out for AGEGT and its two variants: EGT-GLS and

EGT. Algorithm 4.5.2 shows the procedure of EGT-GLS, which is similar to AGEGT. EGT-GLS

performs polynomial mutation, instead of active-guided mutation, and guided local search (GLS)

in each generation (i.e., localSearch() in Algorithm 4.5.2). The local search operator is designed to

improve the performance of a dominance strategy di (Algorithm 4.5.3). It creates Q mutants of di

iteratively using GLS and replaces di with a mutant if the mutant wins over di in a game. Through

Q iterations, the local search operator keeps the best mutant discovered so far and mutates it when

mutation occurs. Another variant, EGT, performs Algorithm 4.5.2 with local search disabled.

AGEGT is also compared with NSGA-II, which is a well-known multiobjective evolutionary

algorithm [DPA02]. AGEGT (and its variants) and NSGA-II use the same parameter settings shown

in Table 8. All other NSGA-II settings are borrowed from [DPA02]. AGEGT, EGT-GLS, EGT and

NSGA-II are implemented with jMetal [DNA10]. Moreover, AGEGT is evaluated in comparison

62

to well-known heuristics, first-fit and best-fit algorithms (FFA and BFA), which have been widely

used for adaptive cloud application deployment [LQL13, MLL12, GP13, CSV12].

Table 9 shows two different combinations of constraints: no constraints (C∞) and moderate

(CM). CM is used unless otherwise noted.

4.5.3.2 Experiment Results

Table 10 examines how a mutation-related parameter, called distribution index (ηm in [DPA02]),

impacts the performance of EGT. This parameter controls how likely a mutated strategy is similar

to its original. (A higher distribution index makes a mutant more similar to its original.) In Table 10,

the performance of EGT is evaluated with the hypervolume (HV) measure that a set of dominant

strategies yield in the 500th generation. A higher HV means that a set of solutions is more optimal

(c.f. Eq. 4.15). As shown in Table 10, EGT yields the best performance with the distribution index

value of 40.

Thus, this parameter setting is used for EGT, EGT-GLS and AGEGT in all successive simula-

tions.

Figs. 24 to 26 show a series of boxplots for the objective values that AGEGT, EGT-GLS and

EGT yield in the last generation under two different constraints combination (C∞ and CM). The ends

of whiskers indicates the maximum and minimum objective values. All three algorithms perform

better under constraints. This means that constraint handling works properly in games. All succes-

sive simulations use the moderate constraint combination (CM). AGEGT often yields lower variance

in objective values than EGT-GLS and EGT do. This means AGEGT performs more consistently

among different simulation runs. In comparison to EGT-GLS and EGT, AGEGT outperforms them

in two and three objectives, respectively.

Fig. 27 shows how AGEGT, EGT-GLS and EGT evolve their HV through generations. The

highest HV that the three algorithms yield are 0.835, 0.832 and 0.830, respectively. In HV, AGEGT

gains 0.3% and 0.6% improvements over EGT-GLS and EGT. This result is consistent with the ones

63

(a) fC (b) fB

(c) fPC (d) fRT

Figure 24: Objective Values of AGEGT under Two Constraint Combinations

in Figs. 24 to 26. Table 11 depicts how many generations AGEGT, EGT-GLS and EGT require to

reach the HV values of 0.835, 0.832 and 0.830. In order to reach the HV value of 0.832, AGEGT

gains a 5.6x speedup over EGT-GLS. It gains a 4.7x speed up over EGT to reach the HV value of

0.830. Fig. 27 and Table 11 demonstrate that AGEGT significantly outperforms EGT-GLS and EGT

in convergence speed while its superiority is not significant in optimality. Active-guided mutation

aids AGEGT to gain performance improvement effectively.

In comparison of AGEGT with NSGA-II, the set of AGEGT dominant strategies at the last

generation is non-dominated (i.e., tie) with the NSGA-II individuals at the last generation based

64

(a) fC (b) fB

(c) fPC (d) fRT

Figure 25: Objective Values of EGT-GLS under Two Constraint Combinations

on the notion of Pareto dominance. While AGEGT yields the HV value of 0.835, the highest HV

value that NSGA-II yields is 0.813. (The difference is 2.70%.) NSGA-II requires 182 generations

to reach the HV value of 0.813 (Table 11). In contrast, AGEGT spends only 6 generations to reach

the HV value. It maintains a 30.3x speedup against NSGA-II in convergence speed.

Table 12 examines the optimality of AGEGT and NSGA-II in distance metrics. It shows the

distance in the normalized objective space from the Utopian point, (0, 0, 0, 0), to the set of dominant

strategies that AGEGT produces at the last generation. In its middle column, it shows the average

distance from the Utopian point to the individuals that NSGA-II produces at the last generation.

65

(a) fC (b) fB

(c) fPC (d) fRT

Figure 26: Objective Values of EGT under Two Constraint Combinations

Euclidean and Manhattan distances are used as metrics. In both metrics, a shorter distance means

a set of solutions are closer to the Utopian point (i.e., more optimal). The right column shows the

distance from the Utopian point to one of NSGA-II individuals that is closest to the set of AGEGT

strategies at the last generation. Table 12 shows that AGEGT is closer to the Utopian point than

NSGA-II by 32% to 47%.

Table 13 compares AGEGT with NSGA-II, FFA and BFA. It shows the minimum, average and

maximum objective values in the last generation. AGEGT outperforms NSGA-II in the average

CPU allocation, bandwidth consumption and power consumption by 50.37%, 19.28% and 77.63%,

66

Figure 27: Comparison of AGEGT, EGT-GLS and EGT in Hypervolume (HV)

respectively. In response time, NSGA-II outperforms AGEGT by 47.17%. On average, AGEGT

outperforms NSGA-II by 25.02%. FFA and BFA produce two extreme results. FFA yields the low-

est power consumption (59.61 Watts) because it is designed to deploy VMs on the minimum number

of hosts; however, it sacrifices the other objectives. BFA performs the best in CPU allocation (28.94

%) because it is designed to deploy VMs on the hosts that maintain higher resource availability.

AGEGT maintains balanced objective values in between FFA and BFA while performing better in

response time, CPU allocation and bandwidth allocation.

Table 14 shows the variance of objective values that AGEGT and NSGA-II yield at the last gen-

eration in 20 different simulation runs. A lower variance means higher stability (or higher similarity)

in objective value results (i.e., lower oscillations in objective value results) among different simu-

lation runs. AGEGT maintains significantly higher stability than NSGA-II in all objectives except

response time. AGEGT’s average stability is 98.86% higher than NSGA-II’s. This result exhibits

AGEGT’s stability property (i.e. ability to seek evolutionarily stable strategies), which NSGA-II

does not have.

67

Fig. 28 shows two three-dimensional objective spaces that plot a set of dominant strategies ob-

tained from individual populations at each generation. Each blue dot indicates the average objective

values that dominant strategies yield at a particular generation in 20 simulation runs. The trajec-

tory of blue dots illustrates a path through which AGEGT’s strategies evolve and improve objective

values. Gray and red dots represent 20 different sets of objective values at the first and last gener-

ation in 20 simulation runs, respectively. While initial (gray) dots disperse (because strategies are

generated at random initially), final (red) dots are overlapped in a small region. Consistent with

Table 14, Fig. 28 verifies AGEGT’s stability: reachability to at least one Nash equilibria regardless

of the initial conditions.

(a) CPU allocation, Bandwidth allocation

and Energy consumption

(b) CPU allocation, Bandwidth allocation

and Response time

Figure 28: Trajectory of AGEGT’s Solution through Generations

4.5.4 Conclusion

This section proposes and evaluates AGEGT, an evolutionary game theoretic framework for adaptive

and stable VM deployment in DVFS-enabled clouds. It theoretically guarantees that every applica-

tion (i.e., a set of VMs) seeks an evolutionarily stable deployment strategy, which is an equilibrium

solution under given workload and resource availability. Simulation results verify that AGEGT per-

forms VM deployment in an adaptive and stable manner. AGEGT outperforms existing well-known

68

heuristics in the quality, efficiency and stability of VM deployment. For example, AGEGT yields a

30.3x speedup against NSGA-II in convergence speed and maintains 98% higher stability.

4.6 Cielo-LP

In this section, evolutionary multi-objective games are performed on VM configuration strategies

(i.e., solution candidates) with an aid of linear programming. Cielo-LP theoretically guarantees that

each application (i.e., a set of VMs) performs an evolutionarily stable deployment strategy, which is

an equilibrium solution under given operational conditions. Simulation results verify this theoretical

stability analysis, and applications seek equilibria to perform adaptive and evolutionarily stable

deployment strategies. Linear programming allows Cielo-LP to gain up to 38% improvement in

optimality and up to 5.5x speedup in convergence speed with reasonably acceptable computational

costs.

4.6.1 Introduction

In Cielo-LP, each application maintains a set (or a population) of placement strategies, each of

which indicates the location of and resource allocation for that application. Cielo-LP repeatedly

performs evolutionary multiobjective games on placement strategies and evolves them over genera-

tions with respect to conflicting optimization objectives including response time, resource utilization

and power consumption. In each generation, Cielo-LP runs the simplex linear programming (LP) al-

gorithm for a small portion of the entire search space and leverages the LP-optimal local solution(s)

to efficiently search a globally optimal solution.

This section describes Cielo-LP’s algorithmic design and evaluates its optimality and stability

with a cloud data center that supports dynamic voltage and frequency scaling (DVFS) for CPUs.

Simulation results demonstrate that Cielo-LP allows applications to seek equilibria to perform evo-

lutionarily stable placement strategies and adapt their locations and resource allocations to given

operational conditions.

69

To the best of my knowledge, this study is the first attempt to integrate linear programming

(LP) with an EGT-backed evolutionary algorithm. There exist a few research efforts to integrate LP

with traditional evolutionary algorithms (e.g., [GN07, GKB11]). Cielo-LP is similar to [GN07] in

that both work use LP to solve a part of the entire problem and approach the rest of the problem

with an evolutionary algorithm based on LP-optimal solutions. In [GKB11], Kumar et al. solve a

relaxed version of the problem with LP and use an evolutionary algorithm for the complete problem

based on the LP-optimal solutions. Both of the two relevant work focus on optimization only, not

stability, and consider a single objective, while Cielo-LP considers both optimization and stability

with respect to multiple objectives.

4.6.2 Algorithm

Cielo-LP maintains N populations, {P1,P2, ...,PN}, for N applications and performs games

among strategies in each population. A strategy s consists of five parameters to indicate the lo-

cations of and the resource allocation for three VMs in a particular application:

s(ai) =
⋃

t∈1,2,3

(
hi,t , ui,t , ci,t , bi,t , qi,t

)
, 1 < i < N (4.18)

ai denotes the i-th application. hi,t is the ID of a host that ai’s t-th tier VM is placed to. ui,t is

the ID of a CPU core that ai’s t-th tier VM resides on in the host hi,t . ci,t and bi,t are the CPU and

bandwidth allocation for ai’s t-th tier VM. qi,t denotes the frequency of a CPU core that ai’s t-th tier

VM resides on.

Fig. 29 shows two example strategies for two applications (a1 and a2) (N = 2). Four cores are

available in each of two hosts (M = 3 and O = 2). a1’s strategy, s(a1), places the first-tier VM on

the third core in the first host (h1,1 = 1 and u1,1 = 3). The 30% time share of the CPU core and 80

Kbps bandwidth are allocated to the VM (c1,1 = 30 and b1,1 = 80). The VM requires the frequency

of 1 GHz for the CPU core (q1,1 = 1k). The second-tier VM of a1 is placed on the third core in

the first host (h1,2 = 1, u1,2 = 3). 30% of the CPU core time and 85 Kbps bandwidth are allocated

70

Figure 29: Cielo-LP Example Deployment Strategies

to the VM (c1,2 = 30 and b1,2 = 85). The VM requires the frequency of 2 GHz for the CPU core

(q1,2 = 2k). The third-tier VM of a1 requires the frequency of 2 GHz (q1,3 = 2k) on the third core

of the second host (h1,3 = 2, u1,3 = 3). 45% of the CPU core time and 120 Kbps bandwidth are

allocated to the VM (c1,3 = 45 and b1,3 = 120). If multiple VMs are placed on a CPU core, the core

operates at the highest required frequency. For example, on the third core of the first host, two VMs

requires 1 GHz and 2 GHz. Thus, the core operates at 2 GHz.

Given s(a1), a1’s objective values for CPU and bandwidth allocation are 105% (30 + 30 + 45)

and 285 kbps (80 + 85 + 120). Assuming the CPU core capacity constraint CC = 100% (Eq. 4.8),

it is satisfied on every core (gC = 0). For example, on the third core of the first host, the total share

allocation c1,3 is 60% (30% + 30%).

Algorithm 4.6.1 shows how Cielo-LP seeks an evolutionarily stable strategy for each application

through evolutionary games. In the 0-th generation, strategies are randomly generated for each of

N populations {P1,P2, ...,PN} (Line 1). Those strategies may or may not be feasible. Note that

a strategy is said to be feasible if it violates none of four constraints described in Section 4.3. A

strategy is said to be infeasible if it violates at least one constraint.

71

In each generation (g), under the probability of 1−Pl , a series of games are carried out on every

population (Lines 3 to 30). A single game randomly chooses a pair of strategies (s1 and s2) and

distinguishes them to the winner and the loser with respect to performance objectives described in

Section 4.3 (Lines 11 to 12). The loser disappears in the population. The winner is replicated to

increase its population share and mutated with polynomial mutation [DPA02] (Lines 13 to 18).

Mutation randomly chooses a parameter (or parameters) in a given strategy with a certain muta-

tion rate Pm and alters its/their value(s) at random (Lines 14 to 18). Then, another game is performed

between the loser and the mutated winner (Line 19). This is intended to select the top two of three

strategies (winner, loser and mutated winner).

Once all strategies play games in the population, Cielo-LP identifies a feasible strategy whose

population share (xs) is the highest and determines it as a dominant strategy (di) (Lines 24 to 27).

Cielo-LP deploys three VMs for an application in question based on the dominant strategy (Line 28).

A game is carried out based on the superior-inferior relationship between given two strategies

and their feasibility (performGame() in Algorithm 4.6.1). If a feasible strategy and an infeasible

strategy participate in a game, the feasible one always wins the game. If both strategies are feasible,

they are compared based on the notion of Pareto dominance [SD95], in which a strategy s1 is said

to dominate another strategy s2 if both of the following conditions hold:

• s1’s objective values are superior than, or equal to, s2’s in all objectives.

• s1’s objective values are superior than s2’s in at least one objectives.

The dominating strategy wins a game over the dominated one. If two strategies are non-

dominated with each other, the winner is randomly selected.

If both strategies are infeasible in a game, they are compared based on their constraint violation.

An infeasible strategy s1 wins a game over another infeasible strategy s2 if both of the following

conditions hold:

• s1’s constraint violation is lower than, or equal to, s2’s in all constraints.

72

• s1’s constraint violation is lower than s2’s in at least one constraints.

4.6.2.1 Linear Programming Integration

In each generation (g), Cielo-LP performs the simplex linear programming (LP) algorithm on each

population (Pi) with the probability of Pl (Lines 6 to 7). LP guarantees to find the optimal solution

for a single objective function as far as it exists; however, it cannot consider multiple objectives

separately. Therefore, Cielo-LP executes LP in one of the following two methods subject to the four

constraints described in Section 4.3 (CC,CB,CRT and CPC).

• Single objective method: Cielo executes LP with one of four objectives described in Sec-

tion 4.3 (fC, fB, fRT or fPC). Another limitation of LP is that objective and constraint func-

tions must be all linear. Since the objective function for response time is non-linear (Eq. 4.3),

Cielo replaces it with a linearly approximated function:

f LP
RT =

3

∑
t=1

{
T p

t +
1
O
(T p

t λt − ct
qt

qmax
)+(Bλt −bt)

}
(4.19)

• Weighted sum method: Cielo-LP executes LP with the following objective function, which

aggregates four objective functions (fC, fB, f LP
RT or fPC) as a weighted sum. w denotes a

weight value for a particular objective function. Each objective value (fi) is normalized.

fWS =
4

∑
i=1

wi fi (4.20)

Once LP finds the optimal solution for a population, Cielo-LP treats it as the dominant strategy

for that population (Line 7). Note that the linear programming rate (Pl) is intended to be low. Cielo-

LP executes LP for a small portion of the entire problem (i.e., for a small number of populations:

Pl×N populations) and leverages the LP-optimal solution(s) to boost convergence speed as well as

the quality of the set of dominant strategies d1, d2, ... , dN).

73

4.6.3 Experiment

This section evaluates Cielo-LP, particularly in its optimality and stability, through simulations.

4.6.3.1 Experiment Setting

Experiment simulates a cloud data center that consists of 100 hosts in a 10× 10 grid topology

(M = 100). The grid topology is chosen based on recent findings on efficient topology configu-

rations in clouds [GWT08, GLL09]. It assumes five different types of applications. Table 4.6.3.1

shows the message arrival rate (i.e., the number of incoming messages per second) and message pro-

cessing time (in second) for each type of applications. This configuration follows Zipf’s law [Per96,

THL03]. This experiment simulates 40 application instances for each application type (200 appli-

cation instances in total; N = 200).

Each host is simulated to operate an Intel Core2 Quad Q6700 CPU, which is a quad-core CPU

that has five frequency and voltage operating points (P-states). Table 16 shows the power consump-

tion at each P-state under the 0% and 100% CPU utilization [GMC13]. This setting is used in

Eq. 4.7 to compute power consumption objective values.

Table 17 shows the parameter settings for Cielo. Mutation rate is set to 1/v where v is the number

of parameters in a strategy. (v = 15 as shown in Eq. 4.18). Every simulation result is the average

with 20 independent simulation runs.

Comparative study is carried out for the following variants of Cielo-LP.

• Cielo-BASE: Cielo with linear programming (LP) disabled

• Cielo−LPC: Cielo with LP that uses the CPU consumption objective

• Cielo−LPB: Cielo with LP that uses the bandwidth consumption objective

• Cielo−LPPC: Cielo with LP that uses the power consumption objective

• Cielo−LPRT : Cielo with LP that uses the response time objective

74

• Cielo−LPWS: Cielo with LP that uses a weighted sum of objective values as an objective

(Eq. 4.20).

CieloLP’s variants are compared with and without constraints (CM and C∞ in Table 18). Con-

straints are enabled unless otherwise noted.

Cielo-LP is evaluated in comparison with the simplex LP algorithm as well as NSGA-II, which

is a well-known multiobjective evolutionary algorithm [DAP00]. Simplex is implemented with

GNU Linear Programming Kit (GLPK)1 and Xypron2. Cielo-LP and NSGA-II use the same pa-

rameter settings shown in Table 17. All other NSGA-II settings are borrowed from [DAP00]. Both

Cielo-LP and NSGA-II are implemented with jMetal [DNA10]. Moreover, Cielo-LP is compared

to well-known heuristics, first-fit and best-fit algorithms (FFA and BFA), which have been widely

used for adaptive cloud application deployment [LQL13, MLL12, GP13, CSV12]. All simulations

were carried out with a Java VM 1.7 on a Windows 8.1 PC with a 3.6 GHz AMD A6-5400K APU

and 6 GB memory space.

4.6.3.2 Experiment Results

Table 19 examines how a mutation-related parameter, called distribution index (ηm in [DPA02]),

impacts the performance of Cielo-LP. Cielo-BASE is used in this evaluation. This parameter con-

trols how likely a mutated strategy is similar to its original. (A higher distribution index makes a

mutant more similar to its original.) In Table 19, the performance of Cielo-LP is evaluated with

the hypervolume measure that a set of dominant strategies yield in the last (500th) generation. The

hypervolume metric indicates the union of the volumes that a given set of solutions dominates in

the objective space [ZT98]. A higher hypervolume means that a set of solutions is more optimal.

As shown in Table 19, Cielo-LP yields the best performance with the distribution index value of 40.

Thus, this parameter setting is used in all successive simulations.

1http://www.gnu.org/software/glpk/
2http://glpk-java.sourceforge.net/

75

Table 20 illustrates how the computational costs of Cielo-LP changes according to the linear

programming (LP) rate (Pl in Algorithm 4.6.1 and Table 17). When the LP rate is 0 %, Cielo-

LP works as Cielo-BASE. Its execution time is approximately 6.5 minutes to run 500 genera-

tions. This is an acceptable cost for configuring 3,000 parameters for 200 applications (15 pa-

rameters/application × 200 applications).

Table 20 also shows the computational costs of Cielo−LPWS under different LP rates from 0.5%

to 50%. Probabilistically, LP is applied on one of 200 applications in each generation under the LP

rate of 0.5%. If Cielo−LPWS considers all four objectives in its weighted-sum function (Eq. 4.20),

its execution time exceeds one hour even if the LP rate is 0.5%. The computation of response time

is a major contribution to this cost. If Cielo−LPWS considers three objectives besides the response

time objective, its computational costs are reasonably acceptable under the LP rates of 10% or lower.

As LP rate increases from 0% to 10%, execution time approximately doubles; however, it is still

less than 14 minutes. In all successive simulations, Cielo−LPWS does not consider the response

time objective when it runs LP.

Figs. 30 to 33 show a series of boxplots for the objective values that Cielo-BASE and Cielo−

LPWS yield in 20 simulation runs. Each boxplot illustrates the maximum and minimum objective

values as well as the first, second and third quartiles of objective values. Cielo−LPWS outperforms

Cielo-BASE in all objectives except the response time objective. Note that Cielo−LPWS does not

consider the response time objective when it runs LP. Cielo− LPWS yields better/lower objective

values as its LP rate increases from 0.5% to 10%. Since the computational cost is reasonably

acceptable under the LP rate of 10% (Table 20), LP rate is set to 10% in all successive simulations.

Table 21 shows the average objective value that each of Cielo-LP’s variants yields in the last

generation. A number in parentheses indicates a performance gain against Cielo-BASE. Cielo al-

ways gains performance improvement on an objective(s) that LP is applied to. Cielo−LPC gains

the highest performance improvement (38.6%). The performance improvement of Cielo−LPWS is

13.3% on average. Table 21 also depicts the distance from Cielo-LP’s solution to the utopian point,

which is (0, 0, 0, 0), in the objective space. Manhattan distance is used as a distance metric here.

76

Cielo−LPWS’s solution is 13.2% closer to the utopian point, which means 13.2% better optimized

than Cielo-BASE’s. Tables 20 and 21 demonstrate that LP successfully aids Cielo-LP to boost the

optimality of its solution with reasonable computational costs.

Table 22 compares the objective values of Cielo−LPWS with the optimal results that LP finds

with and without constraints. Here, LP is used to solve the entire problem. Since LP can con-

sider only one objective in a single simulation run, Table 22 shows the optimal objective values in

four objectives by running LP four times (“LP only” in Table 22). LP is also configured to use a

weighted-sum function that aggregates four objective values. In this configuration, LP runs once

to obtain four objective values (“LP only (WS)” in Table 22). Those values are not guaranteed to

be optimal. With constraints disabled (C∞), Cielo− LPWS and LP with a weighted-sum function

produce higher/worse objective values than LP’s optimal values because the two algorithms con-

sider multiple objectives simultaneously. Note that Cielo−LPWS’s performance is very close to LP

in CPU and bandwidth allocation while it is inferior to LP in power consumption. Cielo−LPWS

outperforms LP with a weighted-sum function in three of four objectives.

With constraints enabled (CM), LP obtains the optimal objective values in CPU allocation and

power consumption. However, it fails to obtain the optimal values in two other objectives within the

timeout period of one hour. LP with a weighted-sum function fails to complete its execution within

the timeout period. Cielo−LPWS’s performance is very close to LP in CPU allocation while it is

inferior to LP in power consumption.

Table 22 also shows the execution time for the three algorithms. LP’s execution time indicates

the total execution time to run four simulation runs. With constraints disabled, LP and LP with

a weighted-sum function are significantly efficient compared to Cielo− LPWS. With constraints

enabled, their efficiency dramatically degrades. LP’s execution time is five seconds and six seconds

to obtain the objective values of CPU allocation and power consumption, respectively. Therefore,

LP’s execution time is greater than 7,211 seconds. The existence of constraints greatly impacts the

execution time of LP and LP with a weighted-sum function while it does not impact Cielo−LPWS.

Cielo− LPWS’s execution time increases only two seconds by enabling constraints. In summary,

77

Cielo− LPWS yields near LP-optimal performance in some objectives and it is robust against the

existence of constraints.

Table 23 compares the convergence speed of Cielo−LPWS and Cielo-BASE based on the hy-

pervolume measurement. Cielo−LPWS and Cielo-BASE spend 8 and 16 generations, respectively,

to reach the hypervolume of 0.37. The speedup of Cielo−LPWS is 2.0. Cielo-BASE reaches the

hypervolume of 0.3858 in 500 generations. In contrast, Cielo−LPWS requires only 91 generations

to reach the same hypervolume, thereby yielding 5.5x speedup. These results illustrate that LP

successfully aids Cielo-LP to boost its convergence speed.

Table 24 compares Cielo-LP with NSGA-II along with FFA and BFA based on their minimum,

average and maximum objective values. Cielo-LP outperforms NSGA-II in all objectives except

response time. Considering all four objectives, Cielo-LP yields 24.67% higher performance than

NSGA-II. FFA and BFA produce two extreme results. FFA yields the lowest power consumption

(59.61 Watts) because it is designed to place VMs on the minimum number of hosts; however,

it sacrifices the other objectives. BFA performs the best in CPU allocation (28.28%) because it

is designed to place VMs on the hosts that maintain higher resource availability. Cielo maintains

balanced objective values in between FFA and BFA while performing better in response time, CPU

allocation and bandwidth allocation.

Table 25 shows the variance of objective values that Cielo-LP and NSGA-II yield in 20 dif-

ferent simulation runs. A lower variance means higher stability (or higher similarity) in objective

values (i.e., lower oscillations in objective values) among different simulation runs. Cielo-LP main-

tains significantly higher stability than NSGA-II in all objectives. Cielo-LP’s average stability is

97.21% higher than NSGA-II’s. This result exhibits Cielo’s stability property (i.e. ability to seek

evolutionarily stable strategies), which NSGA-II does not have.

Fig. 34 shows two three-dimensional objective spaces that plot a set of dominant strategies ob-

tained from individual populations at each generation. Each blue dot indicates the average objective

values that dominant strategies yield at a particular generation in 20 simulation runs. The trajectory

of blue dots illustrates a path through which Cielo-LP’s strategies evolve and improve objective val-

78

ues. Gray and red dots represent 20 different sets of objective values at the first and last generation

in 20 simulation runs, respectively. While initial (gray) dots disperse (because strategies are gener-

ated at random initially), final (red) dots are overlapped in a small region. Consistent with Table 25,

Fig. 34 verifies Cielo-LP’s stability: reachability to at least one Nash equilibria regardless of the

initial conditions.

4.6.4 Conclusion

This section proposes and evaluates Cielo-LP, an evolutionary game theoretic algorithm for adaptive

and stable virtual machine (VM) placement in DVFS-enabled clouds. It theoretically guarantees

that every application seeks an evolutionarily stable deployment strategy, which is an equilibrium

solution under given workload and resource availability. Simulation results verify that Cielo-LP

performs VM placement in an adaptive and stable manner. By integrating linear programming,

Cielo-LP successfully gains performance improvement in optimality and convergence speed with

reasonable computational costs. Cielo-LP outperforms existing well-known heuristics in the quality

and stability of VM placement.

Applications successfully leverage DVFS to balance their response time performance, resource

utilization and power consumption. Linear programming aids Cielo-LP to gain up to 38% im-

provement in optimality and up to 5.5x speedup in convergence speed with reasonably accept-

able computational costs. Cielo-LP’s performance is evaluated in comparison to existing heuris-

tic algorithms. Cielo outperforms a well-known multiobjective evolutionary optimization algo-

rithm, NSGA-II [DAP00] by 24% in optimality while maintaining 97% higher stability (lower

oscillations). Cielo-LP also outperforms two other well-known heuristics, first-fit and best-fit al-

gorithms (FFA and BFA), which have been widely used for adaptive cloud application deploy-

ment [LQL13, MLL12, GP13, CSV12].

79

Algorithm 4.4.1: Evolutionary Process in Cielo
1: g = 0

2: Randomly generate the initial N populations for N applications: P = {P1,P2, ...,PN}

3: while g < Gmax do

4: for each population Pi randomly selected from P do

5: P ′
i ← /0

6: for j = 1 to |Pi|/2 do

7: s1← randomlySelect(Pi)

8: s2← randomlySelect(Pi)

9: winner← performGame(s1, s2)

10: replica← replicate(winner)

11: if random() ≤ Pm then

12: replica← mutate(winner)

13: end if

14: Pi \{s1,s2}

15: P ′
i ∪{winner,replica}

16: end for

17: Pi←P ′
i

18: di← argmaxs∈Pixs

19: while di is infeasible do

20: Pi \{di}

21: di← argmaxs∈Pixs

22: end while

23: Deploy VMs for the current application based on di.

24: end for

25: g = g+1

26: end while

80

Application type 1 2 3 4 5

Message arrival rate (λ in Eq. 4.6) 110 70 40 20 10

Web server (T p
1 in Eq. 4.4) 0.02 0.02 0.04 0.04 0.08

App server (T p
2 in Eq. 4.4) 0.03 0.08 0.04 0.13 0.11

DB server (T p
3 in Eq. 4.4) 0.05 0.05 0.12 0.08 0.11

Table 1: Message Arrival Rate and Message Processing Time

Table 2: Cielo Simulation Settings

Parameter Value

Number of hosts (M) 100

Number of applications (N) 200

Number of simulation runs 20

Number of generations (Gmax) 500

Population size (|Pi|) 100

Energy consumption for

a single bit of data (et)
0.001 Watt

Upper limit of processing

capacity per core(LU)
100%

Upper limit of bandwidth

capacity per host(LE)
1Kbps

Upper limit of energy

consumption per host(LE)
400Watts

Upper limit of response

time per application(LR)
40ms

81

Table 3: P-states in Intel Core2 Quad Q6700

p-state CPU frequency (f) P f
idle P f

max

p1 1.6 GHz 82.7 W 88.77 W

p2 1.867 GHz 82.85 W 92 W

p3 2.113 GHz 82.91 W 95.5 W

p4 2.4 GHz 83.1 W 99.45 W

p5 2.67 GHz 83.25 W 103 W

Table 4: Cielo Execution Time Comparison

Algorithms Execution Time

Cielo-PD 6 min 48 sec

Cielo-HV 6 min 15 sec

Cielo-PD-HV 7 min 12 sec

82

Table 5: Performance of Cielo, FFA and BFA
Objectives Min Avg Max

CPU

allocation

(%/host)

Cielo HV 7.97 8.04 8.12

Cielo PD 19.38 19.69 19.93

Cielo PD-HV 19.46 19.51 19.58

FFA 96.1 96.1 96.1

BFA 10.54 10.54 10.54

Bandwidth

allocation

(bps/host)

Cielo HV 199.86 200.95 202.44

Cielo PD 224.54 228.39 232.32

Cielo PD-HV 223.62 225.3 227.88

FFA 445 446 446.92

BFA 425 425 425

Power

consumption

(W)

Cielo HV 334.76 334.89 335

Cielo PD 338.99 339.22 339.44

Cielo PD-HV 339.08 339.19 339.34

FFA 43.82 43.83 43.85

BFA 338.66 338.73 338.8

Response

time

(msec)

Cielo HV 25.35 26.11 26.94

Cielo PD 35.84 36 36.59

Cielo PD-HV 30.64 30.93 31.33

FFA 173.45 173.45 173.45

BFA 152.92 152.92 152.92

83

Algorithm 4.5.1: Evolutionary Process in AGEGT
1: g = 0

2: Randomly generate N populations for N applications: P = {P1,P2, ...,PN}

3: while g < Gmax do

4: for each population Pi randomly selected from P do

5: P ′
i ← /0

6: for j = 1 to |Pi|/2 do

7: s1 ← randomlySelect(Pi)

8: s2 ← randomlySelect(Pi)

9: {winner, loser} ← performGame(s1, s2)

10: replica← replicate(winner)

11: ai,t ← argmaxai,t∈ai ut(replica)

12: for each parameter v in ai,t do

13: if random() ≤ Pm then

14: replica← mutate(replica, v)

15: end if

16: end for

17: winner′← performGame(loser, replica)

18: Pi \{s1,s2}

19: P ′
i ∪{winner,winner′}

20: end for

21: Pi←P ′
i

22: di← argmaxs∈Pixs

23: while di is infeasible do

24: Pi \{di}

25: di← argmaxs∈Pixs

26: end while

27: Use di to adjust the parameters for VMs of the current application.

28: end for

29: g = g+1

30: end while

84

Algorithm 4.5.2: Evolutionary Process in EGT-GLS
1: g = 0

2: Randomly generate N populations for N applications: P = {P1,P2, ...,PN}

3: while g < Gmax do

4: for each population Pi randomly selected from P do

5: P ′
i ← /0

6: for j = 1 to |Pi|/2 do

7: s1 ← randomlySelect(Pi)

8: s2 ← randomlySelect(Pi)

9: {winner, loser} ← performGame(s1, s2)

10: replica← replicate(winner)

11: for each parameter v in replica do

12: if random() ≤ Pm then

13: replica← mutate(replica, v)

14: end if

15: end for

16: winner′← performGame(loser, replica)

17: Pi \{s1,s2}

18: P ′
i ∪{winner,winner′}

19: end for

20: Pi←P ′
i

21: di← argmaxs∈Pixs

22: while di is infeasible do

23: Pi \{di}

24: di← argmaxs∈Pixs

25: end while

26: di ← localSearch(di)

27: Use di to adjust the parameters for VMs of the current application.

28: end for

29: g = g+1

30: end while

85

Algorithm 4.5.3: Guided Local Search (localSearch())
Require: di: Dominant strategy to improve

Ensure: Improved dominant strategy

1: for i = 1 to Q do

2: for each t-th tier VM in di do

3: RankedV M[]← utilt(CPU,BW,EN,RT)(strategy)

4: end for

5: PenalizedV M← RankedV M[3]

6: for each parameter v in PenalizedV M do

7: if random() ≤ Pm then

8: replica← mutate(di, v)

9: end if

10: end for

11: di← performGame(replica, di)

12: end for

13: return di

Application type 1 2 3 4 5

Message arrival rate (λ in Eq. 4.6) 110 70 40 20 10

Web server (T p
1 in Eq. 4.4) 0.02 0.02 0.04 0.04 0.08

App server (T p
2 in Eq. 4.4) 0.03 0.08 0.04 0.13 0.11

DB server (T p
3 in Eq. 4.4) 0.05 0.05 0.12 0.08 0.11

Table 6: Message Arrival Rate and Message Processing Time

86

P-state Frequency (q) Pq
idle Pq

max

p1 1.600 GHz 82.70 W 88.77 W

p2 1.867 GHz 82.85 W 92.00 W

p3 2.113 GHz 82.91 W 95.50 W

p4 2.400 GHz 83.10 W 99.45 W

p5 2.670 GHz 83.25 W 103.00 W

Table 7: P-states in Intel Core2 Quad Q6700

Parameter Value

Number of hosts (M) 100

Number of cores per CPU/host (O in Eq. 4.6) 4

Number of applications (N) 200

Number of generations (Gmax in Algo. 4.5.1) 500

Population size (|Pi| in Algo. 4.5.1) 100

Penalization rate (η in Algo. 4.5.1) 0.5

Mutation rate (Pm in Algo. 4.5.1) 1/v

Number of local search iterations (Q in Algo. 4.5.3) 20

Reference point for HV computation

(xr in Eq. 4.15)

fC=400, fB=4k,

fPC=40k, fRT =400

Table 8: Parameter Settings for AGEGT

Constraint Combinations CC (%) CB (Kbps) CPC (W) CRT (ms)

C∞ ∞ ∞ ∞ ∞

CM 100 1,000 400 40

Table 9: Constraint Combinations

87

Distribution Index HV Distribution Index HV

30 0.823 35 0.828

40 0.830 45 0.827

50 0.825

Table 10: Impacts of Distribution Index Values on Hypervolume (HV) Performance in

AGEGT

HV=0.813 HV=0.830 HV=0.832 HV=0.835

AGEGT 6 45 66 323

EGT-GLS 5 123 370 —

EGT 17 213 — —

NSGA-II 182 — — —

Table 11: Convergence Speed of AGEGT, EGT-GLS, EGT and NSGA-II

AGEGT NSGA-II (Avg) NSGA-II (Closest)

Euclidean Distance 0.388 0.653 0.572

Manhattan Distance 0.618 1.186 0.983

Table 12: Comparison of AGEGT and NSGA-II with Distance Metrics

88

Objectives Min Avg Max

CPU

allocation

(%/app)

AGEGT 15.00 15.05 15.12

NSGA-II 28.86 30.29 31.35

FFA 28.68 28.68 28.68

BFA 28.94 28.94 28.94

Bandwidth

allocation

(Kbps/app)

AGEGT 238.55 238.65 238.71

NSGA-II 278.32 288.27 295.89

FFA 1186 1186 1186

BFA 1200 1200 1200

Power

consumption

(W/app)

AGEGT 285.71 286.72 288.60

NSGA-II 1245.15 1246 1246.92

FFA 59.12 59.61 60.02

BFA 341.74 341.85 341.95

Response

time

(msec/app)

AGEGT 22.77 22.78 22.80

NSGA-II 11.56 11.79 12.04

FFA 109.06 109.06 109.06

BFA 92.09 92.09 92.09

Table 13: Comparison of AGEGT, NSGA-II, FFA and BFA in Objective Values

89

Objectives AGEGT NSGA-II Diff (%)

CPU allocation 0.06 2.16 97.22%

Bandwidth allocation 0.001 5.599 99.98%

Power consumption 0.010 0.747 98.66%

Response time 0.001 0.239 99.58%

Average Difference (%) – – 98.86%

Table 14: Stability of Objective Values in AGEGT and NSGA-II

90

Algorithm 4.6.1: Evolutionary Process in Cielo-LP
1: Randomly generate the initial N populations for N applications: P = {P1,P2, ...,PN}, and g = 0

2: while g < Gmax do

3: for each population Pi randomly selected from P do

4: P ′
i ← /0

5: if random() ≤ Pl then

6: di← linearProgramming(Pi)

7: else

8: for j = 1 to |Pi|/2 do

9: s1 ← randomlySelect(Pi)

10: s2 ← randomlySelect(Pi)

11: {winner, loser} ← performGame(s1, s2)

12: replica← replicate(winner)

13: for each parameter v in replica do

14: if random() ≤ Pm then

15: replica← mutate(replica, v)

16: end if

17: end for

18: winner′← performGame(loser, replica)

19: Pi \{s1,s2}

20: P ′
i ∪{winner,winner′}

21: end for

22: Pi←P ′
i

23: di← argmaxs∈Pixs

24: while di is infeasible do

25: Pi \{di}

26: di← argmaxs∈Pixs

27: end while

28: Deploy VMs for the current application based on di.

29: end if

30: end for

31: g = g+1

32: end while

91

Application type 1 2 3 4 5

Message arrival rate (λ in Eq. 4.6) 110 70 40 20 10

Web server (T p
1 in Eq. 4.4) 0.02 0.02 0.04 0.04 0.08

App server (T p
2 in Eq. 4.4) 0.03 0.08 0.04 0.13 0.11

DB server (T p
3 in Eq. 4.4) 0.05 0.05 0.12 0.08 0.11

Table 15: Message Arrival Rate and Message Processing Time

P-state Frequency (q) Pq
idle Pq

max

p1 1.600 GHz 82.70 W 88.77 W

p2 1.867 GHz 82.85 W 92.00 W

p3 2.113 GHz 82.91 W 95.50 W

p4 2.400 GHz 83.10 W 99.45 W

p5 2.670 GHz 83.25 W 103.00 W

Table 16: P-states in Intel Core2 Quad Q6700

Parameter Value

Number of hosts (M) 100

Number of CPU cores per host (O in Eq. 4.6) 4

Number of applications (N) 200

Number of generations (Gmax in Algo. 4.6.1) 500

Population size (|Pi| in Algo. 4.6.1) 100

Linear programming rate (Pl in Algo. 4.6.1) 0.005, 0.05, 0.1, 0.5

Mutation rate (Pm in Algo. 4.6.1) 1/v

Reference point for HV computation
fC=600, fB=1000,

fPC=2000, fRT =1000

Table 17: Parameter Settings for Cielo-LP

92

Constraint Combinations CC (%) CB (Kbps) CPC (W) CRT (ms)

C∞ ∞ ∞ ∞ ∞

CM 100 1,000 400 40

Table 18: Constraint Combinations

Distribution Index HV Distribution Index HV

30 0.823 35 0.828

40 0.830 45 0.827

50 0.825

Table 19: Impacts of Distribution Index Values on Hypervolume (HV) Performance in

Cielo-LP

Algorithms LP rate (%) Execution time (s) Speedup

Cielo-BASE 0% 393 1.0

Cielo−LPWS w/ f LP
RT

0.5% >3600 <0.10

5% >3600 <0.10

10% >3600 <0.10

50% >3600 <0.10

Cielo−LPWS w/o f LP
RT

0.5% 435 0.90

5% 556 0.70

10% 832 0.47

50% >3600 <0.10

Table 20: Impacts of LP Rates on the Execution Time Performance

93

(a) fC (b) fB

(c) fPC (d) fRT

Figure 30: Cielo-BASE’s Objective Values with and without Constraints (CM and C∞

94

(a) fC (b) fB

(c) fPC (d) fRT

Figure 31: Cielo−LPWS’s Objective Values w/ & w/o Constraints (CM and C∞). LP rate:

0.5%

95

(a) fC (b) fB

(c) fPC (d) fRT

Figure 32: Cielo−LPWS’s Objective Values w/ & w/o Constraints (CM and C∞). LP rate:

5%

96

(a) fC (b) fB

(c) fPC (d) fRT

Figure 33: Cielo−LPWS’s Objective Values w/ & w/o Constraints (CM and C∞). LP rate:

10%

97

LPC LPBW LPPC LPWS BASE

fC (%) 15.04 (38.6%) 23.03 18.13 16.53 (32.5%) 24.48

fB (Kbps) 155.87 150.12 (3.6%) 151.43 150.44 (3.4%) 155.76

fPC (W) 296.98 294.78 274.23 (6.9%) 283.25 (3.8%) 294.54

fRT (ms) 48.76 47.54 46.30 41.89 39.39

Distance 0.510 (12.8%) 0.574 (1.9%) 0.515 (12.0%) 0.508 (13.2%) 0.585

Table 21: Performance Improvement of Cielo-LPs against Cielo-BASE

fC fB fPC fRT Exec. time (s)

Cielo−LPWS: C∞ 16.82 150.68 290.33 44.47 832

LP only: C∞ 15.00 150 54.56 8.06 23

LP only (WS): C∞ 41.10 450 499.97 8.12 7

Cielo−LPWS: CM 16.53 150.44 283.25 41.89 834

LP only: CM 15.00 — 54.56 — >7,211

LP only (WS): CM — — — — >3,600

Table 22: Comparison of Objective Values and Execution Time between Cielo−LPWS and

Linear Programming

Hypervolume

0.60 0.70 0.75 0.81 0.83

Cielo-BASE 16 41 100 361 500

Cielo−LPWS 8 14 37 79 91

Speedup 2.0 2.9 2.7 4.6 5.5

Table 23: Comparison of Convergence Speed between Cielo-BASE and Cielo−LPWS

98

Objectives Minimum Average Maximum

CPU

allocation

(%/app)

Cielo−LPWS 16.43 16.53 16.68

NSGA-II 28.86 30.29 31.35

FFA 28.68 28.68 28.68

BFA 28.28 28.28 28.28

Bandwidth

allocation

(Kbps/app)

Cielo−LPWS 150.35 150.44 150.49

NSGA-II 278.32 288.27 295.89

FFA 1186 1186 1186

BFA 1200 1200 1200

Power

consumption

(W/app)

Cielo−LPWS 274.19 283.25 290.69

NSGA-II 1245.15 1246 1246.92

FFA 59.12 59.61 60.02

BFA 341.74 341.85 341.95

Response

time

(msec/app)

Cielo−LPWS 41.87 41.89 41.91

NSGA-II 11.56 11.79 12.04

FFA 109.06 109.06 109.06

BFA 92.09 92.09 92.09

Table 24: Comparison of Objective Values among Cielo−LPWS, NSGA-II, FFA and BFA

99

Cielo−LPWS NSGA-II Difference (%)

CPU allocation 0.150 2.160 93.05%

Bandwidth allocation 0.060 5.599 98.92%

Power consumption 0.005 0.747 99.40%

Response time 0.006 0.239 97.48%

Average 0.055 2.186 97.21%

Table 25: Stability of Objective Values in Cielo−LPWS and NSGA-II

(a) CPU allocation, Bandwidth allocation and En-

ergy consumption

(b) CPU allocation, Bandwidth allocation and Re-

sponse time

Figure 34: Trajectory of Cielo-LP’s Solution through Generations

100

CHAPTER 5

BODY SENSOR NETWORK

5.1 Introduction

This Chapter considers a multi-tier architecture for cloud-integrated body sensor networks (BSNs),

called Body-in-the-Cloud (BitC), which is intended to support home healthcare with on-body energy

harvesting devices (e.g., piezoelectric and thermoelectric generators) as well as on-body physiolog-

ical and activity monitoring sensors. It formulates a configuration problem in BitC and approaches

the problem with an evolutionary game theoretic algorithm to configure BSNs in an adaptive and

stable manner. BitC allows BSNs to adapt their configurations (i.e., sensing intervals and sampling

rates as well as data transmission intervals) to operational conditions (e.g., data request patterns)

with respect to multiple conflicting performance objectives such as resource consumption and data

yield. In BitC, evolutionary multiobjective games are performed on configuration strategies (i.e.,

solution candidates) with an aid of local search mechanisms. BitC theoretically guarantees that

each BSN performs an evolutionarily stable configuration strategy, which is an equilibrium solu-

tion under given operational conditions. Simulation results verify this theoretical analysis; BSNs

seek equilibria to perform adaptive and evolutionarily stable configuration strategies. This chapter

evaluates five algorithmic variants of BitC under various settings and demonstrates that BitC allows

BSNs to successfully leverage harvested energy to balance their performance in different objectives

such as resource consumption and data yield.

101

5.2 State of the art

Various architectures and research tools have been proposed for cloud-integrated sensor networks in-

cluding BSNs [DLO14, HSH09, AHS07, GWM04, BS10, SQM12, ACC10, BBS12, AG11, ZYS13,

YK10, RKW10, PKG08, CYH13, FPP14]. Many of them, [DLO14, HSH09, AHS07, GWM04,

BS10, SQM12, ACC10, BBS12, AG11, ZYS13], assume three-tier architectures similar to BitC

and investigate publish/subscribe communication between the edge layer to the cloud layer. Their

focus is placed on push communication. In contrast, BitC investigates push-pull hybrid communi-

cation between the sensor layer and the cloud layer through the edge layer. Yuriyama et al. [YK10],

Rollin et al. [RKW10] and Chung et al. [CYH13] propose a two-tier architecture that consists of the

sensor and cloud layers. The architectures proposed by Yuriyama et al. and Fortino et al. [FPP14]

are similar to BitC in that they leverage the notion of virtual sensors. However, they do not consider

push-pull (nor publish/subscribe) communication. All the above-mentioned relevant work do not

consider adaptive/stable configurations of sensor networks as BitC does [HSH09, AHS07, GWM04,

BS10, SQM12, ACC10, BBS12, AG11, ZYS13, YK10, RKW10, PKG08, CYH13, FPP14].

Push-pull hybrid communication has been studied in sensor networks [WBS10, BHS07, KK06,

LGS06]. However, few efforts exist to study it between the edge and cloud layers in the context

of cloud-integrated sensor networks. Unlike those relevant work, this paper formulates a sensor

network configuration problem with cloud-specific objectives as well as the ones in sensor networks

and seeks adaptive/stable solutions for the problem.

Xu et al. propose a three-tier architecture called CEB (Cloud, Edge and Beneath), which is sim-

ilar to BitC, and investigate a mechanism to adapt data transmission rates between layers according

to a given pattern of data requests [XHT11]. CEB runs two optimization algorithms collaboratively:

OPT-1 and OPT-2, which optimize data transmission rates between the cloud and edge layers and

between the edge and sensor layers, respectively. Optimization is carried out on a sensor node by

sensor node basis with respect to a single objective: energy consumption. In contrast, BitC con-

siders sensing intervals and sampling rates for sensors as well as data transmission rates for nodes

102

and runs a single algorithm for the entire group of sensor and sink nodes with respect to multiple

conflicting objectives including energy consumption.

Kumrai [KOD14] proposes a novel incentive mechanism for participatory sensing based on

the evolutionary algorithm. It considers energy consumption optimization problem similar to BitC,

however it does not consider multi objective performance scenario.

SC-iPaaS (Sensor-Cloud Integration Platform as a Service) is similar to BitC in that both con-

sider three-tier architecture for cloud-integrated BSNs and caries out a single algorithm for the

entire group of sensor and sink nodes with respect to multiple conflicting objectives including en-

ergy consumption. SC-iPaaS uses an evolutionary game theoretic algorithm that retains stability

(i.e. reachability to at least one Nash equilibria) as well as optimality in configuring BSNs while

a genetic algorithm is used in SC-iPaaS [PSO14]. As stochastic global search algorithms, genetic

algorithms lack stability.

5.3 Problem Formulation

BitC consists of the following three layers (Fig. 35).

Sensor Layer: operates one or more BSNs on a per-patient basis (Fig. 35). Each BSN contains

one or more sensor node in a certain topology (e.g., tree, star or mesh topology). It assumes the star

topology. Each sensor node is equipped with a sensor(s) and an energy harvester(s). It is assumed to

be battery-operated. It supplies a limited amount of energy to a sensor(s) attached to it and receives

power supply from an attached energy harvester(s) as it/they harvest energy. It maintains a sensing

interval and a sampling rate for each attached sensor. Upon a sensor reading, it stores collected data

in its own memory space. Given a data transmission interval, it periodically flushes all data stored

in its memory space and transmits the data to a sink node.

Edge Layer: consists of sink nodes, each of which participates in a certain BSN and receives

sensor data periodically from sensor nodes in the BSN. A sink node stores incoming sensor data in

its memory space and periodically flushes stored data to transmit (or push) them to the cloud layer.

103

It maintains the mappings between physical and virtual sensors. In other words, it knows the origins

and destinations of sensor data. Different sink nodes have different data transmission intervals. A

sink node’s data transmission interval can be different from the ones of sensor nodes in the same

BSN. Sink nodes are assumed to have limited energy supplies through batteries.

In addition to pushing sensor data to a virtual sensor, each sink node receives a pull request

from a virtual sensor when the virtual sensor does not haves sensor data that a cloud application(s)

requires. If the sink node has the requested data in its memory, it returns that data. Otherwise, it

issues another pull request to a sensor node that is responsible for the requested data. Upon receiving

a pull request, the sensor node returns the requested data if it has the data in its memory. Otherwise,

it returns an error message to a could application.

Cloud Layer: operates on clouds to host applications that allow medical staff to place sensor

data requests on virtual sensors in order to monitor patients. If a virtual sensor has data that an

application requests, it returns that data. Otherwise, it issues a pull request to a sink node. While

push communication carries out a one-way upstream travel of sensor data, pull communication

incurs a round trip for requesting data and receiving that data (or an error message).

Virtual sensors are java nodes running in the server on the cloud layer. These virtual sensor

nodes are predefined by medical doctors. Each sensor is associated with a four digit identification

number, the first two digit indicate the index of the BSN and the last two digit indicate the index of

the sensor. Once data are pushed to the cloud layer, corresponding virtual sensor node responds to

the arrived data by checking the identification number. Virtual sensors call storeToDB java method

which issues a sql query that store the received data to the corresponding table in the database. Every

time a request come in virtual sensors first check whether the data is available by calling isAvailable

java method. If the data is available then it retrieves the data by calling getFromDB java method

that issues a sql query to the corresponding table in the database, if not virtual sensors issues a pull

request to Edge layer by calling pullData java method. Once virtual sensors get the desired data, it

backs to user.

104

Figure 35: A Push-Pull Hybrid Communication in BitC

This section describes a BSN configuration problem for which BitC seeks equilibrium solutions.

Each BSN configuration consists of four types of parameters (i.e., decision variables): sensing

intervals and sampling rates for sensor nodes as well as data transmission intervals for sensor and

sink nodes. The problem is stated with the following symbols.

• B = {b1,b2, ...,bi, ...,bN} denotes the set of N BSNs, each of which operates for a patient.

• Each BSN bi consists of a sink node (denoted by mi) and M sensors: bi = {si1,si2, ...,si j, ...,siM}.

oi j is the data transmission interval for si j to transmit sensor collected data. pi j and qi j are the

105

Figure 36: Virtual sensor communication diagram

sensing interval and sampling rate for si j. Sampling rate is defined as the number of sensor

data samples collected in a unit time. Each sensor stores collected sensor data in its memory

space until its next push transmission. If the memory becomes full, it performs FIFO (First-

In-First-Out) data replacement. In a push transmission, it flushes and sends out all data stored

in its memory.

• omi denotes the data transmission interval for mi to forward (or push) sensor data incoming

from sensor nodes in bi In between two push transmissions, mi stores sensor data from bi

in its memory. It performs FIFO data replacement if the memory becomes full. In a push

transmission, it flushes and sends out all data stored in the memory.

• Ri j = {ri j1,ri j2, ...,ri jr, ...,ri j|Ri jk|} denotes the set of sensor data requests that cloud applica-

tions issue to the virtual counterpart of si j (s′i j) during the time period of W in the past. Each

request ri jr is characterized by its time stamp (ti jr) and time window (wi jr). It retrieves all

sensor data available in the time interval [ti jr−wi jr, ti jr]. If s′i j has at least one data in the

interval, it returns those data. Otherwise, it issues a pull request to mi.

• Rm
i j ∈ Ri j denotes the set of sensor data requests for which a virtual sensor s′i j has no data.

|Rm
i j| indicates the number of pull requests that s′i j issues to mi. In other words, Ri j \Rm

i j is the

set of sensor data requests that s′i j fulfills regarding si j.

106

• Rs
i j ∈ Rm

i j ∈ Ri j denotes the set of sensor data requests for which mi has no data. |Rs
i j| indicates

the number of pull requests that mi issues to hi j for collecting data from si j. Rm
i j \Rs

i j is the

set of sensor data requests that mi fulfills regarding si j.

This study considers four performance objectives: bandwidth consumption between the edge

and cloud layers (fB), energy consumption of sensor and sink nodes (fE), request fulfillment for

cloud applications (fR) and data yield for cloud applications (fD). The first two objectives are to be

minimized while the others are to be maximized.

The bandwidth consumption objective (fB) is defined as the total amount of data transmitted per

a unit time between the edge and cloud layers. This objective impacts the payment for bandwidth

consumption based on a cloud operator’s pay-per-use billing scheme. It also impacts the lifetime of

sink nodes. fB is computed as follows.

fB =
1

W

N

∑
i=1

M

∑
j=1

(ci jdi j)+
1

W

N

∑
i=1

M

∑
j=1

|Rm
i j|

∑
r=1

(φi jrdi j +dr)

+
1

W

N

∑
i=1

M

∑
j=1

|Rs
i j|

∑
r=1

er(|Rs
i j|−ηi jr) (5.1)

The first and second terms indicate the bandwidth consumption by one-way push communica-

tion from the edge layer to the cloud layer and two-way pull communication between the cloud and

edge layers, respectively. ci j denotes the number of sensor data that si j generates and sink nodes

in turn push to the cloud layer during W . di j denotes the size of each sensor data (in bits) that si j

generates. It is currently computed as: qi j×16 bits/sample. φi jr denotes the number of sensor data

that a pull request r ∈ Rm
i j can collect from sink nodes (φi jr = |Rm

i j \Rs
i j|). dr is the size of a pull

request transmitted from the cloud layer to the edge layer. The third term in Eq. 5.1 indicates the

bandwidth consumption by the error messages that sensors generate because they fail to fulfill pull

requests. ηi jr is the number of sensor data that a pull request r ∈ Rs
i j can collect from sensor nodes.

er is the size of an error message.

107

The energy consumption objective (fE) is defined as the total amount of energy that sensor and

sink nodes consume for data transmissions during W . It impacts the lifetime of sensor and sink

nodes. It is computed as follows.

fE =
N

∑
i=1

M

∑
j=1

W
oi j

etdi j +
N

∑
i=1

M

∑
j=1

|Rs
i j|

∑
r=1

etηi jr(di j +d′r)

+
N

∑
i=1

M

∑
j=1

L

∑
k=1

W
omi

etdi j +
N

∑
i=1

M

∑
j=1

|Rm
i j|

∑
r=1

etφi jr(di j +dr)

+2×
N

∑
i=1

M

∑
j=1

|Rs
i j|

∑
r=1

eter(|Rs
i j|−ηi jr) (5.2)

The first and second terms indicate the energy consumption by one-way push communication

from the sensor layer to the edge layer and two-way pull communication between the edge layer and

the sensor layer, respectively. et denotes the amount of energy (in Watts) that a sensor or sink node

consumes to transmit a single bit of data. d′r denotes the size of a pull request from the edge layer

to the sensor layer. The third and fourth terms indicate the energy consumption by push and pull

communication between the edge and cloud layer, respectively. The fifth term indicates the energy

consumption for transmitting error messages on sensor and sink nodes.

The request fulfillment objective (fR) is the ratio of the number of fulfilled requests over the

total number of requests:

fR =
∑

N
i=1 ∑

M
j=1 ∑

|Ri j|
r=1 IRi j

|Ri j|
×100 (5.3)

IRi j = 1 if a request r ∈ Ri j obtains at least one sensor data; otherwise, IRi j = 0.

The data yield objective (fY) is defined as the total amount of data that cloud applications gather

for their users. This objective impacts the informedness and situation awareness for application

users. It is computed as follows.

108

fY =
N

∑
i=1

M

∑
j=1

|Rm
i j|

∑
r=1

φi jr +
N

∑
i=1

M

∑
j=1

|Rs
i j|

∑
r=1

ηi jr + ci j (5.4)

BitC considers four constraints.

• The first constraint (CE) is the upper limit for energy consumption: fE <CE . A violation for

the constraint (gE) is computed as

gE = IE × (fE −CE) (5.5)

where IE = 1 if fE >CE ; otherwise IE = 0.

• The second constraint (CY) is the lower limit for data yield: fY >CY . A constraint violation

(gY) is computed as

gY = IY × (CY − fY) (5.6)

where IY = 1 if fY <CY ; otherwise IY = 0.

• The third constraint (CR) is the lower limit for request fulfillment: fR > CR. A constraint

violation in request fulfillment (gR) is computed as

gR = IR× (CR− fR) (5.7)

where IR = 1 if fR <CR; otherwise IR = 0.

• The fourth constraint (CB) is the upper limit for bandwidth consumption: fB <CB. A violation

for this constraint (gB) is computed as

gB = IB× (fB−CB) (5.8)

where IB = 1 if fB >CB; otherwise IB = 0.

109

5.4 BitC

Body sensor networks (BSNs) are expected to aid pervasive healthcare with on-body sensors by

remotely and continuously performing physiological and activity monitoring for patients [CGV11,

PPB12]. Body-in-the-Cloud (BitC) virtualizes per-patient BSNs onto clouds by taking advantage

of cloud computing features such as pay-per-use billing, scalability in data storage and processing,

availability through multi-regional application deployment and accessibility through universal com-

munication protocols (e.g., HTTP and REST). BitC assumes energy harvesting aware BSNs, each

of which operates on-body energy harvesting devices (e.g., piezoelectric and thermoelectric gener-

ators) as well as on-body sensors for, for example, heart rate, oxygen saturation, body temperature

and fall detection.

BitC consists of the sensor, edge and cloud layers (Fig. 35). The sensor layer is a collection of

sensor nodes in BSNs. Each BSN operates one or more sensor nodes, each of which is equipped

with a sensor(s) and an energy harvester(s). Sensor nodes are wirelessly connected to a dedicated

per-patient device or a patient’s computer (e.g., smartphone or tablet machine) that serves as a sink

node. The edge layer consists of sink nodes, which collect sensor data from sensor nodes in BSNs.

The cloud layer consists of cloud environments that host virtual sensors, which are virtualized coun-

terparts (or software counterparts) of physical sensors in BSNs. Virtual sensors collect sensor data

from sink nodes in the edge layer and store those data for future use. The cloud layer also hosts

various applications that obtain sensor data from virtual sensors and aid medical staff (e.g., clini-

cians, hospital/visiting nurses and caregivers) to monitor patients and share sensor data for clinical

observation and intervention.

BitC performs push-pull hybrid communication between its three layers. Each sensor node

periodically collects data from a sensor(s) attached to it based on sensor-specific sensing intervals

and sampling rates and transmits (or pushes) those collected data to a sink node. The sink node in

turn forwards (or pushes) incoming sensor data periodically to virtual sensors in clouds. When a

virtual sensor does not have sensor data that a cloud application requires, it obtains (or pulls) that

110

data from a sink node or a sensor node. This push-pull communication is intended to make as much

sensor data as possible available for cloud applications by taking advantage of push communication

while allowing virtual sensors to pull any missing or extra data anytime in an on-demand manner.

For example, when an anomaly is found in pushed sensor data, medical staff may pull extra data in

a higher temporal resolution to better understand a patient’s medical condition. Given a sufficient

amount of data, they may perform clinical intervention, order clinical cares, dispatch ambulances or

notify family members of patients.

This study focuses on configuring BSNs in BitC by adjusting four types of parameters (i.e.,

sensing intervals and sampling rates for sensors as well as data transmission intervals for sensor and

sink nodes) and studies two properties in configuring BSNs:

• Optimality: Seeking for the optimal BSN configurations according to operational condi-

tions (e.g., data request patterns placed by cloud applications and availability of resources

such as bandwidth and memory) with respect to performance objectives such as bandwidth

consumption, energy consumption and data yield.

• Stability: Minimizing oscillations (non-deterministic inconsistencies) in making adaptation

decisions. BitC considers stability as the reachability to at least one of equilibrium solutions

in decision making. A lack of stability results in making inconsistent adaptation decisions in

different attempts/trials with the same problem settings.

BitC leverages an evolutionary game theoretic algorithm to configure BSNs in an adaptive and

stable manner. This chapter describes the design of BitC and evaluates its optimality and stability.

In BitC, each BSN maintains a set (or a population) of configuration strategies (solution candidates),

each of which specifies a set of configuration parameters for that BSN. BitC theoretically guarantees

that, through a series of evolutionary games between BSN configuration strategies, the population

state (i.e., the distribution of strategies) converges to an evolutionarily stable equilibrium, which is

always converged to regardless of the initial state. (A dominant strategy in the evolutionarily stable

population state is called an evolutionarily stable strategy (ESS).) In this state, no other strategies

111

except an ESS can dominate the population. Given this theoretical property, BitC allows each BSN

to operate at equilibrium by using an ESS in a deterministic (i.e., stable) manner.

5.4.1 Algorithm

BitC maintains N populations, {P1,P2, ...,PN}, for N BSNs and performs games among strate-

gies in each population. Each strategy s(bi) specifies a particular configuration for a BSN bi using

four types of parameters: sensing intervals and sampling rates for sensors (pi j and qi j) as well as

data transmission intervals for sink and sensor nodes (omi and oi j).

s(bi) =
⋃

j∈1..M

(omi ,oi j, pi j,qi j) 1 < i < N (5.9)

Algorithm 5.4.1 shows how BitC seeks an evolutionarily stable configuration strategy for each

BSN through evolutionary games. In the 0-th generation, strategies are randomly generated for each

of N populations {P1,P2, ...,PN} (Line 2). Those strategies may or may not be feasible. Note

that a strategy is said to be feasible if it violates none of four constraints described in Section 5.3.

In each generation (g), a series of games are carried out on every population (Lines 4 to 28). A

single game randomly chooses a pair of strategies (s1 and s2) and distinguishes them to the winner

and the loser with respect to performance objectives described in Section 5.3 (Lines 7 to 9). The

winner is replicated to increase its population share and mutated with polynomial mutation (Lines 10

to 18) [DPA02]. Mutation randomly chooses a parameter (or parameters) in a given strategy with

a certain mutation rate Pm and alters its/their value(s) at random (Lines 12 to 14). Then a game is

performed between loser and the mutated winner (Line 16). Elitism concept is applied here to select

the best two among strategies (winner, loser and mutated winner), and the worst strategy disappears

in the population.

Once all strategies play games in the population, BitC identifies a feasible strategy whose pop-

ulation share (xs) is the highest and determines it as a dominant strategy (di) (Lines 20 to 24). After

a dominant strategy is determined, BitC performs local search to improve the dominant strategy

112

(Line 26). In the end, BitC configures a BSN with the parameters contained in the dominant strat-

egy (Line 27).

A game is carried out based on the superior-inferior relationship between given two strategies

and their feasibility (c.f. performGame() in Algorithm 5.4.1). If a feasible strategy and an infeasible

strategy participate in a game, the feasible one always wins over its opponent. If both strategies are

feasible, they are compared with one of the following five schemes to select the winner.

• Pareto dominance (PD): This scheme is based on the notion of dominance [SD95], in which

a strategy s1 is said to dominate another strategy s2 if both of the following conditions hold:

– s1’s objective values are superior than, or equal to, s2’s in all objectives.

– s1’s objective values are superior than s2’s in at least one objectives.

The dominating strategy wins a game over the dominated one. If two strategies are non-

dominated with each other, the winner is randomly selected.

• Hypervolume (HV): This scheme is based on the hypervolume (HV) metric [ZT98]. It mea-

sures the volume that a given strategy s dominates in the objective space:

HV (s) = Λ

(⋃
{x′|s� x′ � xr}

)
(5.10)

Λ denotes the Lebesgue measure. xr is the reference point placed in the objective space. A

higher hypervolume means that a strategy is more optimal. Given two strategies, the one

with a higher hypervolume value wins a game. If both have the same hypervolume value, the

winner is randomly selected.

• Hybrid of Pareto dominance and hypervolume (PD-HV): This scheme is a combination of the

above two schemes. First, it performs the Pareto dominance (PD) comparison for given two

strategies. If they are non-dominated with each other, the hypervolume (HV) comparison is

used to select the winner. If they still tie with the hypervolume metric, the winner is randomly

selected.

113

• Maxmin (MM): This scheme is based on the maxmin (MM) metric [Coe98]. It measures how

distant (i.e., better) a given strategy s is from the other strategies in a population (s
′ ∈Pi).

MM(s) = max
s′∈Pi\{s}

{
min

k

(
sk,s

′
k

)}
(5.11)

sk denotes the k-th objective value of the strategy s. Given two strategies, the one with a

higher maxmin value wins a game. If both have the same maxmin value, the winner is

randomly selected.

• Hybrid of Pareto dominance and maxmin (PD-MM): This scheme is a combination of the PD

and MM schemes. First, it performs the Pareto dominance (PD) comparison for given two

strategies. If they are non-dominated with each other, the MM comparison is used to select

the winner. If they still tie with the maxmin metric, the winner is randomly selected.

If both strategies are infeasible in a game, they are compared based on their constraint violation.

An infeasible strategy s1 wins a game over another infeasible strategy s2 if both of the following

conditions hold:

• s1’s constraint violation is lower than, or equal to, s2’s in all constraints.

• s1’s constraint violation is lower than s2’s in at least one constraints.

5.4.1.1 Local Search

Local Search is an approach to improve the performance of a local dominant strategy. It attempts

to search for a better quality dominant strategy by performing mutation on the current local dom-

inant strategy. BitC studies three different local search mechanisms (c.f. localSearch() in Algo-

rithm 5.4.1). They are all based on polynomial mutation.

• Greedy Search:

114

Algorithm 5.4.3 shows the first mechanism, Tabu Local Search (TLS). TLS creates Q mutants

of a given strategy (di) using polynomial mutation and identifies the best of Q+1 strategies

(di and its Q mutants). As mutants are created, TLS updates a tabu list T to record which

parameters have been mutated so that a new mutant is never be created by altering taboo

parameters (i.e., the parameters in T).

• Tabu Search:

The second local search mechanism is called Greedy Local Search (GLS) (Algorithm 5.4.2).

Similar to TLS, GLS creates Q mutants iteratively; however, it replaces the original strategy

(e.g., di) with a mutant if the mutant wins over the original in a game (Line 7). Though Q

iterations, GLS keeps the best mutant discovered so far and mutates it when mutation occurs.

• Greedy Tabu Search:

Algorithm 5.4.4 shows the third local search mechanism, Greedy Tabu Local Search (GTLS).

It customizes GLS with a tabu list T . It avoids taboo parameters in T when it performs

mutation.

5.5 Experiment

This section evaluates BitC through simulations and discusses how BitC allows BSNs to adapt

their configurations to given operational conditions (e.g., data request patterns placed by cloud

applications and memory space availability in sink and sensor nodes).

5.5.1 Experiment Setting

Simulations are configured with the parameters shown in Table 26.

It assumes a nursing home where senior residents/patients live. A small-scale and a larger-scale

simulations are carried out with 20 and 100 residents, respectively. The small-scale setting is used

115

unless otherwise noted. Each resident is simulated to wear four sensors: a blood pressure sensor, an

ECG sensor and two accelerometers (Fig. 35).

Cloud applications issue 1,000 data requests during three hours. Data requests are uniformly

distributed over virtual sensors. A time window is randomly set for each request to a sensor. For

example, it is set with the uniform distribution in between 0 and 600 seconds for an ECG sensor

(Table 26). Mutation rate is set to 1/V where V is the number of parameters in a strategy. Every

simulation result is the average with 10 independent simulation runs.

Experiment assumes four types of residents (Table 27). 25% of residents are simulated to be

in each category. Each resident wears two energy harvesters: piezoelectric energy generator (PEG)

and thermoelectric generators (TEG). A PEG and a TEG are assumed to be embedded in a shoe and

attached to the skin, respectively (Fig. 35). A PEG generates energy (piezoelectricity) from walking

activities of a resident [PS05]. A TEG generates energy (thermoelectricity) from a resident’s body

temperature [Sal10].

The amount of harvested energy is computed based on a set of daily activities assumed for each

type of residents. For example, a very healthy resident is assumed to have a scheduled walk and an

excercise session with, for example, a treadmill under the average walking step frequency of 2 hertz.

A PEG and a TEG is assumed to generate 11 mW per step and 0.06 mW per second [PS05, Sal10].

It simulates eight different combinations of constraints (Table 28): no constraints (C∞), very

lightweight (CV L), lightweight (CL), moderate (CM), stringent (CS), very stringent (CV S), very strin-

gent for energy consumption (CEN) and very stringent for data yield (CDY). C∞ is used unless

otherwise noted.

Comparative performance study is carried out for BitC’s five variants (i.e., PD, HV, PD-HV, MM

and PD-MM in Section 5.4.1). BitC-PD is used unless otherwise noted. BitC is also compared with

NSGA-II, which is a well-known multiobjective evolutionary algorithm [DPA02]. BitC and NSGA-

II use the same parameter settings shown in Table 26. All other NSGA-II settings are borrowed

from [DPA02]. Both BitC and NSGA-II are implemented with jMetal [DNA10].

116

5.5.2 Experiment Results

Table 29 examines how a mutation-related parameter, called distribution index (ηm in [DPA02]),

impacts the performance of BitC. This parameter controls how likely a mutated strategy is similar

to its original. (A higher distribution index makes a mutant more similar to its original.) In Table 29,

the performance of BitC is evaluated with the hypervolume measure that a set of dominant strategies

yield in the 300th generation. The hypervolume metric indicates the union of the volumes that a

given set of solutions dominates in the objective space [ZT98]. A higher hypervolume means that a

set of solutions is more optimal. As shown in Table 29, BitC yields the best performance with the

distribution index value of 60. (Local search is not used to obtain this result.) Thus, this parameter

setting is used in all successive simulations.

Fig. 37 studies how different local search mechanisms impact the performance of BitC. It ver-

ifies that all of them can improve BitC’s performance. Among them, greedy local search (GLS) is

the most effective in both convergence speed and hypervolume. Thus, GLS is used in all successive

simulations.

Table 30 illustrates the hypervolume that each BitC variant yields at the last generation. As

shown in this table, BitC-HV yields the highest hypervolume value among five variants. Therefore,

the variant is used in all successive simulations.

BitC yields a single set of objective values with dominant strategies at each generation while

NSGA-II yields 100 sets of objective values with 100 individuals at each generation. Therefore, in

Table 31, the BitC solution is evaluated against an NSGA-II individual that is closest to the solution

in the objective space. Table 31 compares BitC-HV and NSGA-II based on three metrics: objective

values, hypervolume and Euclidean distance. For NSGA-II, objective values are measured with an

individual that minimizes the Euclidean distance to the BitC solution at the last generation. Hyper-

volume is measured with the NSGA-II individual. Distance is measured in between the NSGA-II

individual and the BitC solution. Distance is computed with each objective normalized to [0, 1].

(The value range of distance is [0, 2].)

117

Figure 37: Local Search Comparison

As shown in Table 31, BitC-HV is non-dominated with NSGA-II with respect to four objectives.

BitC-HV outperforms NSGA-II and it gets very close to the performance bounds in three objectives

(request fulfillment, bandwidth consumption and energy consumption) while NSGA-II outperforms

BitC-HV in data yield. BitC-HV yields a slightly higher (2% higher) hypervolume value than

NSGA-II. Table 31 demonstrates that BitC-HV slightly outperforms NSGA-II on an a solution-

to-solution basis. The performance bounds are given by running NSGA-II with single objective.

Euclidean and Manhattan distances are used as metrics. In both metrics, a shorter distance means a

given solution is closer to the performance bounds. BitC is closer to the bounds than NSGA-II by

29% and 34% in Euclidean and Manhattan distances, respectively.

Table 32 shows the variance of objective values that BitC-HV and NSGA-II yield at the last

generation in 10 different simulation runs. A lower variance means higher stability (or higher sim-

ilarity) in objective value results (i.e., lower oscillations in objective value results) among different

simulation runs. BitC-HV maintains significantly higher stability than NSGA-II in all objectives

118

except energy consumption. On average, BitC’s stability is 36.75% higher than NSGA-II’s. This

result exhibits BitC’s stability property (i.e. reachability to at least one equillibira), which NSGA-II

does not have.

Fig. 38 shows two three-dimensional objective spaces that plot a set of dominant strategies ob-

tained from individual populations at each generation. Each blue dot indicates the average objective

values that dominant strategies yield at a particular generation in 10 simulation runs. The trajec-

tory of blue dots illustrates a path through which strategies evolve and improve objective values.

Gray and red dots represent 10 different sets of objective values at the first and last generation in

10 simulation runs, respectively. While initial (gray) dots disperse (because the initial strategies

are generated at random), final (red) dots are overlapped in a particular region. Consistent with

Table 32, Fig. 38 verifies BitC’s stability: reachability to at least one equilibria regardless of the

initial conditions.

Figure 38: Three-dimensional Objective Spaces

Table 33 evaluates how different constraint combinations impact on the performance of BitC in

objective values. The table shows the average, maximum and minimum objective values at the last

generation subject to eight constraint combinations listed in Table 28. BitC successfully satisfies

four constraint combinations (CV L,CL, CM and CS). Under CEN and CDY , BitC fails to satisfy a

constraint in each case although it satisfies three other constraints. And BitC fails to satisfy all

119

the objectives subject to CV S constraints, since the constraints setting is very stringent. The best

performance is produced under CS. In most of the cases BitC fails to satisfy the data yield constraint

due to it is a conflicting objective with other three, and BitC tries to balance the trade off among all

the four objectives. Comparing the results of CS and C∞, and the results of CS and CV S, Table 33

demonstrates that BitC satisfies the data yield constraint by trading three other objectives for a

global better performance. Given this result, CS is used in all successive simulations.

Fig. 39 shows how BitC improves its performance through generations with 20 BSNs (i.e., 20

patients) and 100 BSNs. It shows the changes of objective values over generations. All four con-

straints are satisfied at the last generation. The two figures illustrate that BitC improves its objective

values subject to given constraints by balancing the trade-offs among conflicting objectives. For

example, BitC improves both request fulfillment and bandwidth consumption through generations

while the two objectives conflict with each other.

Results are qualitatively similar comparing both results with 20 BSNs and 100 BSNs, although

BitC yields a slightly lower performance with a larger number of BSNs. It is harder to satisfy

given constraints in a larger-scale setting. (All four constraints are satisfied at the last generation.)

BitC 100 BSNs’s performance decreases a little respect to 20 BSNs in bandwidth consumption and

energy consumption. It happens due to the increasing number of BSNs, BitC needs more bandwidth

and energy to satisfy all BSNs needs. And as consequence the data yield increases, but 20 BSNs

reaches slightly higher request fulfillment because it is easier for BitC to satisfy greater number of

requests for smaller number 20 BSNs rather than 100 BSNs. Fig. 39 demonstrates that BitC scales

well against the number of BSNs.

At the last generation BitC reaches hypervolume value 0.936 and 0.922 for 20 BSNs and 100

BSNs respectively.

Table 34 examines how BitC and NSGA-II maintain the lifetime of BSNs and yield data yield

performance with energy harvesting enabled and disabled. Both BitC and NSGA-II utilize harvested

energy to extend the lifetime of BSNs and in turn improve data yield performance. With energy

harvesting enabled under a stringent set of constraints (CS), BitC extends the BSN lifetime by 4.6%.

120

BitC maintains 39% longer lifetime than NSGA-II. Table 34 demonstrates that BitC successfully

leverages energy harvesting to improve its performance.

5.6 Conclusion

This Chapter considers a layered push-pull hybrid communication for cloud-integrated BSNs and

formulates a BSN configuration problem to seek optimal and stable solutions. An evolutionary game

theoretic algorithm is used to approach the problem. Simulation results show that BitC seeks equi-

libria to perform adaptive and evolutionarily stable configuration strategies and adapt their configu-

ration parameters to given operational conditions subject to given constraints. This study evaluates

five algorithmic variants of BitC under various settings and demonstrates that BitC allows BSNs to

successfully leverage harvested energy to balance their performance with respect to multiple objec-

tives such as resource consumption and data yield. BitC’s performance is evaluated in comparison to

a well-known multiobjective evolutionary optimization algorithm, NSGA-II [DPA02], while main-

taining 37% higher stability (lower oscillations) in performance across different simulation runs.

121

Algorithm 5.4.1: Evolutionary Process in BitC
1: g = 0

2: Randomly generate the initial N populations for N BSNs: P = {P1,P2, ...,PN}

3: while g < Gmax do

4: for each population Pi randomly selected from P do

5: P ′
i ← /0

6: for j = 1 to |Pi|/2 do

7: s1 ← randomlySelect(Pi)

8: s2 ← randomlySelect(Pi)

9: {winner, loser} ← performGame(s1, s2)

10: replica← replicate(winner)

11: for each parameter v in replica do

12: if random() ≤ Pm then

13: replica← mutate(replica, v)

14: end if

15: end for

16: winner′← performGame(loser, replica)

17: Pi \{s1,s2}

18: P ′
i ∪{winner,winner′}

19: end for

20: Pi←P ′
i

21: di← argmaxs∈Pixs

22: while di is infeasible do

23: Pi \{di}

24: di← argmaxs∈Pixs

25: end while

26: di ← localSearch(di)

27: Configure a BSN in question based on di.

28: end for

29: g = g+1

30: end while

122

Algorithm 5.4.2: Greedy Local Search (localSearch())
Require: di: Dominant strategy to improve

Ensure: Improved dominant strategy

1: for i = 1 to Q do

2: for each parameter v in replica do

3: if random() ≤ Pm then

4: replica← mutate(di, v)

5: end if

6: end for

7: di← performGame(replica, di)

8: end for

9: return di

123

Algorithm 5.4.3: Tabu Local Search (localSearch())
Require: di: Dominant strategy to improve

Ensure: Improved dominant strategy

1: T ← /0

2: for each parameter v ∈ di and v /∈ T do

3: if random() ≤ Pm then

4: replica← mutate(di, v)

5: T ← T ∪{v}

6: end if

7: end for

8: for i = 1 to Q−1 do

9: for each parameter v ∈ di and v /∈ T do

10: if random() ≤ Pm then

11: replica′← mutate(di, v)

12: T ← T ∪{v}

13: end if

14: end for

15: replica← performGame(replica, replica′)

16: end for

17: best ← performGame(replica, di)

18: return best

124

Algorithm 5.4.4: Greedy Tabu Local Search (localSearch())
Require: di: Dominant strategy to improve

Ensure: Improved dominant strategy

1: T ← /0

2: for i = 1 to Q do

3: for each parameter v ∈ di and v /∈ T do

4: if random() ≤ Pm then

5: replica← mutate(di, v)

6: T ← T ∪{v}

7: end if

8: end for

9: di← performGame(replica, di)

10: end for

11: return di

125

Table 26: Body Sensor Networks Simulation Settings

Parameter Value

Duration of a simulation (W) 10,800 secs (3 hrs)

Number of simulation runs 10

Number of BSNs (N) 20 and 100

Number of sensor nodes in a BSN (M) 4

Memory space in a sensor node 2 GB

Memory space in a sink node 16 GB

Total number of data requests from cloud apps 1,000

Size of a data request (dr and d′r) 100 bytes

Size of an error message (er) 250 bytes

Energy consumption for a single bit of data (et) 0.001 Watt

Blood pressure request time window [0, 1000 secs]

Acelerometer request time window [0, 1800 secs]

ECG request time window [0, 600 secs]

Number of generations (Gmax) 300

Number of local search iterations (Q) 20

Population size (|Pi|) 100

Mutation rate (Pm) 1/V

126

Table 27: Energy Harvesting Configurations

Category
Energy

source

Harvested

energy in 3 hrs

Total harvested

energy in 3 hrs

Very healthy
Piezo (2.0 Hz)

Thermo

18.27 W

0.10 W
18.37 W

Healthy
Piezo (1.38 Hz)

Thermo

12.56 W

0.068 W
12.63 W

Rehabilitation
Piezo (0.25 Hz)

Thermo

2.28 W

0.0124 W
2.29 W

Wheelchair
Piezo (0.0 Hz)

Thermo

0.0 W

0.0 W
0.0 W

Table 28: Constraint Combinations
Constraint Combination CE (W) CY CR (%) CB (Kbps)

C∞ ∞ 0 0 ∞

CV L 450 16 90 30

CL 350 17 93 25

CM 200 18 95 20

CS 150 19 97 10

CV S 100 20 99 7

CEN 50 16 90 30

CDY 450 25 90 30

127

Table 29: Impacts of Distribution Index Values on Hypervolume (HV)

Distribution Index HV Distribution Index HV

45 0.886 50 0.910

55 0.912 60 0.917

65 0.903

Table 30: Comparison of BitC’s Variants in Hypervolume

Algorithm Hypervolume (HV)

BitC PD 0.9247

BitC HV 0.9394

BitC PD-HV 0.9056

BitC MM 0.9071

BitC PD-MM 0.9143

Table 31: Comparison of BitC-HV and NSGA-II

Objective NSGA-II BitC-HV Bounds

Request Fulfillment: fR (%) 97.6 98.35 99.00

Bandwidth: fB (Kbps) 10.45 7.41 7.32

Energy consumption: fE (Watts) 178.89 129.26 126.91

Data Yield: fY 37.92 14.54 44.72

Hypervolume 0.922 0.9394 -

Euclidean distance 0.152 0.108 -

Manhattan distance 0.232 0.153 -

128

Table 32: Stability of Objective Values in BitC-HV and NSGA-II

Objectives BitC-HV NSGA-II Diff (%)

Request Fulfillment: fR 0.05 0.5 90%

Bandwidth: fB 0.17 0.22 22.72%

Energy Consumption: fE 3.38 3.01 -12.33%

Data Yield: fY 0.42 0.97 56.70%

Average Difference (%) – – 36.75%

Table 33: Objective Values of BitC-HV under Different Constraint Combinations

Constraint

Combination
fB (Kbps) fE (W) fR(%) fY

C∞

maximum 11.38 195.81 97.7 30.25

Avg 11.07 190.28 97.57 27.33

minimum 10.88 186.96 97.4 25.54

CV L

maximum 12.11 208.96 97.3 17.64

Avg 11.8 203.77 97.27 16.62

minimum 11.53 198.94 96.9 15.64

CL

maximum 12.45 214.72 97.1 14.48

Avg 12.11 209.72 97.04 14.32

minimum 11.87 205.84 97 14.19

CM

maximum 9.13 159.93 97.85 17.53

Avg 9.04 157.98 97.81 16.39

minimum 8.90 155.14 97.7 15.61

129

Constraint

Combination
fB (Kbps) fE (W) fR(%) fY

CS

maximum 7.69 133.37 98.4 14.86

Avg 7.41 129.26 98.35 14.54

minimum 7.25 126.68 98.3 14.02

CV S

maximum 9.34 161.09 97.9 15.45

Avg 9.24 159.48 97.88 14.95

minimum 9.05 156.81 97.85 14.59

CEN

maximum 12.08 208.63 96.95 16.50

Avg 11.81 204.66 96.94 15.87

minimum 11.58 201.50 96.9 15.00

CDY

maximum 11.89 206.14 97.45 15.41

Avg 11.32 195.72 97.32 14.75

minimum 10.93 188.75 97.2 13.91

130

Figure 39: 20 BSNs and 100 BSNs performance comparison

131

Table 34: Comparison of BitC-HV and NSGA-II in BSN Lifetime and Data Yield with

Energy Harvesting (EH) Enabled and Disabled

Algorithms Lifetime (hrs) Data yield (fY)

C∞

BitC-HV w/o EH 2.36 21,505

BitC-HV w/ EH 2.47 (+4.66%) 22,507

NSGA-II w/o EH 0.66 4,702

NSGA-II w/ EH 0.69 (+4.55%) 4,916

CS

BitC-HV w/o EH 3.48 16,866

BitC-HV w/ EH 3.64 (+4.60%) 17,641

NSGA-II w/o EH 2.51 31,727

NSGA-II w/ EH 2.62 (+4.38%) 33,117

Table 35: Notation table
Notation Description Notation Description

B set of BSNs Pi population size

N number of BSNs Q number of local search iterations

M number of sensors fR request fulfillment objective

m sink node fB bandwidth objective

O data transmission interval fE energy consumption objective

p sensing interval fY data yield objective

q sampling rate CR request fulfillment constraint

R data requests CB bandwidth constraint

K set of strategies CE energy consumption constraint

G number of generations CY data yield constraint

Pm mutation rate

132

CHAPTER 6

MOLECULAR COMMUNICATION

Molecular communication is a new research area where researches focus on the design of a com-

munication system where transmission and reception of information are carried by molecules. It

is used in many places such as intra-body sensor networks, lab-on-a-chip, drug delivery systems,

so on. This Chapter describes a multi-objective multi-hub molecular communication optimization

problem where two objectives Round Trip Time (RTT) and message delivery success rate are con-

sidered to be optimized. It proposes and evaluates a EGTMOA framework based algorithm called

Evolutionary Multi-hub Molecular Communication Optimizer (EMMCO) that aims to solve the

formulated multi-objective optimizition problem. Experiments are performed in a wide range of

simulation settings. And results show that EMMCO successfully balances the trade-off of RTT and

success rate while optimizing their performance.

6.1 Introduction

If we look back to the computer history, one of the main trend of computing system evolution is the

size reduction of electronic devices and computing units. From the first computer ENIAC (1946)

to personal computer (1975), few years later the appearance of the first laptop (1981), then smart

phones become popular in late 90s, and in the last 20 years MEMS (Micro Electro Mechanical

Systems) devices that are made up of components between 1 and 100 mm in size. So, what is now

? Recent researches are start focusing on reducing computing and transmission units even smaller,

133

down to nanoscale sizes between nm−µm. Those nanoscale units are called nanomachines. In this

research we target Biological Nanomachines in particular.

Bio-nanomachines are the most basic functional units in biological nanoscale systems. They are

made from modified natural cells with artificial functions. Examples of some artificial functions:

• Synthesizing and releasing specific molecules to the environment.

• Capturing molecules from the environment.

• Logic gates to trigger programmed chemical responses upon receiving specific molecules.

• Toggle switches (1-bit memory).

• Queuing of molecules with nested vesicles.

• Oscillators (clocks).

When nanomachines are networked they could perform collaborative tasks that no individual

nanomachines could. In order to network nanomachines we need a nanoscale communication sys-

tem which is call molecular communication. Molecular communication systems use molecule to

digitally encode and decode messages. Later those information carrier molecules are delivered

into communication media for transmission. The communication media could be anything where

molecules could propagate, air, water, human body, so on. Molecular communication presents many

advantages over traditional communication system such as RF, Satellite.

1. It is not subject to requirement of using antennas that are sized to a specific ratio of the signal

wavelength.

2. It requires very little energy consumption.

3. It can be made bio-compatible, and transmission can occurs inside human body.

Molecular communication is used in many different fields i.e.:

134

• Lab-on-a-chip: Chemical analysis of biological samples for diagnosis of diseases biometric

authentication and other purposes. It Provides functionalities to manipulate molecules on a

single chip such as transporting molecules to specific locations, Mixing one type of molecules

with another type of molecules, and Separating specific types of molecules from a mixture of

molecules.

• Artificial morphogenesis: Artificial morphogens (AMs) are molecules that encode artificial

morphological information. It affects the growth and differentiation of AM recipients into

specific spatial structures by controlling the patterns of AM propagation. Artificial morpho-

genesis target areas like tissue engineering and regenerative medicine.

• Drug delivery: Molecular communication helps to guide drug molecules into the site of

diseased cells (e.g., tumor site) in order to minimize possible drug side effects.

This study investigates an EGTMOA framework based algorithm EMMCO that aims to improve

the performance of latency (RTT) and reliability (success rate) in a multi-hub molecular communi-

cation system. It focus on intra-body molecular communication environment.

6.2 Problem Formulation

In this study we consider a short-range (up to 100 m) molecular communication where bio-nanomachines

transmit and receive molecule-encoded messages and applies Stop-and-Wait Automatic Repeat Re-

quest (SW-ARQ) for feedback-based reliable communication in noisy intra-body environments.

Three coommunication transports are considered.

• Diffusive transports : molecules propagate from transmitter (Tx) to the receiver (Rx) via

random thermal motion Fig. 40.

Where Information molecules are modified DNA molecules and noise molecules are station-

ary obstacles for information molecules to move. In diffusive communication no infrastruc-

135

Figure 40: Diffusive communication

ture is needed and very little energy is required. The drawback is that it is very slow and it

just work on short distance between Tx and Rx.

• Directional transports : Molecules directionally move from the transmitter to receiver on

predefined microtubule by using molecular motors Fig. 41. Information molecules could

diffuse away from a microtubule randomly and when colliding with noise molecules. While

diffusing they may contact again a microtubule and re-walk along the microtubule.

Figure 41: Directional communication

Directional communication is faster and can carry longer communication distance. But it

requires infrastructure and more energy consumption.

136

• Hybrid transports : It is just a simple combination of above two mentioned communication

type where molecules propagate with both diffusive and directional transports.

In a real molecular communication environments they are many factors that lead to the losses

and out of sequence deliveries of information that molecules carry. Those factors could be stochastic

molecular propagation, molecule collisions, noisy environments, so on. This study employ a Stop-

and-Wait Automatic Repeat Request (SW-ARQ) mechanism to address this reliability problem.

In SW-ARQ an error-control method to ensure that all messages are delivered from Tx to Rx in

the correct order. A simplest ARQ method is feasible enough to realize with simple computation

and memory functions in modified biological cells. The concept of SW-ARQ in molecular commu-

nication is the same as in a TCP connection where an acknowledgment data is used to indicate that

the receiver has successfully received the information data and the transmitter should starts sending

the next message. Fig 42 illustrates a two channel molecular communication. One for transmitter to

propagate information molecules to receiver, and another for receiver to propagate acknowledgment

(ACK) molecules to transmitter.

Figure 42: Stop-and-Wait Automatic Repeat Request communication protocol

In Fig 42 there are multiple (n) information molecules per message that are sent from transmitter

to receiver. Receiver upon receives the information molecule successfully, it returns back an ACK

molecule to the sender. And if the sender successfully receives the ACK molecule from the previous

message then it starts to send the next set of information molecule for the next message, and so on.

137

6.2.1 Multi-Hub Molecular Communication Simulator

Human body is a complex communication media, any chemical body composition could be a noisy

factor in the molecular communication. Thus, longer distance higher chance the message molecule

collide and to be destroyed by an obstacle, and as consequence less change for the receiver to receive

successfully the information sent by transmitter. To ensure the success rate we employ a multi-hub

architecture Fig. 43. Intermediate nodes are places in between the transmitter and receiver. Their

job are to repeat the transmission sent by the transmitter node once a message molecule is received

and to propagate ACK molecules for such received message molecule. They act as an inter-median

station in a molecular communication to increase a long distance communication success rate.

In this study the whole molecular communication is done through a multi-hub molecular com-

munication simulator that is implemented as an extension based on the previous work [Jon]. In

[Jon], the simulator is designed to handle a simple molecular communication with just one trans-

mitter and one receiver. However in this study we consider a multi-hub molecular communication

architecture as illustrated in Fig. 43.

Multi-Hub Molecular Communication Simulator simulates an intra-body molecular communi-

cation environment. The major components are:

• Transmitter node transmits n info molecules at a time for a single message delivery and it

waits for at least one of n ACK molecules during the retransmission timeout interval (RTO).

During RTO, transmitter never sends out the next set of info molecules. It transmits the next

set of n info molecules once receiving at least one of ACK molecules from receiver or an

intermediate node. It retransmits the n info molecules if the transmitter does not receive at

least one of n ACK molecules in RTO or receives a retransmitted ACK(s).

• Receiver node transmits n ACK molecules in response to receiving at least one of n info

molecules and it waits for the next set of info molecules from transmitter during RTO. It

retransmits the n ACK molecules if receiver does not receive at least one of n info molecules

in RTO or receiver receives a retransmitted info molecule(s).

138

Figure 43: Illustration of a multi-hub intra-body molecular communication

• Intermediate node acts as an inter-median station in between transmitter and receiver. It just

behaves as a combination of a transmitter node and a receiver node.

• Information molecules are message carriers with mission to be delivered in the receiver

node.

• Noise molecules are random obstacles that exist in an intra-body environment. They could be

any human body chemical composition or residues from ACK or INFO molecules of previous

already delivered messages that now are randomly wandering in the environment.

We consider a communication failure if any node could not get a response during RTO after

m number of retransmission is done. The simulator simulates the random transmission process of

a multi-hub molecular communication where each molecules moves in a random direction in each

simulation defined time unit. In this study we aim to optimize two objectives.

139

• Round Trip Time (RTT): It is the average time steps from transmitter sending out information

molecules to successfully receiving ACK molecules.

• Transmission success rate: It is the percentage of delivered message respect to the total num-

ber of transmitted messages.

The goal is to minimize RTT while maximizing success rate. They both are computed through

the multi-hub molecular communication simulator.

6.3 EMMCO

This section describes an EGTMOA framework based algorithm called Evolutionary Multi-hub

Molecular Communication Optimizer (EMMCO) that aims to optimize RTT and success rate in a

multi-hub molecular communication environment. EMMCO divides the entire optimization prob-

lem into N subproblems, where N = M + 2 and M is the number of intermediate nodes, plus two

because of transmitter and receiver. EMMCO maintains N populations, {P1,P2, ...,PN}, for

M + 2 nodes and performs games among strategies in each population. Each strategy s(i) speci-

fies a particular configuration for a node i using four types of parameters: number of information

molecules and acknowledgment per message and number of retransmissions (ni and mi) as well

as retransmission time out (RTO) and the communication protocol used (diffusive, directional or

hybrid) (ri and pi).

s(i) = (ni,mi,ri, pi) 1 < i < N (6.1)

Each objective evaluation is computed through the multi-hub molecular communication simu-

lator described in Section 6.2.1, which is a very expensive process. We try to minimize the time of

objective evaluation by building an algorithm that uses a very basic EGTMOA framework. Unlike

Cielo and BitC, EMMCO does not perform elitism or local search and it uses a simple Hypervolume

140

calculation as quality indicator. EMMCO attempts to seek toward an optimal solution that minimize

RTT and increase success rate while ensuring a tolerable computing speed.

Algorithm 6.3.1 shows how EMMCO seeks an evolutionarily optimal configuration strategy for

each node through evolutionary games. In the 0-th generation, strategies are randomly generated

for each of N populations {P1,P2, ...,PN} (Line 2). In each generation (g), a series of games

are carried out on every population (Lines 4 to 22). A single game randomly chooses a pair of

strategies (s1 and s2) and distinguishes them to the winner and the loser with respect to performance

objectives described in Section 6.2 (Lines 7 to 9). The winner is replicated to increase its population

share and mutated with polynomial mutation (Lines 10 to 18) [DPA02]. Mutation randomly chooses

a parameter (or parameters) in a given strategy with a certain mutation rate Pm and alters its/their

value(s) at random (Lines 12 to 14). And the loser disappears in the population.

Once all strategies play games in the population, EMMCO identifies a strategy whose popula-

tion share (xs) is the highest and determines it as a dominant strategy (di) (Lines 20). In the end,

EMMCO configures a node with the parameters contained in the dominant strategy (Line 21).

A game is carried out based on the superior-inferior relationship between given two strategies

(c.f. performGame() in Algorithm 5.4.1). In EMMCO we use Hypervolume (HV) as quality indi-

cator. HV measures the volume that a given strategy s dominates in the objective space:

HV (s) = Λ

(⋃
{x′|s� x′ � xr}

)
(6.2)

Λ denotes the Lebesgue measure. xr is the reference point placed in the objective space. A

higher hypervolume means that a strategy is more optimal. Given two strategies, the one with a

higher hypervolume value wins a game. If both have the same hypervolume value, the winner is

randomly selected.

141

6.4 Experiment

This section evaluates EMMCO through simulations and discusses how EMMCO allows differ-

ent nodes in molecular communication to adapt their configurations in a random noisy intra-body

environment.

6.4.1 Experiment Setting

Simulations are configured with the parameters shown in Table 36.

It assumes a noisy intra-body environment with dimension 150µm x 150µm x 150µm, where S

noises molecules are randomly placed in the environment. A multi-hub molecular communication

system is considered to deliver 100 messages from a transmitter to a receiver in distance of D

through M number of intermediate nodes. Intermediate nodes are placed in an equivalent distance

between transmitter and receiver. Time steps are defined as seconds in the simulation, in each time

step each molecule move to a random direction. An information molecule is destroyed if it collides

against a noise molecule during the transmission.

The simulation computes RTT as the average of time steps (seconds) that takes from a message

is sent out to receiving its ACK molecule back. If any of M+2 node do not receive a response (INFO

or ACK molecule) after a number of retransmissions, then it considers a message is lost. Thus, we

compute the success rate as the percentage of successfully delivered messages. Experiment are

carried out with different distances and noise levels (number of noise molecules) combination.

6.4.2 Experiment Results

Results are compared against a Random Search approach which is a mechanism that randomly select

a configuration for each of the node and to perform the simulation under the same experiment set-

ting as EMMCO. Fig. 44 to 46 show RTT and success rate performance improvement through 100

generations with three different distance between transmitter and receiver 30µm, 50µm, and 90µm

142

respectively. Each of them is composed by three sub-figures that represent objective performances

under three different noise level setting, 0, 100,000, and 338,000 noise molecules respectively. The

number 338,000 is chosen because it occupies around 10% of the entire experiment space of di-

mension 150µm x 150µm x 150µm. All objective values are computed as average of 10 simulation

runs. A maximum tolerated simulation time of 2 days is set as the upper cap of running time per

run. Any simulation run beyond this value is automatically stopped, so no results is obtained from

runs that are longer than 2 days.

Fig. 44 to 46 illustrate that regardless of the distance EMMCO is able to reach 100% success

rate very fast in the first 10 generations under three levels of noises, and RTT decreases efficiently

through generations. It makes sense that longer the distance and higher noise level are, slower RTT

is. From Fig. 44 to 46 we can conclude that RTT and success rate get a performance improvement

(from generation 1 to 100) in between 39%−78% and 2%−10% respectively. No result is shown

for a noise level 338K and distance 90µm because its running time is higher than the maximum

tolerated running time 2 days. Results show that EMMCO successfully optimizes both RTT and

success rate under different environment settings.

Performance comparison of EMMCO and Random Search are shown in the table 37 where

RRT T is the RTT performance value computed with Random Search and ERT T is the RTT perfor-

mance value got from the last generation using EMMCO. The same applies to success rate, RSR is

the success rate value computed using Random Search and ESR is the success rate value got from

the last generating using EMMCO. Runtime shows the average running time of EMMCO across

different runs. They are all calculated as the average of 10 simulation runs. Some observations de-

livered from results are that longer distance and higher noise level require longer RTT. In all settings

we could reach 100% success rate using EMMCO. No results are shown for distance 90µm with

338k noise molecules because its running time is higher than 2 days. Results show that EMMCO

outperform Random Search in any experiment settings, RTT and success rate gain performance in

between 27%−44.6% and 3%−11% respectively.

143

(a) 0 noise molecules (b) 100k noise molecules (c) 338k noise molecules

Figure 44: Objective Values of EMMCO with distance between transmitter and receiver

30µm

(a) 0 noise molecules (b) 100k noise molecules (c) 338k noise molecules

Figure 45: Objective Values of EMMCO with distance between transmitter and receiver

50µm

6.5 Conclusion

This Chapter considers a noisy intra-body multi-hub molecular communication and formulates a

molecular communication configuration problem to seek a optimal solution that improves RTT

and success rate simultaneously. An evolutionary game theoretic algorithm EMMCO is used to

approach the problem. Simulation results show that EMMCO allows molecular communication

successfully configures its nodes to improve their performance with respect to multiple objectives

round trip time and message delivery sucess rate. EMMCO reaches 100% success rate on message

144

(a) 0 noise molecules (b) 100k noise molecules (c) 338k noise molecules

Figure 46: Objective Values of EMMCO with distance between transmitter and receiver

90µm

delivery regardless of the environment setting. EMMCO’s performance is evaluated in compari-

son to a Random Search approach. Results conclude that EMMCO performs better in both RTT

and success rate than Random Search with range of (27%−44.6%) and (2.3%−11%) respectively

across different simulation runs.

145

Algorithm 6.3.1: Evolutionary Process in EMMCO
1: g = 0

2: Randomly generate the initial N populations for N BSNs: P = {P1,P2, ...,PN}

3: while g < Gmax do

4: for each population Pi randomly selected from P do

5: P ′
i ← /0

6: for j = 1 to |Pi|/2 do

7: s1← randomlySelect(Pi)

8: s2← randomlySelect(Pi)

9: {winner, loser} ← performGame(s1, s2)

10: replica← replicate(winner)

11: for each parameter v in replica do

12: if random() ≤ Pm then

13: replica← mutate(replica, v)

14: end if

15: end for

16: Pi \{s1,s2}

17: P ′
i ∪{winner,replica}

18: end for

19: Pi←P ′
i

20: di← argmaxs∈Pixs

21: Configure a node in question based on di.

22: end for

23: g = g+1

24: end while

146

Table 36: Molecular Communication Simulation Settings

Parameter Value

Environment dimension 150µm x 150µm x 150µm

Number of intermediate nodes (M) 5

Total number of nodes (N) 7

Number of noise molecules (S) (0,100k,338k)

Diameter of Transmitter and Receiver 5µm

Diameter of an info/ACK molecule 1µm

Distances between transmitter and receiver (D) (30µm,50µm,90µm)

Number of messages 100

Diffusion coefficient 0.5

Molecular movement speed 1µm/s (constant)

Derailing probability 0.25

Number of simulation runs 10

Number of generations (G) 100

Population size (|Pi|) 50

Mutation rate (Pm) 1/V

Maximum tolerated simulation time per run 2 days

147

Table 37: Performance comparison of EMMCO and Random Search

Distance 30µm 50µm 90µm

Noise 0 100k 338k 0 100k 338k 0 100k 338k

RRT T (s) 326 348 457 1331 1382 1855 6968 7579 -

ERT T (s) 231 253 316 768 891 1153 3857 4436 -

Gain(%) 29 27 31 42.3 35.5 37.8 44.6 41.4 -

RSR(%) 97 97 89 95 92 95 94 94 -

ESR(%) 100 100 100 100 100 100 100 100 -

Gain(%) 3 3 11 5 8 5 6 6 -

Runtime(h) 0.7 3.3 10.7 2.5 8.8 26.7 10.3 31.3 > 48

148

CHAPTER 7

CONCLUSION

This dissertation proposes and evaluates an Evolutionary Game Theory framework based Evolu-

tionary Algorithm called EGTMOAs which is a meta-heuristic approximation method that seeks

the set of dominant strategies as a whole solution. A theoretical analysis proves that EGTMOAs

guarantee to provide a high quality and stable solution in a reasonable running time.

Three different multi-objective applications are studied in this dissertation, Cloud Virtual Ma-

chine placement, Body sensor network configuration and Multi-hub Molecular communication con-

figurations. Different variants of EGTMOA algorithms are proposed to solve each problem and

many experiments are performed with a wide variety of simulation settings to evaluate EGTMOA’s

performance. Evaluations mainly target on three respects of EGTMOAs quality, stability and run-

ning time.

Simulation results verify the theoretical analysis by showing that EGTMOAs successfully bal-

ance the trade-off of conflicting objectives while improving their performance simultaneously and

outperform many well known multi-objective and meta-heuristic algorithms in quality, stability,

convergence speed, and running time.

149

CHAPTER 8

FUTURE DIRECTIONS

There are many potential future directions originated from this dissertation.

8.1 Noise Handling

Multi-hub molecular communication simulator describes a random intra-body transmission process.

Objective values computed through a random process are not reliable, in other word they are noisy.

Those values are different under the same simulation settings in different runs. In this thesis I

use average to evaluate objective values across different runs, however it may not be accurate. A

noise handling in optimization process is needed, I propose as a future work to employ the notion

of Depth which is a statistical operator that could be integrated for robust dominance comparison.

Depth considers finding the media value in a multi-objective spaces.

8.2 Speeding Up

Objective evaluations are quite expensive in some cases, i.e. molecular communication. I propose as

a future direction to integrate EGTMOAs with Neural networks for approximating objective values

instead of using real objective functions. The basic idea is to use objective functions in the first 100

generations and to record the pair of decision variable vectors and objective values as features and

label respectively in a dataset. Then we train a neural network to have a good approximation model

from the dataset, after 100 generations we could use the model to compute objectives rather than

using expensive objective functions. Of course we should consider the approximation error using

150

neural network, and training time. It may not be feasible if we could not find a good approximation

model or the training time is longer than the original EGTMOA running time.

8.3 Fairness

EGTMOA seeks a set of dominant strategies as a global solution and it treats all players in the

same manner. But sometimes players may have different requirements, for instance in the body

sensor network problem a heart diseases patient may need more attention than a patient who is

doing rehabilitation from appendectomy. Therefore higher amount of resources is needed for a

heart diseases patient. In order to overcome this fairness problem, I propose to use the notion of

coalition. Same type of players are grouped into a coalition, and each coalition has its own objective

functions to be optimized. The main idea is to perform cooperate games among players of the same

coalition, they attempt to maximize their payoff as a global objective. And to perform competitive

games among coalitions, each coalition tries to maximize its own payoff based on its requirement

(constraints).

8.4 Cloud simulator extension

Several extensions are planned as future work in the cloud virtual machine placement problem. One

of them is to allow each application to consist of an arbitrary number of servers and operate on an

arbitrary number of VMs. (Currently, each application is assumed to consist of three servers and

operate on three VMs.) Another extension is to run simulations with publicly available simulators

such as CloudSim [CRB11].

151

REFERENCE LIST

[ACC10] A. Ambrose, M. Cardei, and I. Cardei. “Patient-centric hurricane evacuation
management system.” In 29th IEEE Int’l Performance Computing and Com-
munications Conference, 2010.

[AG11] Khandakar Entenam Unayes Ahmed and Mark A. Gregory. “Integrating Wire-
less Sensor Networks with Cloud Computing.” In 7th International Conference
on Mobile Ad-hoc and Sensor Networks, 2011.

[AHS07] K. Aberer, M. Hauswirth, and A. Salehi. “Infrastructure for Data Processing
in Large-Scale Interconnected Sensor Networks.” In Proc. the 8th IEEE Int’l
Conference on Mobile Data Management, 2007.

[BBS12] M. Boulmalf, A. Belgana, T. Sadiki, S. Hussein, T. Aouam, and H. Harroud.
“A lightweight middleware for an e-health WSN based system using Android
technology.” In Int’l Conference on Multimedia Computing and Systems, 2012.

[BDF03] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer,
I. Pratt, and A. Warfield. “Xen and the art of virtualization.” In Proc. of ACM
symposium on operating systems principles, October 2003.

[BHS07] P. Boonma, Q. Han, and J. Suzuki. “Leveraging Biologically-inspired Mobile
Agents Supporting Composite Needs of Reliability and Timeliness in Sensor
Applications.” In Proc. IEEE Int’l Conf. on Frontiers in the Convergence of
Biosci. and Info. Tech., 2007.

[BS10] P. Boonma and J. Suzuki. “TinyDDS: An Interoperable and Configurable Pub-
lish/Subscribe Middleware for Wireless Sensor Networks.” In A. Hinze and
A. Buchmann, editors, Principles and Apps. of Dist. Event-Based Systems,
chapter 9. IGI Global, 2010.

[Car08] P. Caramia, M. Dell’Olmo. “Multi-objective Management in Freight Logistics
Increasing Capacity, Service Level and Safety with Optimization Algorithms.”
Springer, March 2008.

[CGV11] M. Chen, S. Gonzalez, A. V. Vasilakos, H. Cao, and V. C. Leung. “Body Area
Networks: A Survey.” Mobile Netw. Appl., 16(2), 2011.

[CJH10] Shuyi Chen, Kaustubh R. Joshi, Matti A. Hiltunen, Richard D. Schlichting,
and William H. Sanders. “Blackbox prediction of the impact of DVFS on end-
to-end performance of multitier systems.” ACM SIGMETRICS Performance
Evaluation, 37(4), 2010.

152

[Coe98] C. A. Coello Coello. “Using the Min-Max Method to Solve Multiobjective
Optimization Problems with Genetic Algorithms.” In Progress in Artificial
Intelligence–IBERAMIA 98. 1998.

[CRB11] Rodrigo N. Calheiros, Rajiv Ranjan, Anton Beloglazov, Cesar A. F. De Rose,
and Rajkumar Buyya. “CloudSim: A Toolkit for Modeling and Simulation
of Cloud Computing Environments and Evaluation of Resource Provisioning
Algorithms.” Software: Practice and Experience, 41(1):23–50, 2011.

[CSV12] Henri Casanova, Mark Stillwell, and Frédéric Vivien. “Virtual Machine Re-
source Allocation for Service Hosting on Heterogeneous Distributed Plat-
forms.” In IEEE International Parallel & Distributed Processing Symposium,
May 2012.

[CWJ13] X. Chang, B. Wang, L. Jiqiang, W. Wang, and K. Muppala. “Green Cloud
Virtual Network Provisioning Based Ant Colony Optimization.” In Proc. ACM
Int’l Conference on Genetic and Evol. Computat, 2013.

[CYH13] Wen-Yaw Chung, Pei-Shan Yu, and Chao-Jen Huang. “Cloud Computing Sys-
tem Based on Wireless Sensor Network.” In Federated Conference on Com-
puter Science and Information Systems, 2013.

[DAP00] Kalyanmoy Deb, Samir Agrawal, Amrit Pratab, and T. Meyarivan. “A Fast
Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Opti-
mization: NSGA-II.” In Proc. Conf. Parallel Problem Solving from Nature,
2000.

[DDL07] N. Doulamis, A. Doulamis, A. Litke, A. Panagakis, T. Varvarigou, and E. Var-
varigos. “Adjusted fair scheduling and non-linear workload prediction for QoS
guarantees in grid computing.” Elsevier Computer Comm., 30(3), 2007.

[Deb01] K. Deb. Multi-Objective Optimization Using Evolutionary Algorithms. John
Wiley & Sons Inc, 2001.

[DLO14] Mianxiong Dong, He Li, K. Ota, L.T. Yang, and Haojin Zhu. “Multicloud-
Based Evacuation Services for Emergency Management.” Cloud Computing,
IEEE, 1(4):50–59, Nov 2014.

[DNA10] J.J. Durillo, A.J. Nebro, and E. Alba. “The jMetal Framework for Multi-
Objective Optimization: Design and Architecture.” In Proc. of IEEE Congress
on Evolutionary Computation, 2010.

153

[DPA02] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. “A Fast and Elitist Multi-
objective Genetic Algorithm: NSGA-II.” IEEE Trans Evol. Computat., 6(2),
2002.

[Eib02] A.E. Eiben. “Evolutionary Computing: the Most Powerful Problem Solver in
the Universe.” Dutch Mathematical Archive, 5(3):126–131, 2002.

[FPP14] G. Fortino, D. Parisi, V. Pirrone, and G. Di Fatta. “BodyCloud: A SaaS Ap-
proach for Community Body Sensor Networks.” Future Generation Computer
Systems, 35(6):62–79, 2014.

[GGQ13] Yongqiang Gao, Haibing Guan, Zhengwei Qi, Yang Hou, and Liang Liu. “A
multi-objective ant colony system algorithm for virtual machine placement in
cloud computing.” J. Computer and System Sciences, 79(8), 2013.

[GKB11] Saurabh Kumar Garg, Pramod Konugurthi, and Rajkumar Buyya. “A linear
programming-driven genetic algorithm for meta-scheduling on utility grids.”
Int’l J. of Parallel, Emergent and Distributed Systems, 26(6):493–517, 2011.

[GLL09] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, and S. Lu.
“BCube: A High Performance, Server-centric Network Architecture for Mod-
ular Data Centers.” In Proc. of ACM SIGCOM, 2009.

[GMC13] Tom Guerout, Thierry Monteil, Georges Da Costa, Rodrigo Neves Calheiros,
Rajkumar Buyya, and Mihai Alexandru. “Energy-aware simulation with
DVFS.” Simulation Modelling Practice and Theory, 39:96–91, 2013.

[GN07] P. Garbacki and V.K. Naik. “A Hybrid Linear Programming and Evolutionary
Algorithm based Approach for On-line Resource Matching in Grid Environ-
ments.” In IEEE Int’l Conference on Cluster Computing and the Grid, 2007.

[GP13] Hadi Goudarzi and Massoud Pedram. “Energy-Efficient Virtual Machine Repli-
cation and Placement in a Cloud Computing System.” In 6th IEEE Interna-
tional Conference on Cloud Computing, June 2013.

[GWM04] M. Gaynor, M. Welsh, S. Moulton, A. Rowan, E. LaCombe, and J. Wynne. “In-
tegrating Wireless Sensor Networks with the Grid.” IEEE Internet Computing,
July/August 2004.

[GWT08] C. Guo, H. Wu, K. Tan, L. Shiy, Y. Zhang, and S. Lu. “DCell: A Scalable and
Fault-Tolerant Network Structure for Data Centers.” In Proc. of ACM SIGCOM,
2008.

154

[HSH09] Mohammad Mehedi Hassan, Biao Song, and Eui-Nam Huh. “A framework of
sensor-cloud integration opportunities and challenges.” In Proc. the 3rd ACM
Int’l Conference on Ubiquitous Info. Mgt. and Comm., 2009.

[Jon] Torna Omar Soro Junichi Suzuki Tadashi Nakano Jonathan S. Mitzman,
Bria Morgan. “A feedback-based molecular communication protocol for noisy
intrabody environments.” In E-health Networking, Application and Services
(HealthCom), 2015 17th International Conference on.

[KA09a] S. Khan and I. Ahmad. “A Pure Nash Equilibrium Based Game Theoretical
Method for Data Replication Across Multiple Servers.” IEEE Transaction on
Knowledge and Data Engineering, 21(4), 2009.

[KA09b] S. U. Khan and C. Ardil. “Energy Efficient Resource Allocation in Distributed
Computing Systems.” In Proc. of WASET Int’l Conference on Distributed,
High-Performance and Grid Computing, 2009.

[KBK13] Dzmitry Kliazovich, Pascal Bouvry, and Samee Ullah Khan. “DENS: data
center energy-efficient network-aware scheduling.” Cluster Computing, 16(1),
2013.

[KK06] S. Kapadia and B. Krishnamachari. “Comparative Analysis of Push-Pull Query
Strategies for Wireless Sensor Networks.” In Proc. International Conference
on Distributed Computing in Sensor Systems, 2006.

[KL03] M. Kodialam and T.V. Lakshman. “Detecting Network Intrusions via Sam-
pling: A Game Theoretic Approach.” In Proc. of IEEE Conference on Com-
puter and Communications Societies, 2003.

[KOD14] T. Kumrai, Kaoru Ota, Mianxiong Dong, and P. Champrasert. “An incentive-
based evolutionary algorithm for participatory sensing.” In Global Communi-
cations Conference (GLOBECOM), 2014 IEEE, pp. 5021–5025, Dec 2014.

[Kun99] S. Kundu. “A Note on Optimizality vs. Stability - A Genetic Algorithm Based
Approach.” In Proc. of World Congress on Structural and Multidisciplinary
Optimization, 1999.

[LGS06] M. Li, D. Ganesan, and P. Shenoy. “PRESTO: Feedback-Driven Data Man-
agement in Sensor Networks.” In Proc. USENIX Symposium on Networked
Systems Design and Implementation, 2006.

[LP07] W. B. Langdon and R. Poli. “Evolving Problems to Learn About Particle
Swarm Optimizers and Other Search Algorithms.” IEEE Transactions on Evo-
lutionary Computation, 11(5):561–578, 2007.

155

[LQL13] Xin Lia, Zhuzhong Qiana, Sanglu Lua, and Jie Wu. “Energy efficient virtual
machine placement algorithm withbalanced and improved resource utilization
in a data center.” Mathematical and Computer Modelling, 58(5-6), 2013.

[LWY09] von Laszewski, Lizhe Wang, Andrew J. Younge, and Xi He. “Power-aware
scheduling of virtual machines in DVFS-enabled clusters.” In IEEE Interna-
tional Conference on Clusters, September 2009.

[LZW08] X. Li, J. Zhuang, S. Wang, and Y. Zhang. “A Particle Swarm Optimization
Algorithm Based on Adaptive Periodic Mutation.” In Proc. of IEEE Int’l Con-
ference on Natural Computation, 2008.

[MF04] R. Masuchun and W.G. Ferrell. “Dynamic Rescheduling with Stability.” In
Proc. of IEEE Asian Control Conference, 2004.

[MLL12] Fei Ma, Feng Liu, and Zhen Liu. “Multi-objective Optimization for Initial
Virtual Machine Placement in Cloud Data Center.” J. Infor. and Computational
Science, 9(16), 2012.

[MW96] M.A. Marra and B.L. Walcott. “Stability and Optimality in Genetic Algorithm
Controllers.” In Proc. of IEEE Int’l Symposium on Intelligent Control, 1996.

[Now06] M. A. Nowak. Evolutionary Dynamics: Exploring the Equations of Life. Har-
vard University Press, 2006.

[NRT07] N. Nisan, T. Roughgarden, E. Tardos, and V. Vazirani. Algorithmic Game The-
ory. Cambridge University Press, 2007.

[Per96] R. Perline. “Zipf’s law, the central limit theorem, and the random division of
the unit interval.” Physical Review E, 54(1), 1996.

[PKG08] Nissanka B. Priyantha, Aman Kansal, Michel Goraczko, and Feng Zhao. “Tiny
web services: design and implementation of interoperable and evolvable sen-
sor networks.” In Proc. the 6th ACM Int’l Conference on Embedded Network
Sensor Systems, 2008.

[PPB12] Shyamal Patel, Hyung Park, Paolo Bonato, Leighton Chan, and Mary Rodgers.
“A Review of Wearable Sensors and Systems with Application in Rehabilita-
tion.” Journal of Neuroengineering and Rehabilitation, 9(21), 2012.

[PS05] Joseph A. Paradiso and Thad Starner. “Energy Scavenging for Mobile and
Wireless Electronics.” Pervasive Computing, 4(1):1827, 2005.

156

[PSO14] D. H. Phan, J. Suzuki, S. Omura, K. Oba, and A. Vasilakos. “Multiobjective
Communication Optimization for Cloud-integrated Body Sensor Networks.”
In Proc. IEEE/ACM Int’l Workshop on Data-intensive Process Management in
Large-Scale Sensor Systems: From Sensor Networks to Sensor Clouds, In con-
junction with IEEE/ACM Int’l Symposium on Cluster, Cloud and Grid Comput-
ing, 2014.

[RAS] Barry Rountree, Dong Ahn, Bronis R. de Supinski, David K. Lowenthal, and
Martin Schulz. “Beyond DVFS: A first look at performance under a hardware-
enforced power bound.” In Proc. 8th Workshop on High-Performance, Power-
Aware Computing.

[RKW10] Carlos Oberdan Rolim, Fernando Luiz Koch, Carlos Becker Westphall, Jorge
Werner, Armando Fracalossi, and Giovanni Schmitt Salvador. “A Cloud Com-
puting Solution for Patient’s Data Collection in Health Care Institutions.” In
Proc. the 2nd IARIA Int’l Conference on eHealth, Telemedicine and Social
Medicine, 2010.

[Sal10] David Salerno. “Ultralow Voltage Energy Harvester Uses Thermoelectric Gen-
erator for Battery-Free Wireless Sensors.” LT Journal of Analog Innovation,
20(3), 2010.

[SD95] N. Srinivas and K. Deb. “Multiobjective function optimization using nondom-
inated sorting genetic algorithms.” Evol. Computat., 2(3), 1995.

[SH06] T. C. Shan and W. W. Hua. “Solution Architecture for N-Tier Applications.” In
Proc. of IEEE Int’l Conference on Services Computing, September 2006.

[SQM12] N.K. Suryadevara, M. T. Quazi, and S.C. Mukhopadhyay. “Intelligent Sensing
Systems for Measuring Wellness Indices of the Daily Activities for the Elderly.”
In 8th Int’l Conference on Intelligent Environments, 2012.

[SZL08] R. Subrata, A. Y. Zomaya, and B. Landfeldt. “Game Theoretic Approach for
Load Balancing in Computational Grids.” IEEE Trans. Parallel and Distributed
Systems, 19(1), 2008.

[TD08] V. Toğan and A.T. Daloğlu. “An Improved Genetic Algorithm with Initial Pop-
ulation Strategy and Self-Adaptive Member Grouping.” Computers and Struc-
tures, 86(11-12):1204–1218, 2008.

[TEC08] H. A. Taboada, J. F. Espiritu, and D. W. Coit. “MOMS-GA: A Multi-Objective
Multi-State Genetic Algorithm for System Reliability Optimization Design
Problems.” IEEE Transactions on Reliability, 57(1), 2008.

157

[THL03] J. Tatemura, W-P. Hsiung, and W-S. Li. “Acceleration of Web Service Work-
flow Execution through Edge Computing.” In Proc. of Int’l WWW Conference,
2003.

[TJ78] P. Taylor and L. Jonker. “Evolutionary stable strategies and game dynamics.”
Elsevier Mathematical Biosciences, 40(1), 1978.

[UPS05] B. Urgaonkar, G. Pacifici, P. Shenoy, M. Spreitzer, and A. Tantawi. “An ana-
lytical model for multi-tier internet services and its applications.” In Proc. of
ACM Int’l Conference on Measurement and Modeling of Computer Systems,
June 2005.

[VT99] C. Voudouris and E.P.K. Tsang. “Guided Local Search and its application to
the Travelling Salesman Problem.” 113(2):469–499, 1999.

[WBS10] H. Wada, P. Boonma, and J. Suzuki. “Chronus: A Spatiotemporal Macropro-
gramming Language for Autonomic Wireless Sensor Networks.” In N. Agoul-
mine, editor, Autonomic Network Mgt. Principles: From Concepts to Applica-
tions, chapter 8. Elsevier, 2010.

[Wei96] J. W. Weibull. Evolutionary Game Theory. MIT Press, 1996.

[WKL10] Qingyang Wang, Yasuhiko Kanemasa, Jack Li, Chien An Lai, Masazumi
Matsubara, and Calton Pu. “Impact of DVFS on n-Tier Application Perfor-
mance.” In In Proc. of ACM Conference on Timely Results in Operating Sys-
tems, November 2010.

[WSY12] H. Wada, J. Suzuki, Y. Yamano, and K. Oba. “E3: A Multiobjective Optimiza-
tion Framework for SLA-aware Service Composition.” IEEE Trans. Services
Computing, 5(3), 2012.

[WVZ09] G. Wei, A. V. Vasilakos, Y. Zheng, and N. Xiong. “A game-theoretic method
of fair resource allocation for cloud computing services.” J. Supercomputing,
54(2), 2009.

[XHT11] Yi Xu, Sumi Helal, My Thai, and Mark Scmalz. “Optimizing push/pull en-
velopes for energy-efficient cloud-sensor systems.” In Proc. the 14th ACM
Int’l Conference on Modeling, Analysis and Simulation of Wireless and Mobile
Systems, 2011.

[YK10] M. Yuriyama and T. Kushida. “Sensor-Cloud Infrastructure - Physical Sensor
Management with Virtualized Sensors on Cloud Computing.” In Proc. the 13th
Int’l Conf. on Network-Based Info. Sys., 2010.

158

[YKK08] O. Yugay, I. Kim, B. Kim, and F.I.S. Ko. “Hybrid Genetic Algorithm for Solv-
ing Traveling Salesman Problem with Sorted Population.” In Proc. of IEEE
Int’l Conference on Convergence and Hybrid Information Technology, 2008.

[ZT98] E. Zitzler and L. Thiele. “Multiobjective Optimization Using Evolutionary
Algorithms: A Comparative Study.” In Proc. Int’l Conf. on Parallel Problem
Solving from Nature, 1998.

[ZYS13] Peng Zhang, Zheng Yan, and Hanlin Sun. “A Novel Architecture Based on
Cloud Computing for Wireless Sensor Network.” In 2nd International Confer-
ence on Computer Science and Electronics Engineering, 2013.

159

	University of Massachusetts Boston
	ScholarWorks at UMass Boston
	5-31-2017

	Evolutionary Game Theoretic Multi-Objective Optimization Algorithms and Their Applications
	Yi Ren Cheng
	Recommended Citation

	tmp.1496852288.pdf.XqGoK

