71,804 research outputs found

    A Multi-Objective Planning Framework for Optimal Integration of Distributed Generations

    Get PDF
    This paper presents an evolutionary algorithm for analyzing the best mix of distributed generations (DG) in a distribution network. The multi-objective optimization aims at minimizing the total cost of real power generation, line losses and CO2 emissions, and maximizing the benefits from the DG over a 20 years planning horizon. The method assesses the fault current constraint imposed on the distribution network by the existing and new DG in order not to violate the short circuit capacity of existing switchgear. The analysis utilizes one of the highly regarded evolutionary algorithm, the Strength Pareto Evolutionary Algorithm 2 (SPEA2) for multi-objective optimization and MATPOWER for solving the optimal power flow problems

    Generation expansion planning optimisation with renewable energy integration: A review

    Get PDF
    Generation expansion planning consists of finding the optimal long-term plan for the construction of new generation capacity subject to various economic and technical constraints. It usually involves solving a large-scale, non-linear discrete and dynamic optimisation problem in a highly constrained and uncertain environment. Traditional approaches to capacity planning have focused on achieving a least-cost plan. During the last two decades however, new paradigms for expansion planning have emerged that are driven by environmental and political factors. This has resulted in the formulation of multi-criteria approaches that enable power system planners to simultaneously consider multiple and conflicting objectives in the decision-making process. More recently, the increasing integration of intermittent renewable energy sources in the grid to sustain power system decarbonisation and energy security has introduced new challenges. Such a transition spawns new dynamics pertaining to the variability and uncertainty of these generation resources in determining the best mix. In addition to ensuring adequacy of generation capacity, it is essential to consider the operational characteristics of the generation sources in the planning process. In this paper, we first review the evolution of generation expansion planning techniques in the face of more stringent environmental policies and growing uncertainty. More importantly, we highlight the emerging challenges presented by the intermittent nature of some renewable energy sources. In particular, we discuss the power supply adequacy and operational flexibility issues introduced by variable renewable sources as well as the attempts made to address them. Finally, we identify important future research directions

    A market-based transmission planning for HVDC grid—case study of the North Sea

    Get PDF
    There is significant interest in building HVDC transmission to carry out transnational power exchange and deliver cheaper electricity from renewable energy sources which are located far from the load centers. This paper presents a market-based approach to solve a long-term TEP for meshed VSC-HVDC grids that connect regional markets. This is in general a nonlinear, non-convex large-scale optimization problem with high computational burden, partly due to the many combinations of wind and load that become possible. We developed a two-step iterative algorithm that first selects a subset of operating hours using a clustering technique, and then seeks to maximize the social welfare of all regions and minimize the investment capital of transmission infrastructure subject to technical and economic constraints. The outcome of the optimization is an optimal grid design with a topology and transmission capacities that results in congestion revenue paying off investment by the end the project's economic lifetime. Approximations are made to allow an analytical solution to the problem and demonstrate that an HVDC pricing mechanism can be consistent with an AC counterpart. The model is used to investigate development of the offshore grid in the North Sea. Simulation results are interpreted in economic terms and show the effectiveness of our proposed two-step approach

    Towards a Sustainable Global Energy Supply Infrastructure: Net Energy Balance and Density Considerations

    Get PDF
    This paper employs a framework of dynamic energy analysis to model the growth potential of alternative electricity supply infrastructures as constrained by innate physical energy balance and dynamic response limits. Coal- red generation meets the criteria of longevity (abundance of energy source) and scalability (ability to expand to the multi-terawatt level) which are critical for a sustainable energy supply chain, but carries a very heavy carbon footprint. Renewables and nuclear power, on the other hand, meet both the longevity and environmental friendliness criteria. However, due to their substantially di¤erent energy densities and load factors, they vary in terms of their ability to deliver net excess energy and attain the scale needed for meeting the huge global energy demand. The low power density of renewable energy extraction and the intermittency of renewable ows limit their ability to achieve high rates of indigenous infrastructure growth. A signi cant global nuclear power deployment, on the other hand, could engender serious risks related to proliferation, safety, and waste disposal. Unlike renewable sources of energy, nuclear power is an unforgiving technology because human lapses and errors can have ecological and social impacts that are catastrophic and irreversible. Thus, the transition to a low carbon economy is likely to prove much more challenging than early optimists have claimed.dynamic energy analysis; alternative electricity supply; coal; nuclear energy

    Scenarios for the future Brazilian power sector based on a multi-criteria assessment

    Get PDF
    The Brazilian power generation sector faces a paradigm change driven by, on one hand, a shift from a hydropower dominated mix and, on the other hand, international goals for reducing greenhouse gas emissions. The objective of this work is to evaluate five scenarios for the Brazilian power sector until 2050 using a multi-criteria decision analysis tool. These scenarios include a baseline trend and low carbon policy scenarios based on carbon taxes and carbon emission limits. To support the applied methodology, a questionnaire was elaborated to integrate the perceptions of experts on the scenario evaluation process. Considering the results from multi-criteria analysis, scenario preference followed the order of increasing share of renewables in the power sector. The preferable option for the future Brazilian power sector is a scenario where wind and biomass have a major contribution. The robustness of the multi-criteria tool applied in this study was tested by a sensitivity analysis. This analysis demonstrated that, regardless of the respondents' preferences and backgrounds, scenarios with higher shares of fossil fuel sources are the least preferable option, while scenarios with major contributions from wind and biomass are the preferable option to supply electricity in Brazil through 2050.The research that allowed the publication of this paper has been produced with the financial assistance of the European Union in the context of the CLIMACAP project (EuropeAid/131944/C/SER/Multi) and of the U.S. Agency for International Development and U.S. Environmental Protection Agency in the context of the LAMP project (under Interagency Agreements DW89923040 and DW89923951US). The contents of this publication are the sole responsibility of the authors and can in no way be taken to reflect the views of the European Union or the U.S. government. The authors would like to thank the feedback and efforts from all CLIMACAP and LAMP project partners for enabling the research results reported in this article. This research was also supported by a Marie Curie International Research Staff Exchange Scheme Fellowship within the 7th European Union Framework Programme, under project NETEP-European Brazilian Network on Energy Planning (PIRSES-GA-2013-612263).info:eu-repo/semantics/publishedVersio

    Exploring the Potential of Developmental Work Research and Change Laboratory to Support Sustainability Transformations:A Case Study of Organic Agriculture in Zimbabwe

    Get PDF
    This paper explores the emergence of transgressive learning in CHAT-informed development work research in a networked organic agriculture case study in Zimbabwe, based on intervention research involving district organic associations tackling interconnected issues of climate change, water, food security and solidarity. The study established that We change laboratories can be used to support transgressive learning through: confronting unproductive local norms; collective reframing of problematic issues; stimulating expansive learning and sustainability transformations in minds, relationships and landscapes across time. The study also confirms the need for fourth generation CHAT to address the complex social-ecological problems of today

    Toward a sustainable global energy supply infrastructure : net energy balance and density considerations

    Get PDF
    This paper complements previous work on the economics of different energy resources by examining the growth potential of alternative electricity supply infrastructures as constrained by innate physical limits. Coal-fired generation meets the criteria of longevity (abundance of energy source) and scalability (effective capability to expand to the multi-terawatt level) which are critical for a sustainable energy supply chain, but it carries a very heavy carbon footprint. Renewables and nuclear power meet both the longevity and climate friendliness criteria. However, they vary in terms of their ability to deliver net energy at a scale needed for meeting a huge global energy demand. The low density of renewable resources for electricity generation and the current intermittency of many renewables limit their ability to achieve high rates of growth. And a significant global increase in nuclear power deployment could engender serious risks related to proliferation, safety, and waste disposal. Unlike renewable sources of energy, nuclear power is an unforgiving technology because human lapses and errors can have ecological and social impacts that are catastrophic and irreversible. The transition to a low carbon economy is likely to prove much more challenging than some optimists have claimed.Energy Production and Transportation,Climate Change Mitigation and Green House Gases,Energy and Environment,Environment and Energy Efficiency,Energy Demand
    • …
    corecore