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ABSTRACT 

 

 

In remote sensing, segmentation is a procedure of partitioning the domain of a 

remotely sensed dataset into meaningful regions which correspond to different land 

use and land cover (LULC) classes or part of them. So far, the remotely sensed data 

segmentation is still one of the most challenging problems addressed by the remote 

sensing community, partly because of the availability of remotely sensed data from 

diverse sensors of various platforms with very high spatial resolution (VHSR). Thus, 

there is a strong motivation to propose a sophisticated data representation that can 

capture the significant amount of details presented in a VHSR dataset and to search 

for a more powerful scheme suitable for multiple remotely sensed data segmentations. 

 

This thesis focuses on the development of a segmentation framework for multiple 

VHSR remotely sensed data. The emphases are on VHSR data model and 

segmentation strategy. Starting with the domain partition of a given remotely sensed 

dataset, a hierarchical data model characterizing the structures hidden in the dataset 

locally, regionally and globally is built by three random fields: Markova random field 

(MRF), strict stationary random field (RF) and label field. After defining prior 

probability distributions which should capture and characterize general and 

scene-specific knowledge about model parameters and the contextual structure of 

accurate segmentations, the Bayesian based segmentation framework, which can lead 
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to algorithmic implementation for multiple remotely sensed data, is developed by 

integrating both the data model and the prior knowledge. 

 

To verify the applicability and effectiveness of the proposed segmentation 

framework, the segmentation algorithms for different types of remotely sensed data 

are designed within the proposed segmentation framework. The first application 

relates to SAR intensity image processing, including segmentation and dark spot 

detection by marked point process. In the second application, the algorithms for 

LiDAR point cloud segmentation and building detection are developed. Finally, 

texture and colour texture segmentation problems are tackled within the segmentation 

framework.  

 

All applications demonstrate that the proposed data model provides efficient 

representations for hierarchical structures hidden in remotely sensed data and the 

developed segmentation framework leads to successful data processing algorithms for 

multiple data and task such as segmentation and object detection. 
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Chapter 1  

INTRODUCTION 

 

 

   This chapter describes motivations and problems, the goal and objectives of the 

study followed by the thesis structure. The motivations behind this thesis are 

discussed in Section 1.1. Section 1.2 describes the segmentation problems. Section 1.3 

summarizes the objectives and scope of the study. Section 1.4 outlines the 

organization of this thesis.  

 

 

1.1 Motivations and Goal 

 

In remotely sensed data processing, segmentation is the most essential and critical 

task, not only because it is a prelude for further high-level data processing tasks such 

as feature extraction, object recognition and classification, but also because its quality 

has a prominent impact on the global qualities in all data analysis and interpretation 

stages (Jensen, 2006; Richards and Jia, 2006).  
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By far, remotely sensed data segmentation is still a difficult task. The difficulties 

stem from the intractability of the segmentation problem itself and the increasing 

complexity of remotely sensed data. According to Hadamard (1952), a mathematical 

problem is well-posed when its solution exists, is unique and robust to noise. While 

the acquisition of remotely sensed data is shown to be a direct well-posed problem, 

their segmentation is considered to be an inverse ill-posed problem since the solution 

is usually not unique (Poggio et al., 1985). The complexity of remotely sensed data is 

usually determined by the following factors: (1) the diversity of land use and land 

cover (LULC) in the real world and the manifold geometries of objects in scenes, (2) 

the variety of remotely sensed data ranging from optical, infra-red, and microwave 

and laser; and (3) the increasingly improved characteristics of remote sensors, for 

example, multiple imaging modes by new generation synthetic aperture radar (SAR) 

sensors for Radarsat-2 and TerraSAR sensors and very high spatial resolution (VHSR) 

sensors for IKONOS and GeoEye-1 (Curran, 2001).  

 

In order to implement significantly accurate segmentation for different types of 

remotely sensed data, the development of sophisticated algorithms is one of the most 

challenging tasks addressed by the remote sensing community. Motivated by the 

above, the goals of this thesis will be directed toward devising a robust methodology 

suitable for modeling remotely sensed data and solving the problem of remotely 

sensed data segmentation. 
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1.2 Problems 

 

Remotely sensed data segmentation is a procedure of partitioning the scene 

presented in a given remotely sensed dataset into meaningful regions. These regions 

correspond to land cover, and use all or part of (LULC) classes. To attain this aim, it is 

necessary to investigate scattering properties of LULC classes and infer constraints to 

characterize them. The challenges with the above include: 

 

(1) Translating these constraints into criteria applicable at a data level to 

characterize complex scenes presented in a given remotely sensed dataset;  

 

A remotely sensed dataset is the collection of measurements acquired from 

discrete georeferenced locations on the Earth’s surface by an airborne or spaceborne 

sensor (Jensen, 2006). These sensors record the scatters of electromagnetic (EM) 

waves at different locations. A remotely sensed dataset can also be viewed as the 

realization of a random field (RF), that is, the incomplete observation of a single 

realization of a random experiment on a spatial domain. As a consequence, 

representing remotely sensed data is equivalent to modeling a RF related to the 

dataset. In general, the RF many reveal data specific local, regional and global 

structures. The local structure of remotely sensed data is caused by the similarity of 

measurements from neighbouring locations. The regional structure is determined by 
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the fact of the matter coherency (Marr, 1982), that is, the homogeneity of 

measurements acquired from the region corresponding to a certain LULC class or part 

of it. The global structures reveal either the coherency or the diversity of backscatter 

properties from different LULC classes, even different parts of a certain LULC. 

Consequently, a hierarchical data model is a proper solution for characterizing those 

structures on different scales. 

 

(2) Modeling the segmentation problem by using these criteria and a suitable 

scheme to obtain an optimal segmentation.  

    

More precisely, it is intended to introduce a framework for remotely sensed data 

segmentation, which is able to integrate the hierarchical data model with prior 

knowledge on the segmentation, and to be applicable for multiple remotely sensed 

data segmentation, such as SAR, Light Detection and Ranging (LiDAR), and 

multispectral (MS) data. 

 

 

1.3 Objectives 

 

From the previous discussion, two broad issues need to be addressed to develop a 

framework for remotely sensed data segmentation, which will be the objectives 

focused on in this thesis. 
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(1) Figuring out how to model the remotely sensed data representation in order to 

characterize the structures at distinct scales, that is, local (or neighbour), 

regional and global structures. Using a mathematical framework, how are 

criteria formulated for expressing these structures? 

 

Accordingly, in this thesis a hierarchical representation for remotely sensed data is 

proposed. The methodology is grounded in three RFs, namely, local, regional and 

global RFs, which together provide a uniform model for remotely sensed data 

representation.  

 

(2) Modeling the segmentation problem under an operative framework which 

obtaining the optimal segmentation. What are the computational procedures 

necessary for this purpose? 

 

In recent years, many researchers have used Bayesian estimation techniques for 

solving segmentation problem (Chan and Shen, 2005). They form a general 

framework to combine statistical models of the contextual structure and prior 

knowledge about data behaviour of accurate segmentations. The data is then 

segmented by finding an approximate maximum a posteriori (MAP) estimate of the 

unknown scene since this is the most likely segmentation given the remotely sensed 

data (Koch, 2007). Under this framework, the remotely sensed data segmentation 
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considered in this thesis consists of the following four successive stages (Besag, 

1993): (1) defining prior probability distributions for model parameters, (2) modeling 

the joint probability density (likelihood) for a given remotely sensed dataset based on 

the three previously mentioned RFs, (3) integrating the prior densities and the 

likelihood by Bayes’ theorem to induce the posterior density of all model parameters 

conditional on the given dataset, and (4) building any inference about the model 

parameters. 

 

In conclusion, the objectives will focus on two issues: (1) developing a 

hierarchical model for the representation of remotely sensed data and (2) developing a 

framework for remotely sensed data segmentation. To determine the applicability and 

effectiveness of these frameworks, this thesis also attempts to deal with segmentation 

problems for three kinds of remotely sensed data. These include: satellite SAR 

intensity imagery, airborne LiDAR point cloud data, and texture imagery. 

 

 

1.4 Thesis Organization 

 

The current chapter will attempt to introduce the problem requiring a solution, as 

well as the main objectives addressed in this thesis. Chapter 2 provides a review of 

related work. Fig. 1.1 gives the organization of Chapter 3 to Chapter 6. Chapter 3 

presents the framework for remotely sensed data segmentation. In such a framework, 
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remotely sensed data are characterized by RF models and then a Bayesian paradigm is 

used for modeling segmentation problem. Chapter 4 addresses the issues of SAR 

intensity image processing including SAR intensity image segmentation (Section 4.1) 

and oil spill detection by marked point processing (Section 4. 2). Charter 5 focuses on 

the issues related to LiDAR data processing. Firstly, the proposed segmentation 

framework in Chapter 3 is used to design the algorithm for LiDAR point cloud data 

segmentation, with application to object recognition (Section 5.1). A new algorithm 

based on the marked point process is developed for automated extraction of buildings 

from airborne LiDAR point cloud data (Section 5.2). Charter 6 then presents 

algorithms for texture and colour texture segmentations under the proposed 

framework. Finally, Chapter 7 concludes the thesis work with a summary of new 

contributions and addresses some recommendations for future research. 

 

Fig. 1.1 Organization of the thesis. 

Chapter 3. A NEW FRAMEWORK 

Chapter 4. SAR DATA ANALYSIS Chapter 5. LIDAR DATA PROCESSING Chapter 6. TEXTURE IMAGE ANALYSIS 

4.1. SAR Intensity 

Image Segmentation 

4.2. Oil Spill Detection by 

Marked Point Process 

5.1. LiDAR Point 

Cloud Segmentation 

5.2. Building Detection by 

Marked Point Process 

6.1. Texture 

Segmentation 

6.2. Colour texture 

Segmentation 

Chapter 2. LITERATURE REVIEW 

Chapter 1. INTRODUCTION 

Chapter 7. CONCLUSIONS AND RECOMMENDATIONS 
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Chapter 2 

LITERATURE REVIEW 

 

 

This chapter summarizes the algorithms commonly used for remotely sensed data 

segmentation and reviews the work closely related to the segmentation algorithms 

proposed in this thesis. The following sections briefly describe these schemes. 

 

 

2.1 Introduction 

 

Ever since remotely sensed data became available from civilian airborne and 

space-borne sensors in the early 1970s, a significant proportion of the research carried 

out over more than four decades in the remote sensing community concerns 

segmentation in one way or another (Jensen, 2006). Some researchers have focused 

on the improvement of segmentation algorithms specified for remotely sensed data 

while others on the use of well-known segmentation algorithms in particular types of 

remote sensing applications. Segmentation is regarded as a fundamental process in 
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remote sensing for most high level remotely sensed data analysis tasks such as feature 

extraction, object identification and classification (Richards and Jia, 2006). The 

general segmentation problem involves the partitioning of a given dataset into a 

number of homogeneous regions, such that any two neighbouring regions are 

heterogeneous. In practice, there are several qualities that can be used to define the 

contextual homogeneity in terms of the particular objective of the segmentation 

process, for example, intensity, range, texture and so on (Russ, 2008). Broadly 

speaking, the segmentation task can be accomplished by edge-based, pixel-based and 

region-based schemes, respectively (Jähne, 2005).  

 

 

2.2 Edge-based Segmentation 

 

Edge-based segmentation relies on the information provided by boundaries of 

regions or objects, i.e., the dissimilarity between heterogeneous regions. In practice, 

they attempt to find the position of an edge by an extreme of the first-order derivative 

or a zero crossing in the second-order derivative (Qiu, 2005), which can be carried by 

either deriving evolving contours and topologically adaptable surfaces with level set 

(Cao and Yang, 2007), or directly detecting edge points with differential operators 

such as Sobel (Rekik et al., 2007), Canny (Rignot et al., 1991) and Laplacian 

(Greenfeld, 1991) operators. Usually, edge-based segmentation takes into account that 

an object is characterized by adjacent data points. 
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There are limitations on edge-based algorithms for VHSR remotely sensed data 

segmentation: (1) they produce a lot of slices for each connectively homogeneous 

region, (2) edge points are usually not closed and are often very sensitive to local 

measurement variations (Kermad and Chehdi, 2002), (3) they poorly perform in the 

detection of textured regions (Yu et al., 2006), (4) edge detection from a multi-spectral 

image is complicated by the inconsistent location of edges in the multiple bands (Yu 

et al., 2006).  

 

 

2.3 Pixel-based Segmentation 

 

Pixel-based segmentation is conceptually the simplest algorithm which will only 

use the measure values of the individual data points. As popular pixel-based 

algorithms, K-means algorithms (Bezdek et al., 1984) are implemented in some 

commercial software such as PCI Geomatica, ERDAS Imagine, ARC Info and ENVI, 

since they are suited to deal with the imprecise and uncertain nature of remotely 

sensed data. Most of K-means algorithms are based on an objective function (Pal and 

Bezdek, 1995). They make an optimal segmentation by minimizing the objective 

function. In a K-means algorithm, each cluster is usually represented by a cluster 

model. This model consists of a cluster center. The degrees of membership of each 

data point in different clusters are computed from the distances of the data point to the 
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cluster centers. So the division of a dataset into c clusters can be stated as the 

minimization of the distances (Cannon et al., 1986). Thresholding algorithms are also 

popular due to their simplicity and efficiency (Mardia and Hainsworth, 1988), which 

partition data points in the dataset into region interested and background classes based 

upon the relationship between the measure value of a data point and a parameter 

called the threshold. Usually, thresholding algorithms are classified into two main 

groups: global and local. In global methods, a fixed threshold is used for the whole 

dataset, whereas in local methods the threshold changes dynamically. However, 

thresholding algorithms cannot separate those areas which have the same 

measurements but do not belong to the same part. In addition, they cannot process 

images whose histograms are nearly unimodal, especially when the target region is 

much smaller than the background area (Ding et al., 2008). For some remote sensing 

applications, both K-mean and thresholding algorithms are not successful. The 

principal reason is that they are very sensitive to local measurement variations and 

ignore useful spatial information among data points.  

 

 

2.4 Region-based Segmentation 

 

Currently, a large number of algorithms for remotely sensed data segmentation are 

region-based, which exploit information provided by the entire region, i.e., the 

similarity of measurements within a homogeneous region. They always provide 
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closed boundary of regions or objects and makes use of relatively larger 

neighbourhoods for decision making. Let D be the domain of a remotely sensed 

dataset, and C be a logical criterion for the homogeneity of a region. The region-based 

segmentation can be defined as a partition of D into disjoint non-empty regions, that 

is,  D = {Dl ; l = 1, …, k}, so that the following conditions hold (Zucker, 1976): (1) 

Dl is digitally connected, i.e., the region must be composed of contiguous data points 

(Rosenfeld, 1970); (2) U
k

l

l DD
1=

= ; (3) C(Dl) = TRUE, for all l = 1, …, k; (4) 

C(Dl∪Dl′) = FALSE, for l ≠ l′, where Dl and Dl′ are adjacent. Region-based 

segmentation algorithms can be implemented by either structural or model-based 

techniques. The former analyzes the data structure in terms of organization and 

relationship of data points and regions (Udupa and Samarasekera, 1996). The 

representative and robust algorithms include region-growing (Ballard and Brown, 

1982; Ryan, 1985), region merging-and-splitting, and sophisticated hierarchical 

methods. The latter tries to use probability distribution functions of data points and 

regions to characterize the data (Dubes and Jain, 1989), such as random field (RF) 

model.  

 

The region-growing technique is an iterative process by which regions increase 

from individual data points, or another initial segmentation and grow iteratively until 

every data point is processed (Tremeau and Borel, 1997; Mehnert and Jackway, 1997). 

To this end, a similarity measurement between neighbouring data points is defined 

such that it produces a high value if the data points are similar and a low one 
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otherwise. First, consider a data point adjacent to another. Then the latter can be added 

to the former’s region if and only if their similarity is larger than some threshold. 

Second, similarly consider the neighbours of the latter and add them likewise if they 

are similar enough (Chang and Li, 1994). However, it has drawbacks: (1) Decisions 

about similarity measure are often very difficult; (2) It is hard to find objects that span 

multiple disconnected regions; (3) Region-growing techniques are computationally 

expensive because they start from individual data points or such small initial regions. 

Region splitting-and-merging is a top-down method that begins with the entire image 

(Russ, 2008). Some data property is selected as a criterion to decide the homogeneity 

of LULC class (de Jong and ven der Meer, 2004). This criterion is often based on the 

statistics from the measure histogram. If the histogram is multimodal, then the 

measurements of the data points in the dataset are assumed to be non-uniform and its 

domain is divided into sub-regions. Each sub-region is examined in the same way and 

subdivided again if necessary. The procedure continues until the individual data point 

level is reached. There is another way to split the data domain or sub-regions and 

encode the resulting data structure. Thresholding can be used to govern the partition 

of each sub-region into arbitrary smaller sub-regions iteratively (Laprade, 1988). This 

can produce final results having less blocky boundaries, but the data processing is 

much more complex, since all of the regions must be defined, and the time required 

for the process is much greater. Region-splitting alone does not create useful 

segmentation. After each splitting, the divided region is compared to adjacent ones. If 

they are similar, they are merged together. The definition of similarity may be the 
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same as the one applied to the region-splitting, or comparisons may be made only for 

data points along the common edge. The latter has the advantage of tolerating gradual 

changes across the data (Russ, 2008). The disadvantages of this algorithm are that: (1) 

the splitting-and-merging algorithm depends on the definition of the dissimilarity for 

detecting heterogeneity in each divided region. Small sub-regions within large 

uniform regions can easily be missed, (2) in most cases, the merging of two 

sub-regions will change the value of the similarity measure and, the resulting regions 

will depend on the search strategy employed among the neighbours; (3) It is difficult 

to combine statistical models for remotely sensed data into the splitting-and-merging 

techniques. 

 

 

2.5 Related Work 

 

Statistical model-based algorithms based on Markov RF (MRF) models (Besag, 

1974; Geman and Geman, 1984; Besag, 1986; Winkler, 1995; Li, 2009) have been 

used with a remarkable success for remotely sensed data segmentation because they 

model the local statistical dependence among neighbouring data points. The MRF 

model is a relatively simple, yet effective, tool to encompass prior knowledge in the 

segmentation process, and in fact the interest in MRFs has been steadily growing in 

recent years (D’Elia et al., 2003). Since MRF models express global statistics in terms 

of the local neighbourhood potentials, MRF based segmentation algorithms search all 
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data points in a specific order and actually characterize the local properties only. 

 

However, not all of the segmentation algorithms are feasible for VHSR and 

multiple remotely sensed data sources due to the following facts: (1) VHSR remotely 

sensed data increases the internal spectral variability (intra-region variability) of each 

homogeneous region and decreases the spectral variability between different 

heterogeneous regions (inter-region variability) (Bruzzone and Carlin, 2006). Due to 

the high complexity of the data, segmentation algorithms considering each data point 

independently or interaction between neighbouring data points have shown their 

limits (Mueller et al., 2004). In fact, the VHSR remotely sensed data allows for a 

more precise detection of boundaries and hence a finer definition of the homogeneous 

regions, possibly at multiple scales of observation. They call for new solutions to cope 

with the increased complexity and new peculiarities of these data (Gaetano et al., 

2009). (2) The currently available multiple remote sensed data such SAR, LiDAR and 

multispectral provides detailed information from spectral, to polarization, to range. 

However, a segmentation algorithm cannot provide the solution for all kinds of the 

data. It is necessary to develop a uniform framework under which segmentation 

algorithms for different remotely sensed data can be designed. (3) The common 

limitation of all the above mentioned techniques is that they are based only on local 

information and even use this information only partly. 

 

To address these issues, a number of problems remain open, the more important 
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being (1) how to define a data model that is able to capture prior information on 

hierarchical structures hidden in VHSR remotely sensed data while remaining 

mathematically and numerically applicable; (2) how to simulate the numerical 

parameters of such a data model; (3) how to solve the optimal estimation problem 

with reasonable computational complexity. The first problem is certainly the most 

significant and intriguing, as it amounts to defining abstract structures that fit the 

observed remotely sensed data well. A hierarchical model is proposed, in order to 

capture the local, regional and global dependencies by data domain partitioning. The 

segmentation procedure is formulated as a posterior distribution under a Bayesian 

framework. In practice, the posterior distribution can be simulated by Markov chain 

Monte Carlo (MCMC) sampling methods and the optimal segmentation can be 

considered as a maximum a MAP estimation problem. Table 2.1 shows the 

comparison of segmentation schemes mentioned before, several criteria are applied 

for the comparison here, including, (1) typical algorithms used in each segmentation 

scheme (termed typical algorithm in the table), (2) the degree on which the spatial 

correlation is considered (termed spatial correlation), (3) whether or not suitable 

VHSR remotely sensed data (termed VHSR data), (4) whether or not to be used for 

multiple remotely sensed data sources (termed multiple sources), (5) whether or not to 

extend to other remote sensed data processing tasks (termed multiple tasks), (6) can 

prior knowledge of data context (for example, object geometry, correlation of LULC 

classes, and so on) be considered during designing algorithms (termed data texture)? 

From processing VHRS remote sensed data point of view, the segmentation 
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framework introduced in this thesis is better than others mentioned above. 

 

Table 2.1 Comparison of above mentioned segmentation schemes and one developed in the thesis 

Criteria 
Edge-based 

schemes 

Pixel-based 

schemes 

Region-based 

schemes 

Scheme proposed in the 

thesis 

Typical 

algorithm(s) 

differential 

operators 

K-means 

Histogram 

Region-growing 

Splitting-merging 

Segmentation by Voronoi 

tessellation 

Object detection by marked 

point process 

Spatial correlation 
Local 

(neighbour) 
no Local (neighbour) Local, regional and global 

VHSR data fairly hardly fairly suitable 

Multiple sources Raster data Raster data Raster data 
Raster data 

Irregular point cloud data 

Multiple tasks Segmentation Segmentation Segmentation 

Segmentation 

Object detection 

Edge detection* 

Data context no no Partly considered Easy to model 

* If a fibre process is used for domain partition, edge detection can be carried out under the 

segmentation framework proposed in the next chapter. 

 

The regional partition based algorithm to image segmentation has been introduced 

by Green (1995) in his pioneering work on developing a reversible jump MCMC 

(RJMCMC) algorithm. In that work, the image segmentation problem is viewed as an 

example of two-dimensional (2D) analogues of change-point analysis. The image 

domain is partitioned into sub-regions by a Voronoi tessellation and a synthesized 

noisy image is modeled by step functions defined on those polygons. Following 

Green (1995)’s idea, Dryden et al. (2006) investigated a Bayesian method for the 

segmentation of muscle fibre images containing two types of fibres. In their work, a 

fibre image is reasonably approximated by Voronoi polygons and a deformable 

template model based on Voronoi polygons is used to represent the segmented image. 
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Similar work was carried out independently by Mφller and Skare (2001). They 

considered 2D image segmentation and also further extensions to three-dimensional 

(3D) reservoir modeling. In their work, a flexible prior is defined in terms of 

interacting colouring Voronoi polygons. Other related work includes Blackwell and 

Mφller (2003), in which they defined a class of tessellation models based on 

perturbing or deforming the Voronoi tessellation, to model images and represent the 

animal territories using Voronoi polygon edges. Instead of Voronoi polygons, in the 

work from Dryden et al. (2003), an image is subdivided into regular blocks and each 

block is modeled as a single texture. This algorithm is developed for the segmentation 

of weed and crop images. Further, a hierarchical Bayesian procedure is used, in which 

the texture label field is characterized by a Potts model and the pixels within a block 

are distributed according to Gaussian MRF (GMRF), with the parameters dependent 

on texture types. 
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Chapter 3 

A NEW FRAMEWORK  

 

 

This chapter presents a new framework for remotely sensed data segmentation, 

with emphasis on two basic issues in segmentation problems: data model and 

segmentation strategy. 

 

 

3.1 Description of the Proposed Framework 

 

From a spatial statistics point of view, a remotely sensed dataset can be considered 

as a collection of random variables or vectors 

 

 }),(   , ..., ,1  );,({ DyxniyxZZ iiiii ∈===Z                         (3.1) 

 

where Z is the spatially continuous random scale or vector function, (xi, yi) are the 

georeferenced ground points which are distributed on D regularly or irregularly, D is 

the domain of the dataset, Zi is the data point that is the spatial sample of Z at (xi, yi), i 
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is the index of sampled data points and n is the number of data points in Z.  

 

For a given dataset Z with k homogeneous regions, it means that its domain D can 

be partitioned into k disjoint regions, that is,  

 

}  ...,  ,1  ;{ klSD l ==                                             (3.2) 

 

where Sl is l’th homogeneous region and l is the index of homogeneous regions. The 

data points in each homogeneous region Zl = {Zi ; (xi, yi) ∈ Sl} demonstrate some 

homogeneity or similarity. The purpose of a segmentation algorithm is to characterize 

the homogeneity and find an optimal solution of Eq. (3.2), called the optimal 

segmentation  

 

}  ...,  ,1  ;ˆ{ klSD l ==                                             (3.3) 

 

Based on the data structure in Eq. (3.1), a statistical region-based framework for 

the remotely sensed data segmentation is developed. Fig. 3.1 shows the flowchart of 

the proposed segmentation framework.  

 

To hierarchically characterize remotely sensed data, the domain of a given 

remotely sensed dataset is partitioned into sub-regions corresponding to the 

components of homogeneous regions. Both the Voronoi tessellation and the marked 
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point process are employed for this purpose. Each sub-region is assigned a label to 

indicate the homogenous region to which the sub-region belongs. The data model 

characterizing the homogeneous structures hidden in remotely sensed data are 

grounded in three RFs: label field for encoding global structures, neighbour field built 

among neighbouring pixels for modeling local structures, and region field on each 

sub-region for characterizing regional structures. They together provide a uniform 

framework which can flexibly model different types of remotely sensed data. The 

Data Domain Partition 

Data Model Prior Distributions 

Segmentation Model 

Simulation 

Optimization 

Voronoi Tessellation 

Marked Point Process 

MCMC 

 RJMCMC 

Bayesian Inference 

MAP 

MRF Model for Neighbour 

Field 

Strict Stationary RF for 

Region Field 

Improved Potts Model for 

Label Field 

Poisson Distributions for 

k, m and G 

Prior Distributions for 

Model Parameters 

Input: Remotely Sensed Data 

Output: Segmented Result 

Fig. 3.1 Flowchart of the proposed segmentation framework. 

Accuracy Assessment 
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label, neighbour, and region fields are characterized by an improved Potts model, 

MRF model and strict stationary RF model, respectively. Based on the three RFs, the 

data model is expressed as the joint probability density (likelihood) for a given 

dataset. 

 

The Bayesian paradigm for data analysis takes advantage of explicit probability 

models and general and scene-specific prior knowledge and provides a uniform 

framework under which many different data processing tasks can be tackled (Besag, 

1993). After constructing prior probability distributions for model parameters such as 

the numbers of homogeneous regions and sub-regions partitioned and distribution 

parameters used in data models, the posterior probability distribution function (PDF) 

on label filed and model parameters conditional on the given dataset can be obtained 

by combining the prior densities and the likelihood. 

 

To sample the posterior PDF, MCMC and RJMCMC based simulation schemes 

are designed since they can be applied effectively to Bayesian problems (German and 

German, 1984; Green, 1995). The optimal segmentation is obtained in terms of MAP 

which searches for the maximum of the posterior PDF of the label field and model 

parameters given the dataset.  

 

The details of the components of the proposed framework shown in Fig. 3.1 are 

explained in the following sections.  
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3.2 Data Domain Partition 

 

Conside a remotely sensed dataset Z = {Zi ; i = 1, …, n, (xi, yi) ∈ D}. Its domain D 

can be randomly partitioned into m disjoint sub-regions either corresponding to the 

components of homogeneous regions or being modeled m objects. In this thesis, the 

domain parathion can be carried out by Voronoi tessellation and marked point process. 

 

A. Voronoi Tessellation for Domain Partition 

 

A tessellation is a partition of space into small units or cells, which are usually 

polytopes, for example, polygons in R
2 and polyhedra in R

3 (Okabe et al., 1992). 

Depending on the applications, a tessellation can be considered as a partition of space 

or as a random function by assigning each cell a value, or even as a population of cells 

(Lantuejoul, 2002). 

 

A flexible and convenient example of a randomly generating tessellation is the 

Voronoi tessellation, also called Dirichlet or Thiessen tessellation (Stoyan et al., 1995). 

Consider a set of points called generating points G = {(uj, vj) ∈ D; j = 1, …, m}. 

Associate to the generating point (uj, vj) the set Dj of the points (x, y) ∈ D that are 

closest to the generating point (uj, vj) than to other generating points (uj′, vj′) where j′ 
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∈ {1, …, m} but j′ ≠ j, that is, 
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where || . || is the norm operator, X \ Y denotes the difference of sets X and Y, and Dj is 

called Voronoi polygon which is a convex polygon in D delimited by the 

perpendicular bisectors of segments joining neighbouring generating points (Okabe et 

al., 1992). Fig. 3.2 shows an example of a planar Voronoi tessellation with six Voronoi 

polygons D1 - D6 induced by generating points (u1, v1) - (u6, v6), in which the dashed 

lines are the segments linking neighbouring generating points and solid segments are 

the boundaries of Voronoi polygons.  

 

 

As a result, the domain can be partitioned as 

 

{ }mjD DD j   ...,  1,  ; =⊂=                                       (3.5) 

D6 

D4 

D5 

D3 

(u3,v3) 

D1 

D2 

(u1,v1) 

(u2,v2) (u4,v4) 

(u5,v5) 
(u6,v6)

Fig. 3.2 Example of a planar Voronoi tessellation with 6 polygons D1-D6 induced by generating points 

(u1, v1) - (u6, v6). 
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where Dj’s satisfy 
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where Φ denotes the empty set, m can be considered to be unknown a priori but with 

a prior distribution p(m).  

 

B. Marked Point Process for Domain Partitions 

 

Generally speaking, a random point process in R
d is a random set in R

d, each 

realization of which consists of a finite or countable number of points (Stoyan et al., 

1995). In this thesis, the random point process will be limited in 2D case, that is, d=2. 

 

A uniformly distributed random point is a trivial random pattern. Correspondingly, 

a binomial point process can be formed by m independent and uniformly distributed 

random points. Such a process is formed by m independent points G = {(uj, vj); j = 

1, …, m} uniformly distributed on D. For the purpose of domain partition, a marked 

point process can be constructed from the random point process G by attaching a 

rectangular (or a window) to each point of the process. Thus, the marked point 

process on D is a random sequence {(uj, vj, lj, wj, aj);  j = 1, …, m} where the points 
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(uj, vj) together constitute a point process (not mark) in D while the mark (lj, wj, aj) 

corresponds the length, width and direction of the window centered at (uj, vj). 

Accordingly, the domain is partitioned as 

 

}  ...,  ,1 ;,{ 0 mjDDD j ==                                         (3.7) 

 

where U
m

j

jDDD
1

0 \
=

= . 

 

Fig. 3.3 shows an example of the domain partition by marked point process.  

 

 

 

3.3 Data Model 

 

In remote sensing, the recoded measures in remotely sensed data are also 

Fig. 3.3 Domain partition by marked point process where Dj is a window with length lj, width wj and 

direction aj and D0 is non window part of the domain. 

lj 

wj 

aj 

(uj, vj) 

Dj 

D0 
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determined by the properties of materials, the roughness of an object’s surface, the 

topological feature of landscapes, the geometries of LULC, and the scattering 

behaviors of scatter cells, which usually make their impacts on visual features 

presented by remotely sensed data at different scales (Richards and Jia, 2006). From a 

remotely sensed data segmentation point of view, proper data models should be 

capable of capturing the visual features and play a critical role in developing 

successful segmentation algorithms. 

 

There usually are three visual features or structures hidden in remotely sensed data, 

which represent local, regional and global variations of measures on different scales. 

They determine the overall visual smoothness and coarseness of the measures and 

provide important information about the distribution of physical objects and their 

spatial relationship within the remotely sensed data. Local structure is considered to 

be caused by the similarity of measures from neighbour scattering cells on the Earth’s 

surface, which can be described by the correlation of the neighbouring measures. The 

homogeneity of measures from scattering cells in an object or part of the object, that 

is, the “Matter is cohesive” property as stated by Marr (1982), gives rise to regional 

structure, which can be characterized by identical distributions for these measures. In 

practice, what should be regarded as homogeneity depends on data context, for 

example, texture, colour, intensity, range, and other measures recorded by remote 

sensing sensors. Global structure is derived from the continuity or periodicity of 

measures for a certain homogeneous structure, or the correlation of measures from 
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heterogeneous structures. 

 

Fig. 3.4 illustrates an example of those structures revealed in remotely sensed data 

at different scales. Fig. 3.4 (a) shows a pan-sharpened IKONOS image with 1 m 

spatial resolution and the size of 128×128 pixels. This scene is composed of forest 

patches with varying species, sizes and shapes corresponding to regions with 

circumferences in blue, pink and green, respectively. In this image, the patch for each 

tree species corresponds to a global structure, which represents the tonal variation in 

the whole spatial domain and determines the overall smoothness and coarseness of 

intensities in the patch. As shown in Fig. 3.4, (b1)-(d1) present the parts of three tree 

species with the size of 16×16 pixels corresponding to pink, blue and green windows 

in (a), which presents statistical homogeneity corresponding to regional structures, 

while Fig. 3.4 (b2)-(d2) show second order neighbourhoods of the pink, blue and 

green windows (3×3 pixels) in (b1)-(d1), which presents the similarity of the 

neighbouring structures. 

Fig. 3.4 Structures hidden in the IKONOS imagery (a): global (a), regional (b1)-(d1) and neighbour 

(b2)-(d2) structures. 

(a) 

(b1) (c1) (d1) 

(b2) (c2) (d2) 
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According to the above discussion, developing a hierarchical data model for 

remotely sensed data seems to be necessary to characterize the structures revealed at 

different scales.  

 

Formally, consider a remotely sensed dataset Z = {Zi ; i = 1, …, n, (xi, yi) ∈ D}. 

Assume that Z contains k homogenous regions representing different LULC or objects, 

each of which is considered to be statistically homogenous where k can be considered 

to be either unknown but with a prior distribution p(k) or known a priori. Further, the 

domain D is randomly partitioned into m disjoint sub-regions by domain partition 

defined in Eq. (3.5).  

 

Each sub-region Dj is assigned a label Lj to indicate the homogeneous region to 

which Dj belongs. Therefore, the labels for all sub-regions form a collection of 

random labels 

 

{ }}  ...,  ,1{ ,  ..., ,1  ; kLmjL jj ∈==L                                (3.8) 

 

   The realization of a random partition in Eq. (3.5) and the random collection of 

labels in Eq. (3.8) completely characterize a segmentation of D as defined in Eq. (3.3), 

that is, 

 

}  ;{ lLDS jjl ==                                                 (3.9) 
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Fig 3.5 shows an example of the domain partition with labels L = {1, 1, 2, 1, 2, 3, 

3, 2}, in which the red lines divide the domain into three homogenous regions S1 - S3 

and the green lines partition the domain into eight sub-regions D1 - D8 corresponding 

to the components of the regions, that is S1 = {D1, D2, D4}, S2 = {D3, D5, D8} and S3 = 

{D6, D7}. In this thesis, Voronoi tessellation and marked point process are used for the 

purpose. 

 

 

A. Label Field for Global Structure 

 

To hierarchically model the remotely sensed dataset Z, the random collection of 

labels in Eq. (3.8) is modeled with a RF called label field, which characterizes the 

global structure existing in Z and is represented by conditional probability distribution 

function p(L | k, m).  

 

In this thesis, the improved Potts model (Strauss, 1977; Besag, 1986) is used to 

Fig. 3.5 Domain partition with 3 homogenous regions S1-S3 into 8 sub-regions D1-D8. 

D1 D3

D4 D5

D8D6
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D2
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L3=2 
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L7=3 

L6=3 
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model the label field, which characterizes the interaction between neighbouring 

polygons in a Voronoi tessellation. Consider a Voronoi tessellation which partitions 

the data domain D into disjoint polygons, that is, D = {Dj ; j = 1, …, m}. Any two 

distinct Voronoi polygons Dj and Dj′ are neighbours, denoted by  Dj ~ Dj′ , if and 

only if Dj and Dj′ have mutual boundary, where the operator ‘ ~ ’ donates a 

neighbourhood relationship. For a polygon Dj, let NDj = {Dj′ ; Dj′ ~ Dj, j' ≠ j} be the 

set of its neighbouring polygons. The conditional distribution of the label Lj for the 

polygon Dj given the labels of its neighbouring polygons can be expressed as 
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where t function is defined as follows 
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and c ≥ 0 is the coefficient which controls the neighbourhood dependences between a 

pair of neighbouring polygons. Depending on the labels for a polygon and its 

neighbouring polygons, Eq. (3.10) is monotone increasing or decreasing with c. Fig. 

3.6 (a) shows a domain partition and Fig. 3.6 (b) gives the monotonic function of c 

under different segmentation. On the other hand, updating the label of a polygon 
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causes the changes of the conditional probabilities of the labels for the polygon and its 

neighbouring polygons as defined in Eq. (3.10). From a numerical computing point of 

view, a large c makes some neighbouring relationships unidentifiable. From the 

Voronoi tessellation shown in Fig. 3.6 (a), Fig. 3.6 (c) gives the joint probabilities for 

the label field under different observations. It can be seen that when c > 2.5 the 

observations of the label field L = (2, 1, 1, 1, 1, 2) and L = (1, 1, 1, 1, 1, 2) are hard to 

be recognized. From a number of experiments, the interval [0.5, 1.5] for the constant c 

is recommended. 

 

 

The joint probability function of the label field L can be expressed as 
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Fig. 3.6 (a) Domain partition into 6 regions D1-D6. (b) Curves of conditional probabilities to c 

under the labels L = {1, 1, 1, 1, 1, 2} and L = {2, 1, 1, 1, 1, 2}. (c) Curve of joint probabilities to c 

under the labels L = {1, 1, 1, 1, 1, 2} and L = {2, 1, 1, 1, 1, 2}. 
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B. MRF Model for Local Structure 

 

In order to characterize the neighbour structure, the measure Zi at the location (xi, 

yi) ∈ Dj is represented by a probability distribution function conditional on a set of 

model parameters
jLΘ and the measurements from its neighbour locations 

}),(  ;{ ''' jiiiiN DNDyxZ
i

I∈=Z , that is, ),|(
ji LNiZp ΘZ . In this thesis, Bivariate 

GMRF (BGMRF) and Multivariate GMRF (MGMRF) are used for characterizing the 

neighbouring structures in texture and colour texture images, respectively. They will 

be described in Chapter 6. 

 

C. Strict Stationary RF for Regional Structure 

 

Regional structure can be characterized by a PDF for all measures in a sub-region 

Dj, that is, )|(
jLjp ΘZ  where Zj = {Zi; (xi, yi) ∈ Dj}. Assume that the regional 

structure is modeled by a strict stationary RF, in which Zi’s are considered to be 

independent each other. Thus, )|(
jLjp ΘZ  can be written as 
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D. Data Representation 
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On the assumption that PDFs for all sub-regions are independent, then the joint 

distribution (likelihood) of Z given {ΘΘΘΘ, k, m, D, L} can be expressed 
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where ΘΘΘΘ = {ΘΘΘΘl ; l = 1, …, k}. 

 

Consequently, the hierarchical model of remotely sensed data can be represented 

by modeling the joint distribution of (Z, L) as 

 

),|(),,,,|(),,,|,( DmpDmkpDmkp LLΘZΘLZ =                   (3.15) 

 

The hierarchical model can be demonstrated by a directed acyclic graph (see Fig. 

3.7) where circles represent unknown quantities, and squares represent known 

quantities and let ΞΞΞΞ denote the collection of constants used in prior distributions of 

random variables ΘΘΘΘ, k, m, G, and L. 

ΞΞΞΞ 

k m 

L G ΘΘΘΘ 

Z 

Fig. 3.7 Directed acyclic graph for the data model. 



 35 

 

The data model used for representing regional structures is a particular type of 

mixture models (Richardson and Green, 1997) with m components by considering the 

independent labels case, that is, 
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Zj’s given ΘΘΘΘ and k are independent and with PDF 
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where labels Lj are independently drawn from the probability distributions p(Lj = l | k) 

= wl, l = 1, …, k, and the observations Zj are independently drawn from the 

corresponding individual populations given the values Lj, with PDF p(Zj | Lj = l, ΘΘΘΘl) = 

f(Zj | ΘΘΘΘl). 

 

 

3.4 Prior Distributions 

 

This section defines some prior distributions for model parameters, which will be 

used throughout this thesis. 
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A. Prior Distribution for the Number of Homogenous Regions k 

 

The number of homogeneous regions in a particular dataset has a theoretical 

maximum equal to the total number of sub-regions, which occurs in the case when 

sub-regions are equal to homogenous regions. In practice, the maximum kmax is set 

dependent on a given dataset. The number of homogenous regions can be considered 

to have a prior truncated Poisson distribution with mean λk (truncated with 2 ≤ k ≤ 

kmax) (Green, 1995), that is, 
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B. Prior Distribution for the Number of Sub-regions m 

 

The number of sub-regions is modelled to have a Poisson distribution with 

parameter λm (Green, 1995), truncated to m = 1, …, mmax. In theory, mmax is equal to n 

if and only if when each sub-region exactly contains one data point. The prior 

distribution can be written as 
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C. Prior Distribution for the Partition of Domain D  

 

According to the statement in Section 3.2, the domain partition is specified by the 

generating points, G = {(uj, vj) ∈ D; j = 1, …, m}, that is, p(D | m) = p(G | m). If the 

position of generating point (uj, vj) is assumed to be independently and uniformly 

distributed on D, then the joint prior distribution p(G | m) is 
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where p(uj, vj) is the prior distribution for the position of generating point (uj, vj) and 

|D| denotes the area of domain D. 

 

However, instead of assuming the independency among generating point, if it is 

necessary to consider interaction between the generating points in some applications, 

there are point processes that can be used to model the interaction, including Gaussian 

perturbed points (Dryden et al., 1997), the nearest neighbour Markov process 

(Baddeley and Mφller, 1989) and the Strauss process (Strauss, 1977; Ripley, 1987). 

Strauss process is an example of this: Given a set of generating points G = {(uj, vj), j = 

1, …, m}, which distribute on the data domain D, the probability density of Strauss 

model for point positions conditional on m can be expressed as 
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where b ≥ 0 is the intensity parameter of the model, c(b) is the normalizing constant 

dependent on b, and tr(G) is the number of generating point pairs in G that have the 

distance less than r, that is, 
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where I[0, r] (s) is a indicator defined as 
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Note that if b = 0, Eq. (3.21) degrades to a uniform distribution. In more 

complicated situations, when G is a Poisson point process with variable m, the Strauss 

process model can be written as 

 

)(

),(
)|( Gbt

m

m

m re
bc

mp
−=

λ
λ

G                                        (3.24) 

 

where λm is the rate of the underlying process.  
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3.5 Segmentation Model 

 

Bayesian inference-based approaches to image analysis have now become a 

generally accepted framework under which a wide variety of image processing tasks 

such as image retrieval (Geman and Geman, 1984; de Ves et al., 2006) and 

segmentation (D’Elia et al., 2003) can be performed. Bayesian image analysis takes 

advantage of explicit probability models to incorporate general and scene-specific 

prior knowledge into the image processing procedure (Besag, 1993). In this thesis, the 

Bayesian paradigm (Gelman et al., 2004) is used for modeling remotely sensed data 

segmentation. Combing the prior distributions for {ΘΘΘΘ, k, m, G, L} and the likelihood 

by Bayes’ theorem, the posterior PDL p(ΘΘΘΘ, k, m, G, L | Z ) can be induced  
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where the normalizing constant is a function of data and is not generally required. 

 

Since the flexibility of the Bayesian paradigm allows for the introduction of extra 

variables to the data model (Richardson and Green, 1997), the prior distribution for 

the model parameter vector ΘΘΘΘ can be considered to depend on a hyper-parameter ΨΨΨΨ, 

which is independent of the number of homogenous regions and label filed. Therefore, 

the posterior distribution in Eq. (3.25) for all the variables becomes 
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3.6 Simulation and Optimization 

 

To base any inference about the prior parameters {ΘΘΘΘ, k, m, G, L} on the posterior 

distribution in Eq. (3.26), the simulation scheme in which the inference should be 

done is context dependent. In this thesis, the MCMC and RJMCMC schemes are 

developed to simulate from the posterior distribution in Eq. (3.24).  

 

A. Metropolis-Hastings Algorithm  

 

The Metropolis-Hastings algorithm, first introduced by Metropolis et al. (1953) 

and developed by Hastings (1970), is a MCMC algorithm. It allows for sampling from 

a distribution when traditional sampling methods such as transformation or inverse 

fail and even there is no need to know the normalization constant in Eq. (3.26). 

 

Let ΛΛΛΛ = {ΘΘΘΘ, k, m, G, L}. In the Metropolis-Hastings algorithm, at iteration t, the 

next state ΛΛΛΛ(t+1) is chosen by first sampling a candidate ΛΛΛΛ* from a proposal distribution 

(an arbitrary transition kernel) q (. |ΛΛΛΛ(t)). The candidate ΛΛΛΛ* is then accepted with 
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probability r (ΛΛΛΛ(t), ΛΛΛΛ*), 
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In practice, terms drawn from π by using the Markov chain defined by the 

transition kernel q can be set up by the following steps: (1) Initializing the iteration 

counter υ = 1 and setting an arbitrary initial value ΛΛΛΛ(0); (2) Moving the chain to a new 

value ΛΛΛΛ* generating from the density q (. |ΛΛΛΛ(t)); (3) Evaluating the acceptance 

probability of the move r(ΛΛΛΛ(t), ΛΛΛΛ*). If the move is accepted, ΛΛΛΛ(t+1) = ΛΛΛΛ*. If it is not 

accepted, ΛΛΛΛ(t+1) = ΛΛΛΛ(t), and the chain does not move; (4) Changing the counter from υ 

to υ + 1 and return to Step (2) until convergence is reached. 

 

B. RJMCMC 

 

The RJMCMC algorithm is an effective approach to simulate dependent samples 

from π (.) while the parameter space is variable during sampling. According to Green 

(1995), at each iteration a new candidate ΛΛΛΛ* for ΛΛΛΛ(t) is proposed by an invertible 

deterministic function ΛΛΛΛ* = ΛΛΛΛ*(ΛΛΛΛ(t), s) (assuming that the dimension of ΛΛΛΛ* is higher 

than that of ΛΛΛΛ(t)) where a vector s of continuous random variables is defined for 

dimension matching and is sampled independently ΛΛΛΛ(t). The appropriate acceptance 

probability for the proposed transition from ΛΛΛΛ(t) to ΛΛΛΛ* is given by 
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where p(s) is the density function of s and q(ΛΛΛΛ*) and q(ΛΛΛΛ(t)) are the probabilities of a 

given move type in the states ΛΛΛΛ* and ΛΛΛΛ(t), respectively. The Jacobian is due to the 

change of variables from (ΛΛΛΛ(t), s) to ΛΛΛΛ*. 

 

C. Optimization 

 

The MAP scheme is used to find the point estimation }ˆ,ˆ,ˆ,ˆ,ˆ,ˆ{ LGΘΨ mk of the prior 

parameters {ΨΨΨΨ, ΘΘΘΘ, k, m, G, L}, that is, 

 

)}|,,,,,(arg{max}ˆ,ˆ,ˆ,ˆ,ˆ,ˆ{ ZLGΘΨLGΘΨ mkpmk =                  (3.29) 

 

And then by estimating from }ˆ,ˆ,ˆ,ˆ,ˆ,ˆ{ LGΘΨ mk  the feature of primary interest 

}ˆ,ˆ{ LG  can be obtained, which characterize the optimal segmentation of the given 

remotely sensed data, that is, },...,1;ˆ{ klSD l ==  where };ˆ{ˆ lLDS jjl == . 

 

 

3.7 Accuracy Assessment 

 

In order to qualitatively assess the accuracy of the segmented results obtained, two 
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assessment schemes are carried out, the statistical measure based scheme (Congalton 

and Green, 1999) and the buffer zone based scheme (Li et al., 2008). 

 

A. Statistical Measure Technique 

 

The statistical measures are used for evaluating the accuracy of the segmented 

results obtained from proposed algorithms in this thesis, which include error matrix, 

producer’s accuracy, user’s accuracy, overall accuracy, and Kappa coefficient 

(Congalton and Green, 1999). 

 

B. Buffer Zone Technique 

 

In order to assess the accuracy of the extracted linear objects such as road, 

coastline and object edge, the buffer zone based assessment technique is introduced 

by Li et al. (2008). Consider a linear object in reference image called reference line 

(BZ0), where BZ0 is a collection of pixels corresponding to the line. A buffer zone 

around BZ0 can be constructed as follows 
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U                                       (3.30) 

 

where bli is ith buffer layer, N8(x, y) is the 8-neighbours of the pixel located at (x, y) 

and BZi is the buffer zone contains i buffer layers and reference line BZ0, that is, 
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Fig. 3.8 (a) shows the structure of a buffer zone with 3 buffer layers, where the 

reference line is presented in red and its 3 buffer layers in yellow, blue and green, 

respectively. Fig. 3.8 (b) shows an extracted line in brown over the buffer zone. 

 

 

Based on above buffer zone structure, statistical measures for assessing the 

accuracy of the extracted line EL can be defined by counting the number of pixels of 

the extracted line located in different buffer layers. 
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Fig. 3.8 (a) Buffer zone around the line in red with 3 buffer layers in yellow, blue and green, 

respectively. (b) Extracted line in brown over a buffer zone. 

(a) (b) 
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where bi is the percentage of extracted line over i’th buffer layer, EL is the extracted 

line and let bl0 = BE0. An accumulated percentage of the extracted line on buffer zone 

can be written as, 
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ii bB
0

  for i = 0, 1, …                                       (3.33) 

 

 

3.8 Chapter Summary  

 

This chapter focuses on the development of a novel framework for remotely 

sensed data segmentation. Following the Bayesian paradigm, the proposed 

segmentation framework consists of four successive stages. (1) The joint probability 

density (likelihood) for a given remotely sensed dataset is first formed. To this end, 

the domain of the dataset is partitioned into sub-regions corresponding to the 

components of homogeneous regions. Each sub-region is assigned a label to indicate 

the homogenous region to which the sub-region belongs. Modelling homogeneous 

structures is grounded in three RFs: label, neighbour and region fields. (2) Prior 

probability distributions for model parameters are constructed, which should capture 

general and scene-specific knowledge about homogeneous structures. (3) Combining 

the prior distributions and the likelihood, the posterior density of all model parameters 

conditional on the dataset is induced by Bayes’ theorem. (4) The inference about the 
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model parameters is carried out by MCMC, RJMCMC and MAP schemes. 

 

The advantages of the proposed segmentation framework are as follows. First of 

all, the hierarchical RF-based model specifies a class of data models which can be 

used to represent a wide range of remotely sensed data such as SAR intensity imagery, 

LiDAR point cloud data and multispectral imagery. Secondly, the segmentation 

framework presented in this chapter can be extended to provide solutions to many 

other image processing problems such as feature extraction and object identification. 

Third, by using spatial statistics techniques for data domain partition, such as Voronoi 

tessellation and marked point process, geometrical properties can be easily introduced 

into segmentation algorithms by the prior distributions since random parameters 

define the object geometry. Fourth, since the data are modelled at different scales, the 

robustness of the designed segmentation algorithm is improved when noise cannot be 

assumed to be independent at the pixel level. 

 

To demonstrate the applicability of the proposed framework, some segmentation 

algorithms for different sorts of data, such as SAR intensity imagery (in Chapter 4), 

LiDAR point cloud data (in Chapter 5) and texture imagery (in Chapter 6), are 

designed under this framework. 
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Chapter 4  

SAR DATA ANALYSIS 

 

 

This chapter addresses the issues on SAR data analysis. Section 4.1 describes a 

statistical region-based algorithm for SAR intensity image segmentation under the 

segmentation described in Chapter 3. In Section 4.2, the segmentation algorithm is 

used to design a segmentation-based scheme for the extraction of oil spill features. 

The results reveal that the designed algorithm can extract the oil spill features such as 

distribution parameters, area and shape. Section 4.3 presents a new algorithm for the 

detection of oil spills from SAR intensity images. The presented algorithm combines 

the marked point process, the Bayesian inference, and the MCMC techniques.  

 

 

4.1 SAR Intensity Image Segmentation 

 

4.1.1 Description of Algorithm for SAR Intensity Image Segmentation  

 

Consider a SAR intensity image Z = {Zi ; i = 1, …, n}, where n is the number of 
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sampling points (pixels), i is the index of sampling points, Zi is the intensity of pixel 

at lattice (xi, yi) regularly arranged on the image domain D. Given a set of generating 

points G = {(uj, vj) ∈ D; j =1, …, m} where m is the unknown number of generating 

points and possesses Poisson distribution defined by Eq. (3.19), D is partitioned into a 

set of Voronoi polygons D = {Dj; j = 1, …, m} by Eq. (3.5). Assume that the image 

consists of k homogeneous regions known a priori. Associated with each polygon, 

there is a random label variable which indicates the homogenous region to which the 

polygon belongs, label variables for all polygons form a label field, L = {Lj; j = 1, …, 

m}. A realization of L, l = {lj ∈{1, …, k}; j = 1, …, m}, corresponds to a segmentation 

of the image. In a given polygon Pj, the intensity values of pixels, Zj = {Zi; (xi, yi)∈Pj}, 

are characterized by identical and independent Gamma distributions (Lee et al., 1994) 

conditionally on the label Lj = lj with the PDF as follows 
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where ),(
jjj LLL βα=θ is the parameter vector, 

jLα  and 
jLβ  are the shape and scale 

parameters of the Gamma distribution, respectively. The joint PDF of Z, given m, L, 

G and the parameters of Gamma distributions for all homogeneous regions, becomes 
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where θθθθ is the Gamma distribution parameter vector, θθθθ = {θθθθl = (αl, βl); l = 1, …, k}, 

and ∆l is the set of polygons with the same label l, ∆l = {Dj; Lj = l, j = 1, …, m}. 

 

The shape and scale parameters of the Gamma distribution are assumed to be 

identical independent Gaussian distributions, that is, α ~ N(µα, σα) and truncated α > 

0, β ~ N(µβ, σβ), where µα, µβ, σβ and σα are the means and standard deviations of the 

Gaussian distributions. The joint PDF’s of αααα = {αl ; l = 1, …, k} and ββββ = {βl ; l = 

1, …, k} can be written, respectively 
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According to Eq. (3.26), the posterior distribution of m, L G, and θθθθ given Z can be 

rewritten as 
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   (4.5) 

 

In order to segment a SAR image, it is necessary to simulate the posterior distribution 

defined in Eq. (4.5) and estimate its parameters. The RJMCMC algorithm described 

in Section 3.6 is used. 

 

The move types designed in this paper include: (1) updating Gamma distribution 

parameters, (2) updating labels, (3) updating positions of generating points, and (4) 

birth or death of generating points. 

 

Move 1: updating Gamma distribution parameters. The parameter vector for 

Gamma distributions can be written as θθθθ = {θθθθl; l = 1, …, k} where θθθθl = (αl, βl). 

Assuming that the probability distributions for the proposals αl
* and βl

* are Gaussian 

distributions with means αl and βl, and standard differences εα and εβ, respectively, 

i.e., αl
* ~ N(αl, εα) and βl

* ~ N(βl, εβ), the acceptance probability for the proposals αl
* 

and βl
* can be obtained 
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where Jl = {j′; Lj′ = l}. 

 

Move 2: updating labels. A polygon Dj with the label lj is randomly drawn. In 

order to update its label, a new label lj
* is then uniformly drawn from {1, …, k}. The 

acceptance probability for lj
* can be written as 
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Move 3: moving position of generating points. One of generating points in G = 

{(uj, vj); j = 1, …, m} is drawn at random, say (uj, vj). A proposed generating point (uj
*, 

vj
*) is drawn uniformly from its corresponding polygon Dj. The new generating point 

gives rise to the local changes of Dj and its neighbour polygons NDj = {D j′ ；j′∈ Nj} 

to Dj
*
 and NDj

* = {Dj′
*, j′∈ Nj}. Fig. 4.1 shows an example of the changes of Voronoi 

polygons when the generating point moves from generating point (u2, v2) in red to (u2
*, 

v2
*) in blue, where the blue and red lines are the boundaries of new and old Voronoi 

polygons, respectively, while the green lines are invariant boundaries. 



 52 

 

 

The acceptance probability for the move turns out to be 
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Move 4: birth or death of generating points. Suppose that the current number of 

generating points is m and let the probabilities of proposing a birth or death operation 

be bm or dm, respectively. Consider a birth operation which increases the number of 

generating points from m to m +1 and assume that the new generating point is 

identified with m +1 and its location (um+1, vm+1) is drawn uniformly from D. Let the 

polygon induced by (um+1, vm+1) be Dm+1 and its label lm+1 is drawn from {1, …, k} 

uniformly. The set of labels of Dm+1’s neighbour polygons is Nm+1 = {j′; Dj′  ~ Dm+1}. 

The Voronoi tessellation is modified by adding the proposed generating point from D 

Fig. 4.1 Changes of Voronoi polygons when changing the generating point (u2, v2) to (u2
*, v2

*); New 

polygons are delineated by blue and green segments and old polygons by red and green lines. 
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= {D1, …, Dj′, …, Dm} to D* = {D1,…, Dj′
*, …, Dm, Dm+1} where j′∈ Nm+1. Fig. 4.2 

shows the modified Voronoi tessellation after adding the new generating point (u7, v7), 

in which the original tessellation have six generating points (u1, v1)- (u6, v6) and they 

induce six polygons D1-D6, see Fig. 4.2 (a). By proposing the new generating point 

(u7, v7), the new polygon D7 is formed and its neighbours include D2, D3 and D6, that 

is, N7 = {2, 3, 6}. 

 

 

Birth or death of a generating point does not affect Gamma distribution 

parameters in θθθθ. As a result, the parameter vector for the birth operation becomes ΘΘΘΘ* = 

(k, m+1, L*, G*, θθθθ), where G* = ((u1, v1), …, (um, vm), (um+1, vm+1)) and L* = (L1, …, Lm, 

Lm+1). The acceptance probability for the birth operation can be written as 
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Fig. 4.2 (a) Voronoi tessellation with 6 polygons D1-D6 corresponding to generating points (u1, v1)- (u6, 

v6); (b) Voronoi tessellation with 7 polygons D1-D7 formed by adding the generating point (u7, v7). 
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where rbm = bm, rdm+1 = dm+1/(m +1), s = lm+1 and other terms in Eq. (4.10) can be 

expressed as follows 
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The acceptance probability for the death of generating point is given by 

 

1*   and  ,},1min{),( −== bddd RRRr ΘΘ                              (4.18) 

 

For any given proposal with acceptance probability r, it is accepted if and only if 

ξ≥r , where ξ is drawn from [0, 1] uniformly, that is, ξ ~ U(0, 1). The MAP 

estimation defined in Eq. (3.29) is used to obtain optimal parameters. 

 

4.1.2 Experimental Results on SAR Intensity Image Segmentation 

 

The proposed algorithm is tested with four real C-band RADARSAT-1/2 images. 

In addition, a simulated SAR image is also used to evaluate the proposed algorithm 

quantitatively. 

 

A. RADARSAT-1/2 Images 

 

Fig. 4.3 shows three real Radarsat-1/2 ScanSAR images with dimensions of 
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256×256 pixels. Among them, (a) presents a RADARSAT-2 standard mode image 

with horizontal-vertical (HV) polarization and spatial resolution of 25 m, which 

covers part of Stanley Park, Vancouver, British Columbia, Canada, including urban 

area (white), forest (grey) and water (black); (b) shows a RADARSAT-1 image of a 

coastal scene with vertical-vertical (VV) polarization and spatial resolution of 30 m. 

Visually, both of them include three homogeneous regions; (c) also presents a 

Radarsat-1 4-look image with VV polarization and spatial resolution of 50 m, which 

reveals four types of sea ice structures in Ungava Bay, Quebec, Canada. In the 

remainder of this paper, we use a, b and c to indicate the test images shown in Figs. 

4.3 (a)-(c) and 1, 2, 3 and 4 denote the homogenous regions in the decreasing order of 

their means in each test image. 

 

 

The constants used for testing the proposed segmentation algorithm are listed in 

Table 4.1. 

 

(a) (b) (c)

Fig. 4.3 Radarsat-1/2 ScanSAR images with 256×256 pixels. (a) RADARSAT-2 HV standard mode 

image; (b) RADRASTA-1 VV image; (c) RADARSAT-1 VV image. 
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Table 4.1 Constants used in Eq. (4.5) 

Image c µα σα µβ σβ λ εα εβ k Tm 

a 3 8000 

b 3 4000 

c 

1 4 0.5 32 4 96 0.5 1 

4 4000 

 

The coefficient defined in Eq. (3.6), c is set to be 1. The constants µα and µβ are 

the means of shape parameter α and scale parameter β of the Gamma distributions in 

Eq. (4.3) and Eq. (4.4), respectively, i.e., µα = E(α) and µβ = E(β). Given a multi-look 

SAR image in which the intensities of pixels are characterized by Gamma distribution, 

the shape parameter α is equal to the number of its looks (Lee et al., 1994). In this 

thesis, since α is considered as a random variable the value µα is set as the number of 

looks. For a Gamma distribution with shape parameter α and scale parameter β, the 

product of the two parameters, µα × µβ, is equal to its mean. Then the value µα × µβ = 

E(α) × E(β) = E(α × β) (the last equation is true, since α and β are independent) is 

taken 128 = 256/2 (i.e. the midpoint of 256 grey levels) since the pixel intensities in a 

grey-scale image vary in the range of 0 and 255. The constant λm is the mean of a 

Poisson distribution in Eq. (3.18). The constants εα and εβ are the proposal variances 

for α and β, respectively, which affect the sampling and convergence of the algorithm 

under the MCMC scheme (Dryden et al., 2003). Besag and Moran (1975) suggested 

choosing the proposal variances so that the acceptance probability lies in the interval 

(0.3-0.7). However, it has been found from this experiment that the proposal variances 

causing the acceptance probability around 0.1 still make the algorithm work well. For 

simplicity, the number of homogeneous regions k for the scene presented in a SAR 

image is determined by manual inspection a priori. In practice, selecting the number 
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is not very reliable as it depends on the experience of human operators and is 

sometimes impossible since the ground truth is always unknown in advance. 

Therefore, an algorithm for automatically identifying the number of homogenous 

regions is necessary. The constant Tm is the maximum iterations of the algorithm. 

Usually, it depends on the complexity of the scene revealed in a SAR image and 

requirement of segmentation accuracy. The Tm’s selected in this experiment are 

uninformative and larger than practically used ones. 

 

The initial partitions of image domain D is carried out by the Voronoi tessellation, 

in which the number of generating points m0 is drawn from the Poisson distribution 

with the mean 96 and the locations of m0 generating points are drawn from D 

uniformly. The initial segmentation is performed by randomly assigning a label to 

each polygon in the initial partition of D from the Bernoulli distribution with 

probabilities pj = 1/k, where j = {1, …, m} and k is the number of homogeneous 

regions in each test image. It is found that there is no notable impact of the initial 

segmentation on the final segmentation. Fig. 4.4 (a1)-(c1) show the results of the 

optimal partitions of D with 146, 140 and 104 polygons, respectively. Fig. 4.3 (a2)-(c2) 

show the results of the optimal segmentation in terms of the MAP estimation after all 

iterations obtained at the 7,997th out of 8,000, 3,978th out of 4,000 and 3,984th out of 

4,000 iterations, respectively, where the tone of each region is represented by its 

estimated mean. 
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Table 4.2 summarizes estimated shape parameters α1, .., k and scale parameters 

β1, ... , k for the Gamma distributions corresponding to the segmented homogenous 

regions, the final number of polygons m and the number of the iteration ite at which 

the maximum posterior is obtained. 

 

Table 4.2. Estimated parameters, the number of polygons and iterations for optimal segmentation 

image α1 α2 α3 α4 β1 β2 β3 β4 m ite 

a 3.47 5.65 12.66 - 40.70 11.69 1.97 - 146 7997 

b 10.65 10.19 17.80 - 5.98 16.34 11.94 - 140 3978 

c 4.20 4.47 5.57 6.23 13.88 16.51 16.47 19.06 104 3984 

 

Fig. 4.5 (a1)-(c1) give the changes of the estimated shape parameters while Fig. 

(a1) (b1) (c1) 

(a2) (b2) (c2) 

Fig. 4.4 Results of optimal partitions (a1)-(c1) and segmentations (a2)-(c2). 
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4.5 (a2)-(c2) show the changes of the estimated scale parameters for the Gamma 

(a1) 

(c1) 

(b2) (b1) 

(a2) 

(c2) 

Fig. 4.5 Changes of Gamma distribution parameters during iterations, (a1)-(b1) for α and (a2)-(b2) for β. 
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distributions of the segmented homogeneous regions during iterations. Here C1, C2 

and C3 indicate the homogenous regions. It can be seen that the shape and scale 

parameters converge to their stable values finally. 

 

Fig. 4.6 shows the histogram of intensities and Gamma distributions with the 

estimated shape and scale parameters of the segmented homogeneous regions for the 

images shown in Fig. 4.3 (c). Fig. 4.7 shows the results for the image in Fig. 4.3 (a) 

(1) 

(3) 

(2) 

(4) 

Fig. 4.6 Histograms and Gamma distributions with estimated parameters of segmented regions (1, 2, 3 

and 4) for SAR intensity image shown in Fig 4.3 (c). 
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and (b). As shown in Figs. 4. 6 (1) and Fig. 4.7 (b1) the curves of Gamma 

Fig. 4.7 Histograms and Gamma distributions with estimated parameters of segmented regions (1, 2 

and 3) for SAR intensity image shown in Fig 4.3 (a) and (b). 

(b2) 

(b3) 

(a1) 

(a2) 

(a3) 

(b1) 
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distributions for the regions with the maximum estimated means do not fit their 

histograms well. As shown in Fig. 4.3 (b) and (c), there are many light pixels in these 

regions and they make the distributions of intensities in the regions out of Gamma 

distributions. Nevertheless, the proposed algorithm still accurately identifies these 

regions. In other cases, the histograms match the Gamma distributions well. 

 

For a visual assessment of whether the result is accurate, the outlines of the 

segmented homogeneous regions in Fig. 4.5 are delineated, see Fig. 4.8 (a1)-(c1), and 

then overlaid on the original images in red, see Fig. 4.8 (a2)-(c2). By visual inspection, 

the delineated outlines of the segmented homogenous regions match the edges of the 

real homogenous regions quite well. 

(a1) (b1) (c1) 

(a2) (b2) (c2) 

Fig. 4.8. Delineated outlines (red) (a1)-(c1) and overlaid on test images (a2)-(c2). 
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B. Simulated SAR Image 

 

Fig. 4.9 shows a simulated SAR image, which is generated based on the partition 

of a domain as shown in Fig. 4.9 (a). In the simulated image shown in Fig. 4.9 (b), the 

intensity values of pixels in each homogeneous region are drawn from Gamma 

distributions with shape parameters equal to 3, 4, and 5, and the scale parameters 

equal to 24, 32 and 40, respectively. 

 

 

In the experiment using the simulated image, the constants used in our algorithm 

are the same as those listed in Table 4.1. The optimal results are obtained by MAP 

estimation at the 3,887th iteration out of 4,000. Fig. 4.10 (a) presents the results of the 

optimal partition of D with 140 polygons. Fig. 4.10 (b) shows the optimal 

segmentation of the simulated image, in which the homogeneous regions are 

presented by the estimated means. 

(a) (b) 

Fig. 4.9 (a) Domain partition and (b) the simulated SAR image. 
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Fig. 4.11 shows the changes of the shape and scale parameters during 4,000 

iterations and the estimated parameters converge to their stable values finally. 

 

 

Table 4.3 reports the estimation values of the shape parameters (α’s), scale 

parameters (β’s) and their percentage error (eα and eβ), respectively. The minimum 

(a) (b) 

Fig. 4.10 (a) Optimal partition of image domain and (b) Optimal segmentation obtained at the 3,887th 

iteration out of 4,000 iterations. 

(a) (b) 

Fig. 4.11 Changes of estimated shape parameters (a) and scale parameters (b) during 4,000 iterations. 
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accuracy of those estimated parameters is larger than 93 % (≈ 100-6.55). It can be 

concluded that the estimated values of shape and scale parameters are close to their 

real values listed in Table 4.3. 

 

Table 4.3 Estimated model parameters α and β, errors eα and eβ. 

 C1 C2 C3 

α 5.12 4.20 2.93 

eα (%) 2.35 5.00 2.32 

β 24.71 29.90 38.53 

eβ (%) 3.66 6.55 2.95 

 

Fig. 4.12 shows the histograms, Gamma distributions with the real parameters and 

(a) (b) 

Fig. 4.12 Histogram and curves of Gamma 

distributions with real and estimated model 

parameters. 

(c) 
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the estimated parameters. It can be seen that the histograms and distributions of pixel 

intensities for each homogeneous regions match very well. 

 

Table 4.4 shows the acceptance rate for each type of moves, where rα, rβ, rl, rgp, rb 

and rd are the acceptance rates of moves for updating shape parameter, updating scale 

parameter, updating label, moving generating point, birth and death of generating 

point, respectively. 

 

Table 4.4 Acceptance rates of moves for shape parameter, scale parameter, label, generating point, 

birth and death (%) 

rα rβ rl rgp rb rd 

5.10 16.65 1.78 31.4 8.63 8.48 

 

Fig. 4.13 presents the acceptances of the proposals in each move. As shown in Fig. 

4.13 and Table 4.4, the operation of updating labels has the minimum acceptance rate 

and the accepting of the proposed labels is concentrated in the initial phase of 

iterations, within first 1400 iterations, see Fig. 4.13(c). The phenomenon implies that 

the proposed algorithm can rapidly segment the image into the homogenous regions. 

The operation of moving generating points has the maximum acceptance rate. It can 

be explained by the fact that the algorithm drives many more changes on the shape of 

polygons to fit the details of homogenous regions. The birth and death of generating 

points operate throughout the period of the iterations, though with lower acceptance 

rates. Since the computation burden for both moves is very heavy, it is necessary to 

find a better way to control them effectively.  
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Fig. 4.13 Acceptances of proposals in different move types indicated by 1: (a) shape parameter, (b) 

scale parameter, (c) label, (d) moving generating point, (e) birth, (f) dead. 

(a) (b) 

(c) (d) 

(e) (f) 
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Fig. 4.14 demonstrates the procedure of fitting regions during the iterations, in 

which the outlines of the real regions (blue) and the segmented regions within 2,000, 

3,000 and 4,000 iterations (cyan, red, and green, respectively) are overlaid on the 

simulated image. As shown in Fig. 4.14 the delineated outlines of the segmented 

regions move asymptotically toward the outlines of the real regions when the 

algorithm is iterating. 

 

 

In order to assess the accuracy of the segmented results obtained by the proposed 

algorithm qualitatively, both the outlines of the real and the segmented homogenous 

regions are overlaid on the simulated image. By visual inspection of Fig. 4.13 (b), the 

delineated outlines of the segmented homogenous regions (green) are very close to the 

outline of the real homogenous regions (blue). 

 

Fig. 4.14 Outlines of the real regions (blue) overlaid on the delineated outlines of the segmented 

regions within (a) 2,000 iterations (cyan) and 3,000 iterations (red), and (b) 3,000 iterations (red) and 

4,000 iterations (green). 

(a) (b) 
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In this experiment, two assessment schemes are carried out for quantitative 

evaluation, the statistical measure based scheme (Congalton and Green, 1999) and the 

buffer zone based scheme (Li et al., 2008). In the statistical measure based scheme, 

some common measurements are used for accuracy assessment, including producer’s 

accuracy, user’s accuracy, overall accuracy and Kappa coefficient (Congalton and 

Green, 1999). Table 4.5 presents an error matrix, where C1, C2 and C3 indicate the 

homogenous regions and ∑Cr. and ∑C.s the row and column totals. 

 

Table 4.5 Error matrix for segmented result shown in Fig. 4.10.  

 C1 C2 C3 ∑Cr. 

C1 7478 401 0 7560 

C2 203 38759 477 39439 

C3 0 82 18136 18537 

∑C.s 7681 39242 18613 65536 

 

Table 4.6 gives the producer’s accuracy, user’s accuracy, overall accuracy and 

Kappa coefficient. As shown in Table 4.6, in the worst case 97.36 % of real pixels 

(7,478 out of 7,681) in the lightest block on the bottom of the simulated image are 

correctly segmented. The algorithm incorrectly omitted 2.64 % of pixels (203 out of 

7,681) in the worst case. Correspondingly, 97.84 % of pixels (7,478 out of 7,560) 

segmented in the same region are correctly identified and only 2.16 % of pixels (401 

out of 7,560) are incorrectly segmented to other homogenous regions. In the similar 

way, the segmented results for other homogeneous regions in the simulated image can 

be evaluated. As a conclusion, the high segmentation accuracy is anticipated when the 

proposed algorithm is applied. As shown in Table 4.6, the Kappa coefficient for the 
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segmented result is up to 0.968. According to the general interpretation rules for 

thematic accuracy assessment, the Kappa coefficients 0.81-1.00 can be interpreted as 

almost perfect (Fleiss, 1975). 

 

Table 4.6 Producer’s accuracy, user’s accuracy, overall accuracy and Kappa coefficient  

Measure C1 C2 C3 
Overall 

accuracy (%) 
Kappa  

Producer’s 

accuracy (%) 
97.36 98.77 97.44 

User’s 

accuracy (%) 
97.84 98.28 98.92 

98.28 0.968 

 

The buffer zone based accuracy assessment described in Section 3.7 is also used 

for evaluating the proposed segmentation algorithm. Fig. 4.15 shows the extracted 

outlines (block) of the segmented homogenous regions lying in the buffer zone (grey) 

with 4 pixels width around the real outlines at each side. It can be clearly seen that 

almost all the extracted outlines of the segmented regions lie within the buffer zone. 

 

 

Table 4.7 presents the percentage of the extracted outlines on each buffer layer. 

Fig. 4. 15 Extracted outlines overlaid on the buffer zones around the outlines of real regions. 
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Over 80% of the extracted outlines of the segmented homogenous regions are within 

the buffer zone with one pixel width around the real outlines and almost all the 

extracted outlines (around 99%) are on the buffer zone with 4 pixel widths around the 

real outlines. 

 

Table 4.7. Percents of the extracted outlines on each buffer layer 

B0 (%) B1 /Σ1 (%) B2/ Σ2 (%) B3/ Σ3 (%) B4/Σ4 (%) 

43.97 44.08/87.05 9.64/96.68 2.76/99.45 0.55/100.00 

 

The proposed algorithm is developed using MATLAB running on a DELL Optiple 

GX 745 computer. The average computing time for an iteration, in which all four 

moves are accepted, is around 3.6sec. As a result, the average computation time for 

4000 iteration is about 240 min. The computation burden for updating the model 

parameters, updating label, moving the generating point and birth/death of the 

polygon account for 5%, 20%, 35% and 40%, respectively, since the operations in the 

experiment for the Voronoi tessellation and finding neighbouring polygons are 

time-consuming. 

 

 

4.2 Oil Spill Detection by Marked Point Process 

 

Dark spot detection is a critical and fundamental step as a prelude for further 

feature extraction and classification of oil spills. To detect dark spots in SAR intensity 
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imagery, it is reasonable to approximate the dark spots by a series of rectangular 

windows modeled with a marked point process, which is formed by a group of points 

and attaching to each point a window centred at the point. The number of points is 

assumed unknown a priori but satisfies a Poisson distribution with fixed mean given 

by a human operator. The intensities of pixels inside and outside the windows are 

modelled by two strict stationary random fields, respectively. That is, both of them 

satisfy independent and identical Gamma distributions, but the means for the former 

are less than that for the latter. Following the Bayesian paradigm, the mathematical 

form for the posterior distribution is obtained up to an integrating constant. A 

RJMCMC algorithm is introduced for simulation from the posterior. And the optimal 

locations of dark spots can be obtained by a MAP scheme.  

 

4.2.1 Description of Algorithm for Dark Spot Detection 

 

A. Bayesian Model for Dark Spots Diction 

 

Consider a SAR intensity image with n pixels, Z = {Zi ; i = 1, …, n}, containing 

an unknown but a bounded number k for dark spots corresponding to the candidate of 

oil spills and k follows Poisson distribution defined in Eq. (3.14). The dark spots are 

represented by k windows with length lj, width wj, direction aj, and centred at pixel (uj, 

vj) called central points randomly distributed on D with a prior density p(uj, vj) as 

defined in Eq. (3. 18). Let G = {(uj, vj); j =1, …, k} and ΦΦΦΦ = {(lj, wj, aj); j = 1, …, k} 
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be the sets of central points and the geometric parameters of windows, respectively. 

Then D can be partitioned by the marked point process described in Section 3.2, that 

is, D = {D0, D1, …, Dk}. 

 

Associated with each pixel i is a class label Li ∈ {0, 1, …, k}. Li = 0 means the 

pixel (xi, yi) is out of any windows (xi, yi) ∈ D0, while Li = j ≠ 0 indicates the pixel (xi, 

yi) locates at the j’th window Dj. As a result, the class labels of all pixels form the 

label field, L = {Li ; i = 1, …, n}. For a give pixel with class label Li = j ∈ {0, 1, …, k}, 

the pixel intensity is modeled by Gamma distribution (Lee et al., 1994) 
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with θθθθj = (αj, βj) the parameter vector for the class j. Accordingly, the likelihood of the 

image data given the parameter vector θθθθ = {θθθθj ; j = 0, 1, …, k} can be written as  
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The dark spots can be identified by the constrain on the distribution parameters, 

that is, 

 

kjjj 1,..., allfor   00 => βαβα                                     (4.21) 
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The prior distributions of shape and scale parameters αj and parameter βj are 

assumed to be a normal distribution, but with different means and standard deviations 

for dark spot class and no dark spot class, that is, α0 ~ N(µα0, σα0), β0 ~ N(µβ0, σβ0) , 

αj ~ N(µα, σα), βj ~ N(µβ, σβ) where j ≠ 0. Their probability density function can be 

expressed as 
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Assume that all distribution parameters are independent of each other, the prior 

distribution of θθθθ = {α0, α1, …, αk, β0, β1, …, βk} can be written as follows. 
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   The lengths and widths of windows are assumed to be normal distributions, that is, 

lj ~ N(µl, σl
2), wj ~ N(µw, σw

2), while the directions of windows are the uniform 

distribution on [-π/2, π/2], that is, aj ~ U(-π/2, π/2). Assume that the geometric 

parameters are independent. As a result, the prior distribution of ΦΦΦΦ can be written as 
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The posterior distribution in Eq. (3.21) can be rewritten as 
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C. Simulation and Optimization  

 

In order to detect dark spots from a SAR image, it is necessary to simulate from 

the posterior distribution defined in Eq. (4.28) and estimate its parameters. In this 

thesis, a RJMCMC scheme is employed for the purpose. 

 

The move types designed in this paper include: (1) updating the geometric 

parameters of windows: the length, width and direction; (2) updating Gamma 

distribution parameters; (3) updating the positions of central points; and (4) birth or 

death of central points. 

 

Move 1: updating the geometric parameters of windows. The geometric 

parameters can be rearranged as ΦΦΦΦ = {(lj, wj, aj); j = 1, …, k} = {Φj′; j ′ = 1, 2, …, 3k}. 

During the t’th iteration the proposal Φj′
* is drawn from a Gaussian distribution with 

mean Φj′
(t-1) and variance ε which is equal to εl, εw, and εa as Φj′ = lj, wj, aj, 

respectively. That is, Φj′
* ~ N(Φj′

(t-1), ε). Fig. 4.16 shows the changes of window 

structures in terms of their length l, width w and direction a, respectively. 

 

The acceptance probability for the proposal Φj′
* is given by 
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Fig. 4.16 Changes of windows in terms of length lj, width wj and direction aj . 

(a) (b) (c) 
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where Dj
* and Dj are the windows constructed by (lj

*, wj
*, aj

*) and (lj, wj, aj), 

respectively. 

 

Move 2: updating Gamma distribution parameters. The state θθθθ = {θθθθj, j = 0, 1, … , 

k} can be written where θθθθj =(αj, βj). Assume that the probability distributions for the 

proposal αj
* and βj

* are Gaussian distributions with means αj and βj, and standard 

difference εα and εβ, that is, αj
* ~ N(αj, εα) and βj

* ~ N(βj, εβ). The acceptance 

probability for the proposal αj
* and βj

* can be obtained as 
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Move 3: moving the position of generating points. One of central points in G = 

{(uj, vj), j = 1, … , k} is drawn at random, say (uj, vj). A proposed position is (uj
*, vj

*) 

by drawing uniformly in the window Dj. The new position of the central point gives 

rise to the local changes of Dj to Dj
*.  
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The acceptance probability for the move turns out to be 
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Fig. 4.17 shows the example for the change for move 3. 

 

 

Move 4: birth or death of generating points. Suppose that the current number of 

central points is k and let the probabilities of proposing a birth or death operation be 

bk or dk, respectively. Consider a birth operation which increases the number of central 

points from k to k+1 and assume that the new central point is labelled with k+1 and its 

location (uk+1, vk+1) is drawn uniformly from U
k

j

jDD
1

\
=

. Let the window induced by 

(uk+1, vk+1) be Dk+1. The proposal position vector becomes G* = {(u1, v1), …, (uk, vk), 

Fig. 4.17 Change of window Dj to Dj
* by moving central point (uj, vj) to (uj

*, vj
*). 

(uj, vj) 

(uj
*, vj

*) 

Dj 

Dj
*
 

D0 
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(uk+1, vk+1)}. As a result, the parameter vector for the birth operation becomes ΘΘΘΘ* = (θθθθ, 

G
*, k+1). The acceptance probability for the birth can be written as 

 

},1min{),( *
bb Rr =ΘΘ                                           (4.34) 
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where kb br
k
= , )1/(11

+= ++
kdr kdk

, s = (uk+1, vk+1) and other terms in Eq. (4.35) can be 

expressed as follows 
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where αk+1 and βk+1 are drawn from their prior distribution functions, respectively. 
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where |Dk+1| is the area of the window Dk+1. The acceptance probability for a death of 

central point is 

 

1*   and  ,},1min{),( −== bddd RRRr ΘΘ                               (4.40) 

 

For any given proposal with acceptance probability r, it is accepted if and only if 

ξ≥r , where ξ is drawn from [0, 1] uniformly, that is, ξ ~ U(0, 1). The optimal 

detection can be obtained by the MAP estimation defined in Eq. (3.29). 

 

4. 2.2 Experimental Results on Dark Spot Detection 

 

The proposed algorithm is applied to SAR intensity images containing oil spills 

indicated by human analysts from Canada Ice Service (CIS). Fig. 4.18 shows 

four-look Radarsat-1 ScanSAR intensity images with size 512×512 pixels. 
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Table 4.8 lists the constants used in the proposed algorithm for the experiment 

where λ is the mean of the Poisson distribution for the number of dark spots, which is 

set as 2 to encourage a low number of central points since dark spots as the candidates 

of oil spills are fewer. µl (µw) and σl (σw) are the mean and standard deviation of 

length (width) of window. µα (µα0) and σα (σα0) are the mean and standard deviation 

of the shape parameter of the Gamma distributions defined for the dark spots and their 

background. The constants εl,w, a,α,β are the proposal variances for l, w, a, α, α0, β and 

β0, respectively. The Tm used in this experiment is uninformative and larger than 

practically used ones. 

Fig. 4.18 Radarsat-1 ScanSAR intensity images. 

(b) (a) 

(c) (d) 
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Table 4.8 Constants used in Eq. (4.28) 

λ µ l, µw σl, σw µα, α0 σα µβ σβ 

3 50 10 4 0.5 16 2 

β0 εl, w εa εα εβ Tm  

32 2 π/36 0.25 1 10000  

 

The numbers of initial window are drawn from the Poisson distribution with the 

mean 3. From our experience, the initial window numbers have no significant impact 

on the final results. The geometric parameters of the initial window are drawn from 

their distributions. The initial Gamma distribution parameters are also drawn from 

their distributions.  

 

Table 4.9 gives the estimated parameters for windows such as the length, width, 

direction, location of central point and the Gamma distribution parameters. 

 

Table 4.9 Estimated geometric and distribution parameters 

image window l w a(o) u v α β 

D1 64.1 27.6 -59.1 235.0 428.4 3.47 12.32 

D 2 59.3 16.5 -67.4 265.7 374.5 3.85 11.90 

D 3 66.3 18.0 -52.2 203.0 430.6 3.79 11.82 
a 

D 4 49.3 6.5 65.7 388.4 132.5 3.86 12.07 

D 1 157.2 44.9 -74.7 247.6 333.8 3.87 15.33 
b 

D 2 162.4 27.1 -87.7 273.0 124.6 3.43 13.94 

D 1 90.7 12.0 59.1 202.7 107.1 4.07 11.28 
c 

D 2 129.1 8.0 51.1 302.2 237.6 4.10 13.08 

D 1 26.9 30.7 10.2 396.4 391.5 4.21 13.62 

D 2 57.9 38.6 -83.4 186.6 96.3 4.42 13.35 

D 3 50.8 22.4 11.7 290.5 273.7 4.16 16.95 

D 4 28.1 24.9 13.9 165.9 193.6 4.00 15.34 

D 5 65.1 20.0 24.5 140.3 54.5 4.14 14.00 

d 

D 6 19.4 55.4 -33.6 339.7 270.9 3.41 16.83 
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Fig. 4.19 gives the distribution of final windows after 10000 iterations, which 

correspond to the locations of detected dark spots. The numbers of the detected dark 

spots are 4, 2, 2 and 6 for testing images shown in Fig. 4.18 (a)-(d), respectively.  

 

 

Table 4.10 lists the acceptance rate for each type of moves, where rl, rw, ra, rc, rα, 

rβ, rb and rd are the acceptance rates of moves for updating length, width, direction, 

central point of window, shape parameter, scale parameter, moving central point, birth 

and death of windows, respectively.  

 

Fig. 4.19 Outlines of detected windows for the candidates of oil spills. 

(b) (a) 

(c) (d) 
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Table 4.10. Acceptance rates of moves 1-4 (%) 

image rl rw ra rc rα rβ rb rd 

a 9.13 14.87 2.25 29.75 70.47 0.49 0.1 0.02 

b 23.43 22.49 4.21 29.81 71.25 1.36 1.91 1.95 

c 20.97 2.95 1.13 29.04 84.5 0.23 0.01 0.05 

d 16.44 17.68 5.13 28.79 91.84 1.05 0.54 0.61 

 

Fig. 4.20 and Fig. 4.21 give the acceptances of proposals for the SAR image 

shown in Fig. 4.18 (c). From Fig.4.20-21 and Table 4.10, the operation of birth and 

death of central points have the minimum acceptance rate and the accepting of the 

proposed labels is concentrated in the initial phase of the iterations, within the first 

6000 iterations, see Fig. 4.20-21, where Fig. 4.21 (c) indicates the change of the 

number of windows. The phenomenon implies that the proposed algorithm can 

quickly decide the number of windows which represent the candidates for oil spills. In 

contrast, the operation of updating the shape parameter α has the maximum 

acceptance rate, which is caused by the small εα. The large acceptance rates for 

moving central points can be explained by the fact that the algorithm drives many 

more changes on the location of windows to fit the details of dark spots. The updating 

length of the windows operates throughout the period of the iterations, though with 

middle acceptance rates. Since the computational burden for both of the moves is very 

heavy, it is necessary to find an innovative way to control them, though they have the 

lowest acceptance rates.  

 

To evaluate the accuracy of the proposed algorithm for the detection of dark spots 

visually, the detected windows (in red) are overlaid on the SAR images, see Fig. 4.22. 



 87 

From Fig. 4.22, it can be observed that the algorithm can detect the dark spots well. 

Fig. 4.20 (a)-(g) Acceptance of proposals indicated by 1 for l, w, a, central point, α and β during 

10,000 iterations. 

(b) (a) 

(c) (d) 

(f) (e) 
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4.3 Chapter Summary 

 

In this chapter, a new segmentation algorithm developed from the segmentation 

framework has been presented first. The algorithm has been evaluated based on 

extensive experiments using both real Radarsat-1/2 images and a simulated SAR 

image. The experimental results show the efficiency of the proposed segmentation 

algorithm. 

(h) (a) 

(i) 

Fig. 4.21 (a)-(b) Acceptance of proposals 

indicated by 1 for birth and dead during 10,000 

iterations. (c) Chang of the number of windows. 
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A new algorithm for the detection of dark spots as the candidates of oil spills 

based on marked point process is also presented. In the proposed algorithm, the dark 

spots are modeled as windows. Each window is attached with length, width and 

direction, and a Gamma distribution with scale and shape parameters. Results from 

Radarsat-1 ScanSAR intensity imagery show that the proposed algorithm can detect 

the dark spots very well. Instead of processing the image pixel by pixel for the 

purpose of dark spot detection, the proposed algorithm processes the pixels in and out 

of windows. Therefore, it is suitable for searching for oil spills in a large sea area. The 

proposed algorithm is a statistical region-based algorithm that can reduce the effect of 

speckle noise on the detection of dark spots.

Fig. 4.22 Overlaying detected outline for dark spots on the test SAR images. 

(b) (a) 

(c) (d) 
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Chapter 5 

LIDAR DATA PROCESSING 

 

 

This chapter presents two LiDAR point cloud processing techniques: region-based 

segmentation and building detection using a marked point process. Section 5.1 

describes the developed segmentation algorithm based on the segmentation 

framework proposed in Chapter 3. Section 5.1 shows the building detection from 

LiDAR cloud point data by taking advantage of a marked point process. 

 

 

5.1 LiDAR Point Cloud Segmentation 

 

5.1.1 Description of Algorithm for LiDAR Point Cloud Segmentation 

 

A 3D LiDAR point cloud can be expressed as a collection of spatial points, z = 

{(xi, yi, zi); i = 1, …, n}, where i is the index of data point (xi, yi, zi); (xi, yi) ∈ D ⊂ R2 

called the ground point is the geo-referenced coordination of the data point i on the 

earth surface, which is usually distributed on D irregularly; zi is one of the elevations 
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(returns) acquired at the ground point (xi, yi); D is the data domain in which the 

elevations are acquired by LiDAR sensor, and n is the total number of data points in 

the point cloud. Fig. 5.1 shows the diagram for the distribution of ground points on a 

domain D.  

 

 

On the other hand, the 3D point cloud can also be rewritten as z = {zi = Z(xi, yi); i 

= 1, …, n} where the elevation zi is considered as an observation of the random 

variable Z(xi, yi) defined on the ground point (xi, yi). As a consequence, the collection 

of observations from n ground points that makes up the 3D point cloud represents an 

incomplete single sampling from the random field, Z = {Zi = Z(xi, yi); i = 1, …, n}. 

 

Given a point cloud Z = {Zi = Z(xi, yi); i = 1, …, n} with k known homogeneous 

regions, it’s domain D is partitioned into m sub-regions by a Voronoi tessellation 

defined in Eq. (3.5).  

 

Fig. 5.1 Diagram of ground points distributed on the domain D. 

(xi, yi) 
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Under the partition, the elevation Zi for the ground point (xi, yi) ∈ Dj follows the 

Gaussian distribution conditional on the label Lj 

 

 






 −
−== 2

2

2

)(
exp

2

1
)|(

l

li

l

ji

µZ
lLZp

σσπ
                  (5.1) 

 

where µ l and σ 
l are the mean and standard deviation of the Gaussian distribution for 

the l’th homogenous region. The elevations for the ground points in Dj, Zj = {Zi; (xi, 

yi)∈Pj}, can be modeled by a joint probability distribution of identical independent 

Gaussian distributions conditional on the label of the polygon, that is, 
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On the assumption that the joint distributions for all polygons are independent, 

then the likelihood can be written as 
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where µµµµ = (µl ; l = 1, …, k) and σσσσ = (σl ; l = 1, …, k) are the mean and variance 

parameter vectors. 

 

   Assume the prior distributions of µ’s are an independent Gaussian distributions µ 
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~ N(µµ, σµ), its PDF is 
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while the prior distribution of σ’s are independent Gamma distributions σ ~ Γ(ασ, βσ), 

that is,  
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where Γ(⋅) is the Gamma function. Thus, the join prior distributions for µµµµ and σσσσ can 

be written as 
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The posterior distribution of L, µµµµ, σσσσ and G given Z can be written as 
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The Metropolis-Hastings algorithm described in Section 3.6 is used to simulate 

the posterior distribution in Eq. (5.8). The moves designed in the algorithm include (1) 

updating distribution parameters in ψψψψ = {u, σσσσ} = {µ1, …, µk, σ1, …, σk} = {Ψ1, …, 

Ψ2k}; (2) updating labels in L = {Lj; j = 1, …, m}; (3) updating the location of 

generating points in G = {(uj, vj); j = 1, …, m }. The procedure of the scheme is 

described as follows. 

 

Move 1: updating the distribution parameters. Let the proposal Ψl
* ~ N (Ψl′, εΨ) 

where εΨ = εµ or εσ dependent on the type of Ψ. The acceptance probability for the 

proposal Ψl
* (µl

* or σl
*) can be calculated by its marginal distribution 
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Move 2: updating the label. Uniformly draw a proposal Lj
* from {1, … , k} 

conditional on Lj
* ≠ Lj. The acceptance probability for the proposal is determined by 
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its marginal distribution 
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Move 3: updating the location of the generating point. Draw the proposal for the 

generating point Gj = (uj, vj) ∈ Dj, that is, Gj
* = (uj

*, vj
*) ~ U(Dj), where U denotes a 

uniform distribution. The acceptance probability for the proposal is as follows 
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The optimal segmentation can be obtained by MAP defined in Eq. (3.29). 

 

5.1.2 Experimental Results on LiDAR Point Cloud Segmentation 

 

The proposed segmentation algorithm is tested with the LiDAR point cloud data 

acquired by an Optech ALTM GEMINI system with an Applanix-POS/AV subsystem 

on March 11, 2006 over the main campus of the University of Waterloo (UW). The 

dataset consists of 7.9 million points. The flying height was 1,200 m above the mean 

sea level. The speed of the airplane was 66.9 m/sec. The scan frequency and swath 

were 35 Hz and 873.53 m with the scan resolution and point density of 0.908 m and 

1.1 point per sq. m, respectively. In addition, the simulated point cloud data are also 
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used to evaluate the proposed algorithm quantitatively. 

 

A. ALTM Point Cloud Data 

 

Fig. 5.2 presents the six LiDAR point cloud dataset with 3,382, 3,517, 6,246, 

7,094, 5,037 and 7,201 data points, respectively, in which the colour bars indicate the 

elevations acquired at corresponding ground points.  

 

 

Table 5.1 lists the constants used in this experiment, where µµ takes the mean of 

the elevations in each point cloud dataset. σµ takes one quarter of the maximum 

(d) 

(c) 

(f) (e) 

(a) (b) 

Fig. 5.2 LiDAR point cloud data, elevations are demonstrated by colours. 
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difference of the elevations. ασ and βσ are selected from prior knowledge on the 

scenes covered by the test datasets. Tmax is the maximum iterations. k is the number of 

homogenous regions needed to segment determined by a human operator. εµ and εσ 

are the proposal variances for µ and σ, respectively. 

 

Table 5.1 Constants defined in Eq. (5.8) 

 

Fig. 5.3 shows the partitions corresponding to the optimal segmentation after 

Dataset µµ σµ k ασ βσ εµ εσ c m Tmax 

a 347 6.0 2 

b 349 4.5 2 

c 337 7.0 2 

d 337 7.0 3 

e 345 2.5 3 

f 357 12.5 4 

2 1 1 0.25 1 128 20000 

Fig. 5.3 Optimal partitions after 20,000 iterations. 

(a) (b) (c) 

(d) (e) (f) 
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20,000 iterations.  

 

Fig.5.4 shows the optimal segmentations obtained at the 19,989th, 19,994th, 

19,984th, 19,978th, 19,991th and 19,978th iteration out of 20,000 iterations, in which 

the segmented regions are presented in blue, green, red, and cyan with respect to the 

estimated means in an increasing order.  

 

 

Figs. 5.5 and 5.6 show the accepted means and standard deviations for each 

homogenous region during 20,000 iterations, in which the colours of curves are 

coincided with ones presenting the segmented regions in Fig. 5.4 and C1-C4 indicate 

Fig. 5.4 Optimal segmentations after 20,000 iterations. 

(a) (b) (c) 

(d) (e) (f) 
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the segmented regions in terms of the estimated means from low to high. It can be 

Fig. 5.5 Curves of estimated means during 20,000 iterations. 

(f) 

(b) 

(c) (d) 

(a) 

(e) 
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seen from these curves that both mean and variance can quickly converge their stable 

values.  

Fig. 5.6 Curves of estimated variances during 20,000 iterations. 

(c) 

(b) 

(d) 

(f) (e) 

(a) 
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Table 5.2 presents the estimated means and variances corresponding to the optimal 

segmentation while indicating the iteration at which the estimated values are obtained. 

 

Table 5.2 Estimated means and standard deviations, iterations for optimal segmentation 

Dataset Region µ σ ite 

C1 335.61 2.67 
a 

C2 347.43 3.03 
19,989 

C1 334.61 0.30 
b 

C2 340.47 4.87 
19,994 

C1 335.61 5.43 
c 

C2 339.23 1.66 
19,984 

C1 331.38 0.63 

C2 335.47 4.19 d 

C3 343.54 1.94 

19,978 

C1 341.12 0.58 

C2 342.75 2.23 e 

C3 346.46 1.57 

19,991 

C1 335.53 1.81 

C2 341.79 8.48 

C3 348.48 4.50 
f 

C4 371.70 2.07 

19,978 

 

In order to visually evaluate the accuracy of segmented regions, Fig. 5.7 gives 

the outlines of the segmented regions and Fig. 5.8 presents the outlines overlaid on the 

diagrams of LiDAR point cloud datasets. By visual inspection, the segmented regions 

match the objects very well. 
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Fig. 5.7 Outlines of the segmented regions. 

(d) (f) (e) 

(c) (b) (a) 

Fig.5.8 Outlines of segmented regions overlaid on the diagrams of datasets. 

(f) (e) 

(c) (b) (a) 

(d) 
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B. Simulated Point Cloud Data 

 

1) Generating Simulated Data. To assess the accuracy of the segmentation 

algorithm qualitatively and quantitatively, three datasets, which simulate 3D LiDAR 

point clouds, are synthesized. Fig. 5.9 shows the datasets. Based on the results from 

the segmentation of LiDAR point cloud data shown in Fig. 5.4 (d)-(e), the simulated 

datasets are generated by drawing the elevation values for the ground points in each 

segmented homogeneous regions from the Gaussian distribution with fixed means and 

variances as listed in Table 5.3. 

 

 

Table 5.3 Parameters for synthetic data. 

Dataset µ1 µ2 µ3 µ4 σ1 σ2 σ3 σ4 

a 331 335 343 - 4 0.5 2 - 

b 341 343 347 - 0.6 2.2 1.6 - 

c 336 342 348 372 1.8 8.5 4.5 2.1 

 

2) Testing Simulated Data. The proposed algorithm is tested on the synthetic 

datasets. The constants for the experiment are the same as these listed in Table 5.1, 

(a) (b) (c) 

Fig. 5.9 Simulated LiDAR point clouds, elevations demonstrated by colours. 



 104 

except for the number of iterations. In the experiment, the numbers are 8,000 for all 

simulated datasets (a)-(c). 

 

Fig. 5.10 shows the final results after running 8,000 iterations for the simulated 

datasets (a)-(c). Fig. 5.10 (a1)-(c1) give the final partitions and Fig. 5.10 (a2)-(c2) 

show the optimal segmentations in which the segmented homogeneous regions are 

indicated in cyan, red, green and blue in decreased order of their means. 

 

 

Fig. 5.11 shows the changes of estimated parameters during 8,000 iterations. The 

Fig. 5.11 also demonstrates that the estimated parameters converge their stable values. 

(a1) (b1) (c1) 

(a2) (b2) (c2) 

Fig.5.10 Optimal partition (a1) - (c1) and optimal segmentation (a2) - (c2) of simulated datasets. 
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Fig.5.11 Curves of estimated means (a1)-(c1) and standard deviations (a2)-(c2) during 8,000 iterations. 

(b1) 

(a2) 

(c2) 

(a1) 

(b1) 

(c2) 
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Table 5.4 gives the estimated values of the model parameters µ and σ, the 

percentage error of the estimated scale parameters (e, %), and the number of iterations 

(ite) by which the optimal segmentations are obtained. It is obvious that the estimated 

values of the model parameters are close to their real values by which the datasets in 

Fig. 5.9 (a)-(c) are synthesized. The values listed in Table 5.4 demonstrate that the 

proposed algorithm can estimate the model parameters with high accuracy. 

 

Table 5.4 Estimates model parameters, their errors and iterations for the estimated parameters. 

Dataset 
µ 1/ 

e(%) 

µ 2/ 

e(%) 

µ 3/ 

e(%) 

µ 4/ 

e(%) 

σ 1/ 

e(%) 

σ 2/ 

e(%) 

σ 3/ 

e(%) 

σ 4/ 

e(%) 
ite 

a 
331.80/ 

0.24 

334.98/ 

0.06 

343.09/ 

0.03 
- 

0.51/ 

6.43 

4.26/ 

2.52 

2.05/ 

2.69 
- 7898 

b 
341.06/ 

0.17 

242.81/ 

0.06 

346.91/ 

0.03 
- 

0.64/ 

6.67 

2.18/ 

0.91 

1.66/ 

7.78 
- 7945 

c 
336.04/ 

0.04 

341.87/ 

0.01 

347.89/ 

0.03 

371.89/ 

0.03 

1.92/ 

6.59 

8.17/ 

3.90 

5.19/ 

15.30 

2.25/ 

7.18 
7964 

 

Fig. 5.12 shows the histograms, Gaussian distributions with real and estimated 

parameters for the synthetic images shown in Fig. 5.9 (a)-(b). Fig. 5.13 shows the 

histograms, Gaussian distributions with real and estimated parameters for the 

synthetic images shown in Fig. 5.9 (c).  It can be seen that the distributions of the 

elevations in extracted homogeneous regions match those in the real homogeneous 

regions. 

 

3) Evaluation of Algorithm. In this experiment, the statistical measurement based 

assessment scheme is carried out for the purpose of quantitative evaluation. To this 

end, some of the common measurements are used for accuracy assessment, including 
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error matrix, producer’s, consumer’s, overall accuracies and Kappa coefficient.  

(a2) (a1) 

(b1) (a3) 

(b3) (b2) 

Fig.5.12 Histograms, Gaussian distributions with real parameter and estimated parameters for synthetic 

data (a) and (b). 
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Table 5.5 gives the error matrixes  

 

Table 5.5 Error matrix for the segmented results in Fig. 5.10. 

Data Label C1 C2 C3 C4 ∑Cs. 

C1 3058 168 22 3248 

C2 172 1933 13 2118 

C3 2 16 1710 1728 
a 

∑C.r 3232 2117 1745 

- 

7094 

C1 2439 66 21 2521 b 

C2 353 1194 16 

- 

1568 

(c2) (c1) 

(c4) (c3) 

Fig.5.13 Histograms, Gaussian distributions with real parameter and estimated parameters for 

synthetic dataset (c). 
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C3 75 1 872 948 

∑C.r 2867 1261 909 5037 

C1 1991 90 15 0 2096 

C2 80 1463 55 0 1598 

C3 13 31 2125 2 2171 

C4 0 0 12 1324 1336 

c 

∑C.r 2084 1584 2207 1326 7201 

 

   Based on the error matrix in Table 5.5, the producer’s accuracy, user’s accuracy, 

overall accuracy and Kappa coefficient can be calculated. Table 5.6 gives the values 

of those measurements by taking the synthetic dataset (a) shown in Fig. 5.9 (a) as an 

example.  

 

Table 5.6 Producer’s accuracy, consumer’s accuracy, overall accuracy and Kappa coefficient. 

Data Measure C1 C2 C3 C4 
Overall 

accuracy (%) 

Kappa 

coefficient 

Producer’s 

accuracy (%) 
94.62 91.31 97.99 

a 
User’s 

accuracy (%) 
94.15 91.27 98.96 

- 94.46 0.9374 

Producer’s 

accuracy (%) 
85.07 94.67 95.93 

b 
User’s 

accuracy (%) 
96.74 76.14 91.98 

- 89.44 0.8802 

Producer’s 

accuracy (%) 
95.53 92.36 96.28 96.63 

c 
User’s 

accuracy (%) 
94.99 91.55 97.88 99.10 

95.86 0.9558 

 

In the worst case, 91.31 % of real ground points (1,933 out of 2,117), which 

correspond to the area covered by trees, are correctly segmented. The algorithm 

incorrectly omitted 8.69 % of pixels (184 out of 2,117) in the worst case. 

Correspondingly, 94.46% of the ground points (6,701 out of 7,094) are correctly 
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identified and only 393 out of 7,094 or 5.54% of ground points are incorrectly 

segmented to other homogenous regions. In a similar way, all components in the 

matrix can be evaluated. As a conclusion, one would anticipate a high degree of 

accuracy for the segmented results from the proposed algorithm. As shown in Table 6, 

the Kappa coefficients for the synthetic datasets shown in Fig. 5.9 (a)-(c) are up to 

0.9374, 0.8802 and 0.9558, respectively. According to the general interpretation rules 

for thematic accuracy, a Kappa coefficient of between 0.81-1.00 for the assessed data 

can be interpreted as being almost perfect (Fleiss, 1975). 

 

C. Application to Object Identification 

 

The results from the segmentation of testing data, including the mean, variance and 

shape for each segmented region, can be used to identify the objects existing in 

LiDAR data. From experiments on datasets (a)-(c), the ground region can be easily 

separated from objects in the ground by segmenting the dataset into two regions. The 

region with smaller the mean corresponds to the ground no matter its variance. In this 

case, the variance characterizes the undulation of the ground. For example, in dataset 

(c) the ground region consists of two terraces with a difference in height of around 

2m.  

 

For the datasets (d) and (e), which include 3 regions: ground, trees and building, 

the ground can always be identified by its minimum mean. The trees can be 
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recognized by their variances. They usually have the maximum variances since the 

regions corresponding trees consist of the points at which the laser beam can touch 

ground, trunk, branches, and crown. 

 

The dataset (f) is segmented into 4 homogenous regions. Except for the ground, 

the trees can be identified by the variance. For example, as shown in Table 5.2 that for 

dataset (f) the variance of the C2 region, in green in Fig. 5.4 (f), is up to 8.48. The 

region can therefore be deduced to be trees. Though the C3 region, in red in Fig. 5.4 

(f), has high variance (4.50) it is possessed of a regular shape, see its outline in red in 

Fig. 5.8 (f), the region can be judged to be a building. 

 

 

5.2 Building Detection by Marked Point Process 

 

5.2.1 Description of Algorithm for Building Detection 

 

A. Data Model for Build Detection 

 

Consider a LiDAR point cloud Z = {Zi = Z(xi, yi); i = 1, …, n, (xi, yi) ∈ 

D}covering k buildings, where k is unknown random variable with prior PDF p(k) 

defined in Eq. (3.14). A building hidden in Z is characterized by a cuboid with 

attribute vectors (uj, vj, µbj, lj, wj, aj), where (uj, vj) is the central position of the 

orthographic projection of the cuboid (called window Dj), (µbj, lj, wj, aj) are the height, 

length, width and direction of the cuboid, respectively. Fig. 5.14 shows the geometric 

structure of the building. In practice, the distribution of buildings is obtained by the 
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marked point process based domain partition defined in Eq. (3.7). The marks 

associated with the central points of buildings are the geometric attributes 

corresponding to the buildings M = {(µbj, lj, wj, aj); j = 1, …, k}.  

 

 

   To distinguish different buildings in D, D is considered to have three 

homogeneous regions, that is, D = {Sg, St, Sb} where Sg, St and Sb correspond to 

ground, tree and building regions, respectively, and Sb = {Dj; j = 1, …, k}. In this 

thesis, assume that the elevations in these regions are characterized by Gaussian 

distributions, that is,  
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where µg, µt, µbj, σg, σt and σbj are the means and standard deviations of Gaussian 

distributions for the elevations of ground, tree and the j’th building, respectively, µg, 

wj 

lj 

µbj 

aj 

(uj, vj) 

Fig. 5.14 Cuboid structure of the building centered at (uj, vj) with height µbj, length lj, width wj and 

direction aj. 
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µt, σg, and σt are defined as constants, and µbj and σbj are random variables drawn 

from prior distributions p(µbj) and p(σbj). As a result, these objects can be identified 

by the constraints on these distribution parameters, that is, 
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Assume that all elevations are independent. Then the joint distributions for the 

elevations in object regions can be expressed as follows 
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),,,,|()|()|(),,,,,|( bbbttggbb kpDpDpkp σµMGZZZσµMGDZ =      (5.17) 

 

where Zg = {Zi; (xi, yi) ∈ Sg}, Zt = {Zi; (xi, yi) ∈ St}, ZD j = {Zi; (xi, yi) ∈ Dj}, µµµµb = {µbj ; 

j = 1, …, k} and σσσσb = {σbj ; j = 1, …, k}. 

 

Assume that the directions of the windows are uniformly distributed on D and 

(-π/2, π/2], respectively, then their PDFs can be written 
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Other geometric parameters of the buildings are assumed to be Gaussian 

distributions, that is, 
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The prior distribution of G is the same as in Eq. (3.19) 

 

Accordingly, the parameter set of the data model can be written as ΘΘΘΘ = {G, l, w, a, 

µµµµb, σσσσb}, where l = {lj ; j = 1, …, k}, w = {wj ; j = 1, …, k}, a = {aj ; j = 1, …, k}, which  

completely represents the detected buildings. By the Bayesian paradigm, the posterior 

distribution of the parameter set conditional on a given dataset can be expressed as 
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The RJMCMC scheme described in Section 3.6 is used to simulate the posterior 
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distribution in Eq. (5.28). The move types include (a) updating building model 

parameters in ΦΦΦΦ = {l, w, a, µµµµb, σσσσb}; (b) moving the locations of detected buildings G = 

{(uj, vj); j = 1, …, k}; (c) birth or death of a building. 

 

Move 1: Updating the distribution parameters. Draw a proposal for the updating 

parameter, Φj
* ~ N(Φj, ε) where ε = εl, εw, εa, εµ, εσ in terms of the type of Φ. The 

acceptance probability for the proposal can be calculated by its marginal distribution 
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Fig. 5.15 illustrates the operations of updating geometrical parameters. 

aj aj
* 

(a) 

Fig.5.15 Updating geometric parameters, (a) length, (b) width, (c) height, and (d) direction. 

wj 
wj

* 

wj
* 

lj lj
* 

lj
* 

hj hj
* hj

* 

(b) 

(c) (d) 
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Move 2: Updating the location of a central point. Propose a new central point for 

the building j by uniformly dawning a point from Dj, that is, Gj
* =(uj

*, vj
*) ~ U(Dj). 

Fig. 5.16 shows the operation of updating a central point. Since there are two 

non-building classes there are four combinations for the operation to calculate the 

acceptance probability 
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Fig. 5.16 Moving central point. 
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Gj
* is accepted if and only if all combinations are accepted.  

 

Move 3: Birth or death of a building. Let the probability of proposing a birth or 

death operation be bk or dk, respectively. Consider a birth operation which increases 

the number of buildings from k to k+1 and assume that the new building is labelled 

k+1. Draw the central point (uk+1
*, vk+1

*) from D\Sb uniformly. Draw the geometric 

parameter for the new building from their distribution, that is, (lk+1
*, wk+1

*, ak+1
*, µbk+1

*, 

σbk+1
*). Let the window induced by { uk+1

*, vk+1
*, lk+1

*, wk+1
*, ak+1

*} be Dk+1
*. As a 

result, the parameter space after the birth operation becomes from  ΘΘΘΘ= {G, ΦΦΦΦ, k} to 

ΘΘΘΘ* = { G, ΦΦΦΦ , k+1, uk+1
*, vk+1

*, lk+1
*, wk+1

*, ak+1
*, µbk+1

*, σbk+1
*}. The acceptance 

probability for the birth operation can be written as 

 

},1min{),( *
bb Rr =ΘΘ                                           (5.29) 
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where s is a vector for ΘΘΘΘ* =ΘΘΘΘ*(ΘΘΘΘ, s). For simplicity, let s = {uk+1, vk+1, lk+1, wk+1, ak+1, 

µbk+1, σbk+1}. Thus 
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Since there are two non-building classes: ground and tree, to create a new building, 

it is necessary to calculate the acceptance probability of birth of a building by 

comparing the two object classes, that is 

 

∏

∏

+

+

∈

∈ +

+

+

+













 −
−










 −
−

==

*
1

*
1

),(
2

2

),(
2*

1

2*
1

*
1

*

1

2

)(
exp

2

1

)(2

)(
exp

2

1

)|(

)|(

kii

kii

Dyx g

gi

g

Dyx bk

bki

bk

k

k

bg

Z

Z

p

p

d

b
R

σ

σ

σπ

σ

µ

σπλ
ΘZ

ΘZ
      (5.35) 

 

∏

∏

+

+

∈

∈ +

+

+

+










 −
−










 −
−

==

*
1

*
1

),(
2

2

),(
2*

1

2*
1

*
1

*

1

2

)(
exp

2

1

)(2

)(
exp

2

1

)|(

)|(

kii

kii

Dyx t

ti

t

Dyx bk

bki

bk

k

k

bt

Z

Z

p

p

d

b
R

σ

µ

σπ

σ

µ

σπλ
ΦZ

ΦZ
       (5.36) 

 

For any move, its proposal is accepted if and only if the acceptance probability 

ξ≥r  where ξ ~ U(0, 1). The MAP scheme defined in Section 3.6 is used to obtain 
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the optimal detection of buildings. 

 

5.2.2 Experimental Results on Building Detection 

    

The presented algorithm for building detection is applied to LiDAR point cloud 

data covering residential areas. For simplicity and without loss of generality, the 

elevations in those scenes are normalized to [0, E], where E = max (Z) – min (Z). Fig. 

5.17 shows the testing data where the colours indicate the elevations. 

 

 

   Table 5.7 lists the constants used in the posterior distribution for the experiment 

purpose. µg = 0 corresponds to the minimum elevation in a scene while σg = 2 

indicates the vertical displacement of the ground around 2 m. The mean height of 

Fig. 5.17 Testing LiDAR point cloud data. 

(a) (b) 

(c) (d) 



 120 

trees is set as the median of elevation difference E/2, and σt = E/2 means the laser 

beams can touch the ground or the top of the trees on a tree area. The mean and 

standard deviation of the Gaussian distribution for building heights is set as E/2 and 

E/4. The relief of building heights is around 2 m, that is, set 
bσσ = 2. λ is the mean of 

Poisson distribution for the number of buildings, which is set as 6. The constants εl, w, a, 

µ, σ are the proposal variances for l, w, a, µb and σb, respectively. The Tm used in this 

experiment is uninformative and larger than practically used ones. 

 

Table 5.7 Constants used in the posterior distribution 

µg σg bµµ  
bµσ  

bσµ  
bσσ  µt σt 

0 2 E/2 E/4 2 1 E/2 E/2 

µl,w 15 λ εl,w εa εh ετ Tm 

σl,w 4 6 0.5 π/36 0.5 0.25 20000 

 

   Fig. 5.18 shows the distributions of detected windows in blue corresponding to the 

Fig. 5.18 Detected windows corresponding to the outlines of building roofs. 

(a) (b) 

(c) (d) 
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outlines of the building roofs. The numbers in the windows indicate their labels. 

 

   Table 5.8 gives the estimated geometric parameters of the detected buildings, 

including length, width, direction, height, and standard deviation of height.  

 

Table 5.8 Estimated geometric parameters 

Dataset Windows l w a µb σb 

1 17.78 44.20 85.7 8.81 2.48 

2 21.17 12.93 2.4 8.18 3.48 

3 12.17 23.44 87.6 8.19 2.98 

4 12.80 15.44 87.3 8.18 1.03 

5 12.02 14.99 87.1 8.21 1.18 

6 14.83 12.19 1.6 8.22 1.18 

a 

7 14.32 12.29 88.0 8.19 0.07 

1 9.26 12.66 58.7 7.07 0.82 

2 10.12 16.98 89.2 7.06 1.90 

3 8.97 17.78 84.7 7.06 0.87 

4 9.02 13.16 55.1 7.05 0.51 

5 9.12 12.67 56.0 7.05 0.88 

6 14.44 9.12 59.6 7.70 2.06 

7 9.61 12.40 59.7 7.05 1.36 

b 

8 10.73 9.49 55.8 7.05 1.88 

1 8.91 17.30 59.6 6.26 0.61 

2 11.38 21.04 29.39 5.41 1.40 

3 17.08 24.93 2.26 5.59 1.39 

4 25.00 19.32 58.7 4.88 1.40 

c 

5 18.59 9.38 51.4 5.56 1.40 

1 14.05 16.48 85.60 9.32 0.40 

2 16.24 17.35 82.14 9.44 0.65 

3 13.83 15.97 89.91 9.67 0.39 

4 10.77 25.27 90.00 9.50 0.53 

5 28.09 11.88 .2.12 9.60 0.86 

6 12.08 21.94 80.64 9.41 0.53 

7 13.15 17.39 87.88 9.30 0.38 

d 

8 14.84 9.79 10.18 9.08 1.39 

 

   Table 5.9 lists the acceptance rate for each operation, where rl, rw, ra, rµ, rσ, rg, rb, 

and rd are the acceptance rates of updating length, width, direction, height, height 

error, moving central point, birth of window and dead of window, respectively.  
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Table 5.9 Acceptance rates of all operations (%) 

Dataset rl rw ra rµ rσ rg rb rd 

a 8.11 7.72 7.03 2.66 25.91 1.00 0.43 0.4 

b 3.77 4.59 3.28 1.69 20.30 0.12 0.04 0.00 

c 4.34 6.87 2.39 4.51 9.31 0.09 0.025 0.005 

d 11.47 7.00 2.39 1.86 9.47 0.12 0.035 0.00 

 

Fig. 5.19 shows the accepted geometric parameters of the building in the testing 

dataset shown in Fig. 5.17 (d), including length l, width w, direction a, height µb. 

 

 

(a) (b) 

(c) (d) 

Fig. 5.19 Acceptance of length l, width w, direction a and height µb. 



 123 

Fig. 5.20 shows the accepted standard deviation of the building, moving central 

point, birth and death for the testing dataset shown in Fig. 5.17 (d). 

 

 

From Fig. 5.19, Fig. 5.20 and Table 5.9, it can be observed that the operation of 

birth and death of central points have the minimum acceptance rate and the accepting 

of the new buildings is concentrated in the initial phase of the iterations, within the 

first 5,000 iterations, see Fig. 5.20 (c) and (d). The phenomenon implies that the 

presented algorithm can quickly decide the number of windows which represent the 

detected buildings. The operation of updating the standard deviation σb has the 

Fig. 5.20 Acceptance of standard deviation σb, moving central point, birth and dead. 

(a) (b) 

(c) (d) 
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maximum acceptance rate, which is partly caused by the small ετ  and it also means 

that the parameter is sensitive to the data. Comparing the operations of updating 

length, width, direction, and height, the smaller acceptance rate for moving central points 

implies the former plays a more important role in the detection than the latter. 

 

Figs. 5.21-22 shows the Gaussian distributions with the estimated means and 

standard deviation (µb’s and σb’s listed in Table 5.9), and the histogram of elevations 

within window (1)-(4) and (5)-(8), respectively, for test data shown in Fig. 5.17 (d). 

As shown in Figs. 5.21-22 the histograms match the Gaussian distributions well. 

 

Fig. 5.21 Gaussian distributions with the estimated means and standard deviations and histogram of 

elevations within window (1)-(4) for test dataset shown in Fig. 5.17 (d). 

(a) (b) 

(c) (d) 
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Fig. 5.23 shows the Gaussian distributions with parameter µg, µt, σg, and σt listed 

in Table 5.8 and histogram of ground and tree classes for the testing dataset shown in 

Fig 5.17 (d). In Fig. 5.23, the Gaussian distribution of elevations for tree class does 

not match their histogram. The problem can be solved in future work by assuming 

that the distribution parameters are variables instead of constants. 

 

  

Fig. 5.22 Gaussian distributions with the estimated means and standard deviations and histogram of 

elevations within window (5)-(8) for test dataset shown in Fig. 5.17 (d). 

(a) (b) 

(c) (d) 
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In order to visually evaluate the accuracy of the presented algorithm for the 

building extraction, the detected windows (in black) are overlaid on the test data, see 

Fig. 5.24. From Fig. 5.24 (a), (b) and (d), it can be observed that the presented 

algorithm can detect the building shape well, if it is rectangular. It can also be 

observed that some long buildings are detected by two segments, for example, 2 and 3 

in Fig. 5.18 (a), 4 and 7, 5 and 6 in Fig. 5.18 (d). For buildings with non-rectangular 

shape, the algorithm doesn’t work well, for example, the L shape buildings (3) - (5) in 

Fig. 5.17 (c). In practice, polygon model for build shape might solve the problem. 

   

The proposed algorithm is developed using MATLAB running on a DELL Optiple 

GX 745 computer. Take the dataset shown in Fig. 5.17 (d) as an example, which 

includes 9,731 data points and covers 108×65 m2 area. The average computing time of 

each iteration, in which all three moves are accepted, is around 0.20 sec. As a result, 

Fig. 5.23 Gaussian distributions with the fix means and standard deviations and histogram of 

elevations of tree and ground classes for test dataset shown in Fig. 5.17 (d). 
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the maximum computation time for 20,000 iterations is about 65 minutes. The 

computational burden for updating distribution parameters, moving location of central 

points, and birth or death of windows account for 5%, 35%, and 60%, of the time 

respectively. 

 

In this experiment, some statistical measurements are calculated for quantitative 

evaluation to show the accuracy of detected building dimensions. To this end, the 

ground truth of building-roof outlines is manually generated, as shown with red lines 

in Fig. 5.24 (d). Table 5.10 gives the numbers of manually generated building (GT), 

detected building (DP), correctly detected building (DP0) and statistical 

measurements (DP0/GT (%) and DP0/DP (%)). As shown in Table 5.10, in the worst 

Fig. 5.24 Overlaying the detected windows on testing data. 

(a) (b) 

(c) (d) 
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case 74.3% of building points (251 out of 338) in building 1 is detected. From 

algorithmic point of view, in the worst case 95.2% of detected points (572 out of 601) 

are building points.  

 

Table 5.10 Statistical measurements for accuracy assessment of testing dataset shown in Fig. 5. 17 (d). 

measurement 1 2 3 4+8 5+6 7 

GT 338 317 324 503 742 317 

DP 251 298 243 446 601 257 

DP0 251 298 243 436 572 257 

DP0/GT (%) 74.3 94.0 75.0 86.7 77.1 81.1 

DP0/DP(%) 100.0 100.0 97.8 100.0 95.2 100.0 

 

 

5.3 Chapter Summary 

 

In this chapter, a statistical region-based segmentation algorithm for raw LiDAR 

point cloud data is first developed, which is based on the segmentation framework 

proposed in Chapter 3. The experimental results indicate that the proposed 

segmentation algorithm provides an accurate estimate of not only geometric 

parameters such as height and shape but also a statistical parameter such as variance. 

All of these parameters can be used for object identification. 

 

Future research will focus on (1) the investigation of the impact of the number of 

polygons by setting it as variable; (2) the improvement of the current algorithm to 

automatically search the effective number of homogenous regions rather than indicate 



 129 

it a priori; (3) the development of a more efficient MRF model to characterize the 

spatial interactions among pixels in a given sub-region; (4) the development of a 

novel MCMC strategy for posterior simulation.  

 

A new algorithm for the building detection from LiDAR point cloud data is 

presented which is based on a marked point process and Bayesian inference. More 

specifically, in the presented algorithm, the buildings hidden in the point cloud data 

are modeled as a marked point process which is created by a group of points 

uniformly distributed on the domain of a given dataset and attached as a cuboid with 

length, width, direction and height, while the elevations of buildings follows a 

Gaussian distribution. Results from the LiDAR point clouds show that the presented 

algorithm can detect buildings very well. Instead of processing data point by point for 

the purpose of building detection, the presented algorithm processes the data points in 

and out of windows simultaneously. On the other hand, non-building areas are 

modeled by two Gaussian distributions, which characterize the ground and tree, 

respectively. As a result, the presented algorithm can clearly distinguish buildings 

from trees. 

 

The further work on improving the presented algorithm focuses on (1) considering 

a melting process to joint the windows corresponding to one building; (2) improving 

the proposed algorithm suitable for the scenes with uneven ground. 
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Chapter 6 

TEXTURE IMAGE ANALYSIS 

 

 

This chapter focuses on the problem of texture segmentation. Section 6.1 details a 

region-based algorithm for colour texture segmentation, which is developed from the 

segmentation framework described in Chapter 3. In the proposed algorithm, the 

MGMRF model is used to characterize colour texture structures of inter- and 

intra-polygons. The proposed algorithm for colour texture segmentation is tested on 

three types of images, including synthetic and real colour texture images as well as 

IKONOS satellite images. The accuracy assessments are preformed qualitatively on 

all of these images and quantitatively on the synthetic images. The experimental 

results demonstrate that the proposed algorithm is both efficient and effective. Section 

6.2 describes a new algorithm for texture segmentation, which is based on the 

segmentation framework described in Chapter 3. In the proposed algorithm the 

BGMRF model is employed to characterize the spectral interactions between 

neighbouring pixels, respectively. The proposed algorithm is tested with both of 

synthesized and real texture images.  
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6.1 Colour Texture Segmentation 

 

6.1.1 Description of Algorithm for Colour Texture Segmentation 

 

Consider a colour texture image Z = {Zi; i = 1, …, n}, Zi is the colour vector of 

i’th pixel at (xi, yi) made of three additive primaries: red, green and blue, that is, Zi = 

(Zri, Zgi, Zbi) where Zri, Zgi, and Zbi represent its red, green, and blue primaries, 

respectively.  

 

Assume the colour image contains a known number of homogenous regions k and 

its domain D is partitioned into m sub-regions (for simplicity, m is also known a priori) 

by a Voronoi tessellation defined in Eq. (3.5). The label field is formed by L = {Lj ; j = 

1, …, k}.  

 

The colour vectors for the pixels in the polygon Dj, Zj = {Zi, (xi, yi) ∈ Dj}, are 

modeled by the MGMRF model which characterizes the local structure of colour 

texture by specifying a multivariate Gaussian distribution for colour vectors of 

neighbouring pixels. The cliques used in this model include all pairs of horizontally, 

diagonally or vertically adjacent pixels in a second-order neighbourhood system (Li, 

2009). Fig. 6.1 shows neighbouring systems, cliques on the first-order neighbourhood 

system, and cliques on the second-order neighbourhood system, whereδ is used for 

indicating the directions of two pixel cliques. 
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The second-order MGMRF (Anderson, 2003) for modeling neighbour pixels 

spatially and spectrally can be written as 

 

),(~),( 2
2' lllii Np τδΣ1µZZ ⊗                                      (6.1) 

  

where (Zi, Zi') = (Zri, Zgi, Zbi, Zri', Zgi', Zbi') is a colour vector pair of neighbour pixels; 

Lj = l ∈ {1, 2, …k} is the label for the polygon Dj including (xi, yi) and (xi′, yi′); µµµµl = 

(µrl, µgl, µbl)
T is mean vector for l’th homogenous region; 12 = (1, 1)T is 2-vector of 1s; 

⊗ is kronecker product (Horn and Johnson, 1991). For two matrices AN×N' and BM×M', 

Fig. 6.1 (a) and (b) First and second-order neighbourhood system. (c)-(f) Cliques of two pixels on 

where δ is indicator of direction. 

δ = 2 δ = 1 δ = 3 
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0 

0 

0 0 

0 

0 

0 

0 

(a) (b) 

(c) 

δ = 4 

(d) (f) (e) 
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A⊗B is defined as a NM×N'M' matrix formed by placing the element at the location (i, 

i') in A the copy of B scaled by the (i, i') element of A; τl is the standard deviation for 

the l’th homogenous region; and ΣΣΣΣlδ is the correlation coefficient for the l’th 

homogenous region at the direction indicated by δ, which characterizes the 

correlations between colours for the neighbour pixels spatially and spectrally. ΣΣΣΣlδ can 

be expressed as 

 

lll BΘΣ ⊗= δδ                                                  (6.2)  

 

where δ indicates the direction of neighbour pixels i and i'; ΘΘΘΘlδ is a 2×2 matrix and Bl 

is a 3×3 matrix, which model spatial and spectral correlations, respectively. They can 

be written as 
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where I is identical matrix, θlδ and βl are spatial and spectral correlation coefficients, 

respectively. Thus, Eq. (6.1) can be rewritten as 
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On the assumption that p(Zi, Zi')’s for all cliques in Pj are independent, the 

probability p(Zj | Lj) distribution conditional on the label Li = l can be obtained 
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where δii' indicates the direction of pixel i and i', if pixel i and i' are not a clique shown 

in Fig. 6.1 (c)-(f), then δii' = 0. Also assume that the joint distributions for all polygons 

are independent, the MGMRF can be expressed 
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where θθθθl = (θl1, θl2, θl3, θl4), θθθθ = (θθθθl; l = 1, …, k), ββββ = (βl; l = 1, …, k), and  µµµµ = (µµµµl; l 

= 1, …, k), and ττττ = (τl; l = 1, …, k). 

 

For simplicity, assume the prior distributions for µ’s, β’s, and θ’s to be 

independently truncated Gaussian distributions and the prior distribution for τ a 

Gamma distribution, that is, µrl, gl, bl ~ truncated N(µµ, σµ), βl ~ truncated N(µβ, σβ), 

θl1,2,3,4 ~ truncated N(µθ, σθ), and τ ~ Γ(ατ, βτ). Thus, the join prior distributions for µµµµ, 



 135 

ττττ, ββββ and θθθθ can be written 
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The truncated distributions for µµµµl, ββββ l and θθθθ l are used because the intensities of colour 

primaries vary in the range [0, 255] and the matrix ΣΣΣΣlδ should be a positive definite 

matrix. From Eq. (6.2), it can be proved that ΣΣΣΣlδ  is positive definite if and only if ΘΘΘΘlδ 

and Bl are positive definite simultaneously. From Eqs. (6.3) and (6.4), if -1 <θlδ < 1 

and -0.5 < βl <1, ΘΘΘΘlδ and Bl are positive definite, respectively. In this thesis, the ΘΘΘΘlδ 

and Bl are truncated (0, 1). 

  

Using the Bayesian segmentation model described in Section 3.5, the posterior 

distribution of L, µµµµ, ττττ, θθθθ, ββββ and G given Z can be written as,  
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where NDj is the set of Dj’s neighbour polygons. 

 

To simulate the posterior distribution in Eq. (6.12), the Metropolis-Hastings 

scheme described in Section 3.6 is used. The moves proposed in the scheme include 

(1) updating distribution parameters in ψψψψ = {u, ττττ, ββββ, θθθθ}; (2) updating labels in L = {Lj ; 

j = 1, …, m}; (3) moving the locations of generating points in G = {(uj, vj); j = 1, …, 

m}.  

 

Move 1: Updating distribution parameters. Draw a proposal for the parameter, 

ψ* ~ N(ψ, ε) where ε =εµ, ετ, εβ, εθ in terms of the type of ψ . The acceptance 

probability for the proposal can be calculated by its marginal distribution 
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Move 2: Updating texture class labels. Draw a proposal Lj
* from {1, …, k} 

conditional on Lj
* ≠ Lj. The acceptance probability for the proposal can be calculated 

by its marginal distribution 
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Move 3: Update the location of generating point. Draw the proposal for the 

generating point by uniformly dawning a point from Dj, that is, Gj
* =(uj

*, vj
*) ~ U(Dj). 

The acceptance probability for the proposal can be calculated by its marginal 

distribution 

 













=
)()|(

)()|(
,1min),(

**
*

jj

jj

jjG
GpGp

GpGp
GGr

Z

Z
                             (6.15) 

 

The MAP criterion defined in Eq. (3.29) is used to obtain the optimal 

segmentation. 
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6.1.2 Experimental Results on Colour Texture Segmentation 

 

The proposed algorithm for colour texture segmentation is evaluated by testing 

several images, including synthetic colour images, colour texture image and colour 

remote sensing images. 

 

A. Synthetic Colour Images 

Fig. 6.2 shows several synthetic colour texture images. Fig. 6.2 (a) is comprised 

of four colour textures, donated by C1-C4. Fig. 6.2 (b) is generated by overlaying a 

disc colour texture C5 on (b). Fig. 6.2 (c) and (d) are synthesized by pitches with 

Fig. 6.2 Synthetic colour texture images. 

(a) 

C3 

C1 

C4 

C2 

(b) 

(c) 

C5 

C3 

C1 

C4 

C2 

C3 

C1 

C4 

C2 

C3 

C1 

C4 

C2 
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different LULC classes from IKONOS images.  

 

Table 6.1 lists the constants used in the experiments. The constant c is taken to be 

1. The constants µµ and σµ are the mean and standard deviation of the Gaussian 

distribution for the components of a colour vector defined in Eq. (6.8). Since the 

means for the components of colour vectors is truncated in a range from 0 to 255, µµ 

is taken as the midpoint, i.e. 256/2 (= 128) and σµ is set as 32. In this experiment, the 

spectral and spatial correlation coefficients θ and β is truncated in the interval (0, 1). 

µβ and µθ are set to be 1/2, and σβ and σθ are 1/4. ατ and βτ are the shape and scale 

parameters of Gamma distribution for τ. They are taken to be 1 and 2, respectively. 

The constants εµ, ετ, εβ and εθ are the standard deviations of proposals for µ, τ, β and 

θ, respectively. The constant m is the number of polygons. These constants are set 

according to the experiment. The constant k is the number of homogenous regions in 

each colour image. For a synthetic image, the number is easy to indicate. For a real 

colour image, selecting the number is not very reliable as it depends on the experience 

of human operators. The constant Tm is the maximum iteration of the algorithm. Tm 

normally depends on the complexity of the scene revealed in an image and 

requirement of segmentation accuracy. The Tm’s selected in this experiment are 

uninformative and larger than practically used ones. 

 

Table 6.1 Constants used in the posterior distribution in Eq. (6.12). 

c µµ σµ ατ βτ µβ σβ µθ 

1 128 32 1 2 1/2 1/4 1/2 

σθ εµ ετ εβ εθ ma mb mc,d 
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1/4 2 1/2 1/16 1/16 128 96 128 

ka kb kc kd Tmaxa Tmaxb Tmaxc Tmaxd 

4 5 4 4 8000 12000 8000 8000 

 

Fig. 6.3 show the optimal partitions obtained at the 7,984th 11,988th, 7,993rd and 

7,988th iteration out of Tmaxa, Tmaxb, Tmaxc, and Tmaxd iterations, respectively. Fig. 6.4 

gives the optimal segmentations corresponding to the optimal partitions, in which the 

segmented homogenous regions are represented by the estimated mean colours.  

 

 

Fig. 6.3 Optimal partitions of texture images (a)-(d). 

(a) (b) 

(d) (c) 
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Table 6.2 gives the estimated parameters of the MGMRF model corresponding to 

the optimal segmentations for synthetic images shown in Fig. 6.2 where ite is the 

iteration at which the optimal segmentations are obtained under the MAP criterion, 

C1-C5 indicate the homogeneous regions labelled in Fig. 6.2. It is obvious that the 

estimated colour means (µr, µg, µb), β, τ and θ for the homogenous regions C1-C4 in 

Fig. 6.2 (a) and (b) are very close. Fig. 6.4 reveals the visual similarity of the 

estimated mean vectors to the colours for each homogeneous region in testing images. 

 

 

Fig. 6.4 Optimal segmentations of texture images (a)-(d). 

(a) (b) 

(d) (c) 
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Table 6.2 Estimated parameters used in Eq. (6.12) 

Image Region µr µg µb β τ θ 1 θ 2 θ 3 θ 4 ite 

C1 124.74 137.82 154.78 0.81 4.18 0.78 0.74 0.89 0.81 

C2 170.45 111.21 69.92 0.89 6.48 0.40 0.41 0.65 0.57 

C3 208.41 123.36 39.14 0.80 1.00 0.49 0.47 0.71 0.67 

a 

C4 102.89 97.31 71.99 0.90 7.36 0.53 0.53 0.69 0.65 

7984 

C1 126.01 137.18 151.76 0.74 4.16 0.78 0.78 0.88 0.84 

C2 171.39 110.51 63.74 0.85 7.07 0.57 0.56 0.72 0.68 

C3 209.67 124.11 39.28 0.88 0.96 0.48 0.48 0.58 0.73 

C4 101.36 96.98 72.12 0.95 9.48 0.46 0.47 0.67 0.60 

d 

C5 151.96 110.88 60.75 0.58 0.91 0.63 0.55 0.82 0.67 

11977 

C1 69.06 81.65 66.66 0.99 3.97 0.68 0.62 0.76 0.76 

C2 109.02 106.99 78.28 0.97 1.25 0.79 0.80 0.87 0.86 

C3 202.84 203.75 184.11 0.96 1.34 0.72 0.75 0.91 0.82 

c 

C4 73.13 62.31 57.39 0.99 2.11 0.78 0.79 0.91 0.82 

7993 

C1 72.46 89.88 82.47 0.96 2.95 0.84 0.85 0.97 0.85 

C2 75.58 127.73 79.63 0.92 0.23 0.60 0.57 0.71 0.65 

C3 163.55 165.53 170.40 0.90 0.21 0.65 0.57 0.71 0.66 

d 

C$ 164.13 145.09 112.68 0.75 1.46 0.88 0.88 0.91 0.93 

7988 

  

Fig. 6.5 shows the changes of the estimated colour means where (a1)-(a3) and 

(b1)-(b3) are for the means of the red, green and blue components for testing images 

shown in Fig. 6.2 (a) and (b), respectively. Fig. 6.6 (a1)-(a3) and (b1)-(b3) do the 

same thing but for the testing images shown in Fig. 6.2 (c) and (d), respectively. It can 



 143 

be seen that the means for all colour components converge to their stable values. 

(a1) 

(a2) 

(b1) 

(b2) 

(b3) (a3) 

Fig. 6.5 Changes of estimated means for red, blue and green components for texture images Fig.6.2 (a)-(b). 
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(a1) 

(a2) 

(b1) 

(b2) 

(b3) (a3) 

Fig. 6.6 Changes of estimated means for red, blue and green components for texture images Fig.6.2 (c)-(d). 
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Fig. 6.7 shows the outlines of segmented homogenous regions. 

 

 

 To assess the accuracy of segmented homogenous regions, the outlines of 

segmented regions shown in Fig. 6.8 and the outlines of real homogenous regions are 

overlaid on the testing images, see Fig. 6.8. In Fig. 6.8, the blue and red lines are the 

outlines of real and segmented regions, respectively, while the green lines correspond 

to the overlapping part of both outlines. The Fig. 6.8 reveals that both outlines match 

very well visually. 

 

Fig. 6.7 Outlines of segmented regions. 

(c) 

(b) (a) 

(d) 
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To perform accuracy estimates quantitatively, two different techniques are used to 

assess the accuracy of segmented regions. First of all, statistical measurements 

including error matrix, producer’s accuracy, consumer’s accuracy, overall and Kappa 

coefficient, are used for this purpose. Table 6.3 gives the error matrix 

 

Table 6.3 Error matrix for the segmented results in Fig. 6.4 

Image Measure C1 C2 C3 C4 C5 ΣC..r 

C1 4092 10 1 0 4103 

C2 0 4086 51 0 4137 

C3 0 0 4023 0 4023 

C4 4 0 21 4096 4121 

a 

ΣC.s. 4096 4096 4096 4096 

- 

16384 

b C1 3410 0 16 0 0 3426 

Fig. 6.8 Outlines of segmented regions in red and real homogenous regions in blue overlaid on the 

original synthetic colour texture images, overlaying parts of both lines in green. 

(a) 

(c) 

(b) 

(d) 
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C2 0 3303 77 46 0 3426 

C3 6 1 2684 3 2 2696 

C4 6 0 26 3318 0 3350 

C5 35 0 60 0 3391 3486 

ΣC.s. 3457 3304 2863 3367 3393 16384 

C1 4058 17 38 0 4113 

C2 35 4071 0 6 4112 

C3 3 2 4043 8 4056 

C4 0 6 15 4082 4103 

c 

ΣC.s. 4096 4096 4096 4096 

- 

16384 

C1 4.91 0 50 102 4243 

C2 1 4025 2 23 4051 

C3 0 60 4044 0 4104 

C4 5 11 0 3971 3986 

d 

ΣC.s. 4096 4096 4096 4096 

- 

16384 

 

Based on the error matrix in Table 6.3, the producer’s accuracy, user’s accuracy, 

overall accuracy and Kappa coefficient can be calculated. Table 6.4 gives the values 

for the measures. From Table 6.4, it can been seen that both user’s and producer’s 

accuracy are similar for all real regions and all Kappa coefficients are up to 0.98, 

According to the general interpretation rules for thematic accuracy, the Kappa 

coefficients 0.81-1.00 can be interpreted as being almost perfect. As a result, the 

assessed accuracy demonstrates that the proposed algorithm for colour texture 

segmentation works well and is promising.  

 

Table 6.4 Statistic measures for accuracy assessment. 

 C1 C2 C3 C4 C5 
Overall 

accuracy % 
Kappa 

Producer’s accuracy % 99.90 99.76 98.22 100.00 
a 

User’s accuracy % 99.73 98.76 100.00 99.39 
- 99.47 0.99 

Producer’s accuracy % 98.75 99.97 93.75 98.54 99.94 
b 

User’s accuracy % 99.53 96.04 99.55 99.04 97.27 
98.30 0.98 

c Producer’s accuracy % 99.07 99.39 98.71 99.66 - 99.21 0.98 
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User’s accuracy % 98.66 99.00 99.68 99.49 

Producer’s accuracy % 99.88 98.27 98.73 96.94 
d 

User’s accuracy % 96.42 99.36 98.54 99.62 
- 98.46 0.98 

 

A buffer zone based scheme for accuracy assessment is used. Fig. 6.9 shows the 

extracted outlines lie on the buffer zones with 4 pixels around the real outlines for 

each homogenous region, in which the grey zones are buffer zones and the black lines 

are the outlines of the segmented homogenous regions. It can be observed that almost 

all extracted outlines lie on the buffer zones. 

 

 

Table 6.5 gives the percentages of the extracted outlines on each buffer layer. It 

Fig. 6.9 Outlines delineating segmented regions in black and buffers around the real outlines of 

homogenous regions with 4 pixels in gray. 

(a) 

(c) 

(b) 

(d) 
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can be seen from the Table that over 75% of outlines of segmented regions are within 

the buffer zone with one pixel width around the outlines of real homogenous regions 

and that all outlines of segmented homogenous regions are on the buffer zone with 

three pixel width around the outlines of real homogenous regions  

 

Table 6.5 Percents of the segmented outline matching the buffer zone of real outlines 

Image B0 B1 / ΣB1 B2 / ΣB2 B3 / ΣB3 

a 73.75 19.69/93.44 6.56/100.00 0.00/100.00 

b 54.01 21.96/75.97 21.19/97.16 2.84/100.00 

c 56.81 36.65/93.46 1.74/100.00 0.00/100.00 

d 58.91 32.73/91.64 6.18/97.82 2.18/100.00 

e 40.00 28.89/68.89 22.96/91.85 8.15/100.00 

 

The results from the accuracy assessment scheme also point out that the proposed 

algorithm is efficient and effective for colour texture image segmentation. 

 

B. Colour Texture Images 

The proposed algorithm is tested by several colour texture images. Fig. 6.10 

shows the testing images. 

 

(a) (b) (c) 

Fig. 6.10 Colour texture images for algorithm testing. 
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This experiment is carried out with 4,000, 6,000, and 8,000 iterations, 128 

generating points for the partition of image domains, and 3, 4, 3 homogeneous regions 

respectively, for each testing colour texture image. Fig. 6.11 (a1)-(c1) show the 

optimal partitions obtained at 3,984th, 5,966th, and 7,989th out of 4,000, 6,000 and 

8,000 iterations, respectively, and (a2)-(c2) shows the optimal segmentations 

corresponding to the optimal partitions in (a1)-(c2) where the segmented regions are 

represented by their estimated colour means.  

 

 

(a1) (b1) (c1) 

(b2) (a2) (c2) 

Fig. 6.11 Optimal partitions and segmentations. 
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For the purposes of visual assessment accuracy, the outlines of the segmented 

region is overlaid on the original colour texture images, see Fig. 6.12, in which the 

outlines are represented in red. By visual inspection, the segmented regions fit their 

real regions well. 

 

 

C. Colour IKONOS Images 

To demonstrate the applicability of the proposed segmentation algorithm, it is 

explored with colour remote sensing images. Fig. 6.13 shows the colour IKONOS 

images with 1 m resolution, which reveal different colour textures representing 

different LULC classes. For example, in Fig. 6.13 (a) there are three LULC classes: 

grass, forest and farm land; Fig. 6.13 (b) includes grass, arable land, and uncovered 

land; Fig. 6.13(c) shows the forest with different species. 

 

(a) (b) (c) 

Fig. 6.12 Outlines of segmented regions overlaid on original images. 
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In this experiment, let k = 3, m = 128. Fig. 6.14 shows the optimal partitions and 

segmentations at the 3,994th, 3,887th and 3,856th out of 4,000 iterations. In Fig. 6.14 

(a2)-(c2), the segmented regions are presented by the estimated mean colours.  

 

(a) (b) (c) 

Fig. 6.13. Colour IKONOS images with 1 m resolution. 

(a1) (b1) (c1) 

(a2) (b2) (c2) 

Fig. 6.14 Optimal partitions and segmentations. 
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   The outlines delineated by the segmented regions are also overlaid on the original 

images to demonstrate the accuracy of the results from the experiments, see Fig. 6.15. 

It can be concluded that the algorithm can visually captures the homogenous regions. 

 

  

 

6.2 Texture Segmentation 

 

6.2.1 Description of Algorithm for Texture Segmentation 

 

A. Texture Model 

Consider a texture image Z = {Zi; i = 1, …, n }, Zi is the intensity of the pixel at (xi, 

yi) ∈ D. Given two neighbouring pixels (xi, yi) and (xi′, yi′), the relationship of their 

intensities Zi and Zi′ can be characterized by a bivariate Gaussian distribution 

(a) (b) (c) 

Fig. 6.15 Outlines (in red) of segmented regions overlaid on colour IKONOS images. 
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where Zii′ = (Zi, Zi′) and µµµµii′ = (µi, µi′)
T, µi and µi′ are the means of Zi and Zi′, 

respectively andΣΣΣΣii′ is the covariance matrix 
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where the diagonal elements of the covariance matrix σii and σi′i′ are the variances of 

Zi and Zi′. The correlation coefficient between Zi and Zi′ is defined as 
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ρ =                                                (6.18) 

 

This measure of association is symmetric in Zi and Zi′, that is, ρii′ = ρi′i. Under the 

partition in Eq. (3.4), D = {Dj, j = 1, …, m}, the intensities of the pixels located on the 

polygon Dj, Zj = {Zi (xi, yi), (xi, yi) ∈ Pj}, can be modeled by a BGMRF to characterize 

the regional structure of the sub-region Dj. To this end, assume that (1) Zi’s for all (xi, 

yi) ∈ Dj have the same mean dependent on the label Lj, that is, µLj; (2) the covariance 

matrix for a pair of neighbour pixels in Dj is determined by the orientation δ of the 

neighbouring pixel pair, where δ ’s are the same as ones in Fig. 5.1.   
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As a result, Eq. (6.16) can be rewritten as 
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where ΡΡΡΡii′ is the correlation coefficient matrix and is expressed as 
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On the assumption that the p(Zi, Zi')’s for all neighbouring pixel pairs in Dj are 

independent, their joint probability distribution conditional on the label Li can be 

obtained by 
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where δii' indicates the direction of neighbour pixel i and i'. 

 

For simplicity, assume the prior distributions for µ, and ρ to be independently 

truncated Gaussian distributions and the prior distribution for σ is a Gamma 

distribution, that is, µLj ~ truncated N(µµ, σµ), ρL1,2,3,4 ~ truncated N(µρ, σρ), and σLj

  ~ 

Γ (ασ, βσ). Thus, the join prior distributions for µµµµ, σσσσ and ρρρρ can be written 
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By the Bayesian paradigm, the posterior distribution of L, µµµµ, σσσσ, ρρρρ, and G given Z 

can be written as,  
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To simulate the posterior distribution given in Eq. (6.25), the Metropolis-Hastings 

algorithm based scheme is designed. The moves proposed in the scheme include (a) 
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updating the distribution parameters in ΨΨΨΨ = {u, σσσσ, ρρρρ}; (b) updating the labels in L = 

{Lj ; j = 1, …m}; (c) updating the location of generating points in G = {(uj, vj); j = 

1, …m }.  

 

Move 1: Updating distribution parameters. Draw a proposal for the updating 

parameter, Ψl
* ~ N(Ψl, ε) where ε = εµ,, ετ,, ερ in terms of the type of Ψl. The 

acceptance probability for the proposal can be calculated by its marginal distribution, 
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Move 2: Updating texture class labels. Draw a proposal Lj
* from {1,…, k} 

conditional on Lj
* ≠ Lj; The acceptance probability for the proposal can be calculated 

by its marginal distribution 
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Move 3: Updating locations of generating point. Giving the proposal for the 

generating point by uniformly drawing a point from Dj, that is, Gj
* = (uj

*, vj
*) ~ U(Dj). 

The acceptance probability for the proposal can be calculated by its marginal 

distribution 
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The MAP criterion described in Section 3.6 is used to obtain the optimal 

segmentation. 

 

6.2.2 Experimental Results on Texture Segmentation 

 

A. Synthetic Texture Images 

Fig. 6.16 show the synthetic images with size 128 × 128 pixels, and 5, 5, 4 and 4 

Fig. 6.16 Synthetic texture images. 

(a) (b) 

(c) (d) 
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texture classes, respectively. 

 

The constants in Eq. (6.25) for this experiment are listed in Table 6.6. 

 

Table 6.6 Constants in Eq. (6.25). 

m c ξ κ ω ν 

128 1.0 128 64 0.5 0.25 

γ δ εµ εθ ετ T 

2.0 1.0 1.0 1/64 1/256 6000 

 

Fig. 6.17 shows the optimal partitions obtained at 5,889th, 5,906th, 5,987th and 

5,934th out of 6,000 iterations by the MAP estimation. Fig. 6.18 gives the optimal 

segmentations corresponding to the optimal partitions shown in Fig. 6.17, in which 

Fig. 6.17 Optimal partitions obtained during 6,000 iterations by MAP estimation. 

(c) 

(b) (a) 

(d) 
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the homogenous textures are represented by their estimated colour means. 

 

 

To visually evaluate the segmentation results, the outlines of segmented texture 

regions are delineated, see Fig. 6.19, and overlaid on the synthetic texture images, see 

Fig. 6.20. In Fig. 6.20, the blue lines are the outlines of real texture regions and the 

red lines represent the outlines of the segmented regions, while the green ones 

correspond to the overlying parts of both outlines. It can be observed that both the 

outlines of segmented and real homogeneous regions are matched well.  

 

 

(a) (b) 

(d) (c) 

Fig.6.18 Optimal partitions corresponding to the optimal partitions shown in Fig. 6.17. 
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(a) (b) 

(c) (d) 

Fig. 6.19 Outlines of segmented texture regions show in Fig. 6.18. 

Fig. 6.20 Overlaying the outlines of segmented texture regions shown in Fig. 6.19 on testing images. 

(d) 

(a) (b) 

(c) 
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Fig. 6.21 shows the changes of the estimated intensity means during 6,000 

iterations. It is obvious that these estimated values converge to their stable values 

finally.  

 

 

Table 6.7 lists the optimal estimated values of model parameters including 

intensity mean (µ), standard deviation of intensity (σ), and the correction coefficient 

Fig.6.21 Changes of the estimated intensity means during 6000 iterations. 

(a) (b) 

(c) (d) 
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at different directions, as well as the iteration at which they are obtained. 

 

Table 6.7 Estimated model parameters in Eq. (6.25). 

Image Region µ τ θ 1 θ 2 θ 3 θ 3 ite 

C1 65 2.52 0.25 0.13 0.36 0.34 

C2 114 2.90 0.27 0.27 0.49 0.47 

C3 130 1.43 0.58 0.53 0.68 0.75 
a 

C4 144 1.00 0.55 0.52 0.62 0.74 

3987 

C1 81 3.02 0.26 0.19 0.40 0.46 

C2 116 0.51 0.18 0.18 0.81 0.25 

C3 120 2.67 0.20 0.22 0.47 0.43 

C4 128 1.26 0.52 0.49 0.65 0.69 

b 

C5 145 1.08 0.56 0.56 0.67 0.75 

5946 

C1 53 1.68 0.15 0.05 0.33 0.23 

C2 120 3.08 0.28 0.25 0.50 0.37 

C3 134 0.43 0.36 0.21 0.25 0.76 

C4 163 3.49 0.00 0.00 0.11 0.04 

c 

C5 207 1.50 0.03 0.09 0.07 0.15 

5963 

C1 61 0.62 0.60 0.68 0.79 0.74 

C2 53 0.02 0.42 0.42 0.42 0.39 d 

C3 40 0.15 0.56 0.61 0.75 0.64 

5912 

C1 159 0.14 0.34 0.32 0.40 0.40 

C2 65 1.32 0.18 0.2 0.40 0.43 e 

C3 108 3.42 0.32 0.23 0.56 0.54 

5955 

 

For assessing accuracy quantitatively, two evaluation techniques are employed: 

statistical and buffer zone based assessments. First of all, statistical measurements 

including error matrix, producer’s accuracy, consumer’s accuracy, overall and Kappa 

coefficient, are used for this purpose. Table 6.8 gives the error matrices for the 

segmented results shown in Fig. 6.18. 

 

Table 6.8 Error matrices for the optimal segmentations shown in Fig. 6.18 

Image Region C1. C2. C3. C4. C5. ∑C+l 

a C.1 3007 19 0 59 20 3105 
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C.2 0 4302 0 23 17 4342 

C.3 0 21 2978 0 0 2999 

C.4 0 0 12 2925 0 2937 

C.5 0 14 17 0 2970 3001 

Cl+ 3007 4356 3007 3007 3007 16384 

C.1 3556 7 34 0 2 3599 

C.2 64 3480 34 39 0 3617 

C.3 0 1 1846 0 0 1847 

C.4 0 27 19 3542 7 3595 

C.5 13 0 51 28 3634 3726 

b 

Cl+ 3633 3515 1984 3609 3643 16384 

C.1 4045 5 90 4140 

C.2 0 4091 43 4134 

C.3 51 0 8059 8110 
c 

Cl+ 4096 4096 8192 

- - 

16384 

C.1 4030 7 1 4038 

C.2 66 8170 43 8279 

C.3 0 15 4052 4067 
d 

Cl+ 4096 8192 4096 

- - 

16384 

 

Based on the error matrices, the statistical measurements can be calculated, 

including Produce’s accuracy, User’s accuracy, overall accuracy and Kappa 

coefficient. Table 6.9 lists those values. The measurements indicate that the proposed 

algorithm segments texture images with a high accuracy.  

 

Table 6.9 Statistical measures for testing images in Fig. 6.16. 

Image Region 
Product’s 

accuracy (%) 

User’s 

accuracy (%) 

Overall 

accuracy (%) 
Kappa 

C1 100.00 96.84 

C2 98.76 99.08 

C3 99.04 99.30 

C4 97.27 99.59 

a 

C5 98.77 98.97 

98.77 0.985 

C1 97.88 98.80 

C2 99.00 96.21 

C3 93.04 99.95 

b 

C4 98.14 98.53 

98.01 0.975 
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C5 99.75 97.53 

C1 98.75 97.71 

C2 99.88 98.96 c 

C3 98.38 99.37 

98.85 0.982 

C1 98.39 99.80 

C2 99.73 98.68 d 

C3 98.93 99.63 

99.19 0.987 

 

The buffer zone based assessment technique is also used. Fig. 6.22 shows the 

extracted outlines of segmented texture regions in black and the buffer zones with 

width of 4 pixels in grey. By visual inspection, the extracted outlines are completely 

laid on the buffer zones.  

 

 

Fig. 6.22 Outlines of segmented regions shown in Fig. 6.18and buffer zones with the width of 4 pixels. 

(a) (b) 

(c) (d) 
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Table 6.10 gives the percentages of the extracted outlines on each buffer layer. As 

shown in Table 6.10 in the worst case more than 95% of the extracted outlines are 

with an error of less than 2 pixels and nearly 99% of the extracted outlines are with an 

error of less than 3 pixels. 

 

Table 6.10 Percents of the extracted outlines on each buffer layer. 

Image B0 B1/∑1 B2/∑2 B3/∑3 B4/∑4 

a 61.29 27.30/88.6 9.93/98.30 1.75/100.00 0.00/100.0 

b 45.71 45.49/91.2 8.80/100.0 0.00/100.00 0.00/100.0 

c 48.41 34.28/82.69 12.72/95.41 3.18/98.59 1.41/100.00 

d 54.18 40.00/94.18 5.09/99.27 0.073/100.0 0.00/100.00 

 

B. Real Texture Images 

 

Three texture images are used to test the proposed algorithm for texture 

segmentation, see Fig. 6.23. The textures in these images illustrate the changes of 

either structures, or intensity, or both of them. 

 

 

(a) (b) (c) 

Fig. 6.23 Texture images for testing proposed algorithm. 
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Fig. 6.24 shows the optimal partitions and optimal segmentations which are 

obtained after 4,000 iterations and under the MAP scheme. In Fig. 6.24 (a2)-(c2), the 

segmented regions are represented by the estimated means for corresponding 

homogeneous regions. 

 

 

Fig. 6.25 (a1)-(a3) shows the outlines of the segmented textured regions in Fig. 6. 

24. In Fig. 6.25 (b1)-(b3), the outlines (in red) are overlaid on the original texture 

images shown in Fig. 6.23. It can be observed that the extracted outlines match the 

boundaries of the textured regions well. 

 

(a1) (b1) (c1) 

(a2) (c2) (b2) 

Fig.6.24 Optimal partitions and segmentations during 4,000 iterations. 
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C. IKONOS Images 

 

Fig. 6.26 shows three pan IKONOS images with 1 m resolution and 128 × 128 

(a1) (b1) (c1) 

(a2) (c2) (b2) 

Fig. 6.25 Outlines of segmented textured regions (a1)-(c1) and Overlaid on original images (a2)-(c2). 

(a) (b) (c) 

Fig. 6.26 IKONOS images with 1 m resolution and the size of 128×128 pixels. 
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pixels in size. Fig. 6.26 (a) is pictured from the top of the pyramid. According to the 

change in intensity, four texture classes are indicated during its segmentation. Fig. 

6.26 (b) reveals agricultural area with four LULC classes. Fig. 6.26 (c) shows an 

urban area corresponding to three objects: trees, grass and buildings. 

 

Fig. 6.27 gives the optimal partitions and optimal segmentations after 4,000 

iterations. For simplicity, the number of generating points for the Voronoi tessellation 

is fixed, that is, m = 128. In segmented images, see Fig. 6.27 (a2)-(c2), the segmented 

texture regions are presented with the estimated means corresponding to the regions. 

 

 

(a1) (b1) (c1) 

(a2) (c2) (b2) 

Fig. 6.27 Optimal partitions and optimal segmentations after 4,000 iterations. 
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Fig. 6.28 (a1)-(a3) show the outlines of the segmented texture regions. In Fig. 6.28 

(b1)-(b3), they are overlaid on the testing images shown in Fig. 6.23. 

 

 

 

6.3 Chapter Summary 

 

In this chapter, an algorithm for colour texture segmentation is presented, which 

uses Voronoi tessellation to partition an image domain into polygons and two MRF 

models to characterize the colour texture structures intra- and inter-polygons. The 

(a1) (b1) (c1) 

(a2) (c2) (b2) 

Fig. 6.28 Outlines of segmented textured regions (a1)-(c1) and their overlaying on original images (a2)-(c2). 
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algorithm has been evaluated by using synthetic colour texture images generated for 

accuracy assessment as well as real colour texture and remote sensing colour images. 

The experiments show the effectiveness of the proposed framework and developed 

algorithm for colour texture segmentation. Following above study, an algorithm for 

texture segmentation is also introduced. 

 

The future work on this study includes (1) investigating the impact of the number 

of polygons by setting it as variable; (2) improving the current algorithm to 

automatically search the effective number of homogenous regions rather than indicate 

it a priori; (3) developing a general MGMRF model to characterize the spatial and 

spectral interactions from pixels in a given sub-region instead of using the MGMRF 

model which only considers the spatial and spectral interaction of neighbouring pixels. 

It would suffer from a difficulty since the positive definite requirement for the 

coefficient matrix in a multivariate Gaussian distribution; (4) developing a novel 

MCMC strategy for the Bayesian model.  
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Chapter 7 

CONCLUSIONS AND RECOMMENDATIONS  

 

 

7.1 Summary 

 

In this thesis, a framework for remotely sensed data segmentation is introduced. In 

the proposed segmentation framework, a hierarchical data model is first developed. 

Based on a data domain partition, which can be carried out by Voronoi tessellation or 

marked point process, the developed data model uses the improved Potts model, strict 

stationary RF and MGMRF to characterize the global, regional and local structures 

hidden in remotely sensed data, respectively. By combining the hierarchical data 

model and general and scene-specific prior knowledge on geometries of LULC 

classes or objects and their spatial relationship, Bayesian inference is employed to 

provide a uniform framework for remotely sensed data segmentation. Finding model 

parameters and generating a corresponding segmentation of the remotely sensed data 

are achieved according to the MAP criterion. To facilitate this, MCMC schemes are 

formulated to allow the direct sampling of all the model parameters from the posterior 

distribution on the data. 
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Based on the segmentation framework, several algorithms for remotely sensed 

data segmentations and for object detections have been designed, including SAR 

intensity image segmentation, dark spot detection from SAR intensity images by 

marked point process, LiDAR point cloud segmentation, building detection from 

LiDAR point cloud by marked point process, and texture image segmentation. 

 

 

7.2 Contributions 

 

This thesis investigates the issues on remotely sensed data segmentation, the main 

contributions are: 

 

� Proposing a hierarchical data model to characterize complex structures 

hidden in VHSR remotely sensed data. The advantages of the proposed data 

model include: (1) by attaching class labels to sub-regions, rather than to 

individual data points, a label field can be formed and used to characterize 

the global data characteristics caused by the homogeneity of measures for the 

same LULC class but with separated regions or the heterogeneity of 

measures for the different LULC classes; (2) by partitioning the data domain 

into sub-regions, the spatial-spectral correlation can be described at different 

scales: local (neighbouring) level and regional level. For example, the colour 



 174 

texture structure can be modeled with MGMRF. To characterize the local and 

regional colour texture structures, the MGMRF first models the 

spatial-spectral correlation of neighbouring pixels and then considers this 

kind of correlation for all neighbouring pixels in a sub-region to be 

statistically independent and identically distributed. 

 

� Introducing stochastic geometry tools, such as Voronoi tessellation, marked 

point process into remotely sensed data analysis into data processing tasks 

for the purpose of data domain partition. The advantages of using theses tools 

lie in: (1) providing the ways to model geometric constrains on LULC or 

object classes, (2) by choosing different tools for data domain partition, 

different data processing tasks can be carried out, for example, remotely 

sensed data segmentation and object detection from remotely sensed data. 

 

� Developing a uniform framework for remotely sensed data segmentation, 

which is easy to use for multiple data sources, such as SAR intensity imagery, 

LiDAR data and multi-spectral imagery. 

 

� Under the proposed framework, designing new algorithms for remotely 

sensed data segmentations and object detection from remotely sensed data, 

including satellite SAR intensity image segmentation, dark spot detection 

satellite SAR intensity imagery, LiDAR point cloud segmentation, building 



 175 

detection from LiDAR point cloud, colour texture segmentation and texture 

segmentation.   

 

 

7.3 Recommendations for Future Work 

 

7.3.1 Unknown Number of Classes in Segmentation Problem 

 

In remotely sensed data segmentation, automatically determining the number of 

LULC classes is very important, because the ground truth is not always available a 

priori. 

 

Consider a remotely sensed dataset consisting of an unknown but bounded 

number k of homogeneous regions, k can be assumed to have a prior distribution. If k 

is a random variable, then the number of parameters in the data model is variable. 

Therefore, there are two issues that should be paid attention to, i.e., simulation scheme 

and label switching. 

 

The RJMCMC algorithm (Green, 1995) is a good solution for its ability and 

flexibility in performing model selection and parameter estimation simultaneously. 

When k is variable the numerical labeling of the object classes is arbitrary. For 
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example, the class labeled 1 at a certain point in time will usually represent a 

completely different texture at a later time. To overcome this problem, some form of 

identifibability is required, for example, Richardson and Green (1997) considered 

ordering the class labels in the relative order of the means or variables, and Stephens 

(2000) considered relabeling algorithms using decision theory. 

 

7.3.2 Geometric Partition Problem 

 

The purpose of the domain partition lies in fitting homogenous regions which are 

usually irregular by a collection of sub-regions. In this thesis, two kinds of partition 

schemes are used to divide a domain into sub-regions, Voronoi tessellation and 

marked point process. In practice, there are many schemes available for this purpose, 

including regular tessellation, Poisson tessellation (Chiles and Delfiner, 1999), dead 

leaves model (Lantuejoul, 2002), and so on. A regular tessellation means a tessellation 

made up of congruent regular polygons. The examples of regular tessellations in the 

Euclidean plane include, for example, triangles, squares and hexagons, see Fig. 7.1. 

(a) (b) (c) 

Fig. 7.1 Regular Tessellations: (a) squares, (b) Triangles, (c) hexagons. 
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Instead of the regular tessellation in which each cell has the same size, 

tessellations in which the cells are regular but of different sizes is recommended. 

Fig.7.2 shows an example of this kind of tessellation, in which cells are squares with 

different sizes. 

 

 

A line in R2 is specified by two parameters (a, d) ∈ [0, 2π) × [0, ∞) where a is the 

direction of the unit vector orthogonal to the line and d is the distance from the line to 

the origin, see Fig. 7.3 (a). A Poison line network can be completely defined by the 

Fig. 7.2 Tessellation consists of squares with different sizes. 

Fig. 7.3 (a) 2D line with parameter (a, d); (b) Poisson polygon tessellation. 

(a) (b) 

a 

d 
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intensity λ of the Poisson point process in the parameter space [0, 2π) × [0, ∞). The 

Poisson lines in the network hitting the domain D form a partition of D into convex 

polygons, see Fig. 7.3 (b). 

 

As its name indicates, the dead leaves model has been devised to imitate falling 

leaves in fall. The dead leaves overlap and gradually tessellate the domain. Formally, 

the dead leaves model associates to each point (x, y) ∈ R2. The colour C (x, y) of the 

most recently fallen leaf that covers (x, y) (Lantuejoul, 2002) is shown in Fig. 7.4 as 

an example of the dead leaf model. 

 

 

The selection of a partition scheme should consider the following factors: its 

flexibility and its capability of fixing complex regions.  

 

 

Fig. 7.4 Example of a dead leaf model. 
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7.3.3 Optimal Segmentation Problem 

 

Consider remotely sensed data Z = {Zi (xi, yi); i = 1, …, n} containing an unknown 

number k of homogenous regions. Assume that its domain D is partitioned into an 

unknown number m of sub-regions, that is, D = {Dj; j = 1, …, m} (here D denotes the 

domain of a given dataset and its partition). Associate each sun-region, say j
th 

sub-region, a label Lj is assigned to indicate the region to which it belongs. The labels 

for all sub-regions form a label filed, L = {Lj; Lj ∈ {1, …, k} and j = 1, …, m}. Let 

ΘΘΘΘM be parameter vector containing all parameters for prior distributions and data 

model and ΘΘΘΘS = {D, L, k, m}. In fact, ΘΘΘΘS completely determinates the segmentation of 

the given data. Given posterior distribution p(ΘΘΘΘM, ΘΘΘΘS | Z), the optimal segmentation is 

obtained by MAP estimate thought this thesis.   

 

Instead of the MAP estimate, the marginal MAP (MMAP) estimate (Ripley, 1987) 

can be employed, that is, 

 

)|(maxarg ZΘΘ S

MMAP

S p=                                       (7.1) 

 

where 
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Θ

∫= )|,()|(                                    (7.2) 
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Unfortunately, approximating ΘΘΘΘM
MMAP is a complex problem since, in general, 

neither the maximization Eq. (7.1) nor the integration Eq. (7.2) can be preformed 

analytically.  

 

7.3.4 Model Choice Problem 

 

The segmentation problem studied in this thesis can be viewed as a model choice 

problem. Consider a countable collection of candidate models {Mk ; k ∈ R}. Model Mk, 

which corresponds to a segmentation of a given data set Z, has a vector θθθθk of 

unknown parameters in kd
R , where the dimension dk may vary from model to model. 

Bayesian inference about k and θθθθk will be based on the joint posterior distribution p(k, 

θθθθk | Z), that is, 

 

),|()|()|,( ZθZZθ kpkpkp kk ∝                                   (7.3) 

 

Though the dimension of θθθθk may vary from model to model during a segmentation 

procedure, the distributions of parameters in θθθθk are the same from model to model. 

According to the experiments for the studies in this thesis, it is not always true. For 

example, in some SAR intensity images, the intensities in their homogenous regions 

needed to be segmented may satisfy both the Gamma and Gaussian distributions. It 

causes the variable parameter space and distributions in model choice. How to solve 

the problem will be challenging. 
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7.3.5 Distribution Choice Problem 

 

Under the proposed framework for remotely sensed data representation, choosing 

proper distributions to characterize the data is very important. The followings lists 

some distribution models considered during the studies in this thesis. 

 

It is well known that the distribution of multilook SAR intensity data for a 

homogenous region can be characterized with the Gamma, Gaussian, or 

K-distributions. Though all of them have been successfully used for SAR data 

analysis, they have difficulty in modelling the interaction among pixels and bands. 

Perhaps the Multivariate Gamma Distribution (MGD) is reliable for this purpose. 

Unfortunately, unlike multivariate Gaussian distribution which can be defined from 

univariate Gaussian directly, multivariate Gamma distribution can not be defined from 

the univariate Gamma distribution. 

 

In practice, the MGDs on Rd have several non-equivalent definitions (Johnson et 

al., 1997). Among them, the Laplace transform based definition for MGD (Bernardoff, 

2006) seems much more proper and easy to use for modeling interactions existing in 

SAR data. The following is an example of the definition for 2D MGB, Bivariate 

Gamma Distribution (BGB). 

 

The BGB of random vector Z = (Z1, Z2) in R2 is defined by its moment generating 
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function or Laplace transform, which is characterized by an affine polynomial 

(Barndorff-Nielsen, 1980; Bernardoff, 2006). Given an affine polynomial, 

 

21
2

211)( θρθββθβθ +++=θP                                     (7.4) 

 

where the parameters satisfy the conditions: β > 0 and 1 > ρ > 0, then the moment 

generating function of Z can be defined as 
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where L is the Laplace transform and E is expectation operator. 

 

From the defined generating function, it is obvious that Zj, j = 1, 2 are distributed 

according to a univariate Gamma distribution with shape parameter α and scale 

parameter β, that is, Zj ~ Ga(α,β), j = 1, 2. The probability density function can be 

expressed as follows, 
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where Γ(⋅) is the Gamma function. 

 

The moments of the BGB can be obtained by differentiating Eq. (7.5). For 
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example, the means and variances can be obtained as 
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In Section 6.1, the MGMRF model is used to characterize the coefficient relations 

among colour bands for two neighbouring pixels. In theory, a general MGMRF model 

can be constructed to characterize the coefficient relations among colour bands for all 

pixels in a sub-region. The following shows an example for this model. 

 

Given a Voronoi polygon Dj, the set of colour vectors Zj can be rewritten as 3×nj 

dimensional vector, that is, Zj = {Zr(x(1), y(1)), Zg(x(1), y(1)), Zb(x(1), y(1)), …, Zr(x(i), y(i)), 

Zg(x(i), y(i)), Zb(x(i)), …, ),( )()( jj nnr yxZ , ),( )()( jj nng yxZ , ),( )()( jj nnb yxZ )} where nj = 

#{(xi, yi); (xi, yi) ∈ Dj} and the subscript i are the indexes of pixels in Dj. The joint 

distribution of Zj is characterized by an MGMRF with the probability density function 

as follows 
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where 
jLµ  is the expected value  for colour vector with colour texture class label lj 
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and expressed as 
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where rL j
µ , gL j

µ , bL j
µ are the means of red, green, and blue components, 

respectively. ΣΣΣΣ j is the covariance matrix and defined as 

 

2

jLjj σΒΣ =                                                    (7.11) 

 

where Bj is called the covariance matrix )3()3()')(( ][
jj nniij B ×=B and its elements B(i)(i′) 

are called the spatial-spectral parameters which control the spatial (between pixels) 

and spectral (between bands) interactions. Generally speaking, the definition of Bj can 

be data-specific. The parameter space is restricted to those values which give a 

positive definite covariance matrix. Some researchers work on this issue when the 

domains are square lattices (Besag and Moran, 1995; Jian, 1979; Moura and Balram, 

1992; Balram and Moura, 1993). As we know, there has been no work conducted on 

the issues in irregular domain cases.   

 

7.3.6 Modeling Label Field Problem 

 

Given a partition of data domain D = {Dj; j =1, …,m}, the label field L = {Lj; j = 
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1, …, m} can be constructed by assigning each sub-region Dj a label Lj ∈ {1, …, k} 

indicating the homogeneous region to which Dj belongs. 

 

It can be noted that the remotely sensed data usually reveal both local and global 

meaning, that is, they are characterized by invariance of certain local attributions that 

are distributed over the domain of the data. The label field L provides a chance to 

model the data structures at large scale. It will be challenging to determine how to use 

the label field for this purpose. 

 

 

7.4 Chapter Summary  

 

In this final chapter, the work and contributions on studies for this thesis are 

summarized. The work is motivated by the idea of developing approaches, based on 

sophisticated mathematical tools to remotely sensed data analysis to catch up with the 

increasing development of remote sensing techniques. Also, some research direction 

in future work is recommended. Some of them are in progress, and some are just 

ideas. 
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