12 research outputs found

    Bandlimited Digital Predistortion of Wideband RF Power Amplifiers

    Get PDF
    The increase in the demand for high data rates has led to the deployment of wider bandwidths and complex waveforms in wireless communication systems. Multicarrier waveforms such as orthogonal frequency division multiplexing (OFDM) employed in modern systems are very sensitive to the transmitter chain nonidealities due to their high peak-to-average-power-ratio (PAPR) characteristic. They are therefore affected by nonlinear transmitter components particularly the power amplifier (PA). Moreover, to enhance power efficiency, PAs typically operate near saturation region and hence become more nonlinear. Power efficiency is highly desirable especially in battery powered and portable devices as well as in base stations. Hence there is a clear need for efficient linearization algorthms which improve power efficiency while maintaining high spectral efficiency. Digital predistortion (DPD) has been recognized as one of the most effective methods in mitigating PA nonlinear distortions. The method involves the application of inverse PA nonlinear function upstream of the PA such that the overall system output has a linear amplification. The computation of the nonlinearity profile and the inversion of the PA function are particularly difficult and complicated especially when involving wideband radio access waveforms, and therefore memory effects, which are being employed in modern communication systems, such as in Long Term Evolution/Advanced (LTE/LTE-A). In the recent technical literature, different approaches which focus on the linearization of specific frequency bands or sub-bands only have been developed to alleviate this problem, thereby reducing the complexity of DPD. In this thesis, we focus on the development and characterization of a bandlimited DPD solution specifically tailored towards the linearization at and around the main carrier(s) in single carrier deployment or contiguous carrier aggregation of two or more component carriers. In terms of parameter identification, the solution is based on the reduced-complexity closed-loop decorrelation-based parameter learning principle, which is also able to track time-varying changes in the transmitter components adaptively. The proposed bandlimited solution is designed to linearize the inband and out-of-band (OOB) distortions in the immediate vicinity of the main carrier(s) while assuming the distortions more far away in the spectrum are suppressed by transmit or duplex filters. This is implemented using FIR filters to limit the bandwidth expansion during basis functions generation and to restrain the bandwidth of the feedback observation signal, thus reducing the DPD sample rates in both the main path processing and the parameter learning. The performance of the proposed bandlimited DPD solution is evaluated using comprehensive simulations involving memoryless and memory-based PA models, as well as true RF measurements using commercial LTE-A base station and mobile device PAs. The achieved results validate and demonstrate efficient suppression of inband and OOB distortions in real-world application scenarios. Furthermore, the bandlimited DPD consistently outperforms the conventional DPD solutions in the memory-based PA model and practical PA scenarios in suppressing the OOB distortion in the immediate vicinity of the main carrier(s) by approximately 1 - 2 dB. The results provide sufficient grounds for the application of the bandlimited DPD solution in the classical single carrier deployment or in contiguous carrier aggregation of two or more component carriers where conventional DPD solutions would otherwise be highly complex

    Reduced-complexity Digital Predistortion in Flexible Radio Spectrum Access

    Get PDF
    Wireless communications is nowadays seen as one of the main foundations of technological advancements in, e.g., healthcare, education, agriculture, transportation, computing, personal communications, media, and entertainment. This requires major technological developments and advances at different levels of the wireless communication systems and networks. In particular, it is required to utilize the currently available frequency spectrum in a more and more efficient way, while also adopting new spectral bands. Moreover, it is required that cheaper and smaller electronic components are used to build future wireless communication systems to facilitate increasingly cost-effective solutions. Meanwhile, energy efficiency becomes extremely important in wide scale deployments of the networks both from a running cost point of view, and from an environmental impact point of view. This is the big picture, or the so called ‘bird’s eye view’ of the challenges that are yet to be met in this very interesting and fast developing field of science.The power amplifier (PA) is the most power-hungry component in most RF transmitters. Consequently, its energy efficiency significantly contributes to the overall energy efficiency of the transmitter, and in fact the whole wireless network. Unfortunately, energy efficiency enhancement implies operating the PA closer to its saturation region, which typically results in severe nonlinear distortion that can deteriorate the signal quality and cause interference to neighboring users, both of which negatively impact the system spectral efficiency. Moreover, in flexible spectrum access scenarios, which are essential for improving the spectral efficiency, particular in the form of non-contiguous radio spectrum access, the nonlinear distortion due to the PA becomes even more severe and can significantly impact the overall network performance. For example, in noncontiguous carrier aggregation (CA) in LTE-Advanced, it has been demonstrated that in addition to the classical in-band distortion and regrowth around the main carriers, harmful spurious emission components are generated which can easily violate the spurious emission limits even in the case of user equipment (UE) transmitters.Technological advances in the digital electronics domain have enabled us to approach this problem from a digital signal processing point of view in the form of widely-adopted and researched digital predistortion (DPD) technology. However, when the signal bandwidth gets larger, and flexible or non-contiguous spectrum access is introduced, the complexity of the DPD increases and the power consumed in the digital domain by the DPD itself becomes higher and higher, to the extent that it might be close to, or even surpass, the energy savings achieved from using a more efficient PA. The problem becomes even more challenging at the UE side which has relatively limited computational capabilities and lower transmit power. This dilemma can be resolved by developing novel reduced-complexity DPD solutions in such flexible spectrum access and/or wide bandwidth scenarios while not sacrificing the DPD performance, which is the main topic area that this thesis work contributes to.The first contribution of this thesis is the development of a spur-injection based sub-band DPD structure for spurious emission mitigation in noncontiguous transmission scenarios. A novel and effective learning algorithm is also introduced, for the proposed sub-band DPD, based on the decorrelation principle. Mathematical models of the unwanted emissions are formulated based on realistic PA models with memory, followed by developing an efficient DPD structure for mitigating these emissions with reducedcomplexity in both the DPD main processing and learning paths while providing excellent spurious emission suppression. In the special case when the spurious emissions overlap with the own RX band in frequency division duplexing (FDD) transceivers, a novel subband DPD solution is also developed that uses the main RX for DPD learning without requiring any additional observation RX, thus further reducing the DPD complexity.The second contribution is the development of a novel reduced-complexity concurrent DPD, with a single-feedback receiver path, for carrier aggregation-like scenarios. The proposed solution is based on a simple and flexible DPD structure with decorrelationbased parameter learning. Practical simulations and RF measurements demonstrate that the proposed concurrent DPD provides excellent linearization performance, in terms of in-band error vector magnitude (EVM) and adjacent channel leakage ratio (ACLR), when compared to state-of-the-art concurrent DPD solutions, despite its reduced computational complexity in both the DPD main path processing and parameter learning.The third contribution is the development of a new and novel frequency-optimized DPD solution which can tailor its linearization capabilities to any particular regions of the spectrum. Detailed mathematical expressions of the power spectrum at the PA output as a function of the DPD coefficients are formulated. A Newton-Raphson optimization routine is then utilized to optimize the suppression of unwanted emissions at arbitrary pre-specified frequencies at the PA output. From a complexity reduction perspective, this means that for a given linearization performance at a particular frequency range, an optimized and reduced-complexity DPD can be used.Detailed quantitative complexity analysis, of all the proposed DPD solutions, is performed in this thesis. The complexity and linearization performance are also compared to state-of-the-art DPD solutions in the literature to validate and demonstrate the complexity reduction aspect without sacrificing the linearization performance. Moreover, all the DPD solutions developed in this thesis are tested in practical RF environments using real cellular power amplifiers that are commercially used in the latest wireless communication systems, both at the base station side and at the mobile terminal side. These experiments, along with the strong theoretical foundation of the developed DPD solutions prove that they can be commercially used as such to enhance the performance, energy efficiency, and cost effectiveness of next generation wireless transmitters

    ワイヤレス通信のための先進的な信号処理技術を用いた非線形補償法の研究

    Get PDF
    The inherit nonlinearity in analogue front-ends of transmitters and receivers have had primary impact on the overall performance of the wireless communication systems, as it gives arise of substantial distortion when transmitting and processing signals with such circuits. Therefore, the nonlinear compensation (linearization) techniques become essential to suppress the distortion to an acceptable extent in order to ensure sufficient low bit error rate. Furthermore, the increasing demands on higher data rate and ubiquitous interoperability between various multi-coverage protocols are two of the most important features of the contemporary communication system. The former demand pushes the communication system to use wider bandwidth and the latter one brings up severe coexistence problems. Having fully considered the problems raised above, the work in this Ph.D. thesis carries out extensive researches on the nonlinear compensations utilizing advanced digital signal processing techniques. The motivation behind this is to push more processing tasks to the digital domain, as it can potentially cut down the bill of materials (BOM) costs paid for the off-chip devices and reduce practical implementation difficulties. The work here is carried out using three approaches: numerical analysis & computer simulations; experimental tests using commercial instruments; actual implementation with FPGA. The primary contributions for this thesis are summarized as the following three points: 1) An adaptive digital predistortion (DPD) with fast convergence rate and low complexity for multi-carrier GSM system is presented. Albeit a legacy system, the GSM, however, has a very strict requirement on the out-of-band emission, thus it represents a much more difficult hurdle for DPD application. It is successfully implemented in an FPGA without using any other auxiliary processor. A simplified multiplier-free NLMS algorithm, especially suitable for FPGA implementation, for fast adapting the LUT is proposed. Many design methodologies and practical implementation issues are discussed in details. Experimental results have shown that the DPD performed robustly when it is involved in the multichannel transmitter. 2) The next generation system (5G) will unquestionably use wider bandwidth to support higher throughput, which poses stringent needs for using high-speed data converters. Herein the analog-to-digital converter (ADC) tends to be the most expensive single device in the whole transmitter/receiver systems. Therefore, conventional DPD utilizing high-speed ADC becomes unaffordable, especially for small base stations (micro, pico and femto). A digital predistortion technique utilizing spectral extrapolation is proposed in this thesis, wherein with band-limited feedback signal, the requirement on ADC speed can be significantly released. Experimental results have validated the feasibility of the proposed technique for coping with band-limited feedback signal. It has been shown that adequate linearization performance can be achieved even if the acquisition bandwidth is less than the original signal bandwidth. The experimental results obtained by using LTE-Advanced signal of 320 MHz bandwidth are quite satisfactory, and to the authors’ knowledge, this is the first high-performance wideband DPD ever been reported. 3) To address the predicament that mobile operators do not have enough contiguous usable bandwidth, carrier aggregation (CA) technique is developed and imported into 4G LTE-Advanced. This pushes the utilization of concurrent dual-band transmitter/receiver, which reduces the hardware expense by using a single front-end. Compensation techniques for the respective concurrent dual-band transmitter and receiver front-ends are proposed to combat the inter-band modulation distortion, and simultaneously reduce the distortion for the both lower-side band and upper-side band signals.電気通信大学201

    Nopeaan konvolutioon perustuva suodatettu OFDM ja ikkunoitu OFDM aaltomuotojen suorituskykyvertailussa 5G fyysiselle kerrokselle

    Get PDF
    Nykyisten mobiiliverkkojen vaatimukset kasvavat jatkuvasti, mikä johtuu pitkälti uusien mobiililaitteiden ja -palveluiden suosion kasvusta. Lisäksi matkapuhelinverkkoja on alettu käyttämään pääasiallisena internetyhteytenä, sillä nykyteknologialla on mahdollista saavuttaa kiinteään laajakaistayhteyksiin verrattavia käyttäjäkokemuksia useimmissa sovelluksissa. Nykyiset Long Term Evolution (LTE) ja LTE-Advanced ovat neljännen sukupolven (4G) teknologioita, jotka tarjoavat jo hyvin suuria tiedonsiirtonopeuksia. Tulevaisuuden palvelut vaativat kuitenkin uusia ominaisuuksia verkolta ja tämän takia uusia teknlogioita tutkitaan jatkuvasti lisää. Viidennen sukupolven (5G) teknologia pyrkii kasvattamaan tiedonsiirtonopeuksia entisestään. Lisäksi on ennustettu, että tulevaisuuden teknologiat vaativat tukea myös pienille ja viivekriittisille lähetyksille, kuten Internet of Things (IoT) ja Machineto-Machine (M2M) -tyyppisille palveluille. Tämä tarkoittaa, että verkkoon yhdistettyjen laitteiden määrä tulee kasvamaan räjähdysmäisesti. Verkossa ovat jatkossa esimerkiksi älykkäät autot, kodinkoneet, sensorit ja monet muut älykkäät laitteet, mikä vaatii mobiiliverkoilta merkittävästi suurta kapasiteettia ja joustavuutta. Tässä diplomityössä tutkitaan kahden uuden aaltomuodon soveltuvuutta 5G aaltomuodoksi: ikkunoitu CP-OFDM ja nopeaan konvoluutioon perustuva suodatettu CP-OFDM. Referenssinä on käytetty LTE-tyylistä kanavasuodatettua CP-OFDM aaltomuotoa vertaillen alltomuotojen spektraalista tehokkuutta ja vuototehoa. Aaltomuotojen suorituskykyä vertaillaan lopuksi kokonaisen tietoliikennelinkin yli. Tulosten perusteella kanavan käyttötehokkuus kasvaa uusilla aaltomuodoilla niin laaja- kuin kapeakaistalähetyksissä, mahdollistaen suurempia tiedonsiirtonopeuksia samassa kanavassa. Parannusta on havaittavissa erityisesti kapeakaistaisten lähetysten vuototehossa. Tämä sallii taajudessa lähekkäin olevien eri alikantoaaltoväliä, eri mittaisia syklisiä etuliitteitä tai eri aikasynkronisuusvaatimuksia käyytävien signaalien lähettämisen samanaikaisesti, häiritsemättä merkittävästi muita lähetyksiä.The demands for modern wireless cellular networks are increasing constantly due to the introduction of new mobile devices and services. Additionally, mobile networks are being used as a primary Internet connection as the current wireless networks are able to achieve similar user experiences than with wired connections in most applications. Long Term Evolution (LTE) and LTE-Advanced are current 4G technologies already allowing very high peak data rates. However, additional features are needed from network to satisfy traffic demands of the future and suitable technologies are in high interest in nowadays research. The fifth generation (5G) wireless system targets to increase data transmission rates further. In addition, it has been forecast that the traffic trends of the future becomes more delay-critical and small bursts communication has a bigger role. These type of services are e.g. Internet of Things (IoT) and Machine-to-Machine (M2M) communications. These increases dramatically the number of devices connected to Internet, for example smart cars, domestic appliances, sensors and other smart devices, which will require significantly improved capacity and flexibility from the forthcoming mobile communication networks. In this thesis, two waveform candidates for 5G are evaluated and compared: Windowed CP-OFDM and Fast Convolution based Filtered CP-OFDM. LTE-like channel filtered CP-OFDM is used as a reference in spectral efficiency, power leakage and overall link performance comparisons of the waveforms. It will be shown that the spectral utilization is improved with proposed waveforms in broadband and narrowband transmissions, which allows higher data rates inside the same bandwidth. The most significant improvement is observed in narrowband power leakage evaluations. Reduced power leakage allows to transmit several narrowband signals with different subcarrier spacings, cyclic prefix lengths, or different timing accuracy with tight frequency spacing without significant interference levels

    Nopeaan konvolutioon perustuva suodatettu OFDM ja ikkunoitu OFDM aaltomuotojen suorituskykyvertailussa 5G fyysiselle kerrokselle

    Get PDF
    Nykyisten mobiiliverkkojen vaatimukset kasvavat jatkuvasti, mikä johtuu pitkälti uusien mobiililaitteiden ja -palveluiden suosion kasvusta. Lisäksi matkapuhelinverkkoja on alettu käyttämään pääasiallisena internetyhteytenä, sillä nykyteknologialla on mahdollista saavuttaa kiinteään laajakaistayhteyksiin verrattavia käyttäjäkokemuksia useimmissa sovelluksissa. Nykyiset Long Term Evolution (LTE) ja LTE-Advanced ovat neljännen sukupolven (4G) teknologioita, jotka tarjoavat jo hyvin suuria tiedonsiirtonopeuksia. Tulevaisuuden palvelut vaativat kuitenkin uusia ominaisuuksia verkolta ja tämän takia uusia teknlogioita tutkitaan jatkuvasti lisää. Viidennen sukupolven (5G) teknologia pyrkii kasvattamaan tiedonsiirtonopeuksia entisestään. Lisäksi on ennustettu, että tulevaisuuden teknologiat vaativat tukea myös pienille ja viivekriittisille lähetyksille, kuten Internet of Things (IoT) ja Machineto-Machine (M2M) -tyyppisille palveluille. Tämä tarkoittaa, että verkkoon yhdistettyjen laitteiden määrä tulee kasvamaan räjähdysmäisesti. Verkossa ovat jatkossa esimerkiksi älykkäät autot, kodinkoneet, sensorit ja monet muut älykkäät laitteet, mikä vaatii mobiiliverkoilta merkittävästi suurta kapasiteettia ja joustavuutta. Tässä diplomityössä tutkitaan kahden uuden aaltomuodon soveltuvuutta 5G aaltomuodoksi: ikkunoitu CP-OFDM ja nopeaan konvoluutioon perustuva suodatettu CP-OFDM. Referenssinä on käytetty LTE-tyylistä kanavasuodatettua CP-OFDM aaltomuotoa vertaillen alltomuotojen spektraalista tehokkuutta ja vuototehoa. Aaltomuotojen suorituskykyä vertaillaan lopuksi kokonaisen tietoliikennelinkin yli. Tulosten perusteella kanavan käyttötehokkuus kasvaa uusilla aaltomuodoilla niin laaja- kuin kapeakaistalähetyksissä, mahdollistaen suurempia tiedonsiirtonopeuksia samassa kanavassa. Parannusta on havaittavissa erityisesti kapeakaistaisten lähetysten vuototehossa. Tämä sallii taajudessa lähekkäin olevien eri alikantoaaltoväliä, eri mittaisia syklisiä etuliitteitä tai eri aikasynkronisuusvaatimuksia käyytävien signaalien lähettämisen samanaikaisesti, häiritsemättä merkittävästi muita lähetyksiä.The demands for modern wireless cellular networks are increasing constantly due to the introduction of new mobile devices and services. Additionally, mobile networks are being used as a primary Internet connection as the current wireless networks are able to achieve similar user experiences than with wired connections in most applications. Long Term Evolution (LTE) and LTE-Advanced are current 4G technologies already allowing very high peak data rates. However, additional features are needed from network to satisfy traffic demands of the future and suitable technologies are in high interest in nowadays research. The fifth generation (5G) wireless system targets to increase data transmission rates further. In addition, it has been forecast that the traffic trends of the future becomes more delay-critical and small bursts communication has a bigger role. These type of services are e.g. Internet of Things (IoT) and Machine-to-Machine (M2M) communications. These increases dramatically the number of devices connected to Internet, for example smart cars, domestic appliances, sensors and other smart devices, which will require significantly improved capacity and flexibility from the forthcoming mobile communication networks. In this thesis, two waveform candidates for 5G are evaluated and compared: Windowed CP-OFDM and Fast Convolution based Filtered CP-OFDM. LTE-like channel filtered CP-OFDM is used as a reference in spectral efficiency, power leakage and overall link performance comparisons of the waveforms. It will be shown that the spectral utilization is improved with proposed waveforms in broadband and narrowband transmissions, which allows higher data rates inside the same bandwidth. The most significant improvement is observed in narrowband power leakage evaluations. Reduced power leakage allows to transmit several narrowband signals with different subcarrier spacings, cyclic prefix lengths, or different timing accuracy with tight frequency spacing without significant interference levels

    Digital Processing for an Analogue Subcarrier Multiplexed Mobile Fronthaul

    Get PDF
    In order to meet the demands of the fifth generation of mobile communication networks (5G), such as very high bit-rates, very low latency and massive machine connectivity, there is a need for a flexible, dynamic, scalable and versatile mobile fronthaul. Current industry fronthaul standards employing sampled radio waveforms for digital transport suffer from spectral inefficiency, making this type of transport impractical for the wide channel bandwidths and multi-antenna systems required by 5G. On the other hand, analogue transport does not suffer from these limitations. It is, however, prone to noise, non-linearity and poor dynamic range. When combined with analogue domain signal aggregation/multiplexing, it also lacks flexibility and scalability, especially at millimetre wave frequencies. Measurements (matched in simulation) of analogue transport at millimetre wave frequencies demonstrate some of these issues. High data rates are demonstrated employing wide bandwidth channels combined using traditional subcarrier multiplexing techniques. However, only a limited number of channels can be multiplexed in this manner, with poor spectral efficiency, as analogue filter limitations do not allow narrow gaps between channels. To this end, over the last few years, there has been significant investigation of analogue transport schemes combined with digital channel aggregation/ de-aggregation (combining/ separating multiple radio waveforms in the digital domain). This work explores such a technique. Digital processing is used at the transmitter to flexibly multiplex a large number of channels in a subcarrier multiplex, without the use of combiners, mixers/ up-converters or Hilbert transforms. Orthogonal Frequency Division Multiplexing (OFDM) - derived Discrete Multi-Tone (DMT) and Single Sideband (SSB) modulated channels are integrated within a single Inverse Fast Fourier Transform (IFFT) operation. Channels or channel groups are mapped systematically into Nyquist zones by using, for example, a single IFFT (for a single 5G mobile numerology) or multiple IFFTs (for multiple 5G mobile numerologies). The analogue transport signal generated in this manner is digitally filtered and band-pass sampled at the receiver such that each corresponding channel (e.g. channels destined to the same radio frequency (RF)/ millimetre wave (mmW) frequency) in the multiplex is presented at the same intermediate frequency, due to the mapping employed at the transmitter. Analogue or digital domain mixers/ down-converters are not required with this technique. Furthermore, each corresponding channel can be readily up-converted to their respective RF/mmW channels with minimal per-signal processing. Measurement results, matched in simulation, for large signal multiplexes with both generic and 5G mobile numerologies show error-vector magnitude performance well within specifications, validating the proposed system. For even larger multiplexes and/or multiplexes residing on a higher IF exceeding the analogue bandwidth and sampling rate specifications of the ADCs at the receiver, the use of a bandwidth-extension device is proposed to extend the mapping to a mapping hierarchy and relax the analogue bandwidth and sampling rate requirements of the ADCs. This allows the receiver to still use digital processing, with only minimal analogue processing, to band-pass sample smaller blocks of channels from the larger multiplex, down to the same intermediate frequency. This ensures that each block of channels is within the analogue bandwidth specification of the ADCs. Performance predictions via simulation (based on a system model matched to the measurements) show promising results for very large multiplexes and large channel bandwidths. The multiplexing technique presented in this work thus allows reductions in per-channel processing for heterogeneous networking (or multi-radio access technologies) and multi-antenna configurations. It also creates a re-configurable and adaptable system based on available processing resources, irrespective of changes to the number of channels and channel groups, channel bandwidths and modulation formats

    Novel power amplifier design using non-linear microwave characterisation and measurement techniques

    Get PDF
    This thesis, addresses some aspects of the well-known, problem, experienced by designer of radio frequency power amplifiers (RFPA): the efficiency/linearity trade-off. The thesis is focused on finding and documenting solution to linearity problem than can be used to advance the performance of radio frequency (RF) and microwave systems used by the wireless communication industry. The research work, this was undertaken by performing a detailed investigation of the behaviour of transistors, under complex modulation, when subjected to time varying baseband signals at their output terminal: This is what in this thesis will be referred to as “baseband injection”. To undertake this study a new approach to the characterisation of non-linear devices (NLD) in the radio frequency (RF) region, such as transistors, designated as device-under-test (DUT), subjected to time varying baseband signals at its output terminal, was implemented. The study was focused on transistors that are used in implementing RF power amplifiers (RFPA) for base station applications. The nonlinear device under test (NL-DUT) is a generalisation to include transistors and other nonlinear devices under test. Throughout this thesis, transistors will be referred to as ‘device’ or ‘radio frequency power amplifier (RFPA) device’. During baseband injection investigations the device is perturbed by multi-tone modulated RF signals of different complexities. The wireless communication industry is very familiar with these kinds of devices and signals. Also familiar to the industry are the effects that arise when these kind of signal perturb these devices, such as inter-modulation distortion and linearity, power consumption/dissipation and efficiency, spectral re-growth and spectral efficiency, memory effects and trapping effects. While the concept of using baseband injection to linearize RFPAs is not new the mathematical framework introduced and applied in this work is novel. This novel approach NOVEL POWER AMPLIFIER DESIGN USING NON-LINEAR MICROWAVE CHARACTERISATION AND MEASUREMENT TECHNIQUES CARDIFF UNIVERISTY - UK ABSTRACT vi has provided new insight to this very complex problem and highlighted solutions to how it could be a usable technique in practical amplifiers. In this thesis a very rigorous and complex investigative mathematical and measurement analysis on RFPA response to applied complex stimulus in a special domain called the envelope domain was conducted. A novel generic formulation that can ‘engineer’ signal waveforms by using special control keys with which to provide solution to some of the problems highlighted above is presented. The formulation is based on specific background principles, identified from the result of both mathematical theoretical analysis and detailed experimental device characterisation

    Characterization and design of coherent optical OFDM transmission systems based on Hartley Transform

    Get PDF
    Nowadays, due to huge deployment of optical transport networks, a continuous increase towards higher data rates up to 100 Gb/s and beyond is observed. Furthermore, an evolution of the current optical networks is forecasted, acquiring new functionalities, e.g. elastic spectrum assignment for the optical signals. The target for these new challenges in transmission is to find techniques ready to deal with a growth of demand for bandwidth continuously asked by network operators, for whom the standard systems do not meet the new functionalities while higher rates are being set up. A solution for covering all of those needs is to adapt techniques capable to deal with such enormous data rates, and ensuring the same high efficiency for long distances and mitigate the optical impairments accumulated along the transmission path. Additionally, these transmission techniques are expected to provide some degree of flexibility, in order to enhance the network flexibility. A promising technology that can fully cope with those requires is the coherent optical orthogonal frequency division multiplexing (CO-OFDM). CO-OFDM provides several advantages, namely high sensitivity and spectral efficiency, simple integration and possibility to fully recover a signal in phase, amplitude and polarization. These systems are composed by digital signal processing (DSP) blocks that easily process data and can equalize and compensate the main impairments, providing high tolerance for dispersion effects. However, CO-OFDM systems are not free from drawbacks. Their high peak-to-average power ratio (PAPR) reduce their tolerance to nonlinearities. Furthermore, CO-OFDM systems are sensitive to any frequency shift and phase offset. Hence, a constant envelope optical OFDM (CE-OFDM) is proposed for significantly reducing the PAPR and solving high sensitivity to nonlinear impairments. It consists in a phase modulated discrete multi-tone signal, which is coherently detected at the receiver side. An alternative transform, the discrete Hartley transform, is proposed to speed up calculations in the DSP and eliminate the need to have a Hermitian symmetry. The optical CE-OFDM by its unique flexibility and rate scalability turns out as a great technology applicable to different configurations, ranging from access to core networks. In case of access solutions, several cases are investigated. First, the optical CE-OFDM is applied for radio access network signals delivery by means of a wavelength division multiplexing (WDM) overlay in deployed access architecture. A decomposed radio access network is deployed over an existing standard passive optical network (PON), capable to avoid interference and cross talks with access signals between network clients. The system exhibited narrow channel spacing, while reducing losses fed into the access equipment path. Next, a full duplex 10 Gb/s bidirectional PON transmission over a single wavelength with RSOA based ONU is investigated. The key point of that system is the upstream transmission, which is achieved re-modulating the phase of a downstream intensity modulated signal after proper saturation. The reported sensitivity performances show a power budget matching the PON standards and an OSNR easy to reach on non-amplified PON. Next, a flexible metropolitan area network of up to 100km with traffic add/drop using WDM is investigated. There the narrowing effect of the optical filters is studied. Finally, an elastic upgrade of the existing Telefonica model of the Spanish national core network is proposed. For that, the transceiver architecture is proposed to be operated featuring polarization multiplexing. Respect to the existing fixed grid, the flexible approach (enabled by the CE-OFDM transceiver) results into reduced bandwidth occupancy and low OSNR requirement.Hoy en día, debido al gran despliegue de las redes de ópticas de transporte, se espera un aumento continuado hacia mayores velocidades de datos, hasta 100 Gb/s y más allá. Por otra parte, la evolución que se prevé para las redes ópticas actuales, incluye la adquisición de nuevas funcionalidades, por ejemplo, la asignación del espectro de forma elástica para las señales ópticas. Por tanto, el claro desafío en cuanto a las tecnologías de transmisión es encontrar técnicas preparadas para hacer frente a un crecimiento de la demanda de ancho de banda; demanda que continuamente se incrementa por parte de los operadores de red, para quienes los sistemas estándar no se acaban de ajustar a las nuevas funcionalidades que esperan para la red. Una solución para cubrir todas estas necesidades es la adaptación de técnicas capaces de hacer frente a estas velocidades de datos enormes, y garantizar el mismo nivel de eficiencia para las largas distancias y mitigar las deficiencias ópticas acumuladas a lo largo de la ruta de transmisión. Además, se espera que estas técnicas de transmisión puedan proporcionar cierto grado de flexibilidad, a fin de mejorar y hacer más eficiente la gestión de la red. Una tecnología prometedora que puede hacer frente a estos requisitos es lo que se llama multiplexación por división de frecuencias ortogonales, combinado con la detección óptica coherente (CO-OFDM). CO-OFDM ofrece varias ventajas, entre otras: alta sensibilidad y eficiencia espectral y, sobre todo, la posibilidad de recuperar por completo de una señal en fase, la amplitud y la polarización. Estos sistemas están compuestos por bloques de procesado de señales digitales (DSP) que permiten detectar los datos fácilmente así como también compensar las principales degradaciones, proporcionando alta tolerancia a los efectos de dispersión. Sin embargo, los sistemas CO-OFDM no están exentos de inconvenientes. Su alta relación de potencia de pico a potencia media (PAPR) reduce sensiblemente la tolerancia no linealidades. Por otra parte, los sistemas CO-OFDM son sensibles a cualquier cambio de frecuencia y desplazamiento de fase. Por tanto, se propone un sistema OFDM de envolvente constante (CE-OFDM) para reducir significativamente la PAPR y solucionar la alta sensibilidad a las degradaciones no lineales. Consiste en una señal OFDM modulada en fase, que se detecta coherentemente en el receptor. Una transformada alternativa, la transformada discreta de Hartley, se propone para acelerar los cálculos en el DSP. El sistema CE-OFDM por su flexibilidad y escalabilidad única, resulta una tecnología aplicable a diferentes escenarios, que van desde las redes de acceso hasta las redes troncales. En el caso de las soluciones de acceso, se investigan varios casos. En primer lugar, el CE-OFDM aplica para el desarrollo y soporte de datos de una red radio, reutilizando una red óptica de acceso ya desplegada. A continuación, se investiga la transmisión bidireccional dúplex a 10 Gb / s sobre una sola longitud de onda empleando un RSOA a las unidades de usuario. El punto clave de este sistema es la transmisión en sentido ascendente, que se consigue re-modulando la fase de una señal de intensidad modulada después de saturar de forma adecuada. A continuación, se estudia una red de área metropolitana flexible de hasta 100 km. Concretamente el efecto de concatenación de filtros ópticos es el objetivo de este estudio. Finalmente, se propone una actualización elástica del modelo de Telefónica I+D para la red troncal española. Por ello, se propone operar el CE-OFDM en multiplexación de polarización. Los resultados muestran que esta combinación reduce sensiblemente el empleo de ancho de banda esto como los requisitos de los enlaces transmisión, reduciendo también los costes tanto de desarrollo como de operación y mantenimiento de la red.Avui dia, a causa del gran desplegament de les xarxes de òptiques de transport, s'espera un augment continuat cap a majors velocitats de dades, fins a 100 Gb/s i més enllà. D'altra banda, l'evolució que es preveu per a les xarxes òptiques actuals, inclou l'adquisició de noves funcionalitats, per exemple, assignació de l'espectre de forma elàstica per als senyals òptics. Per tant, el clar desafiament pel que fa a les tecnologies de transmissió és trobar tècniques preparades per fer front a un creixement de la demanda d'ample de banda; demanda que contínuament es fa per part dels operadors de xarxa, per als qui els sistemes estàndard no s'acaben d'ajustar a les noves funcionalitats que esperen per a la xarxa. Una solució per a cobrir totes aquestes necessitats és l'adaptació de tècniques capaces de fer front a aquestes velocitats de dades enormes, i garantir el mateix nivell d'eficiència per a les llargues distàncies i mitigar les deficiències òptiques acumulades al llarg de la ruta de transmissió. A més, s'espera que aquestes tècniques de transmissió puguin proporcionar cert grau de flexibilitat, per tal de millorar i tornar més eficient la gestió de la xarxa. Una tecnologia prometedora que pot fer front a aquests requisits és el que s'anomena multiplexació per divisió de freqüències ortogonals, combinat amb la detecció òptica coherent (CO-OFDM). CO-OFDM ofereix diversos avantatges, entre altres: alta sensibilitat i eficiència espectral i, sobretot, la possibilitat de recuperar per complet d'una senyal en fase, l'amplitud i la polarització. Aquests sistemes estan compostos per blocs de processament de senyals digitals (DSP) que permeten detectar les dades fàcilment així com també compensar les principals degradacions, proporcionant alta tolerància pels efectes de dispersió. No obstant això, els sistemes CO-OFDM no estan exempts d'inconvenients. La seva alta relació de potència de pic a potència mitjana (PAPR) redueix sensiblement la tolerància a no linealitats. D'altra banda, els sistemes de CO-OFDM són sensibles a qualsevol canvi de freqüència i desplaçament de fase. Per tant, es proposa un sistema OFDM d'envolvent constant (CE-OFDM) per a reduir significativament la PAPR i solucionar l'alta sensibilitat a les degradacions no lineals. Consisteix en un senyal OFDM modulat en fase, que es detecta coherentment en el receptor. Una transformada alternativa, la transformada discreta d'Hartley, es proposa accelerar els càlculs en el DSP. El sistema CE-OFDM per la seva flexibilitat i escalabilitat única, resulta una tecnologia aplicable a diferents escenaris, que van des de les xarxes d'accés fins a les xarxes troncals. En el cas de les solucions d'accés, s'investiguen diversos casos. En primer lloc, el CE-OFDM s'aplica per al desplegament i suport de dades d'una xarxa radio, reutilitzant una xarxa òptica d'accés ja desplegada. A continuació, s'investiga la transmissió bidireccional dúplex a 10 Gb/s sobre una sola longitud d'ona emprant un RSOA a les unitats d'usuari. El punt clau d'aquest sistema és la transmissió en sentit ascendent, que s'aconsegueix re-modulant la fase d'un senyal d'intensitat modulada després de saturar-la de forma adequada. A continuació, s'estudia una xarxa d'àrea metropolitana flexible de fins a 100 km. Concretament l'efecte de concatenació de filtres òptics és l'objectiu d'aquest estudi. Finalment, es proposa una actualització elàstica del model de Telefónica I+D per a la xarxa troncal espanyola. Per això, es proposa operar el CE-OFDM en multiplexació de polarització. Els resultats mostren que aquesta combinació redueix sensiblement l'ocupació d'ample de banda això com també els requisits dels enllaços transmissió, reduint també els costos tant de desplegament com d'operació i manteniment de la xarxa

    D13.1 Fundamental issues on energy- and bandwidth-efficient communications and networking

    Get PDF
    Deliverable D13.1 del projecte europeu NEWCOM#The report presents the current status in the research area of energy- and bandwidth-efficient communications and networking and highlights the fundamental issues still open for further investigation. Furthermore, the report presents the Joint Research Activities (JRAs) which will be performed within WP1.3. For each activity there is the description, the identification of the adherence with the identified fundamental open issues, a presentation of the initial results, and a roadmap for the planned joint research work in each topic.Preprin
    corecore