1,435 research outputs found

    Multi-layer neural network with deep belief network for gearbox fault diagnosis

    Get PDF
    Identifying gearbox damage categories, especially for early faults and combined faults, is a challenging task in gearbox fault diagnosis. This paper presents multiple classifiers based on multi-layer neural networks (MLNN) to implement vibration signals for fault diagnosis in gearbox. A MLNN-based learning architecture using deep belief network (MLNNDBN) is proposed for gearbox fault diagnosis. Training process of the proposed learning architecture includes two stages: A deep belief network is constructed firstly, and then is trained; after a certain amount of epochs, the weights of deep belief network are used to initialize the weights of the constructed MLNN; at last, the trained MLNN is used as classifiers to classify gearbox faults. Multidimensional feature sets including time-domain, frequency-domain features are extracted to reveal gear health conditions. Experiments with different combined faults were conducted, and the vibration signals were captured under different loads and motor speeds. To confirm the superiority of MLNNDBN in fault classification, its performance is compared with other MLNN-based methods with different fine-tuning schemes and relevant vector machine. The achieved accuracy indicates that the proposed approach is highly reliable and applicable in fault diagnosis of industrial reciprocating machinery

    Meta-heuristic algorithms in car engine design: a literature survey

    Get PDF
    Meta-heuristic algorithms are often inspired by natural phenomena, including the evolution of species in Darwinian natural selection theory, ant behaviors in biology, flock behaviors of some birds, and annealing in metallurgy. Due to their great potential in solving difficult optimization problems, meta-heuristic algorithms have found their way into automobile engine design. There are different optimization problems arising in different areas of car engine management including calibration, control system, fault diagnosis, and modeling. In this paper we review the state-of-the-art applications of different meta-heuristic algorithms in engine management systems. The review covers a wide range of research, including the application of meta-heuristic algorithms in engine calibration, optimizing engine control systems, engine fault diagnosis, and optimizing different parts of engines and modeling. The meta-heuristic algorithms reviewed in this paper include evolutionary algorithms, evolution strategy, evolutionary programming, genetic programming, differential evolution, estimation of distribution algorithm, ant colony optimization, particle swarm optimization, memetic algorithms, and artificial immune system

    Investigation of a multi-sensor data fusion technique for the fault diagnosis of gearboxes

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this recordGearbox is the key functional unit in a mechanical transmission system. As its operating condition being complex and the interference transmitting from diverse paths, the vibration signals collected from an individual sensor may not provide a fully accurate description on the health condition of a gearbox. For this reason, a new method for fault diagnosis of gearboxes based on multi-sensor data fusion is presented in this paper. There are three main steps in this method. First, prior to feature extraction, two signal processing methods, i.e. the energy operator and time synchronous averaging, are applied to multi-sensor vibration signals to remove interference and highlight fault characteristic information, then the statistical features are extracted from both the raw and preprocessed signals to form an original feature set. Second, a coupled feature selection scheme combining the distance evaluation technique and max-relevance and min-redundancy is carried out to obtain an optimal feature set. Finally, the deep belief network, a novel intelligent diagnosis method with a deep architecture, is applied to identify different gearbox health conditions. As the multi-sensor data fusion technique is utilized to provide sufficient and complementary information for fault diagnosis, this method holds the potential to overcome the shortcomings from an individual sensor that may not accurately describe the health conditions of gearboxes. Ten different gearbox health conditions are simulated to validate the performance of the proposed method. The results confirm the superiority of the proposed method in gearbox fault diagnosis.National Natural Science Foundation of Chin

    A Decision-Making Tool Based on Exploratory Visualization for the Automotive Industry

    Get PDF
    In recent years, the digital transformation has been advancing in industrial companies, supported by the Key Enabling Technologies (Big Data, IoT, etc.) of Industry 4.0. As a consequence, companies have large volumes of data and information that must be analyzed to give them competitive advantages. This is of the utmost importance in fields such as Failure Detection (FD) and Predictive Maintenance (PdM). Finding patterns in such data is not easy, but cutting-edge technologies, such as Machine Learning (ML), can make great contributions. As a solution, this study extends Hybrid Unsupervised Exploratory Plots (HUEPs), as a visualization technique that combines Exploratory Projection Pursuit (EPP) and Clustering methods. An extended formulation of HUEPs is proposed, adding for the first time the following EPP methods: Classical Multidimensional Scaling, Sammon Mapping and Factor Analysis. Extended HUEPs are validated in a case study associated with a multinational company in the automotive industry sector. Two real-life datasets containing data gathered from a Waterjet Cutting tool are visualized in an intuitive and informative way. The obtained results show that HUEPs is a technique that supports the continuous monitoring of machines in order to anticipate failures. This contribution to visual data analytics can help companies in decision-making, regarding FD and PdM projects.The authors would like to thank the vehicle interiors manufacturer, Grupo Antolin, for its collaboration in this research

    Online Condition Monitoring of Electric Powertrains using Machine Learning and Data Fusion

    Get PDF
    Safe and reliable operations of industrial machines are highly prioritized in industry. Typical industrial machines are complex systems, including electric motors, gearboxes and loads. A fault in critical industrial machines may lead to catastrophic failures, service interruptions and productivity losses, thus condition monitoring systems are necessary in such machines. The conventional condition monitoring or fault diagnosis systems using signal processing, time and frequency domain analysis of vibration or current signals are widely used in industry, requiring expensive and professional fault analysis team. Further, the traditional diagnosis methods mainly focus on single components in steady-state operations. Under dynamic operating conditions, the measured quantities are non-stationary, thus those methods cannot provide reliable diagnosis results for complex gearbox based powertrains, especially in multiple fault contexts. In this dissertation, four main research topics or problems in condition monitoring of gearboxes and powertrains have been identified, and novel solutions are provided based on data-driven approach. The first research problem focuses on bearing fault diagnosis at early stages and dynamic working conditions. The second problem is to increase the robustness of gearbox mixed fault diagnosis under noise conditions. Mixed fault diagnosis in variable speeds and loads has been considered as third problem. Finally, the limitation of labelled training or historical failure data in industry is identified as the main challenge for implementing data-driven algorithms. To address mentioned problems, this study aims to propose data-driven fault diagnosis schemes based on order tracking, unsupervised and supervised machine learning, and data fusion. All the proposed fault diagnosis schemes are tested with experimental data, and key features of the proposed solutions are highlighted with comparative studies.publishedVersio

    A wavelet approach to detect gear-rattle development in mechanical systems

    Get PDF
    In this work two methods for gear-rattling detection in mechanical systems are studied. For this purpose, an experimental quick-return mechanism was constructed with gears driven by an electric motor. Rattling is detected from the mechanical vibrations acceleration and the electric motor current. Vibrations signal is measured by a biaxial accelerometer and electrical current is obtained from the motor electronic driver. Signals are processed in time-domain and time-frequency domain. Rattling level is measured through a proposed performance evaluation index that is obtained from the application of band-pass filters and the RMS value of the signal for the time-domain processing. For the time-frequency analysis, the wavelet transform is used to isolate the rattling and the signal is post-processed to compute the RMS value. It is shown that the use of the electric motor current for the detection of rattling produce better results than the mechanical vibrations acceleration. With respect to the time-domain method versus the time-frequency method, it was found that the application of the wavelet transform significantly improves the indexes that are used for gear-rattle detection

    Multidimensional prognostics for rotating machinery: A review

    Get PDF
    open access articleDetermining prognosis for rotating machinery could potentially reduce maintenance costs and improve safety and avail- ability. Complex rotating machines are usually equipped with multiple sensors, which enable the development of multidi- mensional prognostic models. By considering the possible synergy among different sensor signals, multivariate models may provide more accurate prognosis than those using single-source information. Consequently, numerous research papers focusing on the theoretical considerations and practical implementations of multivariate prognostic models have been published in the last decade. However, only a limited number of review papers have been written on the subject. This article focuses on multidimensional prognostic models that have been applied to predict the failures of rotating machinery with multiple sensors. The theory and basic functioning of these techniques, their relative merits and draw- backs and how these models have been used to predict the remnant life of a machine are discussed in detail. Furthermore, this article summarizes the rotating machines to which these models have been applied and discusses future research challenges. The authors also provide seven evaluation criteria that can be used to compare the reviewed techniques. By reviewing the models reported in the literature, this article provides a guide for researchers considering prognosis options for multi-sensor rotating equipment

    A hybrid prognostics approach to estimate the residual useful life of a planetary gearbox with a local defect

    Get PDF
    A hybrid prognostics approach for the monioring of a planetary gearbox with the local defect is presented. This hybrid method can predict the remaining useful life (RUL) of planetary gearbox with a fatigue crack. The method consists of a dynamical model for simulation data generation, a statistical algorithm for feature selection and weighting, and a modified grey model for RUL prediction. Experimental studies are conducted to validate and demonstrate the feasibility of the proposed method for RUL prediction of a cracked sun gear in planetary gearbox. And the validation has a promising result

    On the use of context information for an improved application of data-based algorithms in condition monitoring

    Get PDF
    xi, 124 p.En el campo de la monitorización de la condición, los algoritmos basados en datos cuentan con un amplio recorrido. Desde el uso de los gráficos de control de calidad que se llevan empleando durante casi un siglo a técnicas de mayor complejidad como las redes neuronales o máquinas de soporte vectorial que se emplean para detección, diagnóstico y estimación de vida remanente de los equipos. Sin embargo, la puesta en producción de los algoritmos de monitorización requiere de un estudio exhaustivo de un factor que es a menudo obviado por otros trabajos de la literatura: el contexto. El contexto, que en este trabajo es considerado como el conjunto de factores que influencian la monitorización de un bien, tiene un gran impacto en la algoritmia de monitorización y su aplicación final. Por este motivo, es el objeto de estudio de esta tesis en la que se han analizado tres casos de uso. Se ha profundizado en sus respectivos contextos, tratando de generalizar a la problemática habitual en la monitorización de maquinaria industrial, y se ha abordado dicha problemática de monitorización de forma que solucionen el contexto en lugar de cada caso de uso. Así, el conocimiento adquirido durante el desarrollo de las soluciones puede ser transferido a otros casos de uso que cuenten con contextos similares
    corecore