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Abstract: Gearbox is the key functional unit in a mechanical transmission system. As its 

operating condition being complex and the interference transmitting from diverse paths, the 

vibration signals collected from an individual sensor may not provide a fully accurate description 

on the health condition of a gearbox. For this reason, a new method for fault diagnosis of 

gearboxes based on multi-sensor data fusion is presented in this paper. There are three main steps 

in this method. First, prior to feature extraction, two signal processing methods, i.e., the energy 

operator and time synchronous averaging (TSA), are applied to multi-sensor vibration signals to 

remove interference and highlight fault characteristic information, then the statistical features are 

extracted from both the raw and preprocessed signals to form an original feature set. Second, a 

coupled feature selection scheme combining the distance evaluation technique (DET) and max-

relevance and min-redundancy (mRMR) is carried out to obtain an optimal feature set. Finally, 

the deep belief network (DBN), a novel intelligent diagnosis method with a deep architecture, is 

applied to identify different gearbox health conditions. As the multi-sensor data fusion technique 

is utilized to provide sufficient and complementary information for fault diagnosis, this method 

holds the potential to overcome the shortcomings from an individual sensor that may not 

accurately describe the health conditions of gearboxes. Ten different gearbox health conditions 

are simulated to validate the performance of the proposed method. The results confirm the 

superiority of the proposed method in gearbox fault diagnosis. 
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1 Introduction 

Fault diagnosis of gearboxes is of great importance to avoid serious and even fatal accidents 

in various industrial applications. Vibration measurement and analysis, which is one of the most 

effective diagnosis methods for rotating machinery, has been widely applied to evaluate the health 

conditions of gearboxes.1-4 Current researches in the fault diagnosis of gearboxes are mainly 

based on the vibration signals obtained from individual sensor, with the basic principal being 

detecting fault characteristics from the signals. However, the gearbox vibration signals consist of 

multiple complex components because of the unique mechanical structure, complicated operating 

conditions and massive amount of background noise, meaning that some useful fault 

characteristics contained in the vibration signals can be easily overwhelmed or distorted.2 Thus, 

the extraction of fault characteristics can be a very challenging task. Moreover, it is typical to 

acquire the vibration signals using sensors mounted on the exterior of a gearbox case. Therefore, 

the vibration signals generated by multiple vibration sources in the gearbox must pass through 

complex transmission path before reaching the sensors. Consequently, the transfer function 

between the vibration sources and the sensors can easily modify the vibration signals, causing 

interference.5 To overcome these shortcomings, one alternative is to use multi-sensor data fusion. 

This method has an advantage of multiple sensors mounted on several appropriate locations to 

provide sufficient and complementary information about the vibration state of a gearbox,6 

reducing the interference from transmission path effects. Furthermore, data fusion is good at 

screening out representative features from multi-sensor datasets, which can better characterize 

the health conditions of a gearbox.  

In addition, effectively processing the multidimensional multi-sensor datasets and learning 

the complex non-linear relationships in the data is pivotal for gearbox fault diagnosis. Artificial 

intelligence (AI) techniques, which can effectively analyze a mass of data and automatically 

provide accurate diagnosis results, has good potential for this.6-9 However, the gearbox vibration 

signals are usually non-linear, non-stationary and noisy. Some conventional AI techniques such 

as support vector machine (SVM) and back propagation neural network (BPNN) are shallow 

architectures, which contain no more than one non-linear transformation, do not easily learn the 

complex non-linear relationships in the data.10,11 Deep learning has recently proven its superiority 

in feature learning and pattern recognition.12-16 Compared to conventional intelligent techniques, 

this new technique utilizes unsupervised feature learning to learn a layer of feature representations 

from raw data adaptively.11 Moreover, several layers of feature representations can be stacked to 

create deep networks, which are more capable of modeling complex structures in the data.11,17 In 

view of the above advantages, we present a representative deep learning method called deep belief 

network (DBN) to diagnose gearbox faults in this study. The DBN contains a deep architecture 

with multiple stacked restricted Boltzmann machines (RBMs). Through unsupervised pre-trained 



in a layer-by-layer fashion and then supervised fine-tuned, the DBN is expected to have better 

performance than conventional intelligent diagnosis methods. 

In general, fault diagnosis based on artificial intelligent techniques has three main steps: 

feature extraction, feature selection and fault classification. First, representative features related 

to the health conditions of machinery should be extracted from the signals by employing 

appropriate signal processing methods.18 In this study, the statistical features associated with the 

time domain and frequency domain are used to characterize the health conditions of gearboxes. 

Besides, according to the characteristics of gearbox vibration signals, two signal processing 

methods, i.e., the energy operator and time synchronous averaging (TSA), are utilized to 

preprocess the vibration signals. The energy operator has the advantage of measuring the 

instantaneous energy changes of signals with a high time resolution and a good adaptability. 

Therefore, this method can highlight the transient features and is applicable for detecting changes 

in vibration signals caused by faults.19 There have been a number of successful cases that applied 

this method for fault diagnosis of rotating machinery.19-21 Additionally, the TSA is a typical 

preprocessing method for gearbox vibration signals, which can be used to eliminate signal 

components that are not synchronous with the shaft rate of rotation.5,22 This method has the 

advantage of providing a direct visualization of the synchronously averaged signal, making some 

localized faults easily discernible. Besides, the calculation of some statistical features is also 

feasible to detect certain typical faults.5,22 In this study, to acquire sufficient faulty information, 

we extract the statistical features from not only the raw vibration signals but also the preprocessed 

signals based on the energy operator and TSA. However, it is not appropriate to directly utilize 

all the features for subsequent classification since there still exists some irrelevant or redundant 

information in these extracted features, which may confuse the subsequent fault classification and 

decrease the accuracy. In addition, too many features may lead to higher computational cost and 

lower efficiency.23 Therefore, feature selection is another indispensable step before classification. 

In this study, a coupled feature selection scheme combining the distance evaluation technique 

(DET)24 and max-relevance and min-redundancy (mRMR)25 is carried out. The DET is used to 

evaluate the ability of features in separating various health conditions, and the mRMR aims to 

minimize irrelevant or redundant information among these features. Consequently, an optimized 

feature set consists of robust features with less irrelevant or redundant information can be 

obtained for the subsequent fault classification. 

Based on these studies, a novel method using multi-sensor data fusion is proposed for fault 

diagnosis of gearboxes in this paper. First, multi-sensor vibration signals are collected under 

different health conditions. Second, the energy operator and TSA are utilized to preprocess these 

signals. Then the statistical features are extracted from both the raw and preprocessed signals to 

form the original feature set. Third, a coupled feature selection scheme combining the DET and 

mRMR is carried out to select a more compact feature subset. Finally, these features are placed 

into the classifier based on DBN for the fault diagnosis of gearboxes. Ten different health 

conditions are simulated in a gearbox experimental system to validate the performance of the 



proposed method. The results demonstrate that the proposed method can obtain superior accuracy 

in fault diagnosis of gearboxes compared to other methods. The rest of this paper is organized as 

follows. In Section 2, the experimental system and vibration dataset are briefly described. The 

proposed method is detailed in Section 3. Section 4 presents the results of the experiment and the 

discussions of the results. Finally, Section 5 summarizes the conclusions. 

 

2 Experiment description 

In this work, a gearbox fault diagnosis system is designed to simulate different gearbox 

health conditions. As shown in Figure 1, the experimental system contains a two-stage gearbox, 

which is driven by an ac motor. The converter is used to control the driven speed and the data 

acquisition system is used to collect multi-sensors data. Three mono-axial accelerometers are 

used to acquire vibration signals at different locations, which are mounted on the input side of the 

gearbox, the output side of the gearbox and the mounting plate of the gearbox, respectively. The 

real speed of the input shaft is acquired by a tachometer. The input gear has 32 teeth, the idler 

gear has 64 teeth and the output gear has 96 teeth. Ten health conditions are tested in this work, 

some examples of the faulty gears are shown in Figure 2. In each experiment, the tachometer 

signal and the vibration signals of three accelerometers are considered simultaneously for multi-

sensor data fusion. The sampling frequency is set to 25.6 KHz. The detailed descriptions on ten 

health conditions are displayed in Table 1. 

Motor
Data acquisition

Converter

Accelerometer C

Accelerometer B

Accelerometer A

Output gear

Tachometer

Idler gear

Input gear

 

Figure 1. The experimental system. 



The cracked tooth

(a)

 

The missing tooth

(b)

 

The pitted tooth

(c)

 

Figure 2. Examples of faulty gears: (a) the cracked tooth; (b) the missing tooth; (c) the pitted tooth. 

Table 1. Description of the health conditions 

Label Condition  Driven speed (rpm) 

1 a broken tooth on the input gear 2700 

2 a pitted tooth on the input gear  

3 a pitted tooth on the idler gear  

4 a pitted tooth and a broken tooth on the output gear  

5 a missing tooth on the output gear  

6 a cracked tooth on the input gear  

7 a cracked tooth on the idler gear  

8 a cracked tooth on the output gear  

9 a broken tooth on the input gear and a pitted tooth on the idler 

gear 

 

10 normal  

 

3 Methods 

In this section, a multi-sensor data fusion technique based on statistical analysis, the energy 

operator, the time synchronous averaging (TSA), the distance evaluation technique (DET), max-

relevance and min-redundancy (mRMR) and the deep belief network (DBN) is proposed for the 

fault diagnosis of gearboxes. Figure 3 displays the procedure of the proposed method. 

 

3.1 Feature extraction 

The representative features related to the health conditions of gearboxes should be extracted 

using appropriate signal processing methods. In this study, fifteen features are utilized to 

characterize the health conditions of the gearbox. As shown in Table 2, these features may reflect 

the energy and distribution of vibration signals in the time domain or frequency domain, which 

can be used to detect changes in the signals caused by faults.23,26 Furthermore, to eliminate 

background noise and highlight fault characteristic, two signal processing methods, i.e., the 

energy operator and TSA, are utilized to preprocess the vibration signals. Finally, the statistical 

features of both the raw and preprocessed signals are set together to form the original feature set. 
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Figure 3. The flowchart of the proposed method 

Table 2. The statistical features 

Feature Equation Feature Equation 

Mean  1

1

1 N

i

i

x x
N 

 

 
Rectified 

mean 
2

1

1 N

i

i

x x
N 

 

 

Peak to peak 

value 
   3 max mini ix x x 

 Root mean 

square 

2

4

1

1 N

i

i

x x
N 

 

 



Standard 

deviation 

 
2

11
5

1

N

ii
x x

x
N








 

Skewness 
 

 

3

11
6 3

51

N

ii
x x

x
N x








 

Kurtosis  
 

 

4

11
7 4

51

N

ii
x x

x
N x








 

Impulse 

factor 

 
8

2

max ix
x

x


 

Shape factor 
4

9

2

x
x

x


 

Crest factor 
 

10

4

max ix
x

x


 

Coefficient of 

variation 

5
11

1

x
x

x


 
Mean 

frequency 

 
1

12

K

K
s k

x
K




 

Frequency 

center 

 

 
1

13

1

K

kK

K

K

f s k
x

s k










 Root mean 

square 

frequency 

 

 

2

1
14

1

K

kK

K

K

f s k
x

s k










 

Standard 

deviation 

frequency 

   

 

2

131
15

1

K

kK

K

K

f x s k
x

s k










 

  

Note: ix  is the i th value of time series x . N  is the length of time series x .  s k  is 

the spectrum value of the k th spectrum line. K  is the number of spectrum lines. kf  is the 

frequency value of the k th spectrum line. 

3.1.1 Energy operator 

For a discrete time series  x n , the energy operator     is defined as:19-21 

       
2

1 1x n x n x n x n                                                      (1) 

Because only three samples are required for computation at each time instant, the energy 

operator is convenient for operation and is nearly instantaneous, which holds the potential to 

capture the instantaneous energy fluctuations in the signals.19 The amplitude envelope (AM signal) 

 a n  and the instantaneous frequency  f n  of the discrete time series can be estimated as 

follows:27 

     1y n x n x n                                                           (2) 
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                                      (3) 
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                                      (4) 

To prove the superiority of this method in extracting characteristic frequencies of vibration 

signal, we present the analysis of vibration signal of the fifth condition (a missing tooth on the 

output gear). Figure 4 shows the frequency spectrum of the raw signal acquired by accelerometer 

A and the corresponding AM signal calculated via the energy operator. Although the gear meshing 

frequency (GMF) and its sidebands can be observed, the rotating frequencies of each gear are not 

recognizable in the frequency spectrum of the raw signal because of the low signal noise ratio. 

Therefore, it is difficult to detect the missing tooth fault by using Fourier transform only. By 

contrast, the frequency spectrum of AM signal clearly exhibits the rotating frequencies of the 

input and output gears (RF1 and RF3), which is conductive to identify missing tooth fault. 

Obviously, this method can effectively highlight the characteristic frequency of the vibration 

signal and remove the noise. 

  

Figure 4. Frequency spectrum of signal of the fifth condition: (a) raw vibration signal; (b) AM signal 

3.1.2 Time synchronous averaging 

The time synchronous averaging (TSA) is a typical processing method for vibration signals 

of gearboxes, which can be used to remove components that are not synchronous with the gear in 

question.5,22,28 Generally, the synchronously averaged signal is obtained from the measured 

accelerometer and tachometer signals. The tachometer signal is used to determine the zero 

crossing corresponding to one revolution of the gear. Then the vibration data between each of 

these zero crossings are interpolated by using cubic spline interpolation. Finally, the 

synchronously averaged signal can be obtained by dividing the sum of the interpolated data by 

the number of synchronous averages. The number of synchronous average should be determined 

according to the practical applications. In the time domain, the synchronously averaged signal 

shows the pattern of the tooth meshing vibration, including any modulation or distortion over one 

revolution, while the frequency domain gives the tooth meshing components and all the 

modulation sidebands at the shaft rotation frequency. Therefore, a simple visual inspection of the 

synchronously averaged signal or a calculation of some statistical features is feasible to detect 

certain typical faults.5,22,28 

 

3.2 Feature selection 

As described in section 3.1, we can obtain sufficient features from multi-sensor signals via 



appropriate signal processing methods. It should be noticed that different features have different 

degrees of importance when identifying different faults. For one specific fault diagnosis task, 

some features may be sensitive to specific faults while the others are not. Besides, too many 

features may lead to higher computational cost and lower efficiency. Therefore, feature selection 

is critical before fault classification. In this study, a coupled feature selection scheme is carried 

out to obtain an optimal feature set that can provide the most discrimination among the various 

faults and reduce the feature dimensionality. 

3.2.1 Distance evaluate technique 

In this subsection, the distance evaluate technique (DET) is applied to evaluate the sensitivity 

of each feature. Suppose that an original feature set of C  conditions is 

 , , ; 1,2, , ; 1,2, , ; 1,2, ,m c j cq m M c C j J                               (5) 

where , ,m c jq  is the j th feature of the m th sample under the c th condition, cM  is the sample 

number of the c th condition, and J  is the feature number of each sample.26 There are three 

main steps.  

(1) Calculating the average distance of each feature in the same condition 
 w
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 
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C M M  
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  
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(2) Calculating the average distance of each feature between different conditions 
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where ,c ju  is the average feature value of all samples under the same condition as follows: 

, , ,1

1 cM

c j m c jm
c

u q
M 

                                                           (8) 

(3) Calculating the distance evaluation criteria 

( )

( )

b

j

j w

j

d

d
   . It is clear that the features 

with larger j  are better at separating different conditions.24 Therefore, the sensitive features 

related to the faults can be selected according to the larger j . 

3.2.2 Max-relevance and min-redundancy 

Although the sensitive features can be selected via the DET, the redundancy between these 

selected features has not been given adequate attention. Several research has shown that the 

simple combination of some sensitive individual features does not necessarily lead to the 

satisfactory classification results.23,25,29,30 Therefore, to minimize the irrelevant or redundant 



information for improving diagnosis performance, the max-relevance and min-redundancy 

(mRMR) is applied. 

The main purpose of max-relevance is to find a feature set S  containing m  features  ix , 

which has the maximum relevance to the target class c . This relevance is evaluated by the mutual 

information  ,iI x c  as follows: 

   
 

   

,
, , log=

i

i i i

i

p x c
I x c p x c dx dc

p x p c                                          (9) 

where  ip x ,  p c  and  ,ip x c  mean their probabilistic density functions, respectively. 

Consequently, the m  best individual features can be selected by the max-relevance criterion 

as follows:  

   
1

max , ,ix S
D S c D I x c

S 
                                              (10) 

where S  denotes the number of features contained by S .23,31 

However, it is possible that the features selected based on max-relevance may have rich 

redundancy.32 Therefore, the min-redundancy criterion should be added to select mutually 

exclusive features to a certain extent, which is represented by 

     2 ,

1
min , , ,

i j
i jx x S

R S R I x x i j
S


                                    (11) 

and the operator  ,D R  is defined to optimize D  and R  simultaneously:23,31 

 max ,D R D R                                                         (12) 

Finally, combining with the advantages of DET and mRMR, the features that are sensitive to 

the faults and contain less irrelevant or redundant information can be selected. 

 

3.3 Classification based on the Deep Belief Network 

After determining the feature subset based on DET and mRMR, the deep belief network 

(DBN) is applied as the classifier. The DBN contains a deep architecture with multiple stacked 

restricted Boltzmann machines (RBMs). As shown in Figure 5, each RBM contains the visible 

units (input units) v  and the hidden units h , which are connected by a weight matix w  and 

has bias vectors c  and b , respectively.7,33 

The energy function is defined by the given visible and hidden units as 



 
1 1 1 1

,v h
V H V H

ij i j i i j ji j i j
E w v h c v b h
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                                      (13) 

where iv  and jh  are the binary states of visible unit i  and hidden unit j ; ic  and jb  are 

their biases and ijw  is the weight between them; V  and H  are the number of visible and 

hidden units.11,19 The joint distribution for the visible and hidden units is defined via the energy 

function as 

   ,1
,

v h
v h =

E
P e

Z


                                                          (14) 

where Z  is the partition function that ensures the normalization of the joint distribution. For 

binary units, the conditional probabilities that iv  and jh  are mutually activated, are given by 
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                                             (15) 
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                                             (16) 

respectively. The parameters w  , c   and b   are trained simultaneously to minimize the 

reconstruction error.15,19,34 The gradient of the logarithmic probability of the training data with 

respect to a weight is defined as: 

 log v
i j i jdata model

ij

P
v h v h

w


 


                                             (17) 

where 
data

   and 
model

   denotes the expectation under the distribution of the data and the 

model.7,34,35 

 

Figure 5. RBM architecture 

A certain number of RBMs can be stacked to build a DBN. Given the input data, first the 

parameters of the lowest-layer RBM are continuously optimized by the contrastive divergence 

3v1v 2v
4v

3h1h 2h

ijw

1c 2c 3c 4c

1b 2b 3b



algorithm.34-36 Then the hidden layer of this RBM becomes the input layer of the second RBM, 

and the second-layer RBM is trained in the same way. Finally, all the layers of the DBN can be 

optimized through this layer-by-layer unsupervised training process. For classification tasks, after 

the unsupervised training process is finished, all layers are fine-tuned under supervision with the 

back propagation (BP) algorithm. This fine-tuning process further reduces the training error by 

using the label information of data. 

 

4 Data analysis and discussion 

The vibration signals used in this section are collected from the gearbox fault diagnosis 

system displayed in section 2. For each health condition, 1200 samples can be acquired in the 

experiments. Therefore, a total of 12000 samples corresponding to ten health conditions are 

collected for data analysis. Each sample contains three channels of vibration signals and one 

channel of tachometer signal, with 6400 data points of each channel. To provide sufficient 

information on the health conditions of the gearbox, various features are extracted from the multi-

sensor signals.  

First, 15 statistical features which are listed in Table 2 can be extracted from each channel of 

vibration signals. Hence, 153 features are obtained for each sample.  

Second, the energy operator is performed on the vibration signals to calculate the 

corresponding AM signals, which can effectively remove the interference and highlight the fault 

characteristic information. Then, 15 statistical features can be extracted from each channel of AM 

signals and a total of 153 features are obtained for each sample. 

Third, vibration signals of the input and output sides of the gearbox are collected by 

accelerometers A and B, respectively. The TSA technique is then performed on these two channels 

to remove noise and components which are nonsynchronous with the gear in question. Then, each 

synchronously averaged signal is further processed to extract 15 statistical features. Therefore, 

another 152 features are obtained for each sample. 

In this way, an original feature set containing 120 features is obtained for each sample. It is 

clear that different features have different degrees of importance when identifying different faults. 

Some of the above features are sensitive to the health conditions of the gearbox while the others 

are not. Practically, representative features are selected for one specific task by researchers based 

on diagnostic techniques and field expertise. In this study, we prefer to select robust features 

automatically using appropriate feature selection methods. Therefore, as various features have 

been extracted, a coupled feature selection scheme is then carried out to obtain an optimal feature 

set to provide the most discrimination among the various faults and reduce the feature 

dimensionality. The DET is utilized to evaluate the sensitiveness of the features related to the 

faults, and the mRMR is applied to further consider the redundancy between features based on 

mutual information. Figure 6 shows the priorities of all features estimated based on these two 

methods. The horizontal and ordinate axes demonstrate the priorities of all features estimated by 

the DET and mRMR, respectively. Two threshold lines are set to divide the features into four 



quadrants. It is clear that the features located in the third quadrant are better at separating the 

various health conditions with less irrelevant or redundant information, as these features get 

higher rankings when two methods are applied to evaluate them. The features located in the 

second quadrant are also sensitive to the faults. Nevertheless, these features may have rich 

redundancy, meaning that the respective discriminative ability does not change significantly even 

if one of them is removed. Consequently, only the features located in the third quadrant are 

selected for subsequent fault classification in this study. Finally, 55 features can be selected from 

the original feature set when two thresholds are both set to 60, among which 22, 20 and 13 features 

are extracted from the vibration signal acquired by accelerometer A, B and C, respectively. 

 

Figure 6. Priorities of all features 

For comparative analysis, five datasets, A-E, are used in this study. Datasets A, B and C only 

contain the features extracted from the individual sensor A, B and C, respectively. Dataset D 

contains the 55 features selected by the coupled feature selection scheme. Dataset E contains all 

the features extracted from three channels of vibration signals. The k-fold validation method is 

used to partition these samples, where k is chosen as five. Therefore, in each trail, the training set 

contains 9600 samples and the testing set contains 2400 samples. Then the average accuracy and 

the standard deviation over five trails are calculated.   

The designed DBN has four layers, in which the unit number of the input layer is equal to 

the dimension of the input data, and the unit number of the other three layers are 100, 50 and 10 

respectively. During both the process of unsupervised pre-training and supervised fine-tuning, the 

maximum training epoch is set to 100. Besides, the learning rate is set to 0.001 and the momentum 

is set to 0.5. In addition, the BPNN is a typical AI method and has been successfully used in fault 

diagnosis of gearboxes. Therefore, this method is tested using the same datasets to perform a 

comparative study. The architecture of the BPNN is as the same as the DBN. The classification 

accuracies obtained from these two methods are shown in Table 3. Generally, DBN provides 



higher classification accuracies for all the five feature sets in comparison with BPNN, confirming 

that DBN is superior at achieving accurate fault classification of the gearbox compared to shallow 

neural network models. In detail, DBN achieves 99.04% classification accuracy which is higher 

than that of BPNN (97.97%) when using dataset D. For dataset E, the average accuracy of DBN 

is 97.88% whereas BPNN is 94.07%. Compared to dataset D, the accuracies of both classifiers 

are relatively lower when using dataset E. This is because there are still irrelevance or redundancy 

in these extracted features, which would confuse the classification process and lead to lower 

accuracy. In contrast, dataset D contains the robust features obtained by the coupled feature 

selection scheme. These features are sensitive to the faults with less irrelevance and redundancy, 

thus can better discriminate various health conditions and improve the classification accuracy. 

Additionally, the performance of these two classifiers when using dataset A~C are comparatively 

poor. The accuracies of DBN range from 76.42% to 93.55%, whereas the accuracies of BPNN 

range from 69.09% to 88.08%. These results show that it is difficult to accurately describe the 

health conditions of the gearbox only utilizing the diagnosis information from an individual 

sensor. Alternatively, multiple sensors mounted on several appropriate locations can provide 

sufficient and complementary diagnostic information, which is conductive to improve the 

classification accuracy. 

Table 3. Diagnosis results of the gearbox 

Datasets DBN  BPNN 

Average 

accuracy (%) 

Standard 

deviation (%) 

 Average 

accuracy (%) 

Standard 

deviation (%) 

Dataset A 80.82 1.09  76.83 1.07 

Dataset B 93.55 0.75  88.08 5.66 

Dataset C 76.42 5.52  69.09 4.33 

Dataset D 99.04 0.25  97.97 1.18 

Dataset E 97.88 1.71  94.07 2.18 

Figure 7 shows the confusion matrix produced by the proposed method in one trail when 

using dataset D. The ordinate and horizontal axis of the confusion matrix refer to the actual label 

and the predict label of classification, respectively. It shows that the classification accuracies of 

all conditions are higher than 96% and some even reach 100%. Besides, the principal component 

analysis (PCA) is used for visualizing the separation among the feature clusters of different health 

conditions. Figure 8 shows the first three principal components (PCs) of the features in datasets 

A~D. In Figure 8(a) ~ (c), we can find that many samples are mixed together even though they 

represent different health conditions. On the contrary, in Figure 8(d), most samples with the same 

health condition are clustered and most samples with different health conditions are separated. 

Note that there are some overlaps between different clusters in Figure 8(d) due to the rotation 

angle of the figure. These results reveal that the features selected by the proposed method can 

characterize the health conditions of the gearbox effectively. 



 

Figure 7. The confusion matrix produced by the proposed method in one trail 

Condition 1 Condition 2 Condition 3 Condition 4 Condition 5

Condition 6 Condition 7 Condition 8 Condition 9 Condition 10
 

  

  

Figure 8. Scatter plots of principal components for the features: (a) dataset A; (b) dataset B; (c) dataset 

C; (d) dataset D 

 

5 Conclusions 

This paper presents a novel multi-sensor fault diagnosis method based on statistical analysis, 

the energy operator, the time synchronous averaging (TSA), the distance evaluation technique 

(DET), max-relevance and min-redundancy (mRMR) and the deep belief network (DBN). In this 

method, multi-sensor data are simultaneously applied to provide sufficient and complementary 

information for fault diagnosis, thus overcomes the shortcomings that individual sensor data may 

not accurately describe the health conditions of gearboxes. Besides, to remove interference 



components and highlight fault characteristic information, two signal processing methods, i.e., 

the energy operator and TSA, are utilized to preprocess these signals. Then, the statistical features 

are extracted from both the raw and preprocessed signal to form the original feature set. 

Furthermore, in order to select robust features related to the faults and minimize irrelevant or 

redundant information, a coupled feature selection scheme combining the DET and mRMR is 

carried out to obtain an optimal feature set. Finally, these selected features are applied as the input 

of the DBN to achieve fault classification of gearboxes.  

Ten different gearbox health conditions are tested in a gearbox experimental system to 

evaluate the effectiveness of the proposed method. For comparison, other four datasets, three of 

which only contain features extracted from each individual sensor data and the other one contains 

all features without feature selection are also implemented. Moreover, a comparative study of the 

performance of DBN and BPNN is also carried out. The fault classification accuracy is 99.04% 

when using the proposed method, which is much higher than the other methods. These results 

confirm the superiority of the proposed method in the fault diagnosis of gearboxes. 
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