798 research outputs found

    Towards a multi-scale approach for an Earth observation-based assessment of natural resource exploitation in conflict regions

    Get PDF
    The exploitation of resources, if not properly managed, can lead to spoiling natural habitats as well as to threatening people’s health, livelihoods and security. The paper discusses a multi-scale Earth observation-based approach to provide independent information related to exploitation activities of natural resources for countries which are experiencing armed conflict. The analyses are based on medium to very high spatial resolution optical satellite data. Object-based image analysis is used for information extraction at these different scales. On a subnational level, conflict-related land cover changes as an indication of potential hot spots for exploitation activities are classified. The regional assessment provides information about potential activity areas of resource exploitation, whereas on a local scale, a site-specific assessment of exploitation areas is performed. The study demonstrates the potential of remote sensing for supporting the monitoring and documentation of natural resource exploitation in conflict regions

    Full Hierarchic Versus Non-Hierarchic Classification Approaches for Mapping Sealed Surfaces at the Rural-Urban Fringe Using High-Resolution Satellite Data

    Get PDF
    Since 2008 more than half of the world population is living in cities and urban sprawl is continuing. Because of these developments, the mapping and monitoring of urban environments and their surroundings is becoming increasingly important. In this study two object-oriented approaches for high-resolution mapping of sealed surfaces are compared: a standard non-hierarchic approach and a full hierarchic approach using both multi-layer perceptrons and decision trees as learning algorithms. Both methods outperform the standard nearest neighbour classifier, which is used as a benchmark scenario. For the multi-layer perceptron approach, applying a hierarchic classification strategy substantially increases the accuracy of the classification. For the decision tree approach a one-against-all hierarchic classification strategy does not lead to an improvement of classification accuracy compared to the standard all-against-all approach. Best results are obtained with the hierarchic multi-layer perceptron classification strategy, producing a kappa value of 0.77. A simple shadow reclassification procedure based on characteristics of neighbouring objects further increases the kappa value to 0.84

    Integrating openstreetmap data and sentinel-2 Imagery for classifying and monitoring informal settlements

    Get PDF
    Dissertation submitted in partial fulfilment of the requirements for the degree of Master of Science in Geospatial TechnologiesThe identification and monitoring of informal settlements in urban areas is an important step in developing and implementing pro-poor urban policies. Understanding when, where and who lives inside informal settlements is critical to efforts to improve their resilience. This study aims at integrating OSM data and sentinel-2 imagery for classifying and monitoring the growth of informal settlements methods to map informal areas in Kampala (Uganda) and Dar es Salaam (Tanzania) and to monitor their growth in Kampala. Three building feature characteristics of size, shape and Distance to nearest Neighbour were derived and used to cluster and classify informal areas using Hotspot Cluster analysis and ML approach on OSM buildings data. The resultant informal regions in Kampala were used with Sentinel-2 image tiles to investigate the spatiotemporal changes in informal areas using Convolutional Neural Networks (CNNs). Results from Optimized Hot Spot Analysis and Random Forest Classification show that Informal regions can be mapped based on building outline characteristics. An accuracy of 90.3% was achieved when an optimally trained CNN was executed on a test set of 2019 satellite image tiles. Predictions of informality from new datasets for the years 2016 and 2017 provided promising results on combining different open source geospatial datasets to identify, classify and monitor informal settlements

    The application of remote sensing to identify and measure sealed soil and vegetated surfaces in urban environments

    Get PDF
    Soil is an important non-renewable source. Its protection and allocation is critical to sustainable development goals. Urban development presents an important drive of soil loss due to sealing over by buildings, pavements and transport infrastructure. Monitoring sealed soil surfaces in urban environments is gaining increasing interest not only for scientific research studies but also for local planning and national authorities. The aim of this research was to investigate the extent to which automated classification methods can detect soil sealing in UK urban environments, by remote sensing. The objectives include development of object-based classification methods, using two types of earth observation data, and evaluation by comparison with manual aerial photo interpretation techniques. Four sample areas within the city of Cambridge were used for the development of an object-based classification model. The acquired data was a true-colour aerial photography (0.125 m resolution) and a QuickBird satellite imagery (2.8 multi-spectral resolution). The classification scheme included the following land cover classes: sealed surfaces, vegetated surfaces, trees, bare soil and rail tracks. Shadowed areas were also identified as an initial class and attempts were made to reclassify them into the actual land cover type. The accuracy of the thematic maps was determined by comparison with polygons derived from manual air-photo interpretation; the average overall accuracy was 84%. The creation of simple binary maps of sealed vs. vegetated surfaces resulted in a statistically significant accuracy increase to 92%. The integration of ancillary data (OS MasterMap) into the object-based model did not improve the performance of the model (overall accuracy of 91%). The use of satellite data in the object-based model gave an overall accuracy of 80%, a 7% decrease compared to the aerial photography. Future investigation will explore whether the integration of elevation data will aid to discriminate features such as trees from other vegetation types. The use of colour infrared aerial photography should also be tested. Finally, the application of the object- based classification model into a different study area would test its transferability

    GEOBIA 2016 : Solutions and Synergies., 14-16 September 2016, University of Twente Faculty of Geo-Information and Earth Observation (ITC): open access e-book

    Get PDF

    Assessing the role of EO in biodiversity monitoring: options for integrating in-situ observations with EO within the context of the EBONE concept

    Get PDF
    The European Biodiversity Observation Network (EBONE) is a European contribution on terrestrial monitoring to GEO BON, the Group on Earth Observations Biodiversity Observation Network. EBONE’s aims are to develop a system of biodiversity observation at regional, national and European levels by assessing existing approaches in terms of their validity and applicability starting in Europe, then expanding to regions in Africa. The objective of EBONE is to deliver: 1. A sound scientific basis for the production of statistical estimates of stock and change of key indicators; 2. The development of a system for estimating past changes and forecasting and testing policy options and management strategies for threatened ecosystems and species; 3. A proposal for a cost-effective biodiversity monitoring system. There is a consensus that Earth Observation (EO) has a role to play in monitoring biodiversity. With its capacity to observe detailed spatial patterns and variability across large areas at regular intervals, our instinct suggests that EO could deliver the type of spatial and temporal coverage that is beyond reach with in-situ efforts. Furthermore, when considering the emerging networks of in-situ observations, the prospect of enhancing the quality of the information whilst reducing cost through integration is compelling. This report gives a realistic assessment of the role of EO in biodiversity monitoring and the options for integrating in-situ observations with EO within the context of the EBONE concept (cfr. EBONE-ID1.4). The assessment is mainly based on a set of targeted pilot studies. Building on this assessment, the report then presents a series of recommendations on the best options for using EO in an effective, consistent and sustainable biodiversity monitoring scheme. The issues that we faced were many: 1. Integration can be interpreted in different ways. One possible interpretation is: the combined use of independent data sets to deliver a different but improved data set; another is: the use of one data set to complement another dataset. 2. The targeted improvement will vary with stakeholder group: some will seek for more efficiency, others for more reliable estimates (accuracy and/or precision); others for more detail in space and/or time or more of everything. 3. Integration requires a link between the datasets (EO and in-situ). The strength of the link between reflected electromagnetic radiation and the habitats and their biodiversity observed in-situ is function of many variables, for example: the spatial scale of the observations; timing of the observations; the adopted nomenclature for classification; the complexity of the landscape in terms of composition, spatial structure and the physical environment; the habitat and land cover types under consideration. 4. The type of the EO data available varies (function of e.g. budget, size and location of region, cloudiness, national and/or international investment in airborne campaigns or space technology) which determines its capability to deliver the required output. EO and in-situ could be combined in different ways, depending on the type of integration we wanted to achieve and the targeted improvement. We aimed for an improvement in accuracy (i.e. the reduction in error of our indicator estimate calculated for an environmental zone). Furthermore, EO would also provide the spatial patterns for correlated in-situ data. EBONE in its initial development, focused on three main indicators covering: (i) the extent and change of habitats of European interest in the context of a general habitat assessment; (ii) abundance and distribution of selected species (birds, butterflies and plants); and (iii) fragmentation of natural and semi-natural areas. For habitat extent, we decided that it did not matter how in-situ was integrated with EO as long as we could demonstrate that acceptable accuracies could be achieved and the precision could consistently be improved. The nomenclature used to map habitats in-situ was the General Habitat Classification. We considered the following options where the EO and in-situ play different roles: using in-situ samples to re-calibrate a habitat map independently derived from EO; improving the accuracy of in-situ sampled habitat statistics, by post-stratification with correlated EO data; and using in-situ samples to train the classification of EO data into habitat types where the EO data delivers full coverage or a larger number of samples. For some of the above cases we also considered the impact that the sampling strategy employed to deliver the samples would have on the accuracy and precision achieved. Restricted access to European wide species data prevented work on the indicator ‘abundance and distribution of species’. With respect to the indicator ‘fragmentation’, we investigated ways of delivering EO derived measures of habitat patterns that are meaningful to sampled in-situ observations

    Spatial data modelling, collection and management

    Get PDF

    The effect of scaling methods on the calculation of environmental indices

    Get PDF
    Landscape structure quantification is a subject of great interest in the environmental sciences because of the practical advantages it offers, including calculation of the environmental indices useful for land management, ecology and many other fields. A trend of developing new systems of environmental indices can be observed in European Institutions such as EEA and EUROSTAT, but there has been criticism about approaches based on Corine Land Cover (CLC). One of the aims of this article is to review the method of this database preparation for the purpose of calculating environmental indices. This study tests the ability of three methods to scale categorical maps and retaining as much of the original landscape structure information as possible. The vector scaling method is comparable to the preparation of the CLC data. Two other methods use Geo-Object Image Analysis as the main tool for classification. The scaling is performed in this method through building a hierarchy of objects and scaling the raster imagery. The results are compared and evaluated for scale effects and the calculation of environmental indices on the basis of the scaled data. There is no universal method for all the characteristics of the landscape pattern. The GEOBIA-based methods demonstrate greater applicability to fine grained structural and landscape configuration analyses. The vector scaling method is applicable mainly to landscape configuration, its results are also better for visualization of the scaled map.

    Remotely Sensed Data Segmentation under a Spatial Statistics Framework

    Get PDF
    In remote sensing, segmentation is a procedure of partitioning the domain of a remotely sensed dataset into meaningful regions which correspond to different land use and land cover (LULC) classes or part of them. So far, the remotely sensed data segmentation is still one of the most challenging problems addressed by the remote sensing community, partly because of the availability of remotely sensed data from diverse sensors of various platforms with very high spatial resolution (VHSR). Thus, there is a strong motivation to propose a sophisticated data representation that can capture the significant amount of details presented in a VHSR dataset and to search for a more powerful scheme suitable for multiple remotely sensed data segmentations. This thesis focuses on the development of a segmentation framework for multiple VHSR remotely sensed data. The emphases are on VHSR data model and segmentation strategy. Starting with the domain partition of a given remotely sensed dataset, a hierarchical data model characterizing the structures hidden in the dataset locally, regionally and globally is built by three random fields: Markova random field (MRF), strict stationary random field (RF) and label field. After defining prior probability distributions which should capture and characterize general and scene-specific knowledge about model parameters and the contextual structure of accurate segmentations, the Bayesian based segmentation framework, which can lead to algorithmic implementation for multiple remotely sensed data, is developed by integrating both the data model and the prior knowledge. To verify the applicability and effectiveness of the proposed segmentation framework, the segmentation algorithms for different types of remotely sensed data are designed within the proposed segmentation framework. The first application relates to SAR intensity image processing, including segmentation and dark spot detection by marked point process. In the second application, the algorithms for LiDAR point cloud segmentation and building detection are developed. Finally, texture and colour texture segmentation problems are tackled within the segmentation framework. All applications demonstrate that the proposed data model provides efficient representations for hierarchical structures hidden in remotely sensed data and the developed segmentation framework leads to successful data processing algorithms for multiple data and task such as segmentation and object detection
    • 

    corecore